
Jacobi method
In numerical linear algebra, the Jacobi method (or Jacobi iterative method[1]) is an algorithm for determining the solutions of a
diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The
process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix
diagonalization. The method is named after Carl Gustav Jacob Jacobi.
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Let

be a square system of n linear equations, where:

Then A can be decomposed into a diagonal component D, and the remainder R:

The solution is then obtained iteratively via
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where  is the kth approximation or iteration of  and  is the next or k + 1 iteration of . The element-based formula is
thus:

The computation of xi
(k+1) requires each element in x(k) except itself. Unlike the Gauss–Seidel method, we can't overwrite xi

(k) with
xi

(k+1), as that value will be needed by the rest of the computation. The minimum amount of storage is two vectors of size n.

Input: initial guess  to the solution , (diagonal dominant) matrix , right-hand side vector , 
convergence criterion  
Output: solution when convergence is reached  
Comments: pseudocode based on the element-based formula above  

 
while convergence not reached do 
    for i := 1 step until  n do 
         
      for j := 1 step until  n do 
        if j ≠ i then 

           

        end 
      end 

       

    end 
     
end 

The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1:

A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally
dominant. Strict row diagonal dominance means that for each row, the absolute value of the diagonal term is greater than the sum of
absolute values of other terms:

The Jacobi method sometimes converges even if these conditions are not satisfied.

A linear system of the form  with initial estimate  is given by

We use the equation , described above, to estimate . First, we rewrite the equation in a more convenient
form , where  and . Note that  where  and  are the strictly
lower and upper parts of . From the known values

Algorithm

Convergence

Example

https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Spectral_radius
https://en.wikipedia.org/wiki/Diagonally_dominant_matrix


we determine  as

Further,  is found as

With  and  calculated, we estimate  as :

The next iteration yields

This process is repeated until convergence (i.e., until  is small). The solution after 25 iterations is

Suppose we are given the following linear system:

If we choose (0, 0, 0, 0)  as the initial approximation, then the first approximate solution is given by

Using the approximations obtained, the iterative procedure is repeated until the desired accuracy has been reached. The following are
the approximated solutions after five iterations.

Another example



0.6 2.27272 -1.1 1.875

1.04727 1.7159 -0.80522 0.88522

0.93263 2.05330 -1.0493 1.13088

1.01519 1.95369 -0.9681 0.97384

0.98899 2.0114 -1.0102 1.02135

The exact solution of the system is (1, 2, −1, 1) .

The following numerical procedure simply iterates to produce the solution vector.

import numpy as np 
 
ITERATION_LIMIT  = 1000 
 
# initialize the matrix  
A = np.array([[10., -1., 2., 0.], 
              [-1., 11., -1., 3.], 
              [2., -1., 10., -1.], 
              [0.0, 3., -1., 8.]]) 
# initialize the RHS vector  
b = np.array([6., 25., -11., 15.]) 
 
# prints the system  
print("System:") 
for i in range(A.shape[0]): 
    row = ["{}*x{}".format(A[i, j], j + 1) for j in range(A.shape[1])] 
    print(" + ".join(row), "=", b[i]) 
print() 
 
x = np.zeros_like (b) 
for it_count in range(ITERATION_LIMIT ): 
    print("Current solution:" , x) 
    x_new = np.zeros_like (x) 
 
    for i in range(A.shape[0]): 
        s1 = np.dot(A[i, :i], x[:i]) 
        s2 = np.dot(A[i, i + 1:], x[i + 1:]) 
        x_new[i] = (b[i] - s1 - s2) / A[i, i] 
 
    if np.allclose(x, x_new, atol=1e-10, rtol=0.): 
        break 
 
    x = x_new 
 
print("Solution:" ) 
print(x) 
error = np.dot(A, x) - b 
print("Error:") 
print(error) 

Produces the output:

System: 
10.0*x1 + -1.0*x2 + 2.0*x3 + 0.0*x4 = 6.0  
-1.0*x1 + 11.0*x2 + -1.0*x3 + 3.0*x4 = 25.0  
2.0*x1 + -1.0*x2 + 10.0*x3 + -1.0*x4 = -11.0  
0.0*x1 + 3.0*x2 + -1.0*x3 + 8.0*x4 = 15.0  
 
Current solution: [ 0.  0.  0.  0.]  
Current solution: [ 0.6         2.27272727 -1.1         1.875     ]  
Current solution: [ 1.04727273  1.71590909 -0.80522727  0.88522727]  
Current solution: [ 0.93263636  2.05330579 -1.04934091  1.13088068]  
Current solution: [ 1.01519876  1.95369576 -0.96810863  0.97384272]  
Current solution: [ 0.9889913   2.01141473 -1.0102859   1.02135051]  
Current solution: [ 1.00319865  1.99224126 -0.99452174  0.99443374]  
Current solution: [ 0.99812847  2.00230688 -1.00197223  1.00359431]  
Current solution: [ 1.00062513  1.9986703  -0.99903558  0.99888839]  
Current solution: [ 0.99967415  2.00044767 -1.00036916  1.00061919]  
Current solution: [ 1.0001186   1.99976795 -0.99982814  0.99978598]  
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Current solution: [ 0.99994242  2.00008477 -1.00006833  1.0001085 ]  
Current solution: [ 1.00002214  1.99995896 -0.99996916  0.99995967]  
Current solution: [ 0.99998973  2.00001582 -1.00001257  1.00001924]  
Current solution: [ 1.00000409  1.99999268 -0.99999444  0.9999925 ]  
Current solution: [ 0.99999816  2.00000292 -1.0000023   1.00000344]  
Current solution: [ 1.00000075  1.99999868 -0.99999899  0.99999862]  
Current solution: [ 0.99999967  2.00000054 -1.00000042  1.00000062]  
Current solution: [ 1.00000014  1.99999976 -0.99999982  0.99999975]  
Current solution: [ 0.99999994  2.0000001  -1.00000008  1.00000011]  
Current solution: [ 1.00000003  1.99999996 -0.99999997  0.99999995]  
Current solution: [ 0.99999999  2.00000002 -1.00000001  1.00000002]  
Current solution: [ 1.          1.99999999 -0.99999999  0.99999999]  
Current solution: [ 1.  2. -1.  1.]  
Solution: 
[ 1.  2. -1.  1.]  
Error: 
[ -2.81440107e-08   5.15706873e-08  -3.63466359e-08   4.17092547e-08]  

The weighted Jacobi iteration uses a parameter  to compute the iteration as

with  being the usual choice.[2]

In 2014, a refinement of the algorithm, called scheduled relaxation Jacobi (SRJ) method, was published.[1][3] The new method
employs a schedule of over- and under-relaxations and provides performance improvements for solving elliptic equations discretized
on large two- and three-dimensional Cartesian grids. The described algorithm applies the well-known technique of polynomial
(Chebyshev) acceleration to a problem with a known spectrum distribution that can be classified either as a multi-step method or a
one-step method with a non-diagonal preconditioner. However, none of them are Jacobi-like methods.

Improvements published[4] in 2015.
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