
Power iteration
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix , the
algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , the
corresponding eigenvector of , such that . The algorithm is also known as the Von Mises iteration.[1]

Power iteration is a very simple algorithm, but it may converge slowly. It does not compute a matrix decomposition, and hence it can
be used when  is a very large sparse matrix.
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The power iteration algorithm starts with a vector , which may be an approximation to the dominant eigenvector or a random
vector. The method is described by the recurrence relation

So, at every iteration, the vector  is multiplied by the matrix  and normalized.

If we assume  has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector  has a
nonzero component in the direction of an eigenvector associated with the dominant eigenvalue, then a subsequence  converges to
an eigenvector associated with the dominant eigenvalue.

Without the two assumptions above, the sequence  does not necessarily converge. In this sequence,

,

where  is an eigenvector associated with the dominant eigenvalue, and . The presence of the term  implies that 
does not converge unless . Under the two assumptions listed above, the sequence  defined by

converges to the dominant eigenvalue.

One may compute this with the following algorithm (shown in Python with NumPy):

#!/usr/bin/python  
 
import numpy as np 
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def power_iteration (A, num_simulations ): 
    # Ideally choose a random vector  
    # To decrease the chance that our vector  
    # Is orthogonal to the eigenvector  
    b_k = np.random.rand(A.shape[0]) 
 
    for _ in range(num_simulations ): 
        # calculate the matrix-by-vector product Ab  
        b_k1 = np.dot(A, b_k) 
 
        # calculate the norm  
        b_k1_norm = np.linalg.norm(b_k1) 
 
        # re normalize the vector  
        b_k = b_k1 / b_k1_norm 
 
    return b_k 
 
power_iteration (np.array([[0.5, 0.5], [0.2, 0.8]]), 10) 

The vector  to an associated eigenvector. Ideally, one should use the Rayleigh quotient in order to get the associated eigenvalue.

This algorithm is the one used to calculate such things as the Google PageRank.

The method can also be used to calculate the spectral radius (the largest eigenvalue of a matrix) by computing the Rayleigh quotient

Let  be decomposed into its Jordan canonical form: , where the first column of  is an eigenvector of 
corresponding to the dominant eigenvalue . Since the dominant eigenvalue of  is unique, the first Jordan block of  is the 
matrix , where  is the largest eigenvalue of A in magnitude. The starting vector  can be written as a linear combination of
the columns of V: . By assumption,  has a nonzero component in the direction of the dominant
eigenvalue, so .

The computationally useful recurrence relation for  can be rewritten as: , where the expression: 

 is more amenable to the following analysis. 

 

The expression above simplifies as  
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 as . 

The limit follows from the fact that the eigenvalue of  is less than 1 in magnitude, so  as  

It follows that: 

 as  

Using this fact,  can be written in a form that emphasizes its relationship with  when k is large: 

 where  and  as 

 
The sequence  is bounded, so it contains a convergent subsequence. Note that the eigenvector corresponding to the dominant
eigenvalue is only unique up to a scalar, so although the sequence  may not converge,  is nearly an eigenvector of A for large k.

Alternatively, if A is diagonalizable, then the following proof yields the same result 
Let λ1, λ2, …, λm be the m eigenvalues (counted with multiplicity) of A and let v1, v2, …, vm be the corresponding eigenvectors.
Suppose that  is the dominant eigenvalue, so that  for .

The initial vector  can be written:

If  is chosen randomly (with uniform probability), then c1 ≠ 0 with probability 1. Now,

The expression within parentheses converges to  because  for . On the other hand, we have

Therefore,  converges to (a multiple of) the eigenvector . The convergence is geometric, with ratio

where  denotes the second dominant eigenvalue. Thus, the method converges slowly if there is an eigenvalue close in magnitude to
the dominant eigenvalue.

Although the power iteration method approximates only one eigenvalue of a matrix, it remains useful for certain computational
problems. For instance, Google uses it to calculate the PageRank of documents in their search engine,[2] and Twitter uses it to show
users recommendations of who to follow.[3] For matrices that are well-conditioned and as sparse as the web matrix, the power
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iteration method can be more efficient than other methods of finding the dominant eigenvector.

Some of the more advanced eigenvalue algorithms can be understood as variations of the power iteration. For instance, the inverse
iteration method applies power iteration to the matrix . Other algorithms look at the whole subspace generated by the vectors .
This subspace is known as the Krylov subspace. It can be computed by Arnoldi iteration or Lanczos iteration.

Rayleigh quotient iteration
Inverse iteration
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