Lecture 7 DL for CV leveraging pretrained models

November 24, 2022

0.0.1 Applying the preprocessing layers to the dataset

[1]: import matplotlib.pyplot as plt
import pathlib
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.utils import image_dataset_from_directory
from tensorflow import get_logger

get_logger() .setLevel ('ERROR') # Suppress info and warnings in logger
base_dir = pathlib.Path("cats_vs_dogs_small")

def plot_helper(x_data, y_data, plot_styles, labels, title, x_label, y_label):

assert len(x_data) == len(y_data)
assert len(x_data) == len(plot_styles)
assert len(x_data) == len(labels)

fig = plt.figure(figsize=(9 / 2.54, 5 / 2.54), dpi=150)
plt.rc('axes', titlesize=7) # fontsize of the azes title
plt.rc('axes', labelsize=6) # fontsize of the = and y labels
plt.rc('xtick', labelsize=6) # fontsize of the tick labels
plt.rc('ytick', labelsize=6) # fontsize of the tick labels
plt.autoscale(enable=True, axis='x', tight=True)

for i in range(len(x_data)):
plt.plot(x_datalil], y_datali], plot_styles[i], label=labels[i],
~linewidth=1, markersize=3)
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.legend(fontsize=5.5)

def get_datasets(base_dir):
train_dataset = image_dataset_from_directory(
base_dir / "train",
image_size=(180, 180),

batch_size=32)
validation_dataset = image_dataset_from_directory(
base_dir / "validation",
image_size=(180, 180),
batch_size=32)
test_dataset = image_dataset_from_directory(
base_dir / "test",
image_size=(180, 180),
batch_size=32)
return train_dataset, validation_dataset, test_dataset

There are two ways to use the preprocessing layers when implementing data augmentation: -
Make the preprocessing layers part of the model (introduced in the previous lecture) - Apply the
preprocessing layers to the dataset.

Let’s recall the first approach.

[2] : data_augmentation = keras.Sequential(

[
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.2),

]

[3]: def cats_vs_dogs_model_augm_1():
inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs) # Preprocessing layers are part of they
<model
x = layers.Rescaling(1./255) (x)
= layers.Conv2D(filters=32, kernel_size=3, activation="relu") (x)
= layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=64, kernel_size=3, activation="relu") (x)
= layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=128, kernel_size=3, activation="relu") (x)
layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=256, kernel_size=3, activation="relu") (x)
= layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=256, kernel_size=3, activation="relu") (x)
= layers.Flatten() (x)
= layers.Dropout (0.5) (x)
outputs = layers.Dense(l, activation="sigmoid") (x)
model = keras.Model (inputs=inputs, outputs=outputs,,
—name="cats_vs_dogs_augm_1")

LT T T T T B T T R
I

model . compile(loss="binary_crossentropy",
optimizer="rmsprop",
metrics=["accuracy"])

return model

There are two important points to be aware of in the first approach:

e Data augmentation will run on-device, synchronously with the rest of your layers, and benefit
from GPU acceleration.

e When we export our model using model.save, the preprocessing layers will be saved along
with the rest of the model. If we later deploy this model, it will automatically standardize
images (according to the configuration of the layers). We don’t have to reimplement that
logic server-side.

When we apply the preprocessing layers to the dataset, we use Dataset.map to create a dataset
that yields batches of augmented images. In this case:

e Data augmentation will happen asynchronously on the CPU. We can overlap the training of
our model on the GPU with data preprocessing using Dataset.prefetch.

e The preprocessing layers will not be exported with the model when we call model.save. We'll
need to attach them to our model before saving it or reimplement them server-side.

To configure the datasets for performance, we can use parallel reads and buffered prefetching to
yield batches from disk without I/O become blocking.

Configuring the dataset for performance

Make sure that buffered prefetching is used, so that data could be yielded from disk without
having I/O become blocking. These are two important methods we should use when loading data:

o Dataset.cache keeps the images in memory after they’re loaded off disk during the first
epoch. This will ensure the dataset does not become a bottleneck while training our model. If
the dataset is too large to fit into memory, we can also use this method to create a performant
on-disk cache.

o Dataset.prefetch overlaps data preprocessing and model execution while training.

Prefetching

A general performance tip is to put all the data processing pipeline on the CPU to make sure that
the GPU is only used for training a deep neural network model. When the GPU is working on
forward / backward propagation on the current batch, we want the CPU to process the next batch
of data so that it is immediately ready. As the most expensive part of the computer, we want the
GPU to be fully used all the time during training. We call this consumer / producer overlap,
where the consumer is the GPU and the producer is the CPU.

Prefetching overlaps the preprocessing and model execution of a training step. The
tensorflow.data API provides the Dataset.prefetch transformation. It can be used to de-
couple the time when data is produced from the time when data is consumed. In particular, the
transformation uses a background thread and an internal buffer to prefetch elements from the input
dataset ahead of the time they are requested. The number of elements to prefetch should be equal
to (or possibly greater than) the number of batches consumed by a single training step. We could
either manually tune this value, or set it to tf.data.AUTOTUNE, which will prompt the tf.data
runtime to tune the value dynamically at runtime.

[4]: from tensorflow import data
AUTOTUNE = data.AUTOTUNE

def prepare(ds, augment=False, cache=False):
ds = ds.map(lambda x, y: (layers.Rescaling(1l./255) (x), y))

Keeps the images in memory after they're loaded off disk during the first,
—epoch
if cache:
ds = ds.cache()

Use data augmentation only on the training set.
if augment:
ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y),
num_parallel_calls=AUTOTUNE)

Use buffered prefetching on all datasets, which overlaps
data preprocessing (CPU) and model execution (GPU) while training
return ds.prefetch(buffer_size=AUTOTUNE)

[6]: train_dataset, validation_dataset, test_dataset = get_datasets(base_dir)
train_dataset = prepare(train_dataset, augment=True, cache=True)
validation_dataset = prepare(validation_dataset)
test_dataset = prepare(test_dataset)

Found 2000 files belonging to 2 classes.
Found 1000 files belonging to 2 classes.
Found 2000 files belonging to 2 classes.

[6]: def cats_vs_dogs_model_augm_2():
inputs = keras.Input(shape=(180, 180, 3))

= layers.Conv2D(filters=32, kernel_size=3, activation="relu") (inputs)
= layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=64, kernel_size=3, activation="relu") (x)
= layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=128, kernel_size=3, activation="relu") (x)
layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=256, kernel_size=3, activation="relu") (x)
= layers.MaxPooling2D(pool_size=2) (x)
= layers.Conv2D(filters=256, kernel_size=3, activation="relu") (x)
= layers.Flatten() (x)
= layers.Dropout (0.5) (x)

outputs = layers.Dense(l, activation="sigmoid") (x)

model = keras.Model (inputs=inputs, outputs=outputs,,
oname="cats_vs_dogs_augm_2")

Ea I T T T T T B T A A
I

model . compile(loss="binary_crossentropy",
optimizer="rmsprop",

metrics=["accuracy"])
return model

[7]: model = cats_vs_dogs_model_augm_2()
callbacks = [
keras.callbacks.ModelCheckpoint (
filepath="models/convnet_with_data_augmentation_2.keras",
save_best_only=True,
monitor="val loss")
]
history = model.fit(
train_dataset,
epochs=100,
validation_data=validation_dataset,
callbacks=callbacks,
verbose=0)
batch_size is not specified <if our data is in the form of datasets, since,
~they generate batches

[8]: |accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(l, len(accuracy) + 1)

plot_helper([epochs, epochs],
laccuracy, val_accuracyl],
["bo", "b"],
["Training accuracy", "Validation accuracy"],
"Training and validation accuracy",
"Epochs",
"Accuracy")

plot_helper([epochs, epochs],
[loss, val loss],
["bo", "b"],
["Training loss", "Validation loss"],
"Training and validation loss",
"Epochs",
"Loss")

[9]:

Training and validation accuracy

0.9
5 0.8
o
c
g 0.7
go
0.6
® Training accuracy
05 - — Validation accuracy
T T T T
20 40 60 80 100
Epochs
Training and validation loss
25

® Training loss
— Validation loss

20 40 60 80 100
Epochs

test_model = keras.models.load_model("models/convnet_with_data_augmentation_2.
~keras")

test_loss, test_acc = test_model.evaluate(test_dataset)

print(f"Test accuracy: {test_acc:.3f}")

63/63 [= ===] - 1s 13ms/step - loss: 0.5100 - accuracy:
0.7805
Test accuracy: 0.780

1 Leveraging a pretrained model

A common and highly effective approach to DL on small image datasets is to use a pretrained
model. A pretrained model is a model that was previously trained on a large dataset, typically on a
large-scale image-classification task. If this original dataset is large enough and general enough, the
spatial hierarchy of features learned by the pretrained model can effectively act as a generic model
of the visual world, and hence, its features can prove useful for many different computer vision
problems, even though these new problems may involve completely different classes than those of
the original task. For instance, we might train a model on ImageNet (where classes are mostly

animals and everyday objects) and then repurpose this trained model for something as remote as
identifying furniture items in images. Such portability of learned features across different
problems is a key advantage of DL compared to many older, shallow learning approaches, and it
makes DL very effective for small-data problems.

In this case, let’s consider a large convnet trained on the ImageNet dataset (1.4 million labeled
images and 1,000 different classes). ImageNet contains many animal classes, including different
species of cats and dogs, and therefore we can expect it to perform well on our dogs-versus-cats
classification problem.

We’ll use the VGG16 architecture, developed by Karen Simonyan and Andrew Zisser-
man in 2014 (“Very Deep Convolutional Networks for Large-Scale Image Recognition”
https://arxiv.org/abs/1409.1556).

Although it’s an older model, far from the current state of the art and somewhat heavier than many
other recent models, we chose it because its architecture is similar to what we’re already familiar
with, and it’s easy to understand without introducing any new concepts.

There are two ways to use a pretrained model: feature extraction and fine-tuning. We’ll cover
both of them. Let’s start with feature extraction.

1.1 Feature extraction with a pretrained model

Feature extraction consists of using the representations learned by a previously trained model to
extract interesting features from new samples. These features are then run through a new classifier,
which is trained from scratch.

As we saw previously, convnets used for image classification comprise two parts: they start with a
series of pooling and convolution layers, and they end with a densely connected classifier. The first
part is called the convolutional base of the model. In the case of convnets, feature extraction
consists of taking the convolutional base of a previously trained network, running the new data
through it, and training a new classifier on top of the output (see figure below).

Prediction Prediction Prediction

f } !

Trained in New classifier
classifier ssifi (randomly initialized)
t } {
Trained Trained Trained
convolutional convolutional convolutiona
base base base
(frozen)

f

Input

}

Input

}

Input

Why only reuse the convolutional base? Could we reuse the densely connected classifier as well?
In general, doing so should be avoided. The reason is that the representations learned by the
convolutional base are likely to be more generic and, therefore, more reusable: the
feature maps of a convnet are presence maps of generic concepts over a picture, which are likely
to be useful regardless of the computer vision problem at hand. But the representations learned
by the classifier will necessarily be specific to the set of classes on which the model was trained
— they will only contain information about the presence probability of this or that class in the
entire picture. Additionally, representations found in densely connected layers no longer contain
any information about where objects are located in the input image; these layers get rid of the
notion of space, whereas the object location is still described by convolutional feature maps. For
problems where object location matters, densely connected features are largely useless.

Note that the level of generality (and therefore reusability) of the representations extracted by
specific convolution layers depends on the depth of the layer in the model. Layers that come earlier
in the model extract local, highly generic feature maps (such as visual edges, colors, and textures),
whereas layers that are higher up extract more-abstract concepts (such as “cat ear” or “dog eye”).
So if our new dataset differs a lot from the dataset on which the original model was trained, we
may be better off using only the first few layers of the model to do feature extraction, rather than
using the entire convolutional base.

In this case, because the ImageNet class set contains multiple dog and cat classes, it’s likely to be
beneficial to reuse the information contained in the densely connected layers of the original model.
But we’ll choose not to, in order to cover the more general case where the class set of the new
problem doesn’t overlap the class set of the original model. Let’s put this into practice by using
the convolutional base of the VGG16 network, trained on ImageNet, to extract interesting features
from cat and dog images, and then train a dogs-versus-cats classifier on top of these features.

[10]:

[11]:

The VGG16 model, among others, comes prepackaged with Keras. We can import it from the
keras.applications module. Many other image-classification models (all pretrained on the Im-
ageNet dataset) are available as part of keras.applications: - Xception - ResNet - MobileNet -
EfficientNet - DenseNet

Let’s instantiate the VGG16 model.

Instantiating the VGG16 convolutional base

conv_base = keras.applications.vggl6.VGG16(
weights="imagenet",
include_top=False,
input_shape=(180, 180, 3))

We pass three arguments to the constructor:

e weights specifies the weight checkpoint from which to initialize the model. It can be None
(random initialization), ‘imagenet’ (pre-training on ImageNet), or the path to the weights file
to be loaded.

o include_top refers to including (or not) the densely connected classifier on top of the network.
By default, this densely connected classifier corresponds to the 1,000 classes from ImageNet.
Because we intend to use our own densely connected classifier (with only two classes: cat and
dog), we don’t need to include it.

e input_shape is the shape of the image tensors that we’ll feed to the network. This argument
is purely optional: if we don’t pass it, the network will be able to process inputs of any size.
Here we pass it so that we can visualize (in the following summary) how the size of the feature
maps shrinks with each new convolution and pooling layer.

Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to the simple
convnets we're already familiar with:

conv_base . summary ()

Model: "vggle"

Layer (type) Output Shape Param #
_;;;ut_Q (InputLayer) [(None, 180, 180, 3)] 0 N
blockl _convl (Conv2D) (None, 180, 180, 64) 1792
blockl_conv2 (Conv2D) (None, 180, 180, 64) 36928
blockl_pool (MaxPooling2D) (None, 90, 90, 64) 0

block2 convl (Conv2D) (None, 90, 90, 128) 73856
block2 conv2 (Conv2D) (None, 90, 90, 128) 147584
block2_pool (MaxPooling2D) (None, 45, 45, 128) 0

block3 convl (Conv2D) (None, 45, 45, 256) 295168

block3 conv2 (Conv2D) (None, 45, 45, 256) 590080
block3_conv3 (Conv2D) (None, 45, 45, 256) 590080
block3_pool (MaxPooling2D) (None, 22, 22, 256) 0
block4 _convl (Conv2D) (None, 22, 22, 512) 1180160
block4 _conv2 (Conv2D) (None, 22, 22, 512) 2359808
block4 _conv3 (Conv2D) (None, 22, 22, 512) 2359808
block4_pool (MaxPooling2D) (None, 11, 11, 512) 0
block5_convl (Conv2D) (None, 11, 11, 512) 2359808
block5_conv2 (Conv2D) (None, 11, 11, 512) 2359808
block5 conv3 (Conv2D) (None, 11, 11, 512) 2359808
block5_pool (MaxPooling2D) (None, 5, 5, 512) 0

Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: O

The final feature map has shape (5, 5, 512). That’s the feature map on top of which we’ll stick
a densely connected classifier.

At this point, there are two ways we could proceed: - Run the convolutional base over our dataset,
record its output to a NumPy array on disk, and then use this data as input to a standalone densely
connected classifier. This solution is fast and cheap to run, because it only requires running the
convolutional base once for every input image, and the convolutional base is by far the most
expensive part of the pipeline. But for the same reason, this technique won’t allow us to use data
augmentation. - Extend the model we have (conv_base) by adding Dense layers on top, and run
the whole thing from end to end on the input data. This will allow us to use data augmentation,
because every input image goes through the convolutional base every time it’s seen by the model.
But for the same reason, this technique is far more expensive than the first.

We'll cover both techniques. Let’s walk through the code required to set up the first one: recording

the output of conv_base on our data and using these outputs as inputs to a new model.

Fast feature extraction without data augmentation We’'ll start by extracting features as
NumPy arrays by calling the predict () method of the conv_base model on our training, validation,
and testing datasets.

10

[12]:

[13]:

[13]:

[14]:

Let’s iterate over our datasets to extract the VGG16 features.

import numpy as np

def get_features_and_labels(dataset):

all features = []

all labels = []

for images, labels in dataset:
preprocessed_images = keras.applications.vggl6.preprocess_input(images)
features = conv_base.predict(preprocessed_images, verbose=0)
all_features.append(features)
all_labels.append(labels)

return np.concatenate(all_features), np.concatenate(all_labels)

train_dataset, validation_dataset, test_dataset = get_datasets(base_dir)
train_features, train_labels = get_features_and_labels(train_dataset)
val_features, val_labels = get_features_and_labels(validation_dataset)
test_features, test_labels = get_features_and_labels(test_dataset)

Found 2000 files belonging to 2 classes.
Found 1000 files belonging to 2 classes.
Found 2000 files belonging to 2 classes.

Importantly, predict () only expects images, not labels, but our current dataset yields batches that
contain both images and their labels. Moreover, the VGG16 model expects inputs that are pre-
processed with the function keras.applications.vggl6.preprocess_input, which scales pixel
values to an appropriate range.

The extracted features are currently of shape (samples, 5, 5, 512):

train_features.shape
(2000, 5, 5, 512)

At this point, we can define our densely connected classifier (note the use of dropout for regular-
ization) and train it on the data and labels that we just recorded.

Defining and training the densely connected classifier

def feat_ extract model():
inputs = keras.Input(shape=(5, 5, 512))
x = layers.Flatten() (inputs)
x = layers.Dense(256) (x)
layers.Dropout (0.5) (x)
outputs = layers.Dense(l, activation="sigmoid") (x)
model = keras.Model (inputs, outputs)
model .compile(loss="binary_crossentropy",
optimizer="rmsprop",
metrics=["accuracy"])

X

return model

11

callbacks = [
keras.callbacks.ModelCheckpoint (
filepath="models/feature_extraction.keras",
save_best_only=True,
monitor="val loss")
]
model = feat_extract_model()
history = model.fit(
train_features,
train_labels,
epochs=20,
validation data=(val features, val labels),
callbacks=callbacks,
verbose=0)

Training is very fast because we only have to deal with two Dense layers — an epoch takes less
than one second even on CPU

Let’s look at the loss and accuracy curves during training.

[15]: accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(l, len(accuracy) + 1)

plot_helper([epochs, epochs],
laccuracy, val_accuracy],
["bo", "b"1,
["Training accuracy", "Validation accuracy"l],
"Training and validation accuracy",
"Epochs",
"Accuracy")

plot_helper([epochs, epochs],
[loss, val _loss],
["bo", "b"1,
["Training loss", "Validation loss"],
"Training and validation loss",
"Epochs",
"Loss")

12

Training and validation accuracy

1.00 L] L
o o ® L B .
o e @ b L] L
0.99 .
L]
0.98 -
0974 ®
c
S 096
<
0.95
0.94 L
® Training accuracy
0.93 3 — Validation accuracy
T T T T T T T

25 5.0 7.5 10.0 125 15.0 175 20.0
Epochs

Training and validation loss

16 ® Training loss
— Validation loss

L4 [[
0 e e Ld ® g0 %0 40 o ® g |
T T T T T T T
25 50 75 10.0 125 15.0 17.5 20.0

Epochs

[16]: test_model = keras.models.load_model("models/feature_extraction.keras",
test_loss, test_acc = test_model.evaluate(test_features, test_labels)
print(f"Test accuracy: {test_acc:.3f}")

63/63 [= ===] - Os 2ms/step - loss: 4.9850 - accuracy:
0.9670
Test accuracy: 0.967

We reach a test accuracy of 96.7% - much better than what we achieved with a small model trained
from scratch. This is a bit of an unfair comparison, because ImageNet contains many dog and cat
instances, which means that our pretrained model already has the exact knowledge required for the
task at hand. This won’t always be the case when we use pretrained features.

However, the plots also indicate that we're overfitting almost from the start - despite using dropout
with a fairly large rate. That’s because this technique doesn’t use data augmentation, which is
essential for preventing overfitting with small image datasets.

Feature extraction together with data augmentation Now let’s review the second technique
for feature extraction, which is much slower and more expensive, but which allows us to use data

13

[17]:

[18]:

[19]:

[20]:

augmentation during training: creating a model that chains the conv_base with a new dense
classifier, and training it end to end on the inputs.

In order to do this, we will first freeze the convolutional base. Freezing a layer or set of
layers means preventing their weights from being updated during training. If we don’t do this,
the representations that were previously learned by the convolutional base will be modified during
training. Because the Dense layers on top are randomly initialized, very large weight updates would
be propagated through the network, effectively destroying the representations previously learned.

In Keras, we freeze a layer or model by setting its trainable attribute to False.

Instantiating and freezing the VGG16 convolutional base

conv_base = keras.applications.vggl6.VGG16(
weights="imagenet",
include_top=False)

conv_base.trainable = False

Setting trainable to False empties the list of trainable weights of the layer or model.

Printing the list of trainable weights before and after freezing

conv_base.trainable = True
print("This is the number of trainable weights "
"before freezing the conv base:", len(conv_base.trainable_weights))

This is the number of trainable weights before freezing the conv base: 26

conv_base.trainable = False
print("This is the number of trainable weights "
"after freezing the conv base:", len(conv_base.trainable_weights))

This is the number of trainable weights after freezing the conv base: 0

Now we can create a new model that chains together 1. A data augmentation stage 2. Our frozen
convolutional base 3. A dense classifier

Adding a data augmentation stage and a classifier to the convolutional base

data_augmentation = keras.Sequential(

L
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.1),
layers.RandomZoom(0.2),

]

def prepare_pretrain(ds, augment=False, cache=False):
if cache:
ds = ds.cache()
if augment:

14

[21]:

ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y),
num_parallel_calls=AUTOTUNE)
return ds.prefetch(buffer_size=AUTOTUNE)

train_dataset, validation_dataset, test_dataset = get_datasets(base_dir)
train_dataset = prepare_pretrain(train_dataset, augment=True, cache=True)
validation_dataset = prepare_pretrain(validation_dataset)

test_dataset = prepare_pretrain(test_dataset)

def feat_extract_with_da_model():
inputs = keras.Input(shape=(180, 180, 3))

= keras.applications.vggl6.preprocess_input (inputs)

= conv_base(x)

layers.Flatten() (x)

layers.Dense(256) (x)

layers.Dropout (0.5) (x)

outputs = layers.Dense(l, activation="sigmoid") (x)

model = keras.Model (inputs, outputs)

model .compile(loss="binary_crossentropy",
optimizer="rmsprop",
metrics=["accuracy"])

X
X
X
X
X

return model

Found 2000 files belonging to 2 classes.
Found 1000 files belonging to 2 classes.
Found 2000 files belonging to 2 classes.

With this setup, only the weights from two Dense layers that we added will be trained. That’s a
total of four weight tensors: two per layer (the main weight matrix and the bias vector). Note that
in order for these changes to take effect, we must first compile the model. If weight trainability is
modified after compilation, model should be recompiled, or these changes will be ignored.

Let’s train our model. Because of data augmentation, it will take much longer for the model to
start overfitting, so we can train for more epochs, say 50.

Note that this technique is expensive enough so that it should be run on a GPU, i.e. it’s intractable
on CPU. If a GPU is not available, then the previous technique is the way to go.

callbacks = [
keras.callbacks.ModelCheckpoint (
filepath="models/feature_extraction_with_da.keras",
save_best_only=True,
monitor="val loss")
]
model = feat_extract _with_da_model()
history = model.fit(
train_dataset,
epochs=50,
validation_data=validation_dataset,

15

[22] :

callbacks=callbacks,
verbose=0)

accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
loss = history.history["loss"]

val_loss = history.history["val_loss"]

epochs = range(l, len(accuracy) + 1)

plot_helper([epochs, epochs],
[accuracy, val_accuracy],
["bo", "b"1,
["Training accuracy", "Validation accuracy"],
"Training and validation accuracy",
"Epochs",
"Accuracy")

plot_helper([epochs, epochs],
[loss, val_loss],
["bo", "b"],
["Training loss", "Validation loss"],
"Training and validation loss",
"Epochs",
"Loss")

Training and validation accuracy

= 0 o8 9,,°%004°% e 0cete0eteres

0.98 o 0’ %0 o
0.96

0.94

Accuracy

® Training accuracy
090 4 — Validation accuracy

T T T T
10 20 30 40 50

Epochs

16

[23]:

Training and validation loss

® Training loss

17.5 — \alidation loss

15.0

12.5

% 10.0
K
7.5
509 o
25 - .%wﬂﬁ
g " s e 4
00 - 00 00 0070400,0099400%,00,0000%0 00000
) T T T T
10 20 30 40 50

Epochs

Evaluating the model on the test set

test_model = keras.models.load_model (

"models/feature_extraction _with_da.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

63/63 [= ===] - 3s 46ms/step - loss: 5.1397 - accuracy:
0.9785
Test accuracy: 0.979

We get a test accuracy of 97.9%. This is similar to the previous test accuracy, which is a bit
disappointing given the strong results on the validation data. A model’s accuracy always depends
on the set of samples you evaluate it on! Some sample sets may be more difficult than others, and
strong results on one set won’t necessarily fully translate to all other sets.

1.1.1 Fine-tuning a pretrained model

Another widely used technique for model reuse, complementary to feature extraction, is fine-
tuning (see the figure below). Fine-tuning consists of unfreezing a few of the top layers of a frozen
model base used for feature extraction, and jointly training both the newly added part of the model
(in this case, the fully connected classifier) and these top layers. This is called fine-tuning because
it slightly adjusts the more abstract representations of the model being reused in order to make
them more relevant for the problem at hand.

17

|
Convolution2D
. Conv block 1:
Convolution2D SR
| MaxPooling2D
| Convolution2D
- Conv block 2:
Convolution2D frozen
| MaxPooling2D
Convolution2D
Convolution2D Conv block 3-
frozen
Convolution2D
| MaxPoaoling2D
Convolution20
Convolution2D Conv block 4:
frozen
Convolution2D
| MaxFooling2D
Convolution20
Convolution2D
We fine-tune
conv block 5.
Convolution2D
| MaxFooling2D
Flatten
We fine-tune
m our own fully
connected
classifier.

It’s necessary to freeze the convolution base of VGG16 in order to be able to train a randomly
initialized classifier on top. For the same reason, it’s only possible to fine-tune the top layers of the
convolutional base once the classifier on top has already been trained. If the classifier isn’t already
trained, the error signal propagating through the network during training will be too large, and the

18

[24]:

[25]:

representations previously learned by the layers being fine-tuned will be destroyed. Thus the steps
for fine-tuning a network are as follows: 1. Add our custom network on top of an already-trained
base network. 2. Freeze the base network. 3. Train the part we added. 4. Unfreeze some layers in
the base network. 5. Jointly train both these layers and the part we added.

We’ve already completed the first three steps when doing feature extraction. Let’s proceed with
step 4: we’ll unfreeze our conv_base and then freeze individual layers inside it.

We’ll fine-tune the last three convolutional layers, which means all layers up to block4_pool should
be frozen, and the layers block5_convi, block5_conv2, and block5_conv3 should be trainable.

Why not fine-tune more layers? Why not fine-tune the entire convolutional base? We could! But
we need to consider the following: - Earlier layers in the convolutional base encode more generic,
reusable features, whereas layers higher up encode more specialized features. It’s more useful to
fine-tune the more specialized features, because these are the ones that need to be repurposed on
your new problem. There would be fast-decreasing returns in fine-tuning lower layers. - The more
parameters we’re training, the more we’re at risk of overfitting. The convolutional base has 15
million parameters, so it would be risky to attempt to train it on your small dataset.

Thus, in this situation, it’s a good strategy to fine-tune only the top two or three layers in the
convolutional base. Let’s set this up, starting from where we left off in the previous example.

conv_base.trainable = True
for layer in conv_base.layers[:-4]:
layer.trainable = False

Now we can begin fine-tuning the model. We’ll do this with the RMSprop optimizer, using a very
low learning rate. The reason for using a low learning rate is that we want to limit the magnitude
of the modifications we make to the representations of the three layers we're fine-tuning. Updates
that are too large may harm these representations.

model = keras.models.load_model ("models/feature_extraction_with_da.keras")
model . compile(loss="binary_crossentropy",
optimizer=keras.optimizers.RMSprop(learning_rate=1le-5),
metrics=["accuracy"])
callbacks = [
keras.callbacks.ModelCheckpoint (
filepath="models/fine_tuning.keras",
save_best_only=True,
monitor="val loss")
]
history = model.fit(
train_dataset,
epochs=30,
validation_data=validation_dataset,
callbacks=callbacks,
verbose=0)

We can finally evaluate this model on the test data:

19

[26] : ‘model = keras.models.load_model("models/fine_tuning.keras")
test_loss, test_acc = model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

63/63 [] - 3s 46ms/step - loss: 3.9447 - accuracy:
0.9785
Test accuracy: 0.979

Here, we get a test accuracy of around 98% (your results may be within one percentage point). In
the original Kaggle competition around this dataset, this would have been one of the top results.
It’s not quite a fair comparison, however, since we used pretrained features that already contained
prior knowledge about cats and dogs, which competitors couldn’t use at the time.

On the positive side, by leveraging modern DL techniques, we managed to reach this result using
only a small fraction of the training data that was available for the competition (about 10%). There
is a huge difference between being able to train on 20,000 samples compared to 2,000 samples!

1.2

Summary

Convnets are the best type of machine learning models for computer vision tasks. It’s possible
to train one from scratch even on a very small dataset, with decent results.

Convnets work by learning a hierarchy of modular patterns and concepts to represent the
visual world.

On a small dataset, overfitting will be the main issue. Data augmentation is a powerful way
to fight overfitting when you’re working with image data.

It’s easy to reuse an existing convnet on a new dataset via feature extraction. This is a
valuable technique for working with small image datasets.

As a complement to feature extraction, you can use fine-tuning, which adapts to a new
problem some of the representations previously learned by an existing model. This pushes
performance a bit further.

20

	Applying the preprocessing layers to the dataset
	Leveraging a pretrained model
	Feature extraction with a pretrained model
	Fine-tuning a pretrained model

	Summary

