
Least squares
The method of least squares is a standard approach in regression analysis to
approximate the solution of overdetermined systems, i.e., sets of equations in which
there are more equations than unknowns. "Least squares" means that the overall
solution minimizes the sum of the squares of the residuals made in the results of
every single equation.

The most important application is in data fitting. The best fit in the least-squares
sense minimizes the sum of squared residuals (a residual being: the difference
between an observed value, and the fitted value provided by a model). When the
problem has substantial uncertainties in the independent variable (the x variable),
then simple regression and least-squares methods have problems; in such cases, the
methodology required for fitting errors-in-variables models may be considered
instead of that for least squares.

Least-squares problems fall into two categories: linear or ordinary least squares and
nonlinear least squares, depending on whether or not the residuals are linear in all
unknowns. The linear least-squares problem occurs in statistical regression analysis;
it has a closed-form solution. The nonlinear problem is usually solved by iterative
refinement; at each iteration the system is approximated by a linear one, and thus the
core calculation is similar in both cases.

Polynomial least squares describes the variance in a prediction of the dependent
variable as a function of the independent variable and the deviations from the fitted
curve.

When the observations come from an exponential family and mild conditions are
satisfied, least-squares estimates and maximum-likelihood estimates are identical.[1]

The method of least squares can also be derived as a method of moments estimator.

The following discussion is mostly presented in terms of linear functions but the use
of least squares is valid and practical for more general families of functions. Also, by iteratively applying local quadratic
approximation to the likelihood (through the Fisher information), the least-squares method may be used to fit a generalized linear
model.

The least-squares method is usually credited to Carl Friedrich Gauss (1795),[2] but it was first published by Adrien-Marie Legendre
(1805).[3]
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The method of least squares grew out of the fields of astronomy and geodesy, as scientists and mathematicians sought to provide
solutions to the challenges of navigating the Earth's oceans during the Age of Exploration. The accurate description of the behavior of
celestial bodies was the key to enabling ships to sail in open seas, where sailors could no longer rely on land sightings for navigation.

The method was the culmination of several advances that took place during the course of the eighteenth century:[4]

The combination of different observations as being the best estimate of the true value; errors decrease with
aggregation rather than increase, perhaps first expressed by Roger Cotes in 1722.
The combination of different observations taken under the same conditions contrary to simply trying one's best to
observe and record a single observation accurately. The approach was known as the method of averages. This
approach was notably used by Tobias Mayer while studying the librations of the moon in 1750, and by Pierre-Simon
Laplace in his work in explaining the differences in motion of Jupiter and Saturn in 1788.
The combination of different observations taken under different conditions. The method came to be known as the
method of least absolute deviation. It was notably performed by Roger Joseph Boscovich in his work on the shape of
the earth in 1757 and by Pierre-Simon Laplace for the same problem in 1799.
The development of a criterion that can be evaluated to determine when the solution with the minimum error has
been achieved. Laplace tried to specify a mathematical form of the probability density for the errors and define a
method of estimation that minimizes the error of estimation. For this purpose, Laplace used a symmetric two-sided
exponential distribution we now call Laplace distribution to model the error distribution, and used the sum of absolute
deviation as error of estimation. He felt these to be the simplest assumptions he could make, and he had hoped to
obtain the arithmetic mean as the best estimate. Instead, his estimator was the posterior median.

The first clear and concise exposition of the method of least squares was published by Legendre in 1805.[5] The technique is
described as an algebraic procedure for fitting linear equations to data and Legendre demonstrates the new method by analyzing the
same data as Laplace for the shape of the earth. The value of Legendre's method of least squares was immediately recognized by
leading astronomers and geodesists of the time.

In 1809 Carl Friedrich Gauss published his method of calculating the orbits of celestial bodies. In that work he claimed to have been
in possession of the method of least squares since 1795. This naturally led to a priority dispute with Legendre. However, to Gauss's
credit, he went beyond Legendre and succeeded in connecting the method of least squares with the principles of probability and to the
normal distribution. He had managed to complete Laplace's program of specifying a mathematical form of the probability density for
the observations, depending on a finite number of unknown parameters, and define a method of estimation that minimizes the error of
estimation. Gauss showed that arithmetic mean is indeed the best estimate of the location parameter by changing both the probability
density and the method of estimation. He then turned the problem around by asking what form the density should have and what
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method of estimation should be used to get the arithmetic mean as estimate of the location
parameter. In this attempt, he invented the normal distribution.

An early demonstration of the strength of Gauss' method came when it was used to predict
the future location of the newly discovered asteroid Ceres. On 1 January 1801, the Italian
astronomer Giuseppe Piazzi discovered Ceres and was able to track its path for 40 days
before it was lost in the glare of the sun. Based on these data, astronomers desired to
determine the location of Ceres after it emerged from behind the sun without solving
Kepler's complicated nonlinear equations of planetary motion. The only predictions that
successfully allowed Hungarian astronomer Franz Xaver von Zach to relocate Ceres were
those performed by the 24-year-old Gauss using least-squares analysis.

In 1810, after reading Gauss's work, Laplace, after proving the central limit theorem, used it
to give a large sample justification for the method of least square and the normal
distribution. In 1822, Gauss was able to state that the least-squares approach to regression analysis is optimal in the sense that in a
linear model where the errors have a mean of zero, are uncorrelated, and have equal variances, the best linear unbiased estimator of
the coefficients is the least-squares estimator. This result is known as the Gauss–Markov theorem.

The idea of least-squares analysis was also independently formulated by the American Robert Adrain in 1808. In the next two
centuries workers in the theory of errors and in statistics found many different ways of implementing least squares.[6]

The objective consists of adjusting the parameters of a model function to best fit a data set. A simple data set consists of n points
(data pairs) , i = 1, ..., n, where  is an independent variable and  is a dependent variable whose value is found by
observation. The model function has the form , where m adjustable parameters are held in the vector . The goal is to find the
parameter values for the model that "best" fits the data. The fit of a model to a data point is measured by its residual, defined as the
difference between the actual value of the dependent variable and the value predicted by the model:

The least-squares method finds the optimal parameter values by minimizing the sum, , of squared residuals:

An example of a model in two dimensions is that of the straight line. Denoting the y-intercept as  and the slope as , the model
function is given by . See linear least squares for a fully worked out example of this model.

A data point may consist of more than one independent variable. For example, when fitting a plane to a set of height measurements,
the plane is a function of two independent variables, x and z, say. In the most general case there may be one or more independent
variables and one or more dependent variables at each data point.

This regression formulation considers only residuals in the dependent variable (but also have Total least squares regression both
variables). There are two rather different contexts with different implications :

Regression for prediction. Here a model is fitted to provide a prediction rule for application in a similar situation to
which the data used for fitting apply. Here the dependent variables corresponding to such future application would be
subject to the same types of observation error as those in the data used for fitting. It is therefore logically consistent
to use the least-squares prediction rule for such data.
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Regression for fitting a "true relationship". In standard regression analysis, that leads to fitting by least squares, there
is an implicit assumption that errors in the independent variable are zero or strictly controlled so as to be negligible.
When errors in the independent variable are non-negligible, models of measurement error can be used; such
methods can lead to parameter estimates, hypothesis testing and confidence intervals that take into account the
presence of observation errors in the independent variables.[7] An alternative approach is to fit a model by total least
squares; this can be viewed as taking a pragmatic approach to balancing the effects of the different sources of error
in formulating an objective function for use in model-fitting.

The minimum of the sum of squares is found by setting the gradient to zero. Since the model contains m parameters, there are m
gradient equations:

and since , the gradient equations become

The gradient equations apply to all least squares problems. Each particular problem requires particular expressions for the model and
its partial derivatives.

A regression model is a linear one when the model comprises a linear combination of the parameters, i.e.,

where the function  is a function of .

Letting

we can then see that in that case the least square estimate (or estimator, in the context of a random sample),  is given by

For a derivation of this estimate see Linear least squares (mathematics).

There is, in some cases, a closed-form solution to a non-linear least squares problem – but in general there is not. In the case of no
closed-form solution, numerical algorithms are used to find the value of the parameters  that minimizes the objective. Most
algorithms involve choosing initial values for the parameters. Then, the parameters are refined iteratively, that is, the values are
obtained by successive approximation:

Solving the least squares problem

Linear least squares

Non-linear least squares
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where a superscript k is an iteration number, and the vector of increments  is called the shift vector. In some commonly used
algorithms, at each iteration the model may be linearized by approximation to a first-order Taylor series expansion about :

The Jacobian J is a function of constants, the independent variable and the parameters, so it changes from one iteration to the next.
The residuals are given by

To minimize the sum of squares of , the gradient equation is set to zero and solved for :

which, on rearrangement, become m simultaneous linear equations, the normal equations:

The normal equations are written in matrix notation as

These are the defining equations of the Gauss–Newton algorithm.

The model function, f, in LLSQ (linear least squares) is a linear combination of parameters of the form 
 The model may represent a straight line, a parabola or any other linear combination of

functions. In NLLSQ (nonlinear least squares) the parameters appear as functions, such as  and so forth. If
the derivatives  are either constant or depend only on the values of the independent variable, the model is
linear in the parameters. Otherwise the model is nonlinear.
Algorithms for finding the solution to a NLLSQ problem require initial values for the parameters, LLSQ does not.
Like LLSQ, solution algorithms for NLLSQ often require that the Jacobian can be calculated. Analytical expressions
for the partial derivatives can be complicated. If analytical expressions are impossible to obtain either the partial
derivatives must be calculated by numerical approximation or an estimate must be made of the Jacobian.
In NLLSQ non-convergence (failure of the algorithm to find a minimum) is a common phenomenon whereas the
LLSQ is globally concave so non-convergence is not an issue.
NLLSQ is usually an iterative process. The iterative process has to be terminated when a convergence criterion is
satisfied. LLSQ solutions can be computed using direct methods, although problems with large numbers of
parameters are typically solved with iterative methods, such as the Gauss–Seidel method.
In LLSQ the solution is unique, but in NLLSQ there may be multiple minima in the sum of squares.
Under the condition that the errors are uncorrelated with the predictor variables, LLSQ yields unbiased estimates,
but even under that condition NLLSQ estimates are generally biased.

These differences must be considered whenever the solution to a nonlinear least squares problem is being sought.

Differences between linear and nonlinear least squares
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The method of least squares is often used to generate estimators and other statistics in regression analysis.

Consider a simple example drawn from physics. A spring should obey Hooke's law which states that the extension of a spring y is
proportional to the force, F, applied to it.

constitutes the model, where F is the independent variable. To estimate the force constant, k, a series of n measurements with
different forces will produce a set of data, , where yi is a measured spring extension. Each experimental
observation will contain some error. If we denote this error , we may specify an empirical model for our observations,

There are many methods we might use to estimate the unknown parameter k. Noting that the n equations in the m variables in our
data comprise an overdetermined system with one unknown and n equations, we may choose to estimate k using least squares. The
sum of squares to be minimized is

The least squares estimate of the force constant, k, is given by

Here it is assumed that application of the force causes the spring to expand and, having derived the force constant by least squares
fitting, the extension can be predicted from Hooke's law.

In regression analysis the researcher specifies an empirical model. For example, a very common model is the straight line model
which is used to test if there is a linear relationship between dependent and independent variable. If a linear relationship is found to
exist, the variables are said to be correlated. However, correlation does not prove causation, as both variables may be correlated with
other, hidden, variables, or the dependent variable may "reverse" cause the independent variables, or the variables may be otherwise
spuriously correlated. For example, suppose there is a correlation between deaths by drowning and the volume of ice cream sales at a
particular beach. Yet, both the number of people going swimming and the volume of ice cream sales increase as the weather gets
hotter, and presumably the number of deaths by drowning is correlated with the number of people going swimming. Perhaps an
increase in swimmers causes both the other variables to increase.

In order to make statistical tests on the results it is necessary to make assumptions about the nature of the experimental errors. A
common (but not necessary) assumption is that the errors belong to a normal distribution. The central limit theorem supports the idea
that this is a good approximation in many cases.

The Gauss–Markov theorem. In a linear model in which the errors have expectation zero conditional on the
independent variables, are uncorrelated and have equal variances, the best linear unbiased estimator of any linear
combination of the observations, is its least-squares estimator. "Best" means that the least squares estimators of the
parameters have minimum variance. The assumption of equal variance is valid when the errors all belong to the
same distribution.
In a linear model, if the errors belong to a normal distribution the least squares estimators are also the maximum
likelihood estimators.

However, if the errors are not normally distributed, a central limit theorem often nonetheless implies that the parameter estimates will
be approximately normally distributed so long as the sample is reasonably large. For this reason, given the important property that the
error mean is independent of the independent variables, the distribution of the error term is not an important issue in regression
analysis. Specifically, it is not typically important whether the error term follows a normal distribution.
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In a least squares calculation with unit weights, or in linear regression, the variance on the jth parameter, denoted , is usually

estimated with

where the true error variance σ2 is replaced by an estimate based on the minimised value of the sum of squares objective function S.
The denominator, n − m, is the statistical degrees of freedom; see effective degrees of freedom for generalizations.

Confidence limits can be found if the probability distribution of the parameters is known, or an asymptotic approximation is made, or
assumed. Likewise statistical tests on the residuals can be made if the probability distribution of the residuals is known or assumed.
The probability distribution of any linear combination of the dependent variables can be derived if the probability distribution of
experimental errors is known or assumed. Inference is particularly straightforward if the errors are assumed to follow a normal
distribution, which implies that the parameter estimates and residuals will also be normally distributed conditional on the values of
the independent variables.

A special case of generalized least squares called weighted least squares occurs when all the off-diagonal entries of Ω (the
correlation matrix of the residuals) are null; the variances of the observations (along the covariance matrix diagonal) may still be
unequal (heteroscedasticity).

The expressions given above are based on the implicit assumption that the errors are uncorrelated with each other and with the
independent variables and have equal variance. The Gauss–Markov theorem shows that, when this is so,  is a best linear unbiased
estimator (BLUE). If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be
adopted. Aitken showed that when a weighted sum of squared residuals is minimized,  is the BLUE if each weight is equal to the
reciprocal of the variance of the measurement

The gradient equations for this sum of squares are

which, in a linear least squares system give the modified normal equations,

When the observational errors are uncorrelated and the weight matrix, W, is diagonal, these may be written as

If the errors are correlated, the resulting estimator is the BLUE if the weight matrix is equal to the inverse of the variance-covariance
matrix of the observations.

When the errors are uncorrelated, it is convenient to simplify the calculations to factor the weight matrix as . The

normal equations can then be written in the same form as ordinary least squares:

Weighted least squares
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where we define the following scaled matrix and vector:

This is a type of whitening transformation; the last expression involves an entrywise division.

For non-linear least squares systems a similar argument shows that the normal equations should be modified as follows.

Note that for empirical tests, the appropriate W is not known for sure and must be estimated. For this feasible generalized least
squares (FGLS) techniques may be used.

If the uncertainty of the observations is not known from external sources, then the weights could be estimated from the given
observations. This can be useful, for example, to identify outliers. After the outliers have been removed from the data set, the weights
should be reset to one.[8]

The first principal component about the mean of a set of points can be represented by that line which most closely approaches the
data points (as measured by squared distance of closest approach, i.e. perpendicular to the line). In contrast, linear least squares tries
to minimize the distance in the  direction only. Thus, although the two use a similar error metric, linear least squares is a method that
treats one dimension of the data preferentially, while PCA treats all dimensions equally.

In some contexts a regularized version of the least squares solution may be preferable. Tikhonov regularization (or ridge regression)
adds a constraint that , the L2-norm of the parameter vector, is not greater than a given value. Equivalently, it may solve an
unconstrained minimization of the least-squares penalty with  added, where  is a constant (this is the Lagrangian form of the
constrained problem). In a Bayesian context, this is equivalent to placing a zero-mean normally distributed prior on the parameter
vector.

An alternative regularized version of least squares is Lasso (least absolute shrinkage and selection operator), which uses the
constraint that , the L1-norm of the parameter vector, is no greater than a given value.[9][10][11] (As above, this is equivalent to an
unconstrained minimization of the least-squares penalty with  added.) In a Bayesian context, this is equivalent to placing a
zero-mean Laplace prior distribution on the parameter vector.[12] The optimization problem may be solved using quadratic
programming or more general convex optimization methods, as well as by specific algorithms such as the least angle regression
algorithm.

One of the prime differences between Lasso and ridge regression is that in ridge regression, as the penalty is increased, all parameters
are reduced while still remaining non-zero, while in Lasso, increasing the penalty will cause more and more of the parameters to be
driven to zero. This is an advantage of Lasso over ridge regression, as driving parameters to zero deselects the features from the
regression. Thus, Lasso automatically selects more relevant features and discards the others, whereas Ridge regression never fully
discards any features. Some feature selection techniques are developed based on the LASSO including Bolasso which bootstraps
samples,[13] and FeaLect which analyzes the regression coefficients corresponding to different values of  to score all the
features.[14]
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Regularized versions

Tikhonov regularization

Lasso method

https://en.wikipedia.org/wiki/Whitening_transformation
https://en.wikipedia.org/wiki/Entrywise_division
https://en.wikipedia.org/wiki/Feasible_generalized_least_squares
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Regularization_(machine_learning)
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Ridge_regression
https://en.wikipedia.org/wiki/L2-norm
https://en.wikipedia.org/wiki/Lagrange_multipliers
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Prior_distribution
https://en.wikipedia.org/wiki/Regularization_(machine_learning)
https://en.wikipedia.org/wiki/L1-norm
https://en.wikipedia.org/wiki/Bayesian_statistics
https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Prior_distribution
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Least_angle_regression


The L1-regularized formulation is useful in some contexts due to its tendency to prefer solutions where more parameters are zero,
which gives solutions that depend on fewer variables.[9] For this reason, the Lasso and its variants are fundamental to the field of
compressed sensing. An extension of this approach is elastic net regularization.

Adjustment of observations
Bayesian MMSE estimator
Best linear unbiased estimator (BLUE)
Best linear unbiased prediction (BLUP)
Gauss–Markov theorem
L2 norm
Least absolute deviation
Measurement uncertainty
Orthogonal projection
Proximal gradient methods for learning
Quadratic loss function
Root mean square
Squared deviations
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