
Jacobi method
In numerical linear algebra, the Jacobi method (or Jacobi iterative method[1]) is an algorithm for determining the solutions of a
diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The
process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix
diagonalization. The method is named after Carl Gustav Jacob Jacobi.

Description

Algorithm

Convergence

Example
Another example
An example using Python and Numpy

Weighted Jacobi method

Recent developments

See also

References

External links

Let

be a square system of n linear equations, where:

Then A can be decomposed into a diagonal component D, and the remainder R:

The solution is then obtained iteratively via

Contents

Description

https://en.wikipedia.org/wiki/Numerical_linear_algebra
https://en.wikipedia.org/wiki/Diagonally_dominant_matrix
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm
https://en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi
https://en.wikipedia.org/wiki/Diagonal_matrix

where is the kth approximation or iteration of and is the next or k + 1 iteration of . The element-based formula is
thus:

The computation of xi
(k+1) requires each element in x(k) except itself. Unlike the Gauss–Seidel method, we can't overwrite xi

(k) with
xi

(k+1), as that value will be needed by the rest of the computation. The minimum amount of storage is two vectors of size n.

Input: initial guess to the solution , (diagonal dominant) matrix , right-hand side vector ,
convergence criterion
Output: solution when convergence is reached
Comments: pseudocode based on the element-based formula above

while convergence not reached do
 for i := 1 step until n do

 for j := 1 step until n do
 if j ≠ i then

 end
 end

 end

end

The standard convergence condition (for any iterative method) is when the spectral radius of the iteration matrix is less than 1:

A sufficient (but not necessary) condition for the method to converge is that the matrix A is strictly or irreducibly diagonally
dominant. Strict row diagonal dominance means that for each row, the absolute value of the diagonal term is greater than the sum of
absolute values of other terms:

The Jacobi method sometimes converges even if these conditions are not satisfied.

A linear system of the form with initial estimate is given by

We use the equation , described above, to estimate . First, we rewrite the equation in a more convenient
form , where and . Note that where and are the strictly
lower and upper parts of . From the known values

Algorithm

Convergence

Example

https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Spectral_radius
https://en.wikipedia.org/wiki/Diagonally_dominant_matrix

we determine as

Further, is found as

With and calculated, we estimate as :

The next iteration yields

This process is repeated until convergence (i.e., until is small). The solution after 25 iterations is

Suppose we are given the following linear system:

If we choose (0, 0, 0, 0) as the initial approximation, then the first approximate solution is given by

Using the approximations obtained, the iterative procedure is repeated until the desired accuracy has been reached. The following are
the approximated solutions after five iterations.

Another example

0.6 2.27272 -1.1 1.875

1.04727 1.7159 -0.80522 0.88522

0.93263 2.05330 -1.0493 1.13088

1.01519 1.95369 -0.9681 0.97384

0.98899 2.0114 -1.0102 1.02135

The exact solution of the system is (1, 2, −1, 1) .

The following numerical procedure simply iterates to produce the solution vector.

import numpy as np

ITERATION_LIMIT = 1000

initialize the matrix
A = np.array([[10., -1., 2., 0.],
 [-1., 11., -1., 3.],
 [2., -1., 10., -1.],
 [0.0, 3., -1., 8.]])
initialize the RHS vector
b = np.array([6., 25., -11., 15.])

prints the system
print("System:")
for i in range(A.shape[0]):
 row = ["{}*x{}".format(A[i, j], j + 1) for j in range(A.shape[1])]
 print(" + ".join(row), "=", b[i])
print()

x = np.zeros_like (b)
for it_count in range(ITERATION_LIMIT):
 print("Current solution:" , x)
 x_new = np.zeros_like (x)

 for i in range(A.shape[0]):
 s1 = np.dot(A[i, :i], x[:i])
 s2 = np.dot(A[i, i + 1:], x[i + 1:])
 x_new[i] = (b[i] - s1 - s2) / A[i, i]

 if np.allclose(x, x_new, atol=1e-10, rtol=0.):
 break

 x = x_new

print("Solution:")
print(x)
error = np.dot(A, x) - b
print("Error:")
print(error)

Produces the output:

System:
10.0*x1 + -1.0*x2 + 2.0*x3 + 0.0*x4 = 6.0
-1.0*x1 + 11.0*x2 + -1.0*x3 + 3.0*x4 = 25.0
2.0*x1 + -1.0*x2 + 10.0*x3 + -1.0*x4 = -11.0
0.0*x1 + 3.0*x2 + -1.0*x3 + 8.0*x4 = 15.0

Current solution: [0. 0. 0. 0.]
Current solution: [0.6 2.27272727 -1.1 1.875]
Current solution: [1.04727273 1.71590909 -0.80522727 0.88522727]
Current solution: [0.93263636 2.05330579 -1.04934091 1.13088068]
Current solution: [1.01519876 1.95369576 -0.96810863 0.97384272]
Current solution: [0.9889913 2.01141473 -1.0102859 1.02135051]
Current solution: [1.00319865 1.99224126 -0.99452174 0.99443374]
Current solution: [0.99812847 2.00230688 -1.00197223 1.00359431]
Current solution: [1.00062513 1.9986703 -0.99903558 0.99888839]
Current solution: [0.99967415 2.00044767 -1.00036916 1.00061919]
Current solution: [1.0001186 1.99976795 -0.99982814 0.99978598]

An example using Python and Numpy

Current solution: [0.99994242 2.00008477 -1.00006833 1.0001085]
Current solution: [1.00002214 1.99995896 -0.99996916 0.99995967]
Current solution: [0.99998973 2.00001582 -1.00001257 1.00001924]
Current solution: [1.00000409 1.99999268 -0.99999444 0.9999925]
Current solution: [0.99999816 2.00000292 -1.0000023 1.00000344]
Current solution: [1.00000075 1.99999868 -0.99999899 0.99999862]
Current solution: [0.99999967 2.00000054 -1.00000042 1.00000062]
Current solution: [1.00000014 1.99999976 -0.99999982 0.99999975]
Current solution: [0.99999994 2.0000001 -1.00000008 1.00000011]
Current solution: [1.00000003 1.99999996 -0.99999997 0.99999995]
Current solution: [0.99999999 2.00000002 -1.00000001 1.00000002]
Current solution: [1. 1.99999999 -0.99999999 0.99999999]
Current solution: [1. 2. -1. 1.]
Solution:
[1. 2. -1. 1.]
Error:
[-2.81440107e-08 5.15706873e-08 -3.63466359e-08 4.17092547e-08]

The weighted Jacobi iteration uses a parameter to compute the iteration as

with being the usual choice.[2]

In 2014, a refinement of the algorithm, called scheduled relaxation Jacobi (SRJ) method, was published.[1][3] The new method
employs a schedule of over- and under-relaxations and provides performance improvements for solving elliptic equations discretized
on large two- and three-dimensional Cartesian grids. The described algorithm applies the well-known technique of polynomial
(Chebyshev) acceleration to a problem with a known spectrum distribution that can be classified either as a multi-step method or a
one-step method with a non-diagonal preconditioner. However, none of them are Jacobi-like methods.

Improvements published[4] in 2015.

Gauss–Seidel method
Successive over-relaxation
Iterative method § Linear systems
Gaussian Belief Propagation
Matrix splitting

1. Johns Hopkins University (June 30, 2014). "19th century math tactic gets a makeover—and yields answers up to
200 times faster" (http://phys.org/news/2014-06-19th-century-math-tactic-makeoverand.html). Phys.org. Douglas,
Isle Of Man, United Kingdom: Omicron Technology Limited. Retrieved 2014-07-01.

2. Saad, Yousef (2003). Iterative Methods for Sparse Linear Systems (2 ed.). SIAM. p. 414. ISBN 0898715342.

3. Yang, Xiang; Mittal, Rajat (June 27, 2014). "Acceleration of the Jacobi iterative method by factors exceeding 100
using scheduled relaxation". Journal of Computational Physics. 274: 695–708. doi:10.1016/j.jcp.2014.06.010 (https://
doi.org/10.1016%2Fj.jcp.2014.06.010).

4. Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A. (2015-11-11). "Scheduled Relaxation Jacobi
method: improvements and applications". Journal of Computational Physics. 321: 369–413. arXiv:1511.04292 (http
s://arxiv.org/abs/1511.04292) . doi:10.1016/j.jcp.2016.05.053 (https://doi.org/10.1016%2Fj.jcp.2016.05.053).

Weighted Jacobi method

Recent developments

See also

References

External links

https://en.wikipedia.org/w/index.php?title=Scheduled_relaxation_Jacobi&action=edit&redlink=1
https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Successive_over-relaxation
https://en.wikipedia.org/wiki/Iterative_method#Linear_systems
https://en.wikipedia.org/wiki/Belief_propagation#Gaussian_belief_propagation_.28GaBP.29
https://en.wikipedia.org/wiki/Matrix_splitting
https://en.wikipedia.org/wiki/Johns_Hopkins_University
http://phys.org/news/2014-06-19th-century-math-tactic-makeoverand.html
https://en.wikipedia.org/wiki/Phys.org
https://en.wikipedia.org/wiki/Yousef_Saad
https://en.wikipedia.org/wiki/Society_for_Industrial_and_Applied_Mathematics
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0898715342
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2Fj.jcp.2014.06.010
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1511.04292
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2Fj.jcp.2016.05.053

Hazewinkel, Michiel, ed. (2001) [1994], "Jacobi method", Encyclopedia of Mathematics, Springer Science+Business
Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
This article incorporates text from the article Jacobi_method on CFD-Wiki that is under the GFDL license.

Black, Noel; Moore, Shirley; and Weisstein, Eric W. "Jacobi method". MathWorld.
Jacobi Method from www.math-linux.com
Numerical matrix inversion

Retrieved from "https://en.wikipedia.org/w/index.php?title=Jacobi_method&oldid=809980634"

This page was last edited on 12 November 2017, at 18:34.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/Michiel_Hazewinkel
https://www.encyclopediaofmath.org/index.php?title=p/j054090
https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55608-010-4
http://www.cfd-online.com/Wiki/Jacobi_method
http://www.cfd-online.com/Wiki/Main_Page
https://en.wikipedia.org/wiki/GFDL
http://mathworld.wolfram.com/JacobiMethod.html
https://en.wikipedia.org/wiki/MathWorld
http://www.math-linux.com/spip.php?article49
http://pagerank.suchmaschinen-doktor.de/matrix-inversion.html
https://en.wikipedia.org/w/index.php?title=Jacobi_method&oldid=809980634
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

