WikipediA

Power iteration

In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm given a diagonalizable matrix A, the algorithm will produce a number λ, which is the greatest (in absolute value) eigenvalue of A, and a nonzero vector v, the corresponding eigenvector of λ, such that $A v=\lambda v$. The algorithm is also known as the bn Mises iteration ${ }^{[1]}$

Power iteration is a very simple algorithm, but it may converge slowly. It does not compute a matrix decomposition and hence it can be used when A is a very large sparse matrix.

Contents

The method
Analysis
Applications

See also

References

The method

The power iteration algorithm starts with a vector b_{0}, which may be an approximation to the dominant eigenvector or a random vector. The method is described by therecurrence relation

$$
b_{k+1}=\frac{A b_{k}}{\left\|A b_{k}\right\|}
$$

So, at every iteration, the vectorb ${ }_{k}$ is multiplied by the matrix A and normalized.

If we assume A has an eigenvalue that is strictly greater in magnitude than its other eigenvalues and the starting vector b_{0} has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue, then a subsequence $\left(b_{k}\right)$ converges to an eigenvector associated with the dominant eigenvalue.

Without the two assumptions above, the sequence $\left(b_{k}\right)$ does not necessarily convege. In this sequence,

$$
b_{k}=e^{i \phi_{k}} v_{1}+r_{k}
$$

where v_{1} is an eigenvector associated with the dominant eigenvalue, and $\left\|r_{k}\right\| \rightarrow 0$. The presence of the term $e^{i \phi_{k}}$ implies that $\left(b_{k}\right)$ does not converge unless $e^{i \phi_{k}}=1$. Under the two assumptions listed above, the sequence $\left(\mu_{k}\right)$ defined by

$$
\mu_{k}=\frac{b_{k}^{*} A b_{k}}{b_{k}^{*} b_{k}}
$$

converges to the dominant eigenvalue
One may compute this with the following algorithm (shown in Python with NumPy):

!\#!/usr/bin/python

,import numpy as np

```
def power_iteration(A, num_simulations ):
    # Ideally choose a random vector
    # To decrease the chance that our vector
    # Is orthogonal to the eigenvector
    b_k = np.random.rand(A.shape[0])
    for _ in range(num_simulations ):
        # calculate the matrix-by-vector product Ab
        b_k1 = np.dot(A, b_k)
        # calculate the norm
        b_k1_norm = np.linalg.norm(b_k1)
        # re normalize the vector
        b_k = b_k1 / b_k1_norm
    return b_k
```

power_iteration (np.array([[0.5, 0.5], [0.2, 0.8]]), 10)

The vector b_{k} to an associated eigenvector Ideally, one should use the Rayleigh quotientin order to get the associated eigenvalue.

This algorithm is the one used to calculate such things as thGoogle PageRank.

The method can also be used to calculate thespectral radius (the largest eigenvalue of a matrix) by computinghe Rayleigh quotient

$$
\frac{b_{k}^{\top} A b_{k}}{b_{k}^{\top} b_{k}}=\frac{b_{k+1}^{\top} b_{k}}{b_{k}^{\top} b_{k}} .
$$

Analysis

Let A be decomposed into its Jordan canonical form: $A=V J V^{-1}$, where the first column of V is an eigenvector of A corresponding to the dominant eigenvalue λ_{1}. Since the dominant eigenvalue of A is unique, the first Jordan block of J is the 1×1 matrix [λ_{1}], where λ_{1} is the largest eigenvalue of A in magnitude. The starting vector b_{0} can be written as a linear combination of the columns of $\mathrm{V}: b_{0}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$. By assumption, b_{0} has a nonzero component in the direction of the dominant eigenvalue, so $c_{1} \neq 0$.

The computationally useful recurrence relation for b_{k+1} can be rewritten as: $b_{k+1}=\frac{A b_{k}}{\left\|A b_{k}\right\|}=\frac{A^{k+1} b_{0}}{\left\|A^{k+1} b_{0}\right\|}$, where the expression: $\frac{A^{k+1} b_{0}}{\left\|A^{k+1} b_{0}\right\|}$ is more amenable to the following analysis.

$$
\begin{aligned}
b_{k} & =\frac{A^{k} b_{0}}{\left\|A^{k} b_{0}\right\|} \\
& =\frac{\left(V J V^{-1}\right)^{k} b_{0}}{\left\|\left(V J V^{-1}\right)^{k} b_{0}\right\|} \\
& =\frac{V J^{k} V^{-1} b_{0}}{\left\|V J^{k} V^{-1} b_{0}\right\|} \\
& =\frac{V J^{k} V^{-1}\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)}{\left\|V J^{k} V^{-1}\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}\right)\right\|} \\
& =\frac{V J^{k}\left(c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}\right)}{\left\|V J^{k}\left(c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}\right)\right\|} \\
& =\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\right)^{k} \frac{c_{1}}{\left|c_{1}\right|} \frac{v_{1}+\frac{1}{c_{1}} V\left(\frac{1}{\lambda_{1}} J\right)^{k}\left(c_{2} e_{2}+\cdots+c_{n} e_{n}\right)}{\left\|v_{1}+\frac{1}{c_{1}} V\left(\frac{1}{\lambda_{1}} J\right)^{k}\left(c_{2} e_{2}+\cdots+c_{n} e_{n}\right)\right\|}
\end{aligned}
$$

The expression above simplifies ask $\rightarrow \infty$
$\left(\frac{1}{\lambda_{1}} J\right)^{k}=\left[\begin{array}{llll}{[1]} & & & \\ & \left(\frac{1}{\lambda_{1}} J_{2}\right)^{k} & & \\ & & \ddots & \\ & & & \left(\frac{1}{\lambda_{1}} J_{m}\right)^{k}\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0\end{array}\right]$ as $k \rightarrow \infty$.
The limit follows from the fact that the eigenvalue of $\frac{1}{\lambda_{1}} J_{i}$ is less than 1 in magnitude, so $\left(\frac{1}{\lambda_{1}} J_{i}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$ It follows that:
$\frac{1}{c_{1}} V\left(\frac{1}{\lambda_{1}} J\right)^{k}\left(c_{2} e_{2}+\cdots+c_{n} e_{n}\right) \rightarrow 0$ as $k \rightarrow \infty$
Using this fact, b_{k} can be written in a form that emphasizes its relationship witl v_{1} when k is large:
$b_{k}=\left(\frac{\lambda_{1}}{\left|\lambda_{1}\right|}\right)^{k} \frac{c_{1}}{\left|c_{1}\right|} \frac{v_{1}+\frac{1}{c_{1}} V\left(\frac{1}{\lambda_{1}} J\right)^{k}\left(c_{2} e_{2}+\cdots+c_{n} e_{n}\right)}{\left\|v_{1}+\frac{1}{c_{1}} V\left(\frac{1}{\lambda_{1}} J\right)^{k}\left(c_{2} e_{2}+\cdots+c_{n} e_{n}\right)\right\|}=e^{i \phi_{k}} \frac{c_{1}}{\left|c_{1}\right|} \frac{v_{1}}{\left\|v_{1}\right\|}+r_{k}$ where $e^{i \phi_{k}}=\left(\lambda_{1} /\left|\lambda_{1}\right|\right)^{k}$ and $\left\|r_{k}\right\| \rightarrow 0$ as
$k \rightarrow \infty$
The sequence $\left(b_{k}\right)$ is bounded, so it contains a convergent subsequence. Note that the eigenvector corresponding to the dominant eigenvalue is only unique up to a scalarso although the sequence $\left(b_{k}\right)$ may not conveige, b_{k} is nearly an eigenvector of A for large k .

Alternatively, if A is diagonalizable, then the following proof yields the same result
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be the m eigenvalues (counted with multiplicity) of A and let $v_{1}, v_{2}, \ldots, v_{m}$ be the corresponding eigenvectors. Suppose that λ_{1} is the dominant eigenvalue, so that $\left|\lambda_{1}\right|>\left|\lambda_{j}\right|$ for $j>1$.

The initial vector b_{0} can be written:

$$
b_{0}=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{m} v_{m}
$$

If b_{0} is chosen randomly (with uniform probability), therc $\boldsymbol{c}_{1} \neq 0$ with probability 1 . Now,

$$
\begin{aligned}
A^{k} b_{0} & =c_{1} A^{k} v_{1}+c_{2} A^{k} v_{2}+\cdots+c_{m} A^{k} v_{m} \\
& =c_{1} \lambda_{1}^{k} v_{1}+c_{2} \lambda_{2}^{k} v_{2}+\cdots+c_{m} \lambda_{m}^{k} v_{m} \\
& =c_{1} \lambda_{1}^{k}\left(v_{1}+\frac{c_{2}}{c_{1}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} v_{2}+\cdots+\frac{c_{m}}{c_{1}}\left(\frac{\lambda_{m}}{\lambda_{1}}\right)^{k} v_{m}\right)
\end{aligned}
$$

The expression within parentheses conveges to v_{1} because $\left|\lambda_{j} / \lambda_{1}\right|<1$ for $j>1$. On the other hand, we have

$$
b_{k}=\frac{A^{k} b_{0}}{\left\|A^{k} b_{0}\right\|} .
$$

Therefore, b_{k} converges to (a multiple of) the eigenvector v_{1}. The convergence is geometric, with ratio

$$
\left|\frac{\lambda_{2}}{\lambda_{1}}\right|
$$

where λ_{2} denotes the second dominant eigenvalue. Thus, the method convges slowly if there is an eigenvalue close in magnitude to the dominant eigenvalue.

Applications

Although the power iteration method approximates only one eigenvalue of a matrix, it remains useful for certain computational problems. For instance, Google uses it to calculate the PageRank of documents in their search engine, ${ }^{[2]}$ and Twitter uses it to show users recommendations of who to follow. ${ }^{[3]}$ For matrices that are well-conditioned and as sparse as the web matrix, the power
iteration method can be more eficient than othermethods of finding the dominant eigenvector
Some of the more advanced eigenvalue algorithms can be understood as variations of the power iteration. For instance, the inverse iteration method applies power iteration to the matrix A^{-1}. Other algorithms look at the whole subspace generated by the vectors b_{k}. This subspace is known as theKrylov subspace It can be computed byArnoldi iterationor Lanczos iteration

See also

- Rayleigh quotient iteration
- Inverse iteration

References

1. Richard von Misesand H. Pollaczek-Geiringer Praktische Verfahren der Gleichungsauflösurg, ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 9, 152-164 (1929).
2. Ipsen, Ilse, and Rebecca M. Wills (5-8 May 2005)."7th IMACS International Symposium on Iterative Methods in Scientific Computing"(http://www4.ncsu.edu/~ipsen/ps/slides_imacs.pdf)
3. Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong \Ahg, and Reza Bosagh ZadehWTF: The who-tofollow system at Twitter (http://dl.acm.org/citation.cfm?id=2488433.) Proceedings of the 22nd international conference on World Wide Web

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Power_iteration\&oldid=819345704

This page was last edited on 8 January 2018, at 21:33.
Text is available under theCreative Commons Attribution-ShareAlike Licenseadditional terms may apply By using this site, you agree to theTerms of Use and Privacy Policy. Wikipedia $®$ is a registered trademark of theWikimedia Foundation, Inc, a non-profit organization.

