
LU decomposition
In numerical analysis and linear algebra, LU decomposition (where 'LU' stands for 'lower upper', and also called LU factorization)
factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a
permutation matrix as well. The LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually
solve square systems of linear equations using the LU decomposition, and it is also a key step when inverting a matrix, or computing
the determinant of a matrix. The LU decomposition was introduced by mathematician Tadeusz Banachiewicz in 1938.[1]
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Let A be a square matrix. An LU factorization refers to the
factorization of A, with proper row and/or column orderings or
permutations, into two factors, a unit lower triangular matrix L and
an upper triangular matrix U,
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In the lower triangular matrix all elements above the diagonal are zero, in the upper triangular matrix, all the elements below the
diagonal are zero. For example, for a 3-by-3 matrix A, its LU decomposition looks like this:

Without a proper ordering or permutations in the matrix, the factorization may fail to materialize. For example, it is easy to verify (by
expanding the matrix multiplication) that . If , then at least one of  and  has to be zero, which implies
either L or U is singular. This is impossible if A is nonsingular (invertible). This is a procedural problem. It can be removed by simply
reordering the rows of A so that the first element of the permuted matrix is nonzero. The same problem in subsequent factorization
steps can be removed the same way; see the basic procedure below.

It turns out that a proper permutation in rows (or columns) is sufficient for the LU factorization. The LU factorization with Partial
Pivoting (LUP) refers often to the LU factorization with row permutations only,

where L and U are again lower and upper triangular matrices, and P is a permutation matrix which, when left-multiplied to A,
reorders the rows of A. It turns out that all square matrices can be factorized in this form,[2] and the factorization is numerically stable
in practice.[3] This makes LUP decomposition a useful technique in practice.

An LU factorization with full pivoting involves both row and column permutations,

where L, U and P are defined as before, and Q is a permutation matrix that reorders the columns of A.[4]

An LDU decomposition is a decomposition of the form

where D is a diagonal matrix and L and U are unit triangular matrices, meaning that all the entries on the diagonals of L and U are
one.

Above we required that A be a square matrix, but these decompositions can all be generalized to rectangular matrices as well. In that
case, L and D are square matrices both of which have the same number of rows as A, and U has exactly the same dimensions as A.
Upper triangular should be interpreted as having only zero entries below the main diagonal, which starts at the upper left corner.

We factorize the following 2-by-2 matrix:
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One way to find the LU decomposition of this simple matrix would be to simply solve the linear equations by inspection. Expanding
the matrix multiplication gives

This system of equations is underdetermined. In this case any two non-zero elements of L and U matrices are parameters of the
solution and can be set arbitrarily to any non-zero value. Therefore, to find the unique LU decomposition, it is necessary to put some
restriction on L and U matrices. For example, we can conveniently require the lower triangular matrix L to be a unit triangular matrix
(i.e. set all the entries of its main diagonal to ones). Then the system of equations has the following solution:

Substituting these values into the LU decomposition above yields

Any square matrix  admits an LUP factorization.[2] If  is invertible, then it admits an LU (or LDU) factorization if and only if all
its leading principal minors are nonzero.[5] If  is a singular matrix of rank , then it admits an LU factorization if the first  leading
principal minors are nonzero, although the converse is not true.[6]

If a square, invertible matrix has an LDU factorization with all diagonal entries of L and U equal to 1, then the factorization is
unique.[5] In that case, the LU factorization is also unique if we require that the diagonal of  (or ) consists of ones.

If A is a symmetric (or Hermitian, if A is complex) positive definite matrix, we can arrange matters so that U is the conjugate
transpose of L. That is, we can write A as

This decomposition is called the Cholesky decomposition. The Cholesky decomposition always exists and is unique — provided the
matrix is positive definite. Furthermore, computing the Cholesky decomposition is more efficient and numerically more stable than
computing some other LU decompositions.

For a (not necessarily invertible) matrix over any field, the exact necessary and sufficient conditions under which it has an LU
factorization are known. The conditions are expressed in terms of the ranks of certain submatrices. The Gaussian elimination
algorithm for obtaining LU decomposition has also been extended to this most general case.[7]
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The LU decomposition is basically a modified form of Gaussian elimination. We transform the matrix A into an upper triangular
matrix U by eliminating the entries below the main diagonal. The Doolittle algorithm does the elimination column by column starting
from the left, by multiplying A to the left with atomic lower triangular matrices. It results in a unit lower triangular matrix and an
upper triangular matrix. The Crout algorithm is slightly different and constructs a lower triangular matrix and a unit upper triangular
matrix.

Computing the LU decomposition using either of these algorithms requires 2n3 / 3 floating point operations, ignoring lower order
terms. Partial pivoting adds only a quadratic term; this is not the case for full pivoting.[8]

When an LDU factorization exists and is unique there is a closed (explicit) formula for the elements of L, D, and U in terms of ratios
of determinants of certain submatrices of the original matrix A.[9] In particular,  and for ,  is the ratio of
the  principal submatrix to the  principal submatrix. Computation of the determinants is computationally expensive, and
so this explicit formula is not used in practice.

Given an N × N matrix

we define

We eliminate the matrix elements below the main diagonal in the n-th column of A(n − 1) by adding to the i-th row of this matrix the
n-th row multiplied by

for . This can be done by multiplying A(n − 1) to the left with the lower triangular matrix

We set

After N − 1 steps, we eliminated all the matrix elements below the main diagonal, so we obtain an upper triangular matrix A(N − 1).
We find the decomposition
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Denote the upper triangular matrix A(N − 1) by U, and . Because the inverse of a lower triangular matrix Ln is

again a lower triangular matrix, and the multiplication of two lower triangular matrices is again a lower triangular matrix, it follows
that L is a lower triangular matrix. Moreover, it can be seen that

We obtain .

It is clear that in order for this algorithm to work, one needs to have  at each step (see the definition of ). If this
assumption fails at some point, one needs to interchange n-th row with another row below it before continuing. This is why the LU
decomposition in general looks like .

The LUP decomposition algorithm by Cormen et al. generalizes Crout matrix decomposition. It can be described as follows.

1. If  has a nonzero entry in its first row, then take a permutation matrix  such that  has a nonzero entry in its
upper left corner. Otherwise, take for  the identity matrix. Let .

2. Let  be the matrix that one gets from  by deleting both the first row and the first column. Decompose 
 recursively. Make  from  by first adding a zero row above and then adding the first column of 

at the left.
3. Make  from  by first adding a zero row above and a zero column at the left and then replacing the upper left

entry (which is 0 at this point) by 1. Make  from  in a similar manner and define . Let 
be the inverse of .

4. At this point,  is the same as , except (possibly) at the first row. If the first row of  is zero, then ,
since both have first row zero, and  follows, as desired. Otherwise,  and  have the same nonzero
entry in the upper left corner, and  for some upper triangular square matrix  with ones on the
diagonal (  clears entries of  and adds entries of  by way of the upper left corner). Now  is a
decomposition of the desired form.

It is possible to find a low rank approximation to the LU decomposition using a randomized algorithm. Given an input matrix  and
a desired low rank , the randomized LU returns permutation matrices  and lower/upper trapezoidal matrices  of size 

 and  respectively, such that with high probability , where  is a constant that depends on
the parameters of the algorithm and  is the th singular value of the input matrix .[10]

If two matrices of order n can be multiplied in time M(n), where M(n) ≥ na for some a>2, then the LU decomposition can be
computed in time O(M(n)).[11] This means, for example, that an O(n2.376) algorithm exists based on the Coppersmith–Winograd
algorithm.
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Special algorithms have been developed for factorizing large sparse matrices. These algorithms attempt to find sparse factors L and
U. Ideally, the cost of computation is determined by the number of nonzero entries, rather than by the size of the matrix.

These algorithms use the freedom to exchange rows and columns to minimize fill-in (entries which change from an initial zero to a
non-zero value during the execution of an algorithm).

General treatment of orderings that minimize fill-in can be addressed using graph theory. O(n^3)

Given a system of linear equations in matrix form

we want to solve the equation for x given A and b. Suppose we have already obtained the LUP decomposition of A such that 
, so .

In this case the solution is done in two logical steps:

1. First, we solve the equation  for y;
2. Second, we solve the equation  for x.

Note that in both cases we are dealing with triangular matrices (L and U) which can be solved directly by forward and backward
substitution without using the Gaussian elimination process (however we do need this process or equivalent to compute the LU
decomposition itself).

The above procedure can be repeatedly applied to solve the equation multiple times for different b. In this case it is faster (and more
convenient) to do an LU decomposition of the matrix A once and then solve the triangular matrices for the different b, rather than
using Gaussian elimination each time. The matrices L and U could be thought to have "encoded" the Gaussian elimination process.

The cost of solving a system of linear equations is approximately  floating point operations if the matrix  has size . This

makes it twice as fast as algorithms based on the QR decomposition, which costs about  floating point operations when

Householder reflections are used. For this reason, the LU decomposition is usually preferred.[12]

When solving systems of equations, b is usually treated as a vector with a length equal to the height of matrix A. Instead of vector b,
we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix):

We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of
size n. It would follow that the result X must be the inverse of A.[13] An implementation of this methodology in the C programming
language can be found here.

Given the LUP decomposition  of a square matrix A, the determinant of A can be computed straightforwardly as
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The second equation follows from the fact that the determinant of a triangular matrix is simply the product of its diagonal entries, and
that the determinant of a permutation matrix is equal to (−1)S where S is the number of row exchanges in the decomposition.

In the case of LU decomposition with full pivoting,  also equals the right-hand side of the above equation, if we let S be the
total number of row and column exchanges.

The same method readily applies to LU decomposition by setting P equal to the identity matrix.

/* INPUT: A - array of pointers to rows of a square matrix having dimension N  
 *        Tol - small tolerance number to detect failure when the matrix is near degenerate  
 * OUTPUT: Matrix A is changed, it contains both matrices L-E and U as A=(L-E)+U such that P*A=L*U.  
 *        The permutation matrix is not stored as a matrix, but in an integer vector P of size N+1  
 *        containing column indexes where the permutation matrix has "1". The last element P[N]=S+N,  
 *        where S is the number of row exchanges needed for determinant computation, det(P)=(-1)^S     
 */ 
int LUPDecompose (double **A, int N, double Tol, int *P) { 
 
    int i, j, k, imax;  
    double maxA, *ptr, absA; 
 
    for (i = 0; i <= N; i++) 
        P[i] = i; //Unit permutation matrix, P[N] initialized with N  
 
    for (i = 0; i < N; i++) { 
        maxA = 0.0; 
        imax = i; 
 
        for (k = i; k < N; k++) 
            if ((absA = fabs(A[k][i])) > maxA) {  
                maxA = absA; 
                imax = k; 
            } 
 
        if (maxA < Tol) return 0; //failure, matrix is degenerate  
 
        if (imax != i) { 
            //pivoting P  
            j = P[i]; 
            P[i] = P[imax]; 
            P[imax] = j; 
 
            //pivoting rows of A  
            ptr = A[i]; 
            A[i] = A[imax]; 
            A[imax] = ptr; 
 
            //counting pivots starting from N (for determinant)  
            P[N]++; 
        } 
 
        for (j = i + 1; j < N; j++) { 
            A[j][i] /= A[i][i]; 
 
            for (k = i + 1; k < N; k++) 
                A[j][k] -= A[j][i] * A[i][k]; 
        } 
    } 
 
    return 1;  //decomposition done  
} 
 
 
/* INPUT: A,P filled in LUPDecompose; b - rhs vector; N - dimension  
 * OUTPUT: x - solution vector of A*x=b  
 */ 
void LUPSolve(double **A, int *P, double *b, int N, double *x) { 
 
    for (int i = 0; i < N; i++) { 
        x[i] = b[P[i]]; 
 
        for (int k = 0; k < i; k++) 
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            x[i] -= A[i][k] * x[k]; 
    } 
 
    for (int i = N - 1; i >= 0; i--) { 
        for (int k = i + 1; k < N; k++) 
            x[i] -= A[i][k] * x[k]; 
 
        x[i] = x[i] / A[i][i]; 
    } 
} 
 
/* INPUT: A,P filled in LUPDecompose; N - dimension  
 * OUTPUT: IA is the inverse of the initial matrix  
 */ 
void LUPInvert(double **A, int *P, int N, double **IA) { 
   
    for (int j = 0; j < N; j++) { 
        for (int i = 0; i < N; i++) { 
            if (P[i] == j)  
                IA[i][j] = 1.0; 
            else 
                IA[i][j] = 0.0; 
 
            for (int k = 0; k < i; k++) 
                IA[i][j] -= A[i][k] * IA[k][j]; 
        } 
 
        for (int i = N - 1; i >= 0; i--) { 
            for (int k = i + 1; k < N; k++) 
                IA[i][j] -= A[i][k] * IA[k][j]; 
 
            IA[i][j] = IA[i][j] / A[i][i]; 
        } 
    } 
} 
 
/* INPUT: A,P filled in LUPDecompose; N - dimension.  
 * OUTPUT: Function returns the determinant of the initial matrix  
 */ 
double LUPDeterminant (double **A, int *P, int N) { 
 
    double det = A[0][0]; 
 
    for (int i = 1; i < N; i++) 
        det *= A[i][i]; 
 
    if ((P[N] - N) % 2 == 0) 
        return det;  
    else 
        return -det; 
} 

public class SystemOfLinearEquations  
    { 
        public double[] SolveUsingLU (double[,] matrix, double[] rightPart, int n) 
        { 
            // decomposition of matrix  
            double[,] lu = new double[n, n]; 
            double sum = 0; 
            for (int i = 0; i < n; i++) 
            { 
                for (int j = i; j < n; j++) 
                { 
                    sum = 0; 
                    for (int k = 0; k < i; k++) 
                        sum += lu[i, k] * lu[k, j]; 
                    lu[i, j] = matrix[i, j] - sum; 
                } 
                for (int j = i + 1; j < n; j++) 
                { 
                    sum = 0; 
                    for (int k = 0; k < i; k++) 
                        sum += lu[j, k] * lu[k, i]; 
                    lu[j, i] = (1 / lu[i, i]) * (matrix[j, i] - sum); 
                } 
            } 
             
            // find solution of Ly = b  
            double[] y = new double[n]; 
            for (int i = 0; i < n; i++) 
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            { 
                sum = 0; 
                for (int k = 0; k < i; k++) 
                    sum += lu[i, k] * y[k]; 
                y[i] = rightPart[i] - sum; 
            } 
            // find solution of Ux = y  
            double[] x = new double[n]; 
            for (int i = n - 1; i >= 0; i--) 
            { 
                sum = 0; 
                for (int k = i + 1; k < n; k++) 
                    sum += lu[i, k] * x[k]; 
                x[i] = (1 / lu[i, i]) * (y[i] - sum); 
            } 
            return x; 
        } 
} 
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