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Datum znaéajni za ocjenu doktorske disertacije

S]edqlca Senata na kojoj je data saglasnost na ocjenu teme 1 23.06.2016.

kandidata

Dostavljanja doktorske disertacije otganizacionoj jedinici 1 | 18.10.2018.

saglasanost mentora 18.10.2018.

Sjednica Vijec¢a organizacione jedinice na kojoj je dat _

prjedlog za imenovanje komisya za pregled 1 ocjenu | 26.10.2018.

doktorske disertacije

ISPUNJENOST USLOVA DOKTORANDA

U skladu sa ¢lanom 38 pravila doktorskih studija kandidat je dio sopstvenih istrazivanja vezanih
za doktorsku disertaciju publikovao u ¢asopisu sa (SCI/SCIE) liste kao prvi autor.

Spisak radova doktoranda iz oblasti doktorskih studija koje je publikovao u Zasopisima
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sa (upisati odgovarajucu listu)

Spisak radova iz oblasti doktorskih studija koje je kandidat publikovao u tasopisima sa
SCI/SCIE liste:

1]

(2]

LJ. Stankovi¢, and M. Brajovi¢, “Analysis of the Reconstruction of Sparse Signals in the
DCT Domain Applied to Audio Signals,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 206, no.7, July 2018, pp.1216-1231, DOL:
10.1109/TASLP.2018.2819819

Link na rad: https://ieeexplore.ieee.org/document/8327444

Informacija o IMPACT faktoru ¢asopisa:
https://ieeexplore.ieee.org/xpl/Recentlssue.jsp?punumber=6570655

M. Brajovi¢, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “Compressive Sensing of Sparse
Signals 1n the Hermite Transform Basis,” IEEE Transactions on Aerospace and
Electronic Systems, Volume: 54, Issue: 2, Apridl 2018, pp. 950 - 967, DOLI
10.1109/TAES.2017.2768938

Link na rad: https://ieeexplore.ieee.org/document/8093654

Informacija o IMPACT faktoru ¢asopisa:

https:/ /ieeexplore.ieee.org/xpl/Recentlssue.jsp?punumber=7

M. Brajovi¢, S. Stankovi¢, and 1. Orovic, “Analysis of noisy coefficients in the discrete
Hermite transform domain with application in signal denoising and sparse signal

>

reconstruction,” Signal Processing, vol. 150, September 2018,
https://doi.org/10.1016/}.sigpro.2018.04.007
Link na rad:

https://www.sciencedirect.com/science /article /pii/S0165168418301348
Informacija o IMPACT faktoru ¢asopisa:

https:/ /www.journals.elsevier.com/signal-processin

M. Brajovi¢, 1. Stankovi¢, M. Dakovi¢, C. Joana, and L]. Stankovi¢, “Error in the
Reconstruction of Nonsparse Images,” Mathematical Problems in Engineering, Volume

2018 (2018), Article ID 4314527, 10 pages https://doi.org/10.1155/2018/4314527

Link na rad: https://www.hindawi.com/journals /mpe /2018 /4314527 /
Informacija o IMPACT faktoru ¢asopisa:

https: //www.hindawi.com/journals /mpe/
L]. Stankovi¢, D. Mandic, M. Dakovi¢, and M. Brajovi¢, “Time-frequency decomposition

of multivariate multicomponent signals,” Signal Processing, Volume 142, January 2018,
pp. 468-479, http://dx.doi.org/10.1016/].sigpro.2017.08.001

Link na rad:

https:/ /www.sciencedirect.com/science/article /pii/S0165168417302839
Informacija o IMPACT faktoru ¢asopisa:

https: / /www.journals.elsevier.com /signal-processin

M. Brajovi¢, V. Popovi¢-Bugarin, I. Djurovic, and S. Djukanovi¢, “Post-processing of
Time-Frequency Representations in Instantaneous Frequency Estimation Based on Ant
Colony Optimization,” Signal Processing, Vol. 138, September 2017, pp. 195-210,
http://dx.doi.org/10.1016/].sigpro.2017.03.022.

Link na rad:

https://www.sciencedirect.com/science/article /pii/S0165168417301160

https://www.journals.elsevier.com/signal-processing
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{71 M. Brajovi¢, I. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “On the Parameterization of
Hermite Transform with Application to the Compression of QRS Complexes,” Signal
Processing, vol. 131, pp. 113-119, February 2017.

Link na rad:

https://www.sciencedirect.com/science/article /pii/S0165168416301931
Informacija o IMPACT faktoru ¢asopisa:
https://www.journals.elseviet.com/signal-processin

8] M. Brajovic, I. Orovic, M. Dakovi¢, and S. Stankovié, “Gradient-based signal
reconstruction algorithm in the Hermite transform domain,” Electronics Letters, Volume
52, Issue 1, pp.41-43, 2016.

Link na rad: hetps://ieeexplore.ieee.org/document /7374834
Informacija o IMPACT faktoru ¢asopisa:
http://digital-library.theiet.org/content/journals/el

Radovi publikovani u drugim Casopisima:
9] M. Brajovi¢, A. Dragani¢, I. Orovi¢, and S. Stankovi¢, “Sparse Representation of FHSS
Signals in the Hermite Transform Domain,” Telfor Journal, Vol. 9, No. 2, 2017.
[10] M. Brajovié, L]. Stankovié, and M. Dakovi¢, “Reconstruction of non-stationary signals
with missing samples using S-method and a gradient-based reconstruction algorithm,”
ETF Journal of Electrical Engineering, Vol. 21, No. 1, 2015.

Medunatrodne konferencije (indeksitane u bazi SCOPUS):

[11] M. Brajovic, 1. Stankovi¢, C. loana, M. Dakovi¢, and L]. Stankovi¢, “Reconstruction of
Rigid Body with Noncompensated Acceleration After Micro-Doppler Removal,” 545
International Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging
(CoSeRa), Siegen, Germany, September 2018.

[12] LJ. Stankovi¢, M. Brajovi¢, 1. Stankovic, C. loana, and M. Dakovi¢, “Analysis of Inital
Estimate Noise in the Sparse Randomly Sampled ISAR Signals,” 5th International
Workshop on Compressed Sensing applied to Radar, Multimodal Sensing, and Imaging (CoSeRa),
Siegen, Germany, September 2018.

[13] I. Stankovi¢, M. Brajovic, M. Dakovic, and C. Toana, “Effect of Random Sampling on
Noisy Nonsparse Signals in Time-Frequency Analysis,” 26¢h European Signal Processing
Conference EUSIPCO 20178, Rome, Italy, September 2018.

[14] M. Brajovi¢, L]. Stankovié, M. Dakovié, and D. Mandic, “Additive Noise Influence on
the Bivariate Two-Component Signal Decomposition,” 7th Mediterranean Conference
on Embedded Computing, MECO 2018, Budva, Montenegro, June 2018.

[15] M. Brajovi¢, L]. Stankovic, and M. Dakovic, “Micro-Doppler removal in radar imaging in
the case of non-compensated rigid body acceleration,” 2018 23rd International Scientific-
Professional Conference on Information Technology (I'T), Zabljak, Montenegro, 2018,
pp- 1-4, February 19-24, doi: 10.1109/SPIT.2018.8350451

(16] M. Brajovié, S. Vujovi¢, I. Orovi¢, and S. Stankovi¢, “Coefficient Tresholding in the
Gradient Reconstruction Algorithm for Signals Sparse in the Hermite Transform Basis,”
Applications of Intelligent Systems 2018 (APPIS 2018), Las Palmas De Gran Canaria, 8-
12 January 2018

[17) Z. Vulaj, M. Brajovi¢, A. Dragani¢, and I. Orovi¢, “Detection of Irregular QRS
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) Ejom[ﬂiéxe:ls_iné_i-l-é.rrrﬁt-c Transform and Support Vector Machine,” 59th International
Symposium ELMAR-2017, Zadar, Croatia, 2017

(18] L]. Stankovié, M. Brajovié, M. Dakovi¢, and D. Mandic, “Two-component Bivariate
Signal Decomposition Based on Time-Frequency Analysis,” 22nd International
Conference on Digital Signal Processing IEEE DSP 2017, August 23-25, London,
United Kingdom

[19] M. Brajovi¢, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “The Reconstruction of 2D Spatse
Signals by Exploiting Transform Coefficients Variances,” 17th IEEE Int. Conference on
Smart Technologies, IEEE EUROCON 2017

[20] Z. Vulaj, A. Dragani¢, M. Brajovi¢, and I. Orovié, “A tool for ECG signal analysis using
standard and optimized Hermite transform,” 6th Mediterranean Conference on
Embedded Computing, MECO 2017, Bar, Montenegro

[21] M. Dakovi¢, I. Stankovi¢, M. Brajovi¢, and L. Stankovi¢, “Sparse Signal Reconstruction

Based on Random Search Procedure,” 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics MIPRO, Opatija,
Croatia, May 2017

[22] M. Dakovi¢, T. Ruzi¢, T. Roga¢, M. Brajovi¢, and B. Lutovac, “Neural Networks
Application to Neretva Basin Hydro-meteorological Data,” 13th Symposium on Neural
Networks and Applications NEUREL 2016, November 2016, Belgrade, Serbia

[23] M. Brajovi¢, 1. Orovic, and S. Stankovic, “The Optimization of the Hermite transform:
Application Perspectives and 2D Generalization,” 24th Telecommunications Forum
TELFOR 2016, November 2016, Belgrade, Serbia.

[24] M. Brajovi¢, B. Lutovac, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “Sparse Signal
Recovery Based on Concentration Measures and Genetic Algorithm,” 13th Symposium
on Neural Networks and Applications NEUREL 2016, Belgrade, Serbia, November 2016

[25] M. Brajovié, A. Draganié, I. Orovi¢, and S. Stankovié, “FHSS signal sparsification in the
Hermite transform domain,” 24th Telecommunications Forum TELFOR 2016,
November 2016, Belgrade, Serbia

[26] I. Stan¢i¢, M. Brajovi¢, I. Orovi¢, and J. Musi¢, “Compressive sensing for reconstruction
of 3D point clouds in smart systems,” 24th International Conference on Software,
Telecommunications and Computer Networks (SoftCOM  2016), Split, Croatia,
September 2016

[27] M. Brajovi¢, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “Representation of Uniformly
Sampled Signals in the Hermite ‘I'ransform Domain,” 58th International Symposium
ELMAR-2016, Zadar, Croatia, Sept. 2016.

[28] M. Brajovié, 1. Orovic, M. Dakovi¢, and S. Stankovic, “Comptessive Sensing of Signals
Sparse in 2D Hermite Transform Domain,” 58th International Symposium ELMAR-
2016, Zadar, Croatia, Sept. 2016

[29] M. Brajovi¢, M. Dakovi¢, and LJ. Stankovic, “Convexity of the 11-norm based Sparsity
Measure with Respect to the Missing Samples as Variables,” 5th Mediterranean
Conference on Embedded Computing, MECO 2016, Bar, June 2016

[30) M. Brajovi¢, I. Orovi¢, M. Dakovic, and S. Stankovi¢, “The Analysis of Missing Samples
in Signals Sparse in the Hermite Transform Domain,” 23rd Telecommunications Forum
TELFOR, Belgrade, 2015

(31] A. Dragani¢, M. Brajovic, I. Orovi¢, and S. Stankovi¢, “A Software Tool for Compressive
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[ S_ensi_ng_ based Ti;ne—l?reqﬁe}lc; Analysis?_f;ﬂh_intemational Sympo-s_ium ELMAR-2015,
Zadar, Croatia

[32] M. Brajovi¢, and V. Popovié-Bugarin, “Instantaneous Frequency Estimation Using Ant
Colony Optmuzation and Wigner Distribution,” 4th Mediterranean Conference on
Embedded Computing, MECO 2015, Budva, Montenegro, June 2015.

Radovi izloZeni na regionalnim 1 nacionalnim konferencijama
[33] M. Brajovi¢, L. Stankovi¢, and M. Dakovi¢, “Reconstruction of non-stationaty signals

with missing samples using S-method and a gradient-based reconstruction algorithm,”
Informacione Tehnologije - I'T 2015, Zabljak, Montenegro, February 2015

ObrazloZenje mentora o koriS¢enju doktorske disertacije u publikovanim radovima

Doktorand MSc Milos Brajovic je veéinu svojih istrazivanja na kojima je zasnovana doktorska
disertacija prezentovao kroz 8 radova, koji su publikovani u renomiranim medunarodnim
casopisima sa SCI/SCIE liste, sa kumulativnim IMPACT Factor-om 21.27. Na 6 radova,
kandidat je prvi autor. Dio rezultata je objavljen 1 u radovima (njth ukupno 22) koji su izlozeni na
medunarodnim konferencijama koje su indeksirane u bazi SCOPUS, zatim kroz dva rada u
drugim ¢asopisima i kroz jedan rad publikovan na lokalnoj/regionalnoj konferenciji. Treba istaci
da je doktorand autor 1 drugih radova mimo oblasti disertacije, Sto se moze vidjeti iz bibliografije
koja je data u prilogu ovog obrasca. U nastavku slijedi obrazlozenje kljucnih rezultata
publikovanih kroz 8 radova u renomiranim medunarodnim casopisima, koji predstavljaju 1 temelj
predmetne doktorske disertacije.

Nauéni rad “Analysis of the Reconstruction of Sparse Signals in the DCT Domain Applied to Audio Signals
publikovan je u renomiranom casopisu [EEE/ACM Transactions on Audio, Speech, and
Language Processing sa IMPACT Factor-om 2.95 1 u njemu je predstavljena originalna analiza
uticaja nedostajuc¢ih odbiraka na rekonstrukciju signala rijetkih u domenu Diskretne kosinusne
transformacije (DCT), kao 1 analiza performansi razhicitih algoritama za rekonstrukeiju signala na
osnovu redukovanog skupa dostupnih odbiraka (mjerenja). Diskretna kosinusna transformacija je
direktno povezana sa Diskretnom Furijeovom transformactjom. Rad sadrzi opsezne numericke
rezultate, ukljucujudi 1 razmatranje aspekata primjene u rekonstrukeiji realnih audio signala kojt su
osteceni impulsnim smetnjama. Sadrzaj rada je obraden u trecoj glavi disertacyje.

U naucnom radu “Analysis of noisy coefficients in the discrete Hermite transform domain with application in
signal denoising and sparse signal reconstruction”, koji je publikovan u renomiranom casopisu [EEE
Transactions on Aerospace and Electronic Systems sa IMPACT Factor-om 2.063, razmatrano je
kompresivno odabiranje u domenu Hermitske transformacije, koje ukljucuje detaljnu teorijsku
analizu uticaja nedostajucih odbiraka na Hermitske transformacione koeficijente, probabilistcku
analizu procesa rekonstrukcije ali 1 analizu performansi novopredlozenth pristupa za
rekonstrukeiju signala koji imaju rmjetku reprezentaciju u Hermitskom domenu. Rezultati su,
pored velikog broja opseznih numerickih eksperimenta, verifikovani i kroz rekonstrukciju realnih
UWB komunikacionih/radarskih signala. Sadrzaj rada je obraden u drugoj glavi disertacije.

U naucnom radu “Analysis of notsy coefficients in the discrete lermite transform domain with application in
sugnal denoising and sparse signal reconstruction”, publikovanom u renomiranom naucnom casopisu

Signal Processing, sa IMPACT Factor-om 3.47, analizira se uticaj aditivnog Suma na koeficijente
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[ diskretne Her;rntstUansformacije. U radu je p_redloicn pr_lsap za uklanjanje aditivnog Suma, uz
posebno razmatranje primjena u kontekstu realnih biomedicinskih  EKG  signala 1
komunikacionth UWB signala. Analiza je inkorporirana u algoritam za rekonstrukciju signala 1z
konteksta kompresivnog odabiranja. Sadrza) rada pokriven je u drugoj glavi doktorske disertacije.

Rad “Ervor in the Reconstruction of Nonsparse Images” publikovan u renomiranom casopisu
Mathematical problems i1n Engineering, sa IMPACT Factor-om 1.145, sadrzi analizu
kompresivnog odabiranja u domenu dvodimenzione DCT. U radu je 1zveden egzaktan izraz za
energiju greSke u rekonstrukeiyji signala koji nijesu rijetki u ovom domenu, a rekonstruisani su uz
pretpostavku o rijetkosti. Posebno razmatran kontekst primjene odnosi se na digitalne slike.
Sadtzaj rada je obraden u trecoj glavi disertacije.

Dekompozicija multuvarijantnih multtkomponentnih signala koja je zasnovana na mjerama
koncentraicije 1z konteksta kompresivnog odabiranja, razmatrana je u radu |, Time-frequency
decomposition of mullivariate multicomponent signals, koji je publikovan u renomiranom casopisu Signal
Processing, sa IMPACT Factor-om 3.47. DPredlozeni ptistup omoguéava izdvajanje
nestacionarnth komponentt signala uprkos njthovom preklapanju u vremensko-frekvencijskoj
ravni, §to predstavlja veoma znacajan prilog rjesavanju problema koji je odavno poznat u
vremensko-frekvencijskoj analizi. Sadrzaj rada je obraden u Cetvrtoj glavi doktorske disertacije.

U radu “Post-processing of Time-Frequency Representations in Instantaneous Frequency Estimation Based on
Ant Colony Optimization” koji je publikovan u renomiranom casopisu Signal Processing, sa
IMPACT Factor-om 3.47, predlozen je novi algoritam za estimaciju trenutne frekvencije u
uslovima izloZenosti signala jakom aditivnom Sumu. Algoritam je zasnovan na vremensko-
frekvencyjskoj reprezentactji koja je poznata pod nazivom Wigner-ova distribucija, 1
optimizacionom pristupu poznatom pod nazivom Optimizacija mravlje kolonije. Wigner-ova
distribuctja predstavlja Furjeovu transformactju specificno definisane autokorelacione funkceiyje.
Najbitniji aspekti ovog rada obradeni su u Cetvrtoj glavi doktorske disertacije.

IConcept mjera koncentracyje 1z konteksta kompesivnog odabiranja je u radu “On fthe
Parameterization of Hermite Transform with Application fo the Compression of QRS Complexes” primijenjen
na optumizaciju parametara diskretne Hermitske tranformacye, konkretno, faktora skaliranja
vremenske ose 1 faktora pomjeraja po vremenskoj osi baznih funkcija ove transformacije. Rad je
publikovan u casopisu Signal Processing, sa IMPACT Factor-om 3.47. Posebno vazan doprinos
u radu jeste razmatranje komprestje QRS kompleksa, specificnih djelova EKXG signala sa bitnom
primjenom u medicinskoj dijjagnostici 1 lijecenju. Rad je obraden u drugoj glavi disertacije.

Konacno, u radu “Gradient-based signal reconstruction algorithm in the Hermite transform domain”
predstavljen je gradijentni pristup za rekonstrukciju signala koji su ryjetki u Hermitskom domenu.
Rad je publikovan u renomiranom casopisu Electronics Letters 1zdavaca IET, sa IMPACT
Factor-om 1.232. U radu je posebno razmatrana primjena na kompresivno odabiranje QRS
kompleksa. Problematika razmatrana u radu pokrivena je u drugoj glavi disertacije.

Jedan dio rezultata kandidata publikovan je 1 kroz 22 rada izlozena na renomiranim
medunarodnim konferencijama koje su indeksirane u bazi SCOPUS, ukljucujuéi 1 konferenciju
EUSIPCO, koja je siroko poznata kao jedna od najznacajnih konferencija u svijetu u oblasti
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obrade signala, zatim konferencije MECO, CoSeRa, DSP 1 brojne druge konferencije veoma
prepoznatljivog medunarodnog renomea.

Datum i ovjera (pecat i potpis odgovorne osobe)

U Podgorici, /';;:L\]E} CRA

16 . R0 00A8. e ¢

Prilog dokumenta sadrzi:

Potvrdu o predaji doktorske disertacije organizacionoj jedinici

Odluku o imenovanju komisije za pregled 1 oggenu doktorske disertacije
Kopiju rada publikovanog u ¢asopisu sa odgovarajuce liste

Biografiju 1 bibliografiju kandidata

Aol

Biografiju 1 bibliografiju ¢lanova komusije za pregled 1 ocjenu doktorske disertacije sa
potvrdom o izboru u odgovarajuce akademsko zvanje i1 potvrdom da barem jedan ¢lan

komisije nije u radnom odnosu na Univerzitetu Crne Gore
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Univerzitet Crne Gore

.' ELEKTROTEHNICKI FAKULTET

U C G 81000 Podgorica, Dz. Vasingtona bb, tel. (020) 245 839, fax: (020) 245 873
Z.R.510-255-51, PIB: 02016702 302, PDV: 30/31-03951-6

Univerzitet Crne Gore

T V!
Broj: C;‘L"— é,.‘?,’l)

Datum: “\L |_!U‘ QVM)

Na osnovu sluzbene evidencije i dokumentacije Elektrotehnickog fakulteta u
Podgorici, izdaje se

POTVRDA

Mr Milos Brajovié, student doktorskih studija na Elektrotehni¢kom fakultetu u
Podgorici, dana 19.10.2018. godine dostavio je ovom Fakultetu doktorsku disertaciju
pod nazivom: ,,Analiza algoritama za rekonstrukciju signala rijetkih u Hermitskom i
Furijeovom transformacionom domenu®, na dalji postupak.
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Na osnovu ¢lana 64 Statuta Univerziteta Crne Gore, u vezi sa ¢lanom 41Pravila
doktorskih studija, na predlog Komisije za doktorske studije, VijeCe Elektrotehnickog
fakulteta u Podgorici, na sjednici od 26.10.2018. godine, donijelo je

ODLUKU

I Utvrduje se da su ispunjeni uslovi iz Pravila doktorskih studija za dalji rad
na doktorskoj disertaciji ,,Analiza algoritama za rekonstrukciju signala rijetkih u
Hermitskom i Furijeovom transformacionom domenu“ kandidata mr Milosa
Brajovica.

II Predlaze se Komisija za ocjenu navedene doktorske disertacije, u
sastavu:

1. Dr Ljubisa Stankovic¢, redovni profesor Elektrotehnickog fakulteta Univerziteta
Crne Gore,

2. Dr Milo§ Dakovi¢, redovni profesor Elektrotehni¢kog fakulteta Univerziteta
Crne Gore,

3. Prof. dr Danilo Mandi¢, Department of Electrical and Electronic Engineering,
Imperial College London, London, UK.

Komisija iz tacke II ove Odluke podnijece Izvjestaj Vijecu Fakulteta u roku od
45 dana od dana imenovanja.

-VIJECE ELEKTROTEHNICKOG FAKULTETA-

Dostavljeno: \ e s
- Senatu, X
- Centru za doktorske studije, 3 N/

u dosije,

- ala.




SPISAK RADOVA KOJI SADRZE REZULTATE DOKTORSKE DISERTACIJE

Radovi iz vodeéih ¢asopisa (SCI/SCIE list)

[1] LJ. Stankovi¢, and M. Brajovi¢, ““Analysis of the Reconstruction of Sparse Signals in
the DCT Domain Applied to Audio Signals,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 26, no.7, July 2018, pp.1216-1231, DOI:

10.1109/TASLP.2018.2819819

2] M. Brajovi¢, I. Orovié, M. Dakovi¢, and S. Stankovi¢, “Compressive Sensing of
Sparse Signals in the Hermite [ransform Basis,” IEEE Transactions on Aerospace and
Electronic Systems, Volume: 54, Issue: 2, April 2018, pp. 950 - 967, DOLIL

10.1109/TAES.2017.2768938

[3] M. Brajovi¢, S. Stankovi¢, and I. Orovi¢, “Analysis of noisy coefficients in the
discrete Hermite transform domain with application in signal denoising and sparse

signal  reconstruction,”  Signal  Processing, vol. 150, September
https://doi.org/10.1016/].s1gpro.2018.04.007

[4] M. Brajovié, 1. Stankovi¢, M. Dakovi¢, C. loana, and LJ. Stankovié, “Error in the
Reconstruction of Nonsparse Images,” Mathematical Problems in Engineering,

Volume 2018 (2018), Article ID 4314527, 10
https://doi.org/10.1155/2018/4314527

[5] LJ. Stankovi¢, D. Mandic, M. Dakovi¢, and M. Brajovi¢, “Time-frequency
decomposition of multivariate multicomponent signals,” Signal Processing, Volume

142, January 2018, pp. 408-479, http://dx.doi.org/10.1016/j.s1gpro.2017.08.001

6] M. Brajovi¢, V. Popovi¢-Bugarin, [. Djurovi¢, and S. Djukanovi¢, “Post-processing of
Time-Frequency Representations in Instantaneous Frequency Estimation Based on
Ant Colony Optimization,” Signal Processing, Vol. 138, September 2017, pp. 195-

210, http://dx.doi.org/10.1016/j.sigpro.2017.03.022.

[7]1 M. Brajovi¢, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “On the Parameterization of
Hermite Transform with Application to the Compression of QRS Complexes,” Signal

Processing, vol. 131, pp. 113-119, February 2017.

(8] M. Brajovié¢, 1. Orovi¢, M. Dakovi¢, and S. Stankovié¢, “Gradient-based signal

77

reconstruction algorithm in the Hermite transform domain,
Volume 52, Issue I, pp.41-43, 2016

Radovi publikovani u drugim ¢asopisima:

Electronics Letters,

[9] M. Brajovi¢, A. Dragani¢, 1. Orovi¢, and S. Stankovi¢, “Sparse Representation of
FHSS Signals in the [lermite Transform Domain,” Telfor Journal, Vol. 9, No. 2, 2017.
[10]M. Brajovi¢, LJ. Stankovi¢, and M. Dakovi¢, “Reconstruction of non-stationary
signals with missing samples using S-method and a gradient-based reconstruction

algorithm,” ETF Journal of Electrical Engineering, Vol. 21, No. 1, 2015.

Medunarodne konferencije (indeksirane u bazi SCOPUS):

[111M. Brajovi¢, . Stankovi¢, C. loana, M. Dakovi¢, and LJ. Stankovié, “Reconstruction
of Rigid Body with Noncompensated Acceleration After Micro-Doppler Removal,”
Sth International Workshop on Compressed Sensing applied to Radar, Multimodal

Sensing, and Imaging (CoSeRa), Siegen, Germany, September 2018.

[12]LJ. Stankovi¢, M. Brajovié, I. Stankovi¢, C. loana, and M. Dakovi¢, “Analysis of
Initial Estimate Noise in the Sparse Randomly Sampled ISAR Signals,” 5tk
International Workshop on Compressed Sensing applied to Radar, Multimodal

Sensing, and Imaging (CoSeRa). Sicgen, Germany, September 2018.



[13]1. Stankovi¢, M. Brajovi¢, M. Dakovi¢, and C. loana, “Effect of Random Sampling on
Noisy Nonsparse Signals in Time-Frequency Analysis,” 26th European Signal
Processing Conference EUSIPCO 2018, Rome, ltaly, September 2018.

[14]M. Brajovié, LI. Stankovi¢, M. Dakovi¢, and D. Mandic, “Additive Noise Influence
on the Bivariate Two-Component Signal Decomposition,” 7th Mediterranean
Conference on Embedded Computing, MECO 2018, Budva, Montenegro, June 2018.

[15]M. Brajovi¢, LJ. Stankovi¢, and M. Dakovi¢, “Micro-Doppler removal in radar
imaging in the case of non-compensated rigid body acceleration,” 2018 23rd
International Scientific-Professional Conference on Information Technology (IT),
Zabljak, Montenegro, 2018, pp- 1-4, February 19-24, doi:
10.1109/SP1T.2018.8350451

[16)M. Brajovi¢, S. Vujovi¢, 1. Orovi¢, and S. Stankovi¢, “Coefficient Tresholding in the
Gradient Reconstruction Algorithm for Signals Sparse in the Hermite Transform
Basis,” Applications of Intelligent Systems 2018 (APPIS 2018), Las Palmas De Gran
Canaria, 8-12 January 2018

[17]Z. Vulaj, M. Brajovi¢, A. Dragani¢, and 1. Orovi¢, “Detection of Irregular QRS
Complexes using Hermite Transform and Support Vector Machine,” 59th
International Symposium ELMAR-2017, Zadar, Croatia, 2017

[18]LJ. Stankovi¢, M. Brajovi¢, M. Dakovi¢, and D. Mandic, “Two-component Bivariate
Signal Decomposition Bascd on Time-Frequency Analysis,” 22nd International
Conference on Digital Signal Processing I[EEE DSP 2017, August 23-25, London,
United Kingdom

[19]M. Brajovi¢, I. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “The Reconstruction of 2D
Sparse Signals by Exploiting Transform Coefficients Variances,” 17th IEEE Int.
Conference on Smart Technologies, [IEEE EUROCON 2017

[201Z. Vulaj, A. Draganié, M. Brajovi¢, and 1. Orovié, “A tool for ECG signal analysis
using standard and optimized Hermite transform,” 6th Mediterranean Conference on
Embedded Computing, MECO 2017, Bar, Montenegro

[21]M. Dakovié, 1. Stankovi¢, M. Brajovi¢, and LJ. Stankovi¢, “Sparse Signal
Reconstruction Based on Random Search Procedure,” 40th International Convention
on Information and Communication Technology, Electronics and Microelectronics
MIPRO, Opatija, Croatia, May 2017

[221M. Dakovi¢, T. Ruzié, T. Roga¢, M. Brajovi¢, and B. Lutovac, “Neural Networks
Application to Neretva Basin Hydro-meteorological Data,” 13th Symposium on
Neural Networks and Applications NEUREL 2016, November 2016, Belgrade, Serbia

[23]M. Brajovi¢, I. Orovi¢, and S. Stankovi¢, “The Optimization of the Hermite transform:
Application Perspectives and 2D Generalization,” 24th Telecommunications Forum
TELFOR 2016, November 2016, Belgrade, Serbia.

[241M. Brajovié, B. Lutovac, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “Sparse Signal
Recovery Based on Concentration Measures and Genetic Algorithm,” 13th
Symposium on Neural Networks and Applications NEUREL 2016, Belgrade, Serbia,
November 2016

[25]M. Brajovi¢, A. Dragani¢, 1. Orovi¢, and S. Stankovi¢, “FHSS signal sparsification in
the Hermite transform domain,” 24th Telecommunications Forum TELFOR 2016,
November 2016, Belgrade, Serbia

[26]]. Stan¢i¢, M. Brajovi¢, 1. Orovi¢, and J. Musi¢, “Compressive sensing for
reconstruction of 3D point clouds in smart systems,” 24th International Conference on



Software, Telecommunications and Computer Networks (SoftCOM 2016), Split,
Croatia, September 2016

[27]M. Brajovi¢, I. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “Representation of Uniformly
Sampled Signals in the Hermite Transform Domain,” 58th International Symposium
ELMAR-2016, Zadar, Croatia, Sept. 2016.

[28]M. Brajovi¢, 1. Orovi¢, M. Dakovi¢, and S. Stankovi¢, “Compressive Sensing of
Signals Sparse in 2D Hermite Transform Domain,” 58th International Symposium
ELMAR-2016, Zadar, Croatia, Sept. 2016

[29]M. Brajovi¢, M. Dakovi¢, and LJ. Stankovi¢, “Convexity of the 1l1-norm based
Sparsity Measure with Respect to the Missing Samples as Variables,” Sth
Mediterranean Conference on Embedded Computing, MECO 2016, Bar, June 2016

[30]M. Brajovi¢, 1. Orovi¢, M. Dakovi¢. and S. Stankovi¢, “The Analysis of Missing
Samples in  Signals Sparse in the Hermite Transform Domain,” 23rd
Telecommunications Forum TELFOR, Belgrade, 2015

[311A. Dragani¢, M. Brajovi¢, 1. Orovi¢, and S. Stankovié¢, “A Software Tool for
Compressive Sensing based Time-Frequency Analysis,” 57th International
Symposium ELMAR-2015, Zadar, Croatia

[32]M. Brajovi¢, and V. Popovi¢-Bugarin, “Instantaneous Frequency Estimation Using
Ant Colony Optimization and Wigner Distribution,” 4th Mediterranean Conference on
Embedded Computing, MECO 2015, Budva, Montenegro, June 2015,

Radovi izlozeni na regionalnim i nacionalnim konferencijama

[33]M. Brajovi¢, LJ. Stankovi¢, and M. Dakovié, “Reconstruction of non-stationary
signals with missing samples using S-method and a gradient-based reconstruction
algorithm,” Informacione Tehnologije - [T 2015, Zab]jak, Montenegro, February 2015



Compressive Sensing of Sparse
Signals in the Hermite
Transform Basis

MILOS BRAJOVIC |, Student Member, IEEE
IRENA OROVIC " _Member, IEEE

MILOS DAKOVIC | Member, IEEE

SRDJAN STANKOVIC " . Senior Member, IEEE

University of Montenegro. Podgorica, Montenegro

An analysis of the influence of missing samples in signals exhibit-
ing spavsity in the Hermite transform domain is presented. Based on
the statistical properties derived for the Hermite coefficients of ran-
domly undersampled signal, the probability of success in detection of
signal components support is determined and a threshold for the de-
tection of signal components is provided. It is a crucial step in a simple
noniterative and iterative matching pursuit (MP)-based algorithm for
comnpressive sensing signal reconstruction.

Manuscript received December 17, 2016 revised Juty 11, 2017; released
for publication October |1, 2017, Date of publicanon November |, 2017,
date of current version Aprl 11, 2018,

DOIL No. 10.1109/TAES.2017.2768938
Refereeing of this contribution was handled by H. Mir.

This work was supported by the Montenegrin Ministry of Science, under
Project “New ICT Compressive sensing based trends applied to: multime-
dia, biomedicine, and commumnications.”

Authors’ address: M. Bryjovic, [ Orovié, M. Dakovic, and S. Stankovic
are with the Faculty ol Electrical Engineering, University of Montenegro.
Podgorica 81000, Montenegro. E-mail: (milosh@ac.me: irenao@ac.me.
milos@ac.me: stdjan@ac.me). (Corresponding author: Milos Brajovic. |

0018-9251 € 2017 IEEE

950

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS  VOL. 54. NO. 2

I, INTRODUCTION

The Hermite transform (HT) of signals has drawn sig-
nificant rescarch attention during the last decades, since it
exhibits some important properties and high suitability for
scveral signal processing applications [1]-[10]. Namely,
the HT, referred to as the Hermite expansion, is a signal
representation with promising applicability in different re-
scarch fields, due to specific waveforms of its basis func-
tions. The Hermite functions (HF) have been recognized
as a suitable basis for the representation and compression
of QRS complexes in ECG signals [[]-[3]. Other impor-
tant applications include: image processing, [4], [5], com-
puted tomography, analysis of protein structure, optics [7],
and radar signals [9]. As the ultra-wideband (UWB) sig-
nal waveforms arc closely related to Gaussian function and
its derivatives, these signals can be sparscly represented in
the HT domain [10]-[16], in contrary to the standard dis-
crete Fourier transform (DFT) domain, where these signals
have a wide frequency band. The sparsity of UWB signals
has been explored in recent works [17], [18]. Interesting
mathematical propertics of the HT have led to fast com-
putation algorithms, which arc important in statc-of-the-art
rescarch in biomedicine and biology [17. Their good local-
ization propertics have found some important applications
in time-frequency signal analysis, radar signal processing,
and processing of video signals [9], [12].

A small pumber ol nonszero coelficients in a translorm
domain is the basic assumption for successful application
ol compressive sensing (CS) algorithms in the reconstruc-
tion ol signals with missing samples [25]-]57]. This useful
properly of a transform to represent the analyzed signals
with small number ol nonzero coelficients is identified as
sparsily and measured by fp-norm ol the transform coelli-
cienis. When considering the HT. this assumption is valid
lor many ol the mentioned types ol signals, lor instance the
QRS complexes [ 1]=[3] or UWB signals [ 10], [17], [18].

The CS ol UWB signals has been recently studied [17]—
[19]. The research on the sparsification of these signals was
done [18]. CS and sparse signal theory have many important
applications in radar signals and systems: channel estima-
tion, wavetorm design, radar imaging [19]-]20], [22]. CS
and sparse signal processing are done in numerous trans-
[orm domains, where usually the concrete application and
signal nature dictate the domain amenability for the sig-
nal representation and processing {34]-149]. The theory
presented in this paper could be also developed for other
trans{orm domains.

The reduced set of observations in CS is usually a con-
sequence of a sampling stralegy. but signal samples can
be also intentionally omitted using robust signal process-
ing duc to a high noise corruption [23], [24]. Therefore.
our busic motivation is to analyze the influence of missing
samples on the HT and signal reconstruction possibilities.
The signal reconstruction is based on finding the solution ol
an undetermined system of equations, having the sparsest
transform representation. Direct solution using minimiza-
ton of €g-norm is an NP-hard problem. In order to apply
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iteralive minimization algorithms for inding the solution,
e.g., linear programming approaches and methods, the re-
construction constraint is relaxed, and £,-norm is used as a
measure of sparsily {26]-[28]. The solution can be obtained
by using ¢;-norm minimization via convex optimization al-
gorithms, for example, primal-dual interior point methods.
Other approaches are iterative procedures such as orthog-
onal matching pursuit (OMP). gradient pursuit, CoSaMP
[25]-[27], etc. An interesting ilerative reconstruction al-
gorithm which uses a steepest descent based procedure to
achieve the minimization of the ¢;-norm is used in [3].
However, this type of algorithm suftfers from slow conver-
gence, as it starts to oscillate when approaching the solution
[33]. Additionally, with a large number of missing samples
(unknowns), it may take a significant number of ilerations
for the algorithm 1o converge, requiring significant calcula-
tion time. Therefore, in this paper we consider alternative
reconstruction approaches.

Noniterative approach for signal rcconstruction that
avoids the constraint relaxation is presented in [32]. It is
based on the comprehensive analysis of the missing samples
influence (o the sparse transform, namely, the DFT [23].
However, duc to the specific form and different properties
of the HT, a direct gencralization of the mentioned recon-
struction approach to this sparsity domain is not possible.
This lact led us to the theoretical contributions presented in
this study. The presented results can be directly applied inan
matching pursuit (MP)-based algorithm, where, in each it-
eration, blocks of detected signal components positions are
exploited in the reconstruction. If component amplitudes
have close values, then this type of MP becomes a single-
iteration algorithm [32]. Besides the derivations modeling
the missing samples influence on the HT basis, the relation
with the coherence index condition is cstablished. We an-
alyze the influence of the addirive Gaussian noise on the

CS reconstruction, and the error in the reconstrucnon of

nonsparse signals using the presented approaches with the
sparsily assumplion.

The paper is organized as follows. The HT and its place-
ment into the CS framework is done in Section I1. The de-
tailed analysis of the missing samples influence on the HT
is provided in Scction [I1. The analysis ol the additive noise
influcnce and the nonsparsce signal reconstruction with spat-
sity assumpution is done in Section [V, The theory exten-
ston toward the simple reconstruction approach is done in
Section V. Section VI provides numerical evaluation ol the
presented theory along with reconstruction example, and
the concluding remarks are presented in the end o the
paper.

. THEORETICAL BACKGROUND
A, Discrete HT

The Hermile polynomial of order p, widely known
among the orthogonal polynomials, can be dcfined
as [1]-[8]
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Fig. 1. Examples of Hermite basis functions: blue -yo(1,,), red -

Ya(1,, ), black - ¥3(1,,), and mangenta - ¥29(1,, ).

The pth order HF is related with the pth order Hermite
polynomial as follows:

Y, o) = (Ozl’p!\/ﬁ)"/ze—“/(z””HP(l/G) (2)

where the constant ¢ is used (o “stretch” and “‘compress”
HFs, in order to provide a representation with desirable
properties [1]. Few HFs are shown in Fig. |. In further
analysis, for the sake of simplicity, it will be assumed that
this constant is ¢ = |. The HFs can be calculated in a
recursive manner, which is an advantage in applications
[1].16]. The orthogonality of the Hermite polynomials and
the orthonormality of HFs, often makes them suitable as a
basis for signal representation. The Hermite expansion or
HT is given by [1]-{6]

N
F@y=Y " cy¥,(1,0) 3)

p=0

where ¢, denotes the pth order Hermite coefficient
o0
cp :/ SOy, (di, p=0,1,...,M—~1. (4)
—00

Aninfinite number N — oc of HFs is needed for the ex-
act representation of the continuous signal f (7). However,
in numerous applications, a finite number of M HFs can be
used with a certain approximation error, e.g., [1], [2], [12].
For the numerical calculation of the integral (4) quadrature
approximation techniques are used, [1], [8], [9] and usually
interpreted as discrete form of the HT. Since it provides sig-
nificant calculation advantages over other approximations,
the Gauss—Hermile quadrature is considered

cp B o i )y =0t M=
M (a1 (t))

=1

&)
where 1, 1s used to denote zeros of the Mth order Hermite
polynomial. If continuous HFE's arc samplcd at the zeros of
the Mth order Hermite polynomial, then the summation (3)
becomes a complele representation ol the analyzed signal.
For a signal of length M, the complete sct of discrete HFs
used [or unique signal representation consists of exactly M
functions [ 1], |3].
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Note that the discrete HT satisfies the following prop-
erties [1], [3], [71:

M

1 '(,//,, lll

o lf/l\(rln 8(/) - k) (())
M m=l 1//‘1 -1 Im))

and
M —

l i /m>
Yy 1// d/[z(ln) =8ty — 1) (7

p=0 (])[/M—l(’m))

with m and n being the indices of Hermite polynomial
roots t,, and ¢,, respectively. In the further analysis, it will
be assumed that the analyzed signal (of length M) and
HFs are sampled at the roots 1, of the Mth order Hermite
polynomial and the index m will be used to denote the
discrete time index.

Having in mind previous definttions, the expansion
using M HFs can be written in a matrix—vector nota-
tion. Let us introduce the vector ¢ = [¢g, ¢, ..., w117
consisted of Hermite coefficients c,, and vector f =
[F(D, f(2),..., fFM]T consisted of M signal samples.
Using the Gauss—Hermite approximation lormula (5). we
obtain the inverse transform matrix ¥ consisted of M
HFs as

Yoll) () Ypi (1)

vo2)  ¥i(2) Yrr—i(2)
¥ =

Yo(M)  yi(M) Y1 (M)

Bascd on previous matrix definition, the inverse HT for
the casc of discrete sighals can be written as

f= e (8)

B. CSandHT

The CS procedure based on the randomly se-
lected/acquired signal values can be modeled by using a
random mcasurcment matrix ¢

Yes= P = dV¥e = A,

where ys denotes the vector of available samples of the an-
alyzed signal. The matrix A is obtained from the inverse
transform matrix W, in our casc the inverse HT matrix, by
omitting the rows corresponding to the positions of miss-
ing samples. The available samples have random positions
denoted by

meMp={my,my . ...my}cM {1,2,...,M}.
9)
The index m on the discrete grid corresponds to the

sampling point 7,,. In order to obtain the reconstructed sig-

nal values, an undctermined system of M4 lincar cquations
and M unknowns have to be solved. It is known that such
systems may have inhinitely many solutions, but the idea

behind the CS is to find the sparsest one. The signal re-

construction problem is usually reduced to the problem of

wdentifying signal support (positions and values of nonzcro
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coefficients in the sparsity domain). Here, we assume that
the observed signal is sparse in the HT domain, i.e., K « M
and K being the number of nonzero Hermite coefficients.
The nonzero coefficients have indices from the set

P;{p],pz,...,p,\'}EPM:{O, l,...,M— l},K<<M

The problem of finding the sparsest solution corre-
sponds to the minimization problem of the form

min [[cfly subject 1o y=Acs¢. (10)

[tis known that the #o-norm cannol be used in the direct
minimization, and thus (10) is usually reformulated using
the €y-norm, making possible to apply linear programming
or other efficient approaches. On the other hand, if the
signal support is known or appropriately estimated within
asct P containing K < K < M elements such that P € P,
the reconstruction is aalmved using the pseudoinversion

Cx = (AZSKACSK)v (l l)

often cxploited in standard matching pursuit approaches.
The matrix A,k is the submatrix of the matrix A with
omitted columns corresponding to positions p ¢ P.

Our aim is to analyze the influence of missing samples
of the compressed sensed signal to the Hermite domain
representation. {f we are able to model and characterize the
effects caused in the sparsity domain as a consequence of
compressive sampling, then we can develop efficient proce-
dures to determine signal support in the transform domain,
defined by a proper set P suitable for the reconstruction.

AT
AcsKyCS

. ANALYSIS OF MISSING SAMPLES

Consider the HT of the signal f(mn) sampled at the
points corresponding to the zeros of the Mih order Hermite
polynomial. The coetficients of the Hermite expansion us-
ing M HFs arc calculated by

M
Cp = L Z '1//' ,;____(m) zf(m)-
M = (Yar 1 (m))

The fact that the signal samples are placed on a grid cor-
responding to Hermite polynomials zeros allows a high ac-
curacy level in the Gauss—Hermite quadrature calculation.
We will assume that the analyzed signal f(m) is sparse in
the Hermite domain, so that it can be represented as

(12)

K
Som) =3 A, (m) (13)
1=t
with K being the number ol signal components, A; is used
to denote amplitudes ol signal component, and p; denotes
the order ol the HF. For the multicomponent signal (13),

the HT coelficients (12) are calculated as follows:

ZZ Ai Yplmnpy, (m) p=0,... . M—-1
M (Y- I(m))

m=1 1=
(14)
Normalized signal components are mulliplied by the
basis (unctions ¥ ,(m)/(Yar-1(m))? o produce the signal
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yp(m) defined as
ﬂl//,,(m)l//,,‘_(m) ;
M (Yo (m))*

Values of the signal denoted with v, (m) arc from the
set

_yp(m) K. (15)

©

{ A, ¢/)(171)1///;, (ln)

.i—l,...,K’
M (Yp_1(m))?

(16)
Since property (6) holds, it is obvious that the members
of $2 satisty the relation
M
Y aptmy = () + v,(2) +
=l
forgivenp # pi, i =1, 2... K.
In order to analyze the CS signal case, a subset consisted
of M4 = M randomly positioned available samples from
the set €2 is considered

© = {y,(my), y, (). ..

Therefore, Mp = M — M,, samples are unavailable.
Since the HT is a lincar (ransform, and the inner prod-
ucts are performed between signal values and the basis
functions, if some samples are omitted from the signal, it
produces the same result as if these samples assume zero
values. Consequently, a reduced number ol signal samples
can be considered as a complete set of samples. where some
of them are affected by an additive noise modeled as

= v,(mn), N\M,
0, for m ¢ M.

L, (M) =0 ()

,)'I,(I'I'I/y//‘)} g Q (18)

form ¢
nim) =

Under this assumption, in the following scctions we
will derive the statistical propertics of HT coctficients on
the signal and nonsignal positions.

A.  Monocomponent Signal Case

First the onc-component signal casc. with K = 1, A, =
I.and p; = po. will be considered. The HT over the set of
available samples from @ can be written in the following
form:

M

Z yplmi) = [y ptm) + nim)).

m=1

Y,=c,~ (19)

Itisarandom variable, formed as a sum of M 4, randomly
positioned available samples. Ilere. the derivation of the
mean valuc and the variance of the random variable Y, in the
Hermite domain will be conducted. As it will be shown, this
variable has dillerent statistical properties at the position
p = po corresponding to the signal component, and at other
positions p # py in the Tlermite domain corresponding (o
the noise.

1) Statistical Properties of the HT at the Nonsignal Po-
sitions:  For the nonsignal positions p # pq, the random
variable Y, ,,, corresponds to an additive transform domain
noise [23]. Applying property (6) and using the fact thal
samples v, (m,) rom the set © have random positions, we

conclude that E{y,(m;)} = E{y,(m)} = 0. Consequently,
the random variable ¥, has a zero mean value

M,
in=E,, )= [Z yplm; )] 2 E nm} =0,
i=1

i=1
(20)
The variance of the real-valued random variable Y,
is defined as follows:
. 2 .
Oy = vai {Y,,¢,,,,} =E {|Y/»#/’~| ] =E {(Y,,;ép“)()’,,#,,“) ]

My M,

= £ Z Z yp(mi)y,(m;)

i=1 j=I

12

My My

M,
= b {Z,\’,Z,(In,)’ FEY D vplmyylm))

i=] i=1 j=I
—_— i#j
M
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(21)
According to (17), we have
E {,\’,;(mi) (y/)(l) + \7/)(2) + -+ ),;(M))} =
€., E[.\‘,;("”i))’p(l)} + E{_yp(’ni)yp(z)}
+o Ely,mi)y, (M)} =0

fori=1,2, ..., M.
Terms E{y,(m;)y,(m;)},
tributed

(22)
for i # j are equally dis-

I# . (23)
The expectation E{y,(m;)y,(m )} fori # j can be de-
rived from property (7), where p # py is considered

E{y,(m;)y,(m;)} = B,

E{v,(mi)y,tn)}
E [ _]_ ‘//1;(”71 )w/'(mt ) Ip/l”(mi )‘/f/:.,(mi) ’
M2 (Yo (m)) (g (m)))’
g ‘ [ 'l//,,(111,)1//,,(lr12,-)] 7 ‘ b ol i
M (Yy—i(m;)) M (Yu-1(mp))°
The appearances of the HFs of orders p and pg (i.e., their
values at instant m1; ) are statistically independent events, and

thus the expectations are separated. Due to property (7), we
have

E lL 1//[,(!71[)1///;("1;)’ —F ‘
M (a1 (my))”

| @p,,,,on,)l//,.,‘(m,)’

LM] _J
M (Y m)* | M
Thus, 1t can be easily concluded that

Elyy(m)yp(m)) = E{y,(m)} E{y,(m)}) = 1/M7,
(25)
Since there are M — | terms given by (23) with the same
expectation B tor i # ; and one term with value (25) for
i = j.(22) turther produces 1/M? + (M — 1)B = 0.
The unknown B is therefore given by

—1

MAM — 1Y’ (26)

E{v,imn)y,(m)} =B = i #J.

BRAJOVIC ET AL.: COMPRESSIVE SENSING OF SPARSE SIGNALS IN THE HERMITE TRANSFORM BASIS 953



Since there are M4 terms in ST summation in (21) and
M4s(M4 — 1) terms in $2 surnmation, we finally obtain the
variance at the nonsignal positions (noise variance) as

M, MM M?
7 =varl T} = i+ MaMa = DB =0
(27)

We can conclude that the variance of the noise at
nonsignal positions p # pg in the Hermite domain depends
only on the number of available samples M, and the signal
length M. According to the central limit theorem. the ob-
served random vanable Y, ., has the normal distribution.

2) Statistical Properties of HT at the Signal Compo-
nents Positions:  The statistics of the Hermite expansion
coefficients of the CS signal for the case p = py is quite dif-
ferent. Since that the product ¥, (i )¢ ,, (m; ) in the consid-
ered case depends on the values of the specific HF ¥, (m;),
whose samples are missing at random positions, it can be
concluded that ¥, |, is also a random variahle with normal
distribution, according to the central hmit theorem.

In the case of v, , (m,) = v, G, with M, avail-
able randomly positioned samples from the set ©, the ex-
pected (mean) value of the random variable Y, |, follows
from (24)

|
s =E{Y,o, )= —=E
H Yp=py) M

il‘: 1///)(,(”1:')1///1()(”71) _ M
(W) M
(28)
and all the values of the random variable ¥, are equally
distributed. Since the mean value is not equal to zero, vari-
ance is calculated as follows:

i=

o =varlYp=p,) = E {1V pzp,— s} = E{Y)_, )=l
(29
Using the definition of the random variable ¥, ,, the

. 7 . .
variance o,” can be expanded in the form

M

L (m;)

1=

My My,

+ £ ZZ\/, (i )y, G y)

i=1y
7

o] = E

= Il (30)
The calculation of individual terms in (30) will differ
from the previous case (p # py). Starting from the orthog-
onality property (7) for p = py
Vo (1) 0 v, (2) A v, (M) = (31)
and multiplying left and right side by y, (m;), i €
{1,..., M}, the expectation is calculated as

E [y[)()(lnf)ypo( l )+_‘:I)“(n,ll )<\’I"(2) + —I_ ,\]/) (’.”r')_v/)“(M)}
= £ {)*,,1 (nl,)] (32
Lo E v m)y (D) 4 E v i), (M)

= /M. {33)

In the case i # j, M — 1 terms are equally distributed
and satisfy
E{_\'/)n(ll'l Y (1) } = L= E{)’/}.,(”Ii),\’p“(M)}
= E{v,,(m)y,(m;)} = D.
For i = j the expectations E{y2 2 Jmpy, =1, M
cannot be estimated as E{ v, (m; )}E{y,,D m;)}, because sta-

tistical independence requirement is not satisfied. Hence, in
order to determine E{_\-i(](m,-)} let us observe the summation

N LIRS
E Z-Y/m(m") Mzz Yo 111)
M

i=I
1
= m Zu(’niv Po, M) = WP[M

i=1

(34)

which corresponds lo the encrgy of the monocomponent
signal defined by the HF ot order pg. Note that the following
notation 1s used:

oo\’
e a(m;, po, M)
(Yp—1(m;))”

wherem; € {my, my, ..., my, | are random positions of M4
avatlable samples. It can be concluded that

Efa(m;, po, M)} = E {a(po. M)} = P, /M.

Now, (33) becomes

M)+
and then D can be expressed as
1 —Ma(py, M
p = L= Malpo M) (35)
MM - 1)

The variance (30) of the considered random variable
can be now written as

a(p M-1HD=1/M

. M2
ol = Mya(py, M)+ Ma(Ma—~1)D — (—A>

M
| = Mul(py, M)
- M, M M, a7
aa(po. M)y + M (M ) MM - 1)
Ma\’
— | — 1. 36
(%) (36)

After a simple rearrangement of the previous equation,
the variance can be expressed as

. MM,
o} = varlYpp) = 55— ”

M
Po
M Z ((II/M 1(m; ))

m,

(M alpo, M) — 1)
) _

The relation (37) describing how the variance depends
on the Hermite coetficient order pq is evaluated also ex-
perimentatly. The results are shown in Fig. 2, for the sig-
nal ol length M = 200, with M4 = 120 available samples.

37
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Fig. 2. Variance at the position of the signal component as a function of

the component position .

The numerical calculation ol the variance is obtained using
5000 independent realizations of the signal with randomly
positioned missing samples.

When only M4 out of M samples are available, the
known bias in the amplitude should be compensated by
M | M, while P, can be estimated from the available set
of samples

M, Z
Wyl )
P/’U = Z »

i=l

(I/J,w I(’“i))j

Consequently, the variance at the signal component po-
sitions p = py, for an incomplete set of samples, can be
estimated as

M P
=2 2 i)
5§l = —g¢ -1},
' MAN(M )

B. Probabilistic Analysis of the Detection Error for Her-
mite Coefficient Corresponding to Signal Component

(38)

According 1o the central limit theorem, both random
variables Y, and Y,,/,,[_ behave as Gaussian variables
with their own mean values and variances. The derived
mean values and variances will be used to define a method
to distinguish betwecn HT components corresponding to
signal from those corresponding to noise caused by miss-
ing samples. This approach refers 1o the signal component
detection. In the sequel, we consider the absolute values of
the random variables ¥,—, and Y, ., . Given a normally
distributed random variable Y, ,, corresponding to the sig-
nal component in the HT domain, with mean value w, and
variance 052 [given by (28) and (38) respectively], the ran-
dom variable & = |Y,—,,| has the folded normal distribution
as the probability density {unction (pdl)

1 7 (& — )’
O Gl
+ )X (& '"_}l.\ ?.y
=hp 20,°

see Fig. 3(a). The random vanable which corresponds to
the noise, Y2, has also the normal pdf, while its absolute
value, § = [Y,,,,| has the half normal distribution, since
the mean value is 7ero

V2 ( (’)
—exp | - —
On ST Don-

(39

(40)

Distribution of signal coefficient Distribution of non—signal coetficients

= 1307

Mono-component signal
w19

| Mono—component signal

W0 fp = LY

20
f{&).§ = Y Q)€ = (Vi
5 10
N —— S " -
0 02 0.4 0.6 08 0 0.2 04 06 08
Cocllicient absolute values Cocfficient absolute valucs
(a) (b)
Fig. 3. Histograms and pdfs for the absolute values of Hermiite

cocilicients at: (a) signal and (b) nonsignal positions. Histograms
[(a) gray surtace for cocificient at signal position and (b) blue surface for
cocllicients at nonsignal positions] arc simulated for signal with
My - 120 out of M = 200 samples and amplitude Ay = |, based on
20 000 independent signal realizattons with randomiy positioned missing
samples. Theoretical results (dots) are obtained using folded normal
distribution (39) calcufated with estimated value of variance (38) and half
normal distribution (40) with variance (27).

with vartance given by (27). This distribution along with the
experimentally obtained histogram is shown in Fig. 3(b).

The probability that the random variable § = Yz, 18
smaller than x is

V2 ¢’ X
= [ e (5 Jar ment (£ ).
4D
The total number of noise-alone components is M — |,
Probability that M — 1 independent noise components are
smaller than yx is

M—1
. 2
v “
The probability that at least one noise component is
larger than x 1s Py (x) = | — Pun(x). In the standard de-
tection theory terminology, null hypothesis Hq can be for-
mulated as: ¢, 1S a noise-only Hermite coefficient, that is,
Ho ¢ = Y, p,- The other hypothesis can he formulated
as: ¢, is the Hermite coefficient at the signal position, that
1S, ’H| . (,'/, = Y/y,‘ o
If the signal value is within & and & + d& with proba-
bility f(&)dE, it will be misdetected if at least one noise
component is above &. This will occur with the probabil-
ity Paé)f(E)E = (1 — Pun(€)) f(§)dE. Considering all
possible values of &, the misdetection occurs with proba-
bility:

Pun(x) = Crl'(

x |
Py = | — Pun(€) flE)dE = —
£ /() ( an(6)) f(E)dE o 2n

0o ¢ M1
x / I — er’(( )
0 ﬁGN
(& —uy) (€ + u)’
X (exp <~ 720)2 ) + exp (——20.\.2 )) dt.

(43)

Previous retation s the probability of crror in the de-
tection of signal component lor a one component spatse
signal. Il cun be approximated using the assumption that
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the signal component is deterministic. and equal to its mean
value py = E{Z,—, }. A rough approximation of the error

probability follows':
M-I
Hs
ﬁUN) '

This approximation can be corrected with 1.5 standard
deviation of the signal component if we use the fact that sig-
nal components in Hermite domain smaller than the incan
value contribute more to the error than those above the mean

value
— 150, \""!
PE l—uf( ) .
V20

In the case of signal with nonunit amplitude Ay, mean
value is multiplied by the amplitude, while the signal vart-
ance is multiplied by A7, for both analyzed cases.

The falsc alarm probability (probability that noisc-only
coefficients are above the threshold x ) is given by

Ppa ] — err( (44)

(45)

M—1
fow)

whereas the true detection probability (probability that the
signal component 1s above the threshold x) can be calcu-
lated as

(£ — juy)° (&
o= ool v ()
Jy Dtz 20°

for given threshold x. For given signal length M, these prob-
abilities are functions of the number of available samples
M 4, as they appear in both variances and mean values.

Based on Pua(x) and Prp(x) the receiver operating
characteristic curve (ROC) can be calculated. Letus observe
aone-component signal of length M = 200 with unity am-
plitude A - 1, vary the threshold 0 = y < | and calculate
ROC curves [showing Prp(x) versus Peatx)] lor dilferent
numbers of available samples: M4 € {10, 20, 40, 60}
The CS noisc appears as a consequence of single signal
component, and therefore, we expect that the signal-only
coefficient can be detected with a small number of available
samples. The results are shown in Fig. 4.

It we calculate the expression of Py for the considered
numbers of avatlable samples, we obtain the following cr-
ror probabilities: Pr(M,y = 10) =044, Pp(M, = 20) =
046, PeiM, =40)=0.01. and P.(M, =60) =00 1
is in accordance with the results shown in Fig. 4.

Pialx)=1—=P Pw()=1—ert (

C. Analysis ol Multicomponent Signals

The previous analysis will be extended to the multicom-
ponent signals. In the multicomponent signal cuase, analyzed

""The expeeted value and variance of a random variable with folded normal

distribution arc given as: E{(} == m\-":: exp( ,_':_-' ) — puyeri( \1’ Y fey

and var{¢) = p2 + o {mv exp( ) — pserf( Jé‘ ) =gl

0.9
0.8
0.7
0.6
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0.4}

0.2

True positive detection probability

0.1

0 0.2 0.4 0.6 0.8 i
False negative detection probability

Fig. 4. ROC curves lor the detection of single component, shown for

various numbers of available samples.

signals y,(m) € & become
_A_/ wp(/m)w/);(/m)
=1 M (wM—l(/m))z

consisted of K components. Hermite coefficients calculated
as

y,(m) = (46)

M4

~ Y yplmy) = Z Lyp(m) 4+ n(m)]

i=] m=1

/) - (/1

act as random variables. According to the previous results,
in the case of K-component signal, the coefficients ¥,—,
at the stgnal position behave as a Gaussian variable, with
mean value equal 10

s = Z A,-—w — ) (47)

=1

since the noise caused by missing samples is zero mean, as
shown for the monocomponent case.

The variance at the points with no signal components is
equal to

MM — M3
Ov—var{}’ /,}—ZO'N m ,2
1=-1 f==1
48)

since at the points p # p; the noise caused by missing
samples [rom each signal component contributes, and these
noisy components are uncorrelated and zero mean.

According to the presented monocomponent analysis,
the 7th signal component al the position p = p; has the
vartance equal o

Mo fen wkom) ’
My — (WM—l(mi))z

e 1VI,1M M

o~
VM)
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Fig. 5. Histograms and pdfs for the absolute values of Hermite

coefficients at: (a) signal and (b) nonsignal positions. Histograms
[{a) gray surface for coefficient at signal position and (b) blue surface for
coefficients at nonsignal positions] are simulated for multicomponent
signals with M, 120 out of M = 200 sumples and amplitudes
Ag =1, Ay =3, Ay =4, and A3 = 2, based on 20 000 independent
signal realizations with randomly positioned available samples.
Theoretical results are obtained using folded normal distribution
calculated with estimated value of variance (49). and hall normal
distribution with variance (48).

where the subscript s, denotes that itoriginates tfrom the /th
signal component. Additionally. the noise caused by miss-
ing samples from other K — | components is also present
at the position of the ith signal component. This means that,
besides the random variable Y, , the sum of K — I ran-
dom variables Y4, with p € P == {p), ps, ..., pg] orig-
inating from other signal components also affects the ith
signal position. Note that all random variables at the ith
position are normally distributed. K — | random variablcs
Yorp, P € 4P, P2, ... px ) are zero mean, while the ran-
dom variable Y, , has the mean value g, = A;M4/M.
The resulting variance at the 7th signal position p = p; is
I=1

finally
M-M (P,
s (ol
MM-1) A\ M
15§

+> A7 (49)

K
2 _ =2 2
of =06, + ZONJ =

It can be concluded that the Hermite expansion co-
efficient at signal position p = p; will be modeled as
the random variable Y,_, with normal distribution:
NMAA M, 0,2). Also, the coefficients corresponding to
noise are modcled by the random variable Y, ., with nor-
mal distribution: AV (0, (r‘\l,) where o\) I8 given by (48),

As it is done for the monocomponent signal case, previ-
ous results can be used to derive the probability ol crror in
the detection of signal components. The false signal com-
ponent detection occurs when at least one noise component
at positions p # p;, { € {1,2, ..., K} is above signal com-
ponent at the position p;. Recall that the absolute values of
the random variables ¥, , and ¥, have hulf normal and
lolded normal distributions, as shown on I'tg. S(a) and (D),
respectively.

The random variuble & = |¥,,—, | has the pdl given by
(39), with mean value equal w (47) and variance given
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by (49). The random variable representing the noise { =
[Y,;p . is zero mean, with half normal pdf (40), where
the variance is equal 10 (48). The probability that M — K
independent noise-alone points are smaller than x is

X M—-K
. (50
\/50/\1) )

Following the monocomponent signal case, the proba-
bility of error in the detection of the ith signal component
in the multicomponent case has the form

I 0 £ MK
P, = —/ 1- erf( )
£ o 2m Jo V20

R 2
) (cxp (—(s 20/-1;1) ) oxp (_(s ;_oléh) )) “
Gh

Under the same assumptions as in the monocomponent
stgnal case, this error can be approximated by

» | I(/L\-, - 1.50,)M_K
v Ao ] —ert| ——2 .
\/EO’N

D. Relation With the Coherence Index

Pun(x) = erf(

(52)

Let us assume an OMP-based reconstruction [32]. In the
worst case analysis, the maximal possible influence from
other signal components on the detection of the strongest
component occurs when all K components have equal
(without loss of generality - unity) amplitudes. Assume
that only M, out of M randomly positioned samples are
available. Mean value of each consjdered HT component is
Ma/M.

The coherence factor for the matrix AL A is defined as
follows:

My

i Yoy, (m)

[con = Max
M (- (m))?

m l.p#p,
=120 K.
On the other side. the noise-only component at HT index

p originating [rom the signal component p; can be written
in the following form:

ALY, (m)
= S Al
=L, M (Yrps_(m))

[l obviously can be related with the coherence index. If
the noise originating from all signal components addsup at a
nonsignal position p % p,, then this noise-only coefficient
has the maximal possibie value

M4

K max |n,| = Kv.ucoh»

Now et us observe the signal-only position p = p;.
The obscrved signal coclcient is corrupted by the CS
noise originating from other K — 1 components. In the
worst possible case, all these nowse components add up
in the direction opposile Itom the component mean value
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(in this case M, / M, in general, multiplied by the com-
ponent’s amplitude). Assuming the largest possible nose
values K max |n,|, the resuling worst possible signal co-
efficient value is

M

M

. A
min {cp,} = e (K — 1)ymax |n,,
MA
— (K =~ I)W'Mcoh-

The observed signal component can be detected it it is
larger than the largest noisc-only cocliicient
My Ma M,
Y _(K - ])_.choh > K—
M M M
and this can be rearranged to the form of the well-known

spark-based condition for the signal reconstruction

(1)
K<-{1+—).
2 Hoh

This is a well-known and already established result in
the CS theory.

Mcoh

(53

IV. ADDITIVE NOISE INMIUENCE AND NONSPARSE
SIGNAL RECONSTRUCTION

A.  Additive Noise in Mceasurements

Previous analysis assumes measurements that are not
affected by external noise. As noise Is common in practi-
cal applications, previous analysis can be easily extended
for noisy signal case. Assume thalt the measurements arce
affected by a white Gaussian noise with variance 2. In
this case, the total disturbance in the transform domain is
caused by both the external noise and the noisce caused by
missing samples. It 1s casily shown that the additive white
Gaussian noise has the following variance in the Hermite
domain:

o2 o7 |
he ¢’M._|(lm)

m>l

As these random variables are uncorrelaled and Gaus-
sian, for noise-only coetficients the total variance cquals

K

: ! (J-hx

2 2 ) M1IVI M

Op = Oy + O, MM = 54

with constant Zf:’:l 1//,;,2__((!,,;) which is not dependent on
measurements positions.

In order to keep the same probability Pyn(7) that
M — K independent noise components are smaller than
a threshold x = T, given in (50), the following condition
should be satisfied [32]:

MM IAf__ (55)
‘\l(\l—,LI) > g -
) /-1 A+ oy,

A? is easily ob-
2 A
A2~

. . . K
The approximation of the term

) . . K
tained based on available measurements, using Y |

W . -
<8 Jwivy c/), thus, it can be considered as known. There-
My

fore, for a given signal length M, number of available sam-
ples M, and external noisc variance af. we can determine
M; which represents the increased number of measurements
required in the presence of noise, in order to keep the same
probability of error as in the noiseless signal case.

The input SNR of signal with additive noise, when all
samples are available is equal to

M 2
nm E

SNR = 101082—';M =10log—L  (56)
Z,,,-] ‘C(lm)| Ef

where £, = Ma? and E; = 30| | f(1,,)|*. Signal com-

ponents in the HT domain have mean value %A/, leP.
In the reconstruction process, coefficients corresponding
to signal components are amplified for a tactor i"— As-
suming a successful CS reconstruction, a signal lranstorm
coefficient is equal to the coefficient of the original signal
with atl signal samples being used. If a small additive noise
wilh varnance af exisls in M, measurements, then in one
coefficient of the intial HT (calculated for the under sam-
pled signal with zeros at missing samples positions) noise
variance is multiplied with factor h

The additive noise energy will he increased for( M 3 in
cach nonzero coefficient of the reconstructed signal. AS the
successful CS reconstruction provides exactly K nonzero
Hermite coefficients corresponding to signal components,
whereas other M — K coefficients are equal to zero, the
noise energy in the reconstructed signal remains within £
nonzero coefficients.

The signal-to-noise ratio in the reconstructed signal is
therefore

—M 2
Z,,”:l |f(/m)| = 10lo

2
iy M 2
K3 (M,\) o,

SNR, = 10log E;.

=S
X
M

This means that, in the reconstructed signal, initial SNR
ts increased for — 10 log(K /M )
K
SNR, = SNR — 10log (————) 57
M,
as K < M,. Note that this result holds when the small ad-
ditive noise is present in measurements, and the successful
reconstruction of each K nonzero signal coefficients is pos-
sible. This also means that MP-based algorithms presented
in the following section can be used to reduce additive
noise, by intentionally reducing the number of available
signal samplcs, and applying the reconstruction algorithm.
Namely, it the smalicst possible K is used, the residual
additive noisc will be, after the reconstruction, present in
only K coetficients selected by the algorithm. The results
are numerically verified in Section VI.

B.  Nonsparse Signal Reconstruction

Let us obscrve a nonsparse signal with largest ampli-
tudes A,/ =1, 2, K. having M, out of M randomly
positioned samples available. Assume that the signal is re-
constructed as it was K sparse. Let ¢k denotes the vector
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having Hermiie coelficients equal to A, at the positions of
signal components, p = p;, py € P, I =1, ..., K and
zeros at other positions, p # p; whereas ¢g denotes HT
coefficients vector of the reconstructed signal (with zeros
al p # p;), and ¢ denotes the coefficients vector of the ob-
served nonsparse signal, with all samples available. Vector
¢k is therctore obtained by setting to zero all coelficients
in the vector ¢, at positions p % p;

«p). peP

= 0, p ¢ P

Each nonreconstructed component behaves as additive
Gaussian noisce with variance
) MaM =My
U/\/ = e e A/, (58)
MM - 1)
Therclore, all nonreconstructed components in trans-
form domain will mantlest as a noise with varrance

>

I=K+1

Ma(M — My)
TMIM — 1)

Alter the reconstruction, the total noise energy. present
in K reconstrucled components as the consequence ol the
nonreconsiructed components 1s equal to

M?> MM — My)

2
ok — el = K —
hew = ewllz = K4 “hmir )

M
2 Al
KN+l

A 1=K+
KM —My) &
_ K — M) > oAl (59)
Ma(M — 1) [=K+1

The energy of nonreconstructed components is cqual 1o

M
2 i
Z A)';”c"ckliy

I=K-+1

(60)

Therefore, the total error in the nonreconstructed com-
ponents 1s

,K(M ,\)

61
MM~ 1) ©b

z

llex —¢cxlly = le — ¢k i3

In the presence of additive Gaussian noise with vari-

ance orﬁ.2 whose values are below the level of reconstructed
components, the (otal error becomes

KM — My

2
—qlli= e

MM — 1) —cklls

|| K M 2
K M/\ F
The results are numerically verified in Section VI

V. DETECTION OF SIGNAL COMPONENTS AND SIG-
NAL RECONSTRUCTION ALGORITHM

A, Detection of Signal Component in the HT Domain

Duce to its importance, we will consider in detaif the
probability that M — K independent noise comnponents are
smaller than x given by (50). This refation can give the
threshold x = T for the separation ol signal components

and noise. Following (50) for x = T, the threshold value
can be derived as follows:

7 = Vaoyert™! (Pan(T)™7 ) ~ Vo

xert ™ ((Pan(T)¥ ). (63)

Note that K can be neglected in (63), since the number
of components K is in general much lower than the number
of samples M (K <« M). The threshold is calculated for a
given (desired) probability Psn(T), using the noise variance
defined by (48). Furthermore, the function erf(x) can be
approximated by [58], [59]

2
ert(x) ~ sgn(x)\/] —exp (—x2 4/1”+Z_f;_> (64)

with @ ~ 0.147, and x = T/(~/20y). Since T > 0 and
oy > 0,and thus x > 0 we conclude that it always holds
that sgn(x) = . Then, according to (64), we have

(Pa(T)# = /1 — exp (—xz

‘l'aking the square and log(-) on both sides ol (65), we

oblain
4 4 ) 2 7
ax Jr( =~ alog(l —(PNN(T))“)>X
T

+ log (l - (PNN(T)W) =0

| + ax? (65)

4/m + axz)

The previous equation can be solved by introducing the
substitution # = x?. There is only one positive solution (out
of four) which represents the threshold value

T = UN\/<—4/7T —~al + \/(4/7t +al) - 4aL) /a

(66)
which is an approximation of the threshold (63) with L =
log(1 — (Pun(T))Y”)and a ~ 0.147 suilable for hardware
realizations.

B. Threshold-Based Reconstruction Procedures

‘I'he previous analysis can be used to define a simple CS
reconstruction procedure. The threshold 7 is used to deter-
mine the positions P = {py, p», ..., px} of signal compo-
nents in the HT domain. If the estimated set of positions
is such that P < P and card{f’} < M, with K <« M, the
reconstruction can be achieved using the pseudoinversion
(1.

‘The reconstruction is performed using the procedures
presented in Algorithm | and Algorithm 2.

Presented algorithms work in similar way as the OMP.
In fact, the iterative form can be considered as a general-
ization of the OMP, reducing the number of iterations by
setting the proper threshold levels for signal components
detections. Let e =y at the beginning of the algorithm.
Namely, in the OMP algorithm, the first element of the sel
P i< estimated as the position of the maximum in the vector
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Algorithm 1: Single-iteration reconstruction.

Algorithm 2: Iterative reconstruction.

Input:
Signal length M, number of available samples M,
transform matrix W, available samples positions
My = {m, ma, ..., iy, ), measurement veclor y,.,.
Measurement matrix is: Ay = Y(Mp),, where (4),
denotes that only rows My are used from ¥,

Calculations:

l. PNN(T) «— 0.99
. Ly — A;ly“

\/MAM MaM =M

MIM—1)

2
30
4. a «— 0.147
5
6

IW -1 M

2 .
2 p=0 wylenl’ €p € co

5. L« log(l — (Pux(T)YM)y
T -
ony(=4/r —al + \/(4 T +al) —dal)/a
7. P < arg{ley| > T}
8. Ank < ACQ(P);(, only columns with indexes p
are used
9. CKR < (AZ-\\-KAC.\'K)_IA(»r_\-Ky('.\'
The reconstructed coctficient vector ¢y contains
values cgr at positions P, and zeros at other positions.

¢y = Ac_s'e‘ which 15 in tact the HT of the
missing samples assume zero values:

signal whose

pr < max {|cgl} .

This index is added in the empty set P= {p1]. Then,
the partial sensing matrix A} = Au(p ) 1s formed from
the sensing matrix. using only column with index p;. The
first component is oblained by solving the system of mea-
surement equations, using the well-known pscudoinversion

¢ = (ATA|)¥|AT'V\»_\.

Then, the signal y; = A ¢, 15 calculated. If e =y,
holds, then the signal sparsity is 1, and the ¢, is the prob-
lem solution. If this is not the case, then the estimaled
component is removed [orm e, thus, forming the signal
e = ¢ — y. Afterthis step, Ihc second nonzero position 1s
estimated. First, new ¢p = AZ e| i caleulated, and

Pr = max{|eol}

is found. Then, the new set of component positions P =
{P1, P2} is formed. Pseudoinversion

C) = (A;Az)#lAg)’L\

is calculated for the new partial scnsing maltrix Ay =
Acq(f’)k now having two columns corresponding to the de-
tected component positions. Veclor ¢y = ¢ -y, is formed.
If it is a zero vector the solution is found y = y». If not, the
process 1S Mteratively continued, until zero, or acceptable
error is achieved.

Previous principle ol the OMP algorithm 1s also used
in Algorithm | and Algorithm 2. Our theorctical analy-
sis enables us 1o change the criterion for the component
detection. Namely, by detecting the set components, the

Input:
Signal length M, number of available samples M4,
transform matrix W, available samples positions
My = {my, m>. ..., my,}, measurement vector Y
and required precision ¢,
Measurement matrix is: A = W(My),, where (),
denotes that only rows My are used from W.
Calculations:

I.P«9@

2.8 <y

3. a0« 0.147

4. L <= log(l — (Pyn(T)Y™)

While j¢|] > § do

-
Soeg - Age
0. oy <

[ MM =M M-1 M 2.

V sty 2ap=0 2 lcplT cp € Co
7. T «

O'N\/(—4/n' —al +@&/n +al)t — 4al)/a

8. P:) — f}"g{|co| > T}

9P < PUp

10. A<'.\'K <~ Acs(p)k

Il CKR < (AZ\KAc.\'K)ilAZ_\-KyL'.\'

12, ¥p < Ak ke

13, € < Yo — ¥p

end while

The reconstructed coefficient vector ¢z contains
values ckp at positions P, and zeros at other positions.

number of iterations of the OMP can be significantly re-
duced. The number of OMP algorithm iterations equals
the number of detected components. It the component
amplitudes have close values, then Algorithm 1 can be
used 1o reconstruct the signal in a single iteration, as
the threshold T used in the criterion P < arg{|cg| > T}
will result in the set P containing positions ol all compo-
nents. However, i1 this 1s not possible, as some components
may have significantly lower values than the others, then
Algorithm 2 can be used. Namely. 1t enables the detection
ol component positions blocks (all components above the
threshold will be detected simultancously). Therelore, we
may say that the presented reconstruction procedurcs are
greedy algorithms, completely analogous to the OMP, but
with a reduced number of iterations.

VI, EXAMPLES

In order to validate the accuracy of variances derived in
Sccuon [I1, statistical analysis was performed with respect
to the number of available samples, order of Hermite coeffi-
cients and signal length. Probabilitics of detection error and
their respective approximations are verified by experimen-
tal cxamples. The performance of reconstruction algorithm
based on the derived threshold 1s demonstrated in the last
example.
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Fig. 6. MSE of the variance calculation using (37) and (38) for the
Hermite coefticient at the signal position po. lor the different number of
available samples. For given M, MSE 1s calculated for all possible
signal coellicient positions po. Signals of length (a) M = 200 and
(b} M = 400 are considered. For every poesition pg numerical variance
values are caleulated based on 7000 different realizaions with randomly
positioned samples.

ExaMPLE | Consider the case of monocomponent signal
with unit amplitude that is sparse in the HT domain

W, (m).

The signal has M, out of M available samples. The HF
order pg is changed hetween

(67)

s(m)

1y Oand 199 for signal of length M = 200;
2) 0 and 399 for signal of length M = 400.

!

For every given value py, 7000 independent realizations
of the signal are performed, with M, available samples
at random positions different in each realization, and the
experimental value of the variance &7 at the position py is
calculated.

The experimentally obtained variance is compared with
the theorctical variance a_\"' given by (37) and its approxi-
mation (estimated value from available samples averaged
over 7000 realizations) given by (38), based on the mean
squared error (MSE) calculation. The results are shown in
Fig. 6(a) and (b). The comparison is performed for different
numbers of available samples: (a) between 2 and 200 with
step 2, and (b) between 4 and 400 with step 4. Dotted line
represents the MSE between the experimental results and
theorctical model (37), while triangle line represents the
MSE between experimental results and approximate model
(38) with the assumption ol known py. It can be seen that
for both cases, the achieved MSE is ot order 107, which
confirms the accuracy of the derived theoretical vanances.
Note that the error shape corresponds to the shape of the
estimated variances.

EXAMPLE 2 The monocomponent signal of the form (67)
is considered, for three Hermite coefficient positions (a)
po = 1,(b) po = 266, and (¢) po = 390. The signal length
Is M =400. Thc number of available samples Ma is
changed between | and M. For every given My, the vari-
ance of random variable Y,-,, is calculated experimen-
tally basced on 5000 independent realizations of signal. with
random missing samples positions. The variance 532 corre-
sponding to signal position is calculated by (38) lor every
realization ol signal. The results are averaged over 5000

<10 X107
x!~ (2) Signal position p, =1 (b ngg:xl position ,7()-‘«2()6
§ C S e P i '3
;_«'.-. g .1 1
Sai
> a8
2f /
o— - : S 0 :
0 100 200 300 400 0 ~ 100 200 300 400
x 10 10
1 (¢ xmu..—llmmn_rT,,“_,'u)U
. i e O 6
83 : ;
2 \\\
8 g
==
27
it 2

0 L . L 0
Q 1 260 300 400 0

Number of aviilable samples M
A

Fig. 7. Vanance of the Hermite coefficient at signal component position

as & lunction of available samples M4 different signal component
postitions are considered (a)=(c); numerical result is denoted by black
line. theoretical variance (38) is denoted by dots: (d) shows the
numerically obtained variance of the nonsignal Hermite coefficients
P po for pg as in: (a) denoted with dashed line, (b) dotted line, and
(c) thick gray line. as well as the theoretically calculated variance (27) of
nonsignal coclticients (dots).

S

120 140 160 180 200

10 Y it ™ At ST T T (b)‘
ST A k02

Detection error probahility

Numierical result

" A=}

L4 i N RN .. H - J
20 10 60 80 100 120 140 160 180 200
Number of avatlable samples M

Fig. 8. Probability of components misdetection, presented as a function
of the number of availahle samples: (a) exact probability calculated by
(51) (solid hne) and approximation (52): (b) experimental resulls.

realizations, for every given M ,. The results for the vari-
ances ol Y,~,, are presented in Fig. 7, for (a) py = 1, (b)
po = 266, and (¢) py = 390. A significant matching of the-
oretical and experimental results is achieved for all signal
positions py. Moreover. the variance of the nonsignal co-
cthetents 1s also statistically evatuated tor all three mono-
components signals, based on the same signal realizations.
Experimental results along with theoretical variance o},
[given by (27)] are shown in Fig. 7(d), confirming the fact
that the variance o2 is independent of py.

EXAMPLE 3 The derived statistical parameters along with
the error probability (51) and its approximation (52) are
verified experimentally in this example. The signal with
M = 200 samples and K = 5 components is given by

K
s(m) =) Ay (m) (68)

i=
with A, = {1, 0.7. 0.5, 0.3, 02} and p;, = {20, 54, 94,
162, 192} (ori = 1... ., K. Fig. 8(a) shows Lhe probability
ol misdelection lor each component separately, calculated
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using (51). The probability approximation (52) is calculated
as well. The number of available samples M4 is varied be-
tween | and 200. Horizontal dotted Jine denotes the error
probability equal to P = {0 *. It can be concluded that the
exact and approximale probabilitics almost match for the
given probability P = 1072,

Notc that, Fig. 8(a) specifics the number of available
samples needed for successtul detection of observed signal
component with given probability. For cxample, 80 avail-
able samples are sufficient to detect the component with
amplitude A, = 0.1 crror probability close to 0, and the
component with amplitude Ay = 0.7 with error probabil-
ity equal 1o P = 1072, We can also conclude that about
|76 available samples are needed lor detection ol all signai
components with a given probability.

The probabilities are further experimentally evaluated.
For every number ol available samples M4 belween |
and 200, the randomly positioned available signal samples
were selected in 3000 realizations. In every realization, and
for every signal component, the component misdelection
events are counted. The misdetection of the /th signal com-
ponentoccurs if atleastone nonsignal Hermite coefficient at
position p 7% p;. ¢ = 1. ..., 5 hasequal or higher amplitude
than the amplitude of the ith signal component at p = p;.
The number of misdetection events is then divided by the
number of signal realizations. The experiment is repeated
for every M,. Results are shown in Fig. 8(b). Note that
numerically obtained results highly match the theoretical
ones in Fig. 8(a).

ExampLE4  Considered is the signal with missing samples
from Examplc 3. Obscrved are different numbers of avail-
able samples used to caleulate the expected probabilities of
detection crror (see Fig. 8).

The first considered case is

(a) M4 =56 which cnables
nal componcents  with  the
tics of detection eyror: Py —= 0, Py
0.8679, Py - |, and P, -
signal components. This means that the first and
the second component will be detected with proba-
bility higher than 0.99, the third component will be
detected with probability ~ 0.13, while the fourth
and the [ifth component almost certainly will not be

detected. )
Similar discussion holds for

detection  of the  sig-
following probabili-
-0.0086,

I, for five considered

(by M4 = 108 wherc probabilities of detection error for
different components are: Py =0, Py =0, Py —
00109, P4 = |, and P5 = l',

(¢c) My =154
Pl = 0,
0.9944;

with  detection  error  probabilitics
P, =0, Py=0, P4 =0.0073, and Ps =

() M4 = 176. with corresponding detection error proha-
bilities Py =0, P> =0, Py =0. Iy = 0,und F.
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Fig. 9. Ulustration of the automated threshold setting based on the
number of available samples M. (a) M4 — 56. (b)) M4 = 108.
() My =154 (d)y M, = 176

0.0106. In this case, in about 99% of signal real-
izations all signal components will be above the
threshold. The HT coelficients and probabilistic
threshold (66) are shown in Fig. 9(a)—(d) for single
signal realizations with dilferent number of avail-
ahle samples.

ExampLE 5 The cihciency of the introduced threshold is
checked on a real UWB signal transmitted in an indoor
environment, oblained 1n the cxperiment described in [14]
and available online [15]. with bandwidth [.3 GHz. First
M = 165 samples of the signal “ACW7FD45.dat” from the
databasc are considered. The signal has been resampled at
roots ol the Mth order Hermile polynomial using sinc in-
terpolation and adequate scaling tactor [10]. Then, the sce-
nario with only M, = 55(33.33%) randomly positioned
available samples 1s considered (see Fig. 10). Based on ap-
proximation (52), the given number of missing samples is
sufficient for successful detection of all signal components
with error probability lower than 10~2. Reconstruction re-
sults are shown in Fig. 11.

The reconstruction was performed using Algorithm 2.
The complete signal recovery is achieved after only four
iterations of the algorithm as the proposed thresholds en-
abled the dewection of signal coefficients positions blocks
in each iteration. The MSE ol the reconstructed signal
is 2.1451 - 107°7 (=266.66 dB). The compulational time
needed for the reconstruction was tested on a laptop with
Intel(R) Core(TM) i7-6700HQ CPU @2.60 GHz processor
and 8§ GB of RAM. The algorithm is executed on MATLAB
R2015a. The execution time is 0.0156 s.

ExampeLe 6 Signal sparse in HT domain is obscrved, hav-
ing K = 3 componcnts

K

s(m) = Z Ay, (m) + e(m)

i=1
with A) =1, A, = 0.9, and Ay = 0.6. Component posi-
tons p; are sclected randomly, with uniform distribution,
from the sct of possible positions 0 < p; < M — 1. Addi-
tive noise vartance is o2 = 0.1 and the SNR [or all available
samples 1s SNR = 7.67 dB.
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For a random set ol M samples, the SNR, alter the

reconstruction is calculated, based on 500 realizations of

available samples positions, noise £(n), and component
positions p;. The results are summarized in Table I for a
different number of available samples M4, and with high
agreement of the theory and the statistics. SNRg, denotes
the theoretical result using (57), whereas SNRg, denotes
the numerically obtained result.

TABLE [
SNR: In the Input Signal (SNR). Obtained
by Theory (SNRyy) und by statistics
(SNR,,) for Various M4

My 60 120 180 240
SNR 7.82 7.45 7.48 7.27
SNRg, 20,83 2347 2526 2631
SNRps 20,13 2328 2512 2659

M, =128, M=256

Numerical and theoretical error [dB)

—40
-60
-80
5 10 15 20 25
Assumed sparsity K
Fip. 12, Error energy in the reconstruction ol noisy nongparse

signal—-calculated numerically and according to the presented theory.

ExampLt 7 Let us consider a nonsparse signal

M

s(m) ="y A, (m) + £(m)

=1

with amplitudes A, = 1 for / < S and A; = 0.5¢72/5+D
for S+ 1</ <M, and § = 10. HFs indexes p,; are se-
lected randomly, and O < pp <o M — 1. This signal is ap-
proximately § sparse. Only M, = 128 out of M = 256
randomly posilioned samples are available. The signal is
embedded in weak additive, white Gaussian noise with
mean value equal to zero, and standard deviation equal
1o o, = 0.1/N. The reconstruction of missing samples is
performed using the Algorithm 2, assuming various spar-
sities 3 < K = 27. Mean squared reconstruction errors are
calculated based on 100 independent realizations of noisy
signal with randomly positioned missing samples and noise
realizations. Obtained results are compared with the theo-
retical one (62). Normalization to the assumed sparsity is
done for both numerical and theoretical results

2
lek —erll;

|
Eoum = 10log | —
e (¢

and

: (M — M) oM,
E e 22 10000 4! o M2
heory Of(MA([w_ l)H C;(||2+ MAG'

The results are shown in Fig. [2. Red line is the theoret-
ical resull. Blue dots indicate the numerical result, which
is averaged to obtain the blue line. It can be observed thal
theoretical and averaged numerical curves highly match,
confirming the expression for the reconstruction error (62)
as well as the theory regarding the additive noise influence.
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TABLE I
Reconstruction MSE Obtained Using Algorithm 2 (MSE,) and
OMP (MSE;) in the UWB Signal Reconstruction, for Various M A

Ma 30 50 70 90 110 130

MSE, 10,02 3.63 -5.18 ~21.08 -2638.80 -270.09

MSE> 9.05 338 =335 1238l -31.65 ~-270.83
TABLE 11

Average Computational Time of the Reconstruction Based on
Algorithm 2 (CT 1) and OMP (CT 2) With Various M A

My 30 50 70 90 110 130

CT1 0.007 0.008 0003 0.001 00016 0.0017

CT2 0006 0015 0008 0003 00018 00019
TABLE IV

Average Number of lierations in the Reconstruction Kased
on Algorithm 2 (IT 1) and OMP (IT ) with Various M A

Ma 30 50 70 90 110 130

IT1 4849  27.10 9.31 4.70 4.08 3.08
IT2 2983 4091 2277 14.61 215 12.00

EXAMPLE 8 Let us consider the experimental UWB data
from Example 5. This signal is sparse in the HT do-
main, however, having a number of small, nearly zero-
valued coefficients. Different numbers of randomly po-
sitioned available measurements are considered My,
{30, 50, 70, 90, 110, 130}. Signal length is M = 165.
Signal was reconstructed using Algorithm 2 and the OMP,
and the result are compared in Tables [I-IV (the experi-
ment is done at the same computer as in Example 5). The
precision § = 1073 was sct in both algorithms as the stop-
ping criterion. The number of nerations was hmited 1o 50
in case when the required precision was not achievable.
Reconstruction MSE, computation time and the number
of iterations are obtained by averaging results in 500 in-
dependent reconstructions randomly positioned available
measurements realizations. Clearly reduced number of i1-
erations and computation are obtained with Algorithm 2,
when the signal reconstruction with meanmgtul results is
possible (for M4 = 50 1n this example).

VII.  CONCLUSION

The paper analyzes the influence of missing samples
of the compressed sensed signal to the Hermite domain
representation. The effects of compressed sensing are sta-
tistically modeled in the Hermile sparsity domain using
two independent random variables located at the signal and
nonsignal positions. Being able 1 characierize these vari-
ables allows us to develop a method to distinguish between
them, and conscquently, to casily determine the true signal
support in the transform domain. Also. 1t was shown that
depending on the percent of available samples und signal
component amplitudes, we can calculate the probability of
exact signal support detection. Furthermore, very simple
methods Tor signal reconstruction are proposed based on
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the derived theoretical concepts. The crucial segments of
presented theory are verificd using a large number of statis-
tical tests. Also, the cificiency of the proposed algorithms
is proved on the examples.
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Analysis of the Reconstruction of Sparse Signals
in the DCT Domain Applied to Audio Signals

Ljubisa Stankovi¢

Abstract—Sparse signals can be reconstructed from a reduced
set of signal samples using compressive sensing (CS) methods. The
discrete cosine transform (DCT) can provide highly concentrated
representations of audio signals. This property implies the DCT
as a good sparsity domain for the audio signals. In this paper, the
DCT is studied within the context of sparse audio signal processing
using the CS theory and methods. The DCT coefficients of a sparse
signal, calculated with a reduced set of available samples, can be
modeled as random variables. It has been shown that the statisti-
cal properties of these variables arc closcly related to the unique
reconstruction conditions. The main result of this paper is in an
exaet formula for the mean-square reconstruction error in the case
of approximately sparse and nonsparse noisy signals reconstructed
under the sparsity assumption. Based on the presented analysis, a
simple and computationally efficient reconstruction algorithin is
proposed. The presented theoretical concepts and the efficiency of
the reconstruction algorithm are verified numecrically, including
examples with synthetic and recorded audio signals with unavail-
able or corrupted samples. Random disturbances and disturbances
simulating clicks or inpainting in audio signals are considered. Sta-
tistical verification is done on a dataset with experimental signals.
Results are compared with some classical and recent methods used
in similar signal and disturbance scenarios.

Index Terms—Audio signals, digital signal processing,
compressed sensing, discrete cosine transform, sparse signal
processing,

I. INTRODUCTION

PARSE signals are characterized by a small number of

nonzero cocfhicicnts in one of their transformation domains
[1]-122]. These signals can be reconstructed from a reduced
set of measurenients [1]-[15], [21]. Measurements are linear
combinations of the sparsity domain cocfficients. Signal sam-
ples can be considered as measurements in the case of linear
signal transforms. In certain applications reduced sets of mea-
surcments/samples result as a conscquence of their physical
unavailability, whercas in other applications they are a resull
of a particular interest to reduce the number of measurements
while preserving the whole information (data compression) [1],
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[21. The unavailability of signal samples may also arise in the
cases when some samples are intentionally omitted due to a high
noisc or corruption [4]. The last scenario may happen in highly
corrupted audio signals.

In signal processing, the most common transformation do-
main is the Fourier domain [4], [14], with the discrete-time
domain of signal samples as the measurements [1], {2]. Corre-
sponding measurement matrices are the partial Discrete Fourier
transform (DFT) malrix and the partial random Fourier trans-
form matrix [1], [2}. The influence of a reduced set of samples on
the analysis and signal reconstruction/synthesis with the partial
Fourier transform matrices is studied in [4].

The discrete cosine transform (DCT) is one important and
commonly used tool in audio signal processing [14]. The main
reason is that the audio signals can be represented ina more com-
pact form in the DCT domain than in the Fourier domain. This is
the recason why many signal compression algornithms exploit the
DCT [14], [23]-[25]. This particular transform was also used in
speech enhancement applications based on compressive sensing
due 1o its superior compressibility | 7]. Therelore, this transform
can play an important role in the audio signal representation
with a reduced set of samples. The measurement matrices ob-
tained trom the DCT transform matrices are the topic of this
paper. Like in the case ol the DCT itself, many specific proper-
tics of DCT partial measurcment matrices make their analysis
different from the analysis of the Fourier transform based partial
matrices.

The miual idea for this analysis comes from our previous
correspondence on the two-dimensional DFT and radar signals
[15]. Tlowever, the DCT sparsity domain exhibits many prop-
erties different from the two-dimensional DFT, starting [rom
the fact that the €;-norms of the partial DCT matrix columns
are random variables. The (5-norms of the partial DFT matrix
columns are constant.

Commonly, audio signals are subject to localized time-
domuain distortions, including impulsive noises and clicks [26],
[127].128]-14 1], clipping | 26], packet loss during the signal trans-
mission [42]-[50], and CD scratching [26], [27]. Significant
research efforts have been focused on the removal and recon-
struction/synthesis of the audio signals with this kind of dis-
turbances {271, [35], [371-[41], [S1]-[55]. Corruption of audio
signals by clicks in old recordings, scratched CDs, or the typed
kevstrokes [S1], [S6]. assumes corrupted samples or intervals
ol corrupted samples occurring at random locations. Many dif-
ferent approaches have been proposed to recover the corrupted
samples, including the median and low-pass filtering, autore-
gressive modeling [37], [38], and the Bayesian estimation [41].
Receently, the emerging arca ot CS provided new approaches
for restoration of corrupted samples [7], [8], [26], [52]. Spec-
trogram as a domain of sparsity, in conjunction with solving a

2329-9290 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See hup://www.icee org/publications _standards/publications/rights/index.him! Tor more information.
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regularized ¢) -norm least squares problem, has been considered
in [52] for treating a specch recognition problem. [t has been
shown that the problem of corrupted/unavatlable samples can be
clAciently solved using the matching pursuit (MP) approaches
[8], [26] with the DCT acting as a domain of the audio signal
sparsily. Audio inpainting concepl, introduced 1 [ 26]. assumes
the reconstruction of audio signal portions distorted by distur-
bances such as impulsive noise, clicks, or audio clipping, using
the orthogonal MP algorithms. A variant of the reconstruction
algonthms from this class, particularly adapted to the time-
domain noisc (Tdn-CoSaMP), has been recently introduced in
[8] for speech enhancement. Therein, a random saimpling matrix
is included in the sensing scheme. Substantial efforts have been
made to derive the rcconstruction error upper bounds for this
CS reconstruction algorithm.

In the CS theory, only upper bounds of the mean square re-
construction error are derived |3]. The upper bounds introduced
in [8] are similar to these bounds in the general CS theory. The
main contribution of this paper is in the exact relation for the
mean squared error (MSE) in audio signals reconstructed from
a reduced set of signal samples when the DCT 15 used as the
sparsily domain.

The exact reconstruction error relation 18 the final result
of a comprchensive analysis of the influence of unavail-
able/corrupted samples to the DCT, presented in the paper. This
analysis shed a new light on some other important relations
in the CS theory. A simple derivation of the coherence-bused
condition lor unique reconstruction is presented and explained
for the partial DCT measurement matrices. The presented re-
construction error analysis has also resulied in a simple and
compulationally efficient method for sparse signal reconstruc-
tion, with a data-driven threshold. This algorithm belongs to
the class of MP algorithms. The results for additive noise in-
Nuence are derived and related (o the results oblained by using
the Bayesian-based approach o the reconstruction of noisy sig-
nals sparse in the DCT domain [12]. The analysis of additive
noise influence is combined with the derived itial CS noise
properties, to get the main result that consists in the exact ex-
pression {or the MSE in the reconstructed signal. The presented
theory 1s illustrated and verified numerically on various audio
signals.

The paper is organized as follows. In Section II the basic
DCT definitions are given. Starting from the reduced set
of obscrvations framework and the partial DCT matrix, in
Section I we present the theorem deseribing statistical prop-
erties of the DCT coefficicnis of randomly under-sampled data,
the reconstruction based on missing samples analysis as well
as the coherence reconstruction relation. In Section [V additive
noise influcnce on the reconstruction resutt is analyzed, whercas
the nonsparse signal reconstruction scenario is analyzed in
Section V. The application of the presented theory to audio
signals is illustrated 1n Scction V1. Validation of the theory in
the audio signal processing context is done in Section VIIL

II. BASIC DEFINITIONS

The DCT (DCT-11) ol a discrete-time signal x(n) is defined
by

N =1

X (k) = E% a; z(n) cos (”(zé’j\'ii) L) 8

with £ = 0,..., N — 1, while the corresponding inverse trans-
form has the form

N -]

~ « m 2 2 1
x(n) = ,Z(’, a,A.XC (k) cos (<;—[\T)-k> ; (2)

n==0..N~-1 where a — /1/N for k=0 and a,
/2/N fork # 0. The DCT transform can be written in a matrix

form
X = (Cw)x, 3)

where X (Cy), and x are the DCT coefficients vector, DCT
transtormation matrix and the signal vector, respectively. For the
inverse DCT the relation x = (Cn ) 7' X holds. Note that for
this DCT matrix relation (Cn) ' = (Cuy)? holds [57]. Since
we will use the DCT-IT form in this paper, index II will be
omitted.

A signal of the form:

a w(2n + 1)

z{n) = ap, Ay cos | ——Lk “

(n) ; 1A < TN /) )

is sparse in the DCT domain if the number of components
(nonzero DCT coelficients) KK is much smaller than the number
of signal samples N, K <« N. Component amplitudes are de-
noted by Ay, [ = 1,2...., K. Positions ky, ks, ... ki will be
referred (o as signal coefficient positions while the remaining
positions will be referred to as nonsignal coefficient positions.

The DCT of signal (4) reads:

Nt N
3 e 2n 4- 1 2n + 1
L ZTA/,HA-(J;,/ oS (ﬁ(%_)kl>(-os <%k>

=01
(5)
where k=0,..,N — L Signal components of the form
Ay cos (wki(2n -+ 1)/(2N)) are multiptied with DCT basis
functions, producing in (5) the terms of the form:

X (k)

m(2n + 1)

- /q) cos <Mk> .
2N 2N
(6)
If all signal samples are avatlable, then the corresponding DCT

equals X' (k) = ﬁ,_[;l Aro(h — k).

z{ky, k,n) = Ajagay, cos <

11I. REDUCED SET OF OBSERVATIONS

Assume that only M < N randomly positioned signal
samples at m; € M= {n,na,..,np} TN ={0,1,.. N —
1} are available,

y = {e(ny),a(ng), . a(nag )} Cx
with

= (21 + 1)
rin) = Z a, XC (k) cos (—f'—k) yi=1,
k- 2N

o M
A matrix form of the available samples is
¢
v - Aun X,

with Ay, n representing an M x N matrix of observations
(measurcments matrix). [tis defined as the partial inverse DCT



matrix, with rows being equal to the rows of (C', '), correspond-
ing to the available samples positions 7,

g 7 (2 + N 1
lzé COS(W(Z;IIIVIL ) ) (‘OS(lk ny ‘)l\_)(./ l))

f 21, + a(2ng+ 11N
Q cos (——”( "“~”) : co.s(——“——()”‘ ],'\:(\ ”)

2N

Ayn=

< J<
“j

| 2 ('O“< TN >
In compressive sensing, it 1s common to normalize the column
mean value energies (diagonal elements of matrix A[u vAuN).

In this case, the factor /M /2 would be used instead of /N/2.
The initial (norm-two based) DCT estimation uses the avail-

able samples only

m(2n 4 1

Z ag (1) cos (— /); ‘zk)
e M

MK

ZZa(khk:,m), h

=1 {=1

X (k)

Il

where kK =0,1,..., N — 1. It produces the same resull as if the
missing (unavailable) samples assume zero values [4]. In a ma-
trex form we can write

X(()‘ = A7\rl z\‘.y'
Note that the terms z(k;, k. n;) belong to the set
O = {z(ky, k,m), 2(k, kymo), o 2{he ko))

that is a subset of complete set of samples

2n + 1) (Zn+1
{A/(l}‘-a;,.l COs (iél\f—‘) lﬁ/) [N (77‘ ;\—J}w) \

nok=0 .. N~-11=1, ...,[(}.

Consequently, the set o missing samples Q can be considered
as a subset of the complete set of samples, Q = N\M. Original
signal samples at the positions defined by Q are affected by a
noise (4]

—z{ky kon), neQ
ky k) ‘ _
UCRAY { 0, neM, ®)
fork=0,...N—~11-1,.. K. The DCT coefficients
ALK
XS k) =Y > ki, k)
i=1 1=
N-1 N

i

YD e kon) 4tk kion)] (9)

with randomly positioned available samples and 1« M« N
may be considered as random variables. Here we will analyze
the statistical properties of coefficients X 74).

Theorem [: Assume a sparse signal with K nonzero coclhi-
cients in the DCT domain at random positions &y with ampli-
tudes A;, 1 = 1,2, ..., K. Assume that out of the (otal number of
N samples only Af samples, 1 < M < N, are available. The
DCT coctficients X§ (k) calculated using the available sam-
ples arc random. approxnnately Gaussian distributed vartables.

o w200 LN =1)
COg | —— BAT J
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Therr mean-value and variance are

K
A .
Ixgw) = ZAIO(/“ — ki) (1
[
and
, M(N — My 1
TR (k) 1\75(,\,—‘1—)‘;& {1 = 500k~ (N = ki)

- %[1 +0(ki)]o(k — k!)} , an

respectively, where ag arce the DCT constants.

The prool is given in Appendix. The theorem result will be
numerically checked next.,

Example I: A sparse monocomponent randomly undersam-
pled signal of form (4) is considered, with K = 1, k; = 12, and
N =129, The number of randomly positioned available sam-
ples M is varicd [rom O to NV — 1. For cach number ol available
samples M, the variance of the DCT coefficient X§ (k) at
the signal component position is calculated and averaged in
30000 independent realizations with randomly positioned miss-
ing samples. The resultis compared with the theoretical variance
(1 1). The results are shown in Fig. 1(a).

The same experiment is performed for the DCT coelfi-
cients corresponding (o the nonsignal positions k£ # &, (and
for k # N — k). Since we now have N — 2 = [27 non-signal
{notse) coeflicients in one realization, we reduce the set of ran-
dom realizations (o 200 (with the total number of observed
nonsignal coeflicients in all realizations being 25400). The av-
erage vanance 1s compared with the theoretical result (11 ) in
Fig. 1(b). To emphasizc the difference between variances at the
signal coefticient and the nonsignal coefficients positions, the
variances ol all DCT coetficients of the signal (for M = 64
available samples) are calculated based on 10000 independent
realizations and shown in Fig. 1(c). Finally, the signal com-
ponent position k), is varied from 0 to N — 1 with M = 50
available samples. Based on 10000 independent realizations of
randomly positioned missing samples, the variance of X§ (k)
is calculated and compared with the theoretical result (11). As
expeeled. a position independent variance value is obtained, ex-
cept for & = 0 when the variance is zero (as expected). The
resulis are shown in Fig. 1(d).

Example 2: A multicomponent signal of form (4), with
K =5, is considered here. The complete signal length
is N = 155. Signal components are posittoned at k; =
{22.49,47,89, 100}, with corresponding amplitudes A, =
{5,3.5, 15,25, 1}. In order to check the distribution of ran-
dom variables X (k), 60000 independent realizations of signal
with randomly positioned M = 90 samples are considercd. The
histograms of the signal component coefficient X (22) and the
nonsignal cocflicient X§ (130) arc shown in Fig. 2. Histograms
are sciled with the number of realizations. The histogram of
coctficient C{22) is compared with the Gaussian distribution
(in dots) having the mean value fiyc (99 = A M/N = 2.90
and the variance 0:)\‘;'\-12: 0.0542, calculated according to
{(}1). The result is presented in Fig. 2 (right). Similarly, the
nonsignal coctficient X (130) histogram is compared with the
zero-mean Gaussian distribution, whose variance is equal to

. = 0.0739. according to (11). The result is shown in

e
Fig. 2 (efu).

XS )
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Numerical check of the derived variance: (a) the variance of the DCT coefficient at the signal position & = &, as a function of the number of available

samples, (b) the average variance of the DCT coefficients at noise only positions k& 5 A} shown as a function of the number of available samples, (¢) the variance of

all DCT coefficients of a sparse mono-component signal with k)
as a function of & . calculated for signals with A/ = 50 available samples.

Distribution of noise—only and signal DCT coefficients
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Fig. 2. Scaled histograms of DCT coefticients and the corresponding pdfs: at
the non-signal position {left) and at the signal position (right). Dots denote the
theoretical result.

A The Reconstruction Bused on the Missing Sample Analvsis

The variance of noisc only components, using the result of

Theorem (11) can be expressed as:

NZ(N

\QA
B

M(N ~ M) & ol _ L ]
1y &0 |

where & # A;. The coetficients at positions b = N - &, | =
L,.... I have the variance reduced for A7 /2 when compared to
the other coefficients at nonsignal positions. We rnay assume that

12 and with Af

64 available samples, (d) the variance of the DCT coetficient X&' (k = k)

the variance for noisc-only coefficients is position independent
and equal w0:

. M(N — M) .
2 _ - 7_2 2
(f(._\\/ /V‘l([\l ) l) /:lA[,

(12)
Tt is overestimated at positions k = N — k;. The variance (12)
depends on the (otal signal power, that can be easily estimated
using the available samples, as

S oAl =E, »/\Y/ > sn).

Je) T oueM

If we set a threshold, for example at 4o, then (according
to the four-sigma rule) we know that less than | noise-only
(nonsignal) cocflicient in 15,000 coctficicnts will be above this
level. Coelficients above the threshold may be considered as
signal components and reconstructed after their positions are
detccted. It a noise component is included, then it will produce
a zero coetficient value in the final result. In the case when small
signal coefficients exist, within the level of the noise produced by
missing samples, the reconstruction procedure can be repeated
after the strongest components are detected, reconstructed and
subtracted from the available samples values.

Example 3: A three-component signal with V = 256 is ob-
served. Component positions and amplitudes are k, = 14,
Fo = 162, ks =203 and A, = 1. Ay = 1/V2, Ay =1/2, re-
spectively. Only A7 = 128 of its randomly positioned samples
are available. In order to reconstruct the signal, we calculate
the initial estimation X'§ (k). Then we define a threshold based
on the variance due to the missing samples, whose value is
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Initial DCT of the signal

L R

250

0 50 100 150 200
lrequency &

Fig. 3. The DCT of a three-compounent sparse signal. with the four-sigima
threshold ¢horizontal line): crosses - DCT coclficients of the full-length signal.
dots - DCT coefficients of the signal with missing samples

I?i:"'l'(]- + 1/2 + 1/4) = 0.0017. A threshold a

4 % v/0.0017 = 0.1657 15 used. Fig. 3. The weakest component
mean value 1/41s well above this threshold.

This kind of analysis can be gencralized to a /' component
signal. In the worst case, we should be able to deteet at feast the
strongest component (the detection of other components would
follow alter the reconstruction and subtraction of this strongest
component). The worst case for the strongest component de-
tection would be the case when other components are equally
strong, A = A, = = Ap L. In the worst case of a
K -sparse signal with equal components, the four-sigma thresh-

old would be

i g SRS V-)K
VNN

We may conclude that the mean value of a signal-only coeflicient
is above the threshold (with a probability defined by the four-

sigmarule)if ¥ >4 V/%‘\‘—" ; 'C;\-.;\Il K holds. It produces the upper
bound for sparsity K

M{N —1)

16(N — M) (1)
For N =256and M = 128 weget K < [5940r v = [5. Ifwe

allowed the three-sigma rule, then A < 28 would be obtained.
Note that few noise components, that are wrongly detected as
the signal components, will not influence the reconstruction as
far as the reconstruction conditions are met. The algorithm will
produce zero values as the result for such coefficients.

After the component positions are detected, the measurement
equation becomes

y = Ay XS,

where X is the vector of £ unknown cocfficients at the
detected positions. The measurement matrix 1y reduced 1o a
M x K malrix by omitting columns corresponding o the zero-
valued coefficients. Since K < M, the equation can be solved
in the mean-square sense. The result is a vector with A elements

c T SIAT
X/\' = (A,/U N A/'l//(') A.‘\’/ Ny { l4)
If" the obtained coefficients are such that e = y - Ay X§

15 zero (or within the acceptable bounds), then we have found
the solution. If the cerror is not small, then some of non-zero

coefficients have not been detected and included into X,C\, .The
calculavion should be repeated with e now acting as a signal. The
candidates for nonzero coefficient positions should be detected
baused on the initial DCT of this new signal and added o the
previous set K of nonzero coefficient positions. Calculation of
X' should be repeated with this new (updated) set of positions,
until an acceptable (zero) error level is achieved.

Next, the exact analysts of the signal-only and noise-only
(non-signal) cocticicnts will be presented, in order to better
position the threshold for the signal components detection.

Let us observe a K-sparse signal of the form (4). The noise-
only DCT coefficient is a random variable described by approx-
imative Gaussian distribution, M'(0, o2, ) with zero mean and
variunce o’ defined by (12). The {-th signal DCT coefficient
is also a random variable described by approximative Gaus-
sian distribution N('_%’ A;,a'f\,é- (4':))’ l=1,2,..., K, with mean
value fiy ey, = L\L/'l, and variance a'/-’,f-lk/) defined by (11).
The absolute DCT coetficient values at the position of the [-th
signal component have the folded normal distribution

M 2

1 (§ — 5 A
CXp TJ =
0/\'1[.' (k1)

plE) -
oxe (k)Ven

2 2
€+ 3 A

20:\. ¢

(15)

-+ exp
ki)

The probability density function tor the absolute values of
noise-only DCT coelficients is the hall normal distribution

2 2
1 (5

TN T U(.\N

The DCT coefficient at a noise-only position takes a value lower
than =, with probability

= 2 % =z
——expl———df =erf{ ——— }.
Jo <7.\’ﬁe\p< 2”,{_\) e <\/§UUN>
(16

The total number of noisc-only cocfficients is N — K. The
probability that N — K independent DCT noise-only coeffi-
cients are lower than = is Q(Z)" . Probability that at least
onc of N — I\ DCT noisc-only coelficients is greater than =
isG(Z) =1 Q(Z) . When a noise-alone DCT value sur-
passes the DCT coeffictent a1 a signal position, then an error
in the signal component detection oceurs. To calculate this er-
ror probability, consider the absolute DCT value of a signal
component at and around €. The DCT coefficient at the signal
position has a value within £ and £ + d€ with the probability
p(&)d€ , where p(€) is defined by (15). The probability that at
least onc of N — I DCT noise-alone cocfficients is above £ is
G(E) = 1 — Q&)Y . Consequently, the probability that the
absolute value of a DCT signal-only coefficient is within £ and
£ + dE and that at least one of the absolute DCT noise-alone
values outside the DCT signal value exceeds the DCT signal
value 1s (HE)p(€)dE. Considering all possible values of &, it
follows that the probability of the wrong detection of the I-th

(e 6

0

S
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signal component is

1 > . £ NN
Fr = / I — ert ( - )
. a \( (k) \/‘7’ V2a, A
) 2
€ - KA

X [exp s~ | +exp —:‘ q - | d€.
Z(TYW ) 205 ¢ (k)

A simple approximation of this expression can be obtained fol-
lowing the steps for the DFT analysis prescnted in {41,

"

B. Coherence Reconstruction Relation

For the worst case analysis, assume the maximal possible
influence from other signal componcnlc to the strongest signal
component detection. The maximal influence of signal coinpo-
nents to each other occurs when all ' components are with
cqual (unity) amplitudes.

For M available samples, the mean value of a component
(DCT coefficient at a signal position) is M /N . The noise com-
ponent at the frequency index K, that originates from the com-

ponent at k;, is equal to
(7(2n+ l)}_
. Qp, COS e o — K

X COS (Ml\> ‘ (17)

REM Ak
2N

It can be related to the coherence factor of A%, Ay v, defined

by

QU ky) -

N — al2n 4 1)
% ey i .
pr=max o 2 agaj, Cos ( T )

neM k#
(21 +
m-os<-r-(--;",\/ ”-A») ) (18)

If the noise onginating from all signal components is such
that it adds up in phase at the nonsignal coefficient positioned
at k, assuming maximal possible value for s, then the maximal
nonsignal cocflicicnt value is

. . ., M
Komax |Q(k, k) /\//N

Al the same time, if at a signal coefficient position all noise
factors that originate from other K — 1 components add up in
phase in the negative direction from the component mean value,
assuming again their maximal possible absolute values j¢, then
the resulting worsl signal component amplitude will be

. M
min{ X (k1)) e (K = ymax QA k)|

The detection of the signal component 18 still possible if

min{ X§ (k)} (k, k). or
It M M
N/ (K—l)—/l> K.

N
The condition | — (K = 1)y =

K is equivalent o the well
known spark-based condition for the signal reconstruction [58]

From the derivation we can see that this is an extremely pes-
simistic reconstruction condition.

If we are in position to make a sampling positions strat-
egy, then it should be done in such a way to minimize the
value of yo. The mimimal value is defined by the Welch bound

w> V"‘_—{f\;f\: /Ii [59}. Equality holds for a quite specific form of

transforms and measurement matrices (equiangular tight frames
- ETF). The DCT does not satisly the properties ol the ETF. Even
if it were an ETF, then for N . 256 and M = 128 condition
w = /(256 — 128)/128/255 = 0.0626 holds, according to the
Welch bound. The minimal possible value of ;o guarantces the
recovery lor /(' < 8.5. However, as stated before, this is ex-
uemely pessimistic for real cases. With N = 256and M = 128
we conclude from our numerical analysis that we are able (o
reconstruct signals with much higher sparsity values. For exam-
ple, in the worst case of the signal amplitudes and a pessimistic
three-sigma rule, we concluded that a full reconstruction with
K up to 28 is possible.

[V. ADDITIVE NOISE INFLUENCE

Sincc the signal components have a mean value BXC ) =
A \—’ in the reconstruction process they are amplified for N/AM
in order (o produce the correct signal amplitude A;. Therefore,
il there is a sinall additive noise with variance o2 in the signal,
its variance will be amplified for (N/M)? in an initial DCT
coefficient estimate

Je(m) cos (

%, & aLL{ i)
X COS (W(Zm * 1)/c>} = M02

2
U\,.zv- ) oN

neEN
2N
Thus, the variance in one estimated coefficient 1s

2 N

Txg iy T MU’ (19
The reconstructed noise energy in A components, will he
/\/ N K .
Eoy ol K —g*N
= (1\[) Mo
The signal 1o noise ratio 1s
Fk F,
SNR = 10log =10lo -
° < E.p > & ,((, a*N
. K
= 10log 1‘7—1:/" = SNR; — 10log (M) ,

M

where SN R, = 10log(E. [ E.)
in all signal samples.

This result, obtained through a quite simple derivation, will be
compared with the one that can be obtained using the Bayesian
compressive sensing approach [12]. The covariance matrix in
the estimated coefficients, according to the Bayesian recon-
struction approach, is & = (A%, Ay n /o2 + D) where D
is a diagonal matrix of hypcerparameters. After the positions
of nonzero coetficients are found, using an iterative procedure
in the Bayesian approach, coefficients with large hyperparam-
cters are excluded along with the corresponding elements of
matria D and columns of Ay v TFor our measurcment matrix

is the input signal to noise ratio
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the vartance in the estimated coetficients is equal (o the diago-
nal elements of AT\,, ~Aarw, since the hyperparameters for the
nonzero coefficients are zero. Mean value of the diagonal ele-
ments of A?{, v Ay is M/N It does not change by omitting
columns of the measurement matrix. Therefore, the diagonal
elements ol the covartance matrix in the final tieration ol the
Bayesian based reconstruction are o® N/ . producing (19).

The presented result for the additive noise influcnce will he
used (and numerically checked) in the analysis ol nonsparse
signal reconstruction.

V. NONSPARSE SIGNAL RECONSTRUCTION

Theorem 2: Assume a nonsparse signal with largest ampli-
tudes Ay, [ -
N samples only A/ samples, | << M < N are available. As-
sume that the signal is reconstructed under the assumption as
it were /K-sparse. The energy of error in the A" reconstructed
coellicients HX% — Xlﬂ j 1s refated to the encrgy of nonrecon-

structed components || X — X(Hi as

.

 K(N - M) X

X ¢
AN - 1) : (20)

v

.!ng.' - X’(I' !

Yoo

t

where Xj\'- isa A x 1 vector with the reconstructed coctticients,
X{,‘ is a K x| vector with the true coctficient values at the re-
constructed coefficient positions, X isa N x | vector with all
truc cocfficicnts, and XS: isa N x | vector with K truc cocifi-
cienls at the reconstructed positions and zeros al the remaining
N — K positions.

Proof: A nonreconstructed component in the signal behaves
as a Gaussian input noise with varance

5 , MIN M)
Ty =— /‘, T —l
' N2(N 1)

\

(2t

3

All nonrcconstructed componcents will behave as a noise with
variance

N

, e, M(N - AD

7 2 A @
Nyl

After the reconstruction. the total noise energy from the non-
reconstructed components {in A reconstructed components)
will be

. - N
G _xCI? — e N o KN =M
Xk ~ Xzl = Ben = X T T (N 1) ,,%J .

The noise of nonreconstructed components can easily be related
to the energy of the nonreconstructed components

> A

=K +1
It means that the total error in the reconstructed components is
K(N - M)

= ———[|X{ - X}

Iwe _ x¢€
1R~ B¢ AM(N = 1) '

SRS

This completes the proof.
The previous result can easily be generalized to the noisy sig-
nal case. 11" the input signal contains an input noise whose values

1.2,..., K. Assume that out of tolal number of
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Fig. 4. FError energy in the reconstruction ol noisy non-sparse signal-

cajentated numerically and according 10 the presented theory. Error is shown
for various assumed sparsity

are bellow the level of the reconstructed component values in
the transformation domain, then

. 2 K(N = M) x g2 K
1% ¢ ¢ _ (% ¢ 2
||XI\' X/- !2 = T/—(/\/ -ﬁ Ry P X :!2 -+ MO"/\’.
(23)
Example 4: Consider a non-sparse signal:
~ m(2n+1)
;}'(;),) Zﬂ;,._ /\) COs <—_2/V kl> 3 :(n)s
=1

with A; = Lforl < Sand A = 0.5¢ 2/ for§ 41 <1 <
N, all at random DCT indexes 0 < by < N. Only M = 192 out
of N = 2306 signal samples are available at random positions.
Corresponding DCT normalization constants are denoted by
ay,. This signal ts approximately S-sparse, with .S = 10. It is
cmbedded in additive, white, zero-mean Gaussian noise with
standard deviation o, = 0.11//V. Signal was reconstructed us-
ing the presented procedure,! with various assumed sparsity
3 < K < 32. Based on 200 realizations of the signal with ran-
dom DCT indexes, positions of available samples and random
noise realizations, the MSE is calculated and compared with
the theoretical result. The error (23) is calculated assuming
the normalization to the assumed sparsity. The errors are cal-
culated as follows Eyumerical = 101log (% 1X6 = X$[13) and
S XS, - X + 02N

A LI

The results are presented in Fig. 4. The linc represents the
theoretical MSE, whereas dots represent the numerical data,
whose averaging produces the values indicated by black circles,
highly matching the theoretical result.

Etheory = \K)l()g(

V1. APPLICATION TO AUDIO SIGNALS

The DCT is well known for its applicability in the processing
ol various signal types: radar, biomedical (ECG, EEG etc.), au-
dio signals, and digital images [ 14], [23]-[25]. For the context of
this paper, especially interesting are the DCT-based algorithms
developed for the compression of ECG signals and digital im-
ages [14], and for audio signal processing (compression, speech
enhancement, denoising, inpainting) [7], [24]-[26], [60], indi-
cating the potential tor audio signal representation in the DCT

'Code is available at htp://www.tfsa.ac. me/Open_source_codes himi
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ransformation domain with a reduced number ol nonzero co-
efficients. This fact indicates the applicability of sparse signal
reconstruction algorithms when the signal samples are missing
due o compressive sensing or unavailahility. as already con-
firmed in several recent works [7], {26].

Audio signals are nonstationary with changing spectral con-
tentin time. In general they are not sparse [24]. The sparsity can
be improved considering localized segments of audio signals
{71, 1241, [25]. These kind ol signals can be then considered as
approximately sparse. In order (o0 improve the sparsity of audio
signals, a windowced form of the DCT 1s used, as in the case
of MDCT [61]. This form is widely employed in compression
procedures involved in modern audio formats [23]. Long dura-
tion audio signals 2 (n) are analyzed with the DCT applied on
consecutive blocks of windowed signals

2, (n) = win)x(n +1N/2),

where w(n) is a windowing function within 0 < 1 < N — |,

The subscquent blocks arc overlapped such that the second hall

ol one block coincides with the first half of the next block.
[t is important 1o note that such a block-based approach in
the analysis and processing of audio signals is also impor-
tan! for the presented sparse signal reconstruction algorithms
(since it reduces the dimensionality of the partial DCT matrices
pseudo-inversion). Note that the block approach is used wi the
DCT based image analysis as well. If the windowing function
form satisfies the condition w{n) + w(n + N/2) = 1 withinthe
overlapping interval, N/2 < 5 < N — |, then the reconstruc-
tion of the whole signal is quite simple from the reconstructed
windowed signal segments z, (1) as

E T.(n —wNJ2).

2

z(n)

Many windowing function forms satisfy this condition [14].
The most commonly used windowing function among them

1s the Hann windowing function win) = 0.3(1 (:u.«\”-’\'—:('n, .
Myay

) sinz(_%n). In our example the windowing function is
used on the analysis side only.

Next, we will assume that a reducced set of distrurbance-
free signal samples is available, within a block, al positions
n € M~ {n;.ny,...,ny }. Various circumstances may cause
the unavailability of audio signal samples. One illustrative ex-
ample includes clicks and pops present in the old recordings
[24]-[27], [41] highly corrupting certain percent of samples at
n ¢ Q. The set Q can be considered as a ime-domauin support
function of the localized disturbance. Alter impulsive distur-
bances removal, these randomly positioned samples at n © Q
can are considered as unavailable. They are reconstrucied us-
ing the presented CS-based method. This tssue is illustrated
in Examples 5 and 6. Within compressive sensing {ramework,
a reduced set of randomly positioned samples can be miually
acquired. This kind of signal is illustrated in Example 7. Never-
theless, both cases, with highly corrupted and omitted randomly
positioned signal samples at n € Q or with randomly scnsed
signal samples at n € M, can be processed in the same way in
the reeonstruction based on compressive sensing approaches.

Exanple 5: Embedded MATLAB test signa ‘mtlb.mat” 1s
considered, being a low-quality audio recording of a female
voice saying the word “matlab™. with sampling [requency
7418 Hz. Its form is shown in Fig. 5(a). Signal is corrupted
with impulsive noise in 15% of randomly positioned samples,
Fig. 5(b). Positions of the noise impulses can be casily detected

L
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Fig. 5. Reconstruction of audio signal ‘'mtlb.mat” after impulsive noise re-
moval: (a) onginal signal, (b) signal corrupted with impulsive disturbances.
(¢ tolal error energy after the reconstruction with various assumed sparsity.
(d) reconstructed signal.

using a limiter (a method for detection of the more complex im-
pulsive noise having amplitudes within the signal values range
can be found in [62]). The signal samples at the positions of
strong noise are considered as unavailable, and the reconstruc-
tion of signal is performed using the rest of samples on blocks,
with a Hann windowing function of the length N - 500, with
overlapping on the half of windowing function length. Recon-
struction is preformed using the presented algorithm with var-
ious assumed sparsities /. The estimated error in the signal
15 calculated along with the one presented in Theorem 2. The
estimated error is presented by “*” and the one expected by the-
ory is presented by a solid line in Fig. 5(c). The agreement is
high. T'he reconstructed signal scgments are added up and the
final reconstructed signal is presented in Fig 5(d) for the case of
assumed sparsity A = 150. RMSE between signals presented
in Fig. S(a) and (d) is 0.0738.

Example 6: A recorded  signal  representing word
“Hallelujah' is considered in this example. Signal is recorded
on a MacBook computer using MATLAB with sampling
frequency 11025 Hz. Again we assumed thal 20% of arbitrary
stgnal samples are corrupted by a high impulsive noise. These
samples are omitted and the signal is reconstructed using the
remaining samples only. The result of the reconstruction pro-
ccedure as in the previous example is presented in Fig 6, where
a zoomed signal is also shown for visual clarity of the results.
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Fig. 6. Recconstruction of a recorded audio signal after impulsive noise re-

moval: (a) original signal, (b) signal corrupted with impulsive disturbances,
{c) zoomed 1000 samples of the corrupted signal, (d) reconstructed signal.
(e) 1otal error energy after the reconstruction with various assumed sparsities.,

Example 7: MATLAB signal “train.mat’ is considered in this
example, shown in Fig. 7(a). It is an audio recording of a train
whistle, sampled at 8192 Hz. Tt has been assumed that the
signal is sensed in a compressive way and only 50% of ran-
domly positioned samples are available [as presented in zoomed
images in Fig. 7(b) and (c)]. The signal is reconstruct assuming
various sparsitics and the Lotal reconstruction error, is presented
in Fig. 7(e). The reconstrucied signal with /&' — 50 15 shown in

Fig. T(d).

VII. EXPERIMENTAL EVALUATION ON AUDIO SIGNALS

Three datasets from [26] are used in the experimental evalua-
tion of the presented theory. Each dalaset consists of 10 signals
of length 5 s from the 2008 Signal Separation Evaluation Cam-
paign [63], [64]. The datasets from this databasc are:

26,NO.7,JULY 2018
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Fig. 7. Reconstruction ol compressive sensed audio signal having 50% ol
randomly positioned available samples: (a) original signal, (b) zoomed part of
the signal, (¢) zoomed part of the signal with crosses at the missing sample
positions, (d) reconstructed signal. (¢) total error energy after the reconstruction
with various assumed sparsitics.

e Music @ 16 kHz: a set of 10 music signals sampled at
16 kHz,

* Speech @ 16 kHz: consisted of 10 male and female speech

signals sampled at 16 kHz,

® Speech @ 8 kHz: consisted of speech signals sampled at

8 kHz, representing a phone quality speech. These signals
are obtained by downsampling the signals from the second
datasel.

The signals are carefully chosen in order to include a large
diversity of audio mixtures and sources. They include both male
and temale speech from dillerent speakers, singing voice, and
pitched and percussive musical instruments [26].

Disturbances are simulated with two possible scenarios. In the
first case, ithas been assumed that the audio signals are corrupted
at random positions. In the second case, the corrupted samples
are grouped into random blocks 10 simulate click/inpainting
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scenario [41]. In both scenarios the signals are reconstructed
and the accuracy of the presented MSE relation is statistically
tested.

The presented algorithm is compared with other audio restora-
tion techniques: median and low-pass filtering, then with two
widely used model-based audio restoration methods ., and with an
£} -norm optimization based reconstruction from the CS [rame-
work. The median filters ol length 3 and length S and low-pass
filters of Butterworth type with two cut-off frequences, set in
accordance with signals spectrum, are considered. The model-
based audio restoration methods are representative examples
of the autoregressive (AR) model-based interpolation [27].[36].
[66]. Herein we have considered the least-squares AR inter-
polator (LSAR), originally introduced for the concealment of
uncorrectable errors in the CD systems [27].[36], along with the
implementation provided in the Audio Inpainung Toolbox [26].
The AR model order is set (o 30, and the interpolation is per-
formed in blocks of 500 samples, as in the proposed approach.
The second considered algorithm 1s from the class of AR + ba-
sis function representation [27], [66]. In our comparative anal-
ysis we have used the implementation with sinusoids as basts
functions (LSAR+SIN), [66], which has been recently tested
in [37], [39]. This algorithm is used with the default settings.
The AR madel is of order £ = 31, the number of basts fune-
tions 1s @ = 31, and the block size of 1024 samples 1s used, in
accordance with the expertmental results presented in [37] and
[66]. Inall algorithms the reconstruction performance highly de-
pends on the accuracy ol the detection ol the disturbed sample
positions. In order to provide a fair comparison, we have turned
off the impulsive disturbances detection in atl algorithms, as-
suming that the disturbed sample positions arc correctly de-
tected. In this way, we have been able to test and compare the
reconstruction capabtlitics of these algorithms.

The LASSO-ISTA (Jierative Shrnkage Thresholding Algo-
rithm for LASSQO problem) is used as a representative of the
base-line £, -norm minimization reconsiruction algorithms [14],
[19]. The regularization constant was sct to A = 0.01.

In the second considered scenario, in addition to these stan-
dard methods, two recent approaches that are highly adapted
for the removal and reconstruction of clicks in audio signals
are also considered [37]. [38]. In these two approaches, the
reconstruction was performed along with their inherent clicks
detection algorithms. However, for the very large number ol im-
pulses/blocks in both considered cases, the algorithms failed to
perlorm successful detections. These algorithms (codes) have
been used with default settings.

A. Randomly Positioned Disturbances

In the first experiment, signals from each of the three con-
sidered datascts are corrupled with a strong impulsive noise in
p¥% of randomly positioned samples, as illustrated in Example
S and Fig, 5. These signals are well concentrated in the DCT
domain, analyzed in blocks whose length 1s N — 500 samples,
weighted with the Hann windowing function. However, they
arc only approximately sparse. Positions of strong disturbances
could casily be detected by using a hmiter. More advanced de-
tection methods are described in [27], [37], [38], [41], [62].
Any of them can be used for the detection of corrupted sig-
nal samples. Within the CS framework formulation the detected
corrupted samples at posiions . € Q are considered as unavail
able mcasurements. The reconstruction is performed based on
the remaining samples in these blocks. considered as the CS
measurcments at 1 M. Blocks are overlapped by a half of the
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TABLE |
MSE AVERAGED OVER SIGNALS FROM THREE CONSIDERED DATABASES. FOR
RANDOMLY POSITIONED IMPULSIVE DISTURBANCES

| Music@ 16kHz | Speech@8kHz | Speech@ I()kHﬂ

| Noisy || -12.40dB -25.85dB -2560dB |

T Meds 27.42dB -44.04dB -44.16dB
Meds 27.41dB 43.52dB -44.20dB

| LPFI -26.92dB -42.42dB -43.24dB
LPF2 || -26.89dB 42.55B 43.37dB
LSAR -36.22dB -52.58dB -51.31dB

LSAR+SIN -37.484B -53.59dB -52.44dB

| LASSO 40.69dB -49.80dB -SI.15dB
MP ' 41.33dB 55.28dB -59.02dB

windowing function length. Reconstruction is done using the
presented algorithm with various assumed sparsities K.

1) Theoretical Ervor: First, accuracy of the proposed MSE
expression is evaluated. The case with p = 30% is considered.
For the 7-th block, the numerical error is calculated as:

bl"lli/ull‘lH‘-\J = 10log (}\/ HX?( - Xg .j) (24)
whereas the theoretical one is given by
1) : /- M C 2
Iblhuny 10 IOg (,’\/I\(/\" 1) ||XT1 X HQ) . (25)

The squared errors are averaged over blocks, and compared
in Fig. 9 as functions of assumed sparsity K, for each signal
from cach dataset. Solid lines represent the theoretical MSE
values whercas the asterisks indicate the numerical results. The
agreement ol the results is high, confirming the main result of
this paper.

2} Comparison With Respect to the MSE: The reconstruc-
tion results using the considered CS algorithm with sparsity
/i = 80 are compared with the standard approaches for signal
filtering and smoothing, then with two standard model-based
audio restoration techniques, as well as with an ¢, -norm mini-
mization based CS reconstruction with a least absolute shrinkage
and selection operator (LASSO) approach [19]-[21]. In this part
of the experiment the number of impulses was sel o p = 40%.

The results are presented in Table 1. The comparison is done
with respect to the MSE and objective perceptual quality met-
rics. These results will be discussed in morce details next.

We slarl the comparison ol the presented CS based recon-
struction results with a classical method for the impulsive noise
reconstruction based on the median filter. The considered filter
lengths are 3 and 5. For all three datasets, the median filter of
length 3 reduced the MSE for 17.26 dB on average, whereas the
median filter ol length 5 performed similarly (rows denoted as
med3 and medS in Tahle I).

Next, the low-pass Butterworth filter, as a representative ex-
ample ol a low-pass {iltering bascd smoothing techniques, is
considercd. Two cutoff frequencies are used on datasets Music
@ 16 kHz and Speech @ 16 kHz. The cutoff frequencies arce
determined based on the analysis of the signals spectrum. The
first filter (row denoted as LPF1) was designed with the nor-
muahized cutoff frequency 0.375 and the second one {row LPE2)
with 0.625. For the dataset Speech @ 8 kHz normalized cut-
off trequencies were 0.5, for the first, and 0.7 for the second
low-pass filter. Both filters produced similar results, with an
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low-pass filters with two cut-oft’ frequencies, LSAR and LSAR+SIN tequiques,

LLASSO-ISTA CS method and presented MP reconstruction are compared with original non-corrupted signals. The figure is related with the results presented in

Table 1

MSE drop of 16.25 dB on average (as compared to the MSE for
the corrupted signal).

The results produced by the state-of-the-art LSAR and
LSAR+SIN algorithms were signilicantly better as compared
(o the results using the previous classical filtering micthods. The
average MSE improvement was 25,42 dB for the LSAR tweeh-
nique, and 26.55 dB for the LSAR+SIN. It is important to note
that in the considered scenano, the LSAR implementation [26]
suffered from several breakdowns producing high-valued peaks,
most likely when the algorithm was not able 10 track the AR
model due 1o a large number of corrupted/missing values. This
hypothesis is confirmed as those breakdowns did nol appear
in the tests with smaller number of corrupted/missing samples,
when the MSE was almost the same as in the LSAR+SIN.

The presented CS method outperfomed the LSAR+SIN for
4 dB on average, and the LSAR for about 5 dB on average. It
15 Interestimg to observe that the improvement was the smallest

for the undersampled dataset Speech@8 kHz - only 1.69 dB. A
rcason for this could be in the reduced sparsity in the considered
domain, arising as a consequence of the signals undersampling.

The ¢,-norm minimization based CS reconstruction (the
LASSO-ISTA approach) produces results worse than the onces
obtained with the presented CS method. These results are worse
for about 0.5 dB on average than the LSAR results.

3) Comparison With Respect to the Objective Perceptual
Quality Measures: The results presented in Table I are eval-
uated from the perceptual quality perspective as well. For an
objective assessment and prediction ol perceived audio quality
of signals from Music @ 16 kHz dataset, the PEMO-Q method
is engaged [67]. We used a frecly available online implemen-
tation included in the software companion of [68], [69]. We
mapped the output ot the algorithm, that is, the perceptual simi-
larity measurc (PSM, ), to the corresponding objective difference
erade (ODG) scale using the procedure described in [67]. The
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scale has values in the range ol —4 (very annoying impairment)
to 0 (imperceptible impairment). The PEMO-Q ODG results are
calculated for the corrupted signals and for all reconstructed sig-
nals, considered in Scction VII-A2, for Music @ 16 kHz dataset.
The results shown in Fig. 8 (first subplot) indicate that the pre-
sented CS algorithm outperforms other methods, on average,
having an average score of —1.32. compared to the LSAR+SIN
score —1.81, and the LASSO-ISTA score —1.85. However, for
the 5th and 7th signal the presented method is slightly overper-
fomed by the LSAR-SIN, and [or the 8th and 10th signals it is
very slightly outperformed by the LASSO-ISTA algorithm.

For the perceptual qualily comparison of reconstruction re-
sults in the speech signals case, the PESQ [65] is used as a qual-
ity measure. It is commonly applied in the evaluation of speech
quality in the CS-based speech enhancement in various noisy
environments [7], [8] with the DCT of windowed audio signal
Irames as the sparsity domain | 7]. Results for the PESQ-based
pereeptual evaluation obtained for datasets Speech @ 8 kHz
and Speech @ 16 kHz are shown in Fig. 10. The PESQ score is
calculated for corrupted signals and for all reconstructed signals
constdered in Section VII-A2. For Speech @ 8 kHz. dataset, the
PESQ score for the proposed method was 2.89. It is larger than
the average LSAR+SIN score 2.59, the LSAR score 2.45, and
the LASSO-ISTA score 2.1.

All these algorithms have significantly improved the percep-
tual guality in comparison to the corrupted signals. The im-
provement in reconstruction for Speech @ 16 kHz dataset is
even more evident. In this case the average score of the presented
CS method was 3.37. The other considered methods produced
following scorcs: the LSAR+SIN 2.87, the LSAR 2.44, and the
LASSO-ISTA 2.27. The improvement is higher than in the case
of Speech @ 8 kHz dalaset.

B. Disturbances Localized in the Time-Domain Blocks

In this experiment, npulsive disturbances are located in
blocks of subsequent samples. All signals from each of three
constdered datascts were corrupted with a noise located in
randomly positioned blocks having random lengths between |
and 5, such that in average p% of samples are affccted by the
noisc. Such tmpulsive noise is considered in order 1o simulate
the reconstruction potential/performance and theoretical error
accuracy in cases when localized tme-domain audio signal
distortions exist (clicks, CD scratches, clipping etc.), [26],
[38]. [41). The reconstruction was performed as in the first
experiment. considering  half-overlapped  signal frames  of
fength & 500, weighied by the Hann windowing function.
Corrupted samples are detected and considered as unavailable.
They are reconstructed using the presented algorithm with
various assumed sparsities.

1) Theoretical MSE: Numerically obtained MSE (24)
highly matches the theoretical expression (25) in this case as
well, as shown in Fig. 11. Results are shown Tor all signals in
all three considered datascts, for the case when the average per-
cent of corrupted samples is p = 10%. Sohd lines represent the
theoretical error curves, whereas the numerical results are pre-
sented using asterisks. The accuracy ol the proposed theoretical
MSE is cxpected as long as the conditions for a full CS-based
reconstruction are met, even in the cases when the corruption
(unavailability) occurs in blocks of successive samples.

2) Comparison With Respect to the MSE: The reconstruc-
tion results using the presented CS method are compared
with the results obtained using the median filters, the low-
pass Butterworth Gliers (with the same parameters as de-
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TABLE 11
MSE AVERAGED OVER SIGNALS FROM THRIEE CONSIDERED DATABASES FOR
THE IMIULSIVE DISTURBANCES APPEARING IN THE TIME-DOMAIN BLOCKS

[ | Music@16kHz [ Speech@8kHz | Speech@ 16kHs

| Nosy || -1133dB | -23.55dB -2453dB
 Med3 T © .26.15dB ~42.70dB ~42.83dB

Meds || -25.90dB -42.25dB -42.68dB |
 LPFI l_'__?i%ﬁzdla -41.62dB -42.21dB
LPF2 25.77dB 41.72dB -4231dB
FIR -26.24dB -42.92dB -4291dB

BDR -26.66B -42.93dB -42.95dB 4’

| LSAR -32.52dB -45.48B -4658dB |
LSAR+SIN -34.17dB 48.61dB -50.20dB

LASSO -37.64dB -48.41dB -49.6&154

L oMp | 3780aB 50.58dB | -5317dB |

scribed in Section VII-A2 for the first experimental setup), the
LSAR and the LSAR+SIN audio restoration algorithms, and the
LASSO-ISTA, with respect to the MSE. The results are pre-
sented in Table 1, for the case when the average percent of cor-
rupted samples is p - 50%. Additionally, in this scenario the
reconstruction MSE is given [or a recent method for impulsive
noise/chicks detection and removal (AR-based reconstruction)
presented in [37], [38]. The detection and the AR-model based
reconstruction are done using authors’ algorithms, codes and
parameters (semi-causal with decision-feedback scheme) [38].
The row denoted by FTR contains the results for the lforward-
ume approach and the row indicated by BDR shows the results
with a bidirectional signal processing, originally introduced in
[37]. Thesc algorithms are highly adapted for the clicks removal
application. For these algorithms the corrupled samples detec-
tion was performed using cmbedded detection procedures. A
large number of corrupted samples in this example significantly
reduced algorithms’ veconstruction efficiency. As in the previ-
ous experiment, the considered CS reconstruction techniques,
the LSAR, and the LSAR+SIN produced, in average, better
results than the other considered methods.

The average MSE improvement with median flters was ap-
proximately 17.5 dB. It is similar for both filter lengths. The
low-pass filtering produced an average improvement of 16.7 dB,
similar for both considered filters as well. Improvement in the
FTR and BDR algorithms was significantly lower for the con-
sidered experiment with SO% missing samples than in the casce
when this percent is lower (e.g. when p = 10% or 15%). The
improvement was on average 17.6 dB. The £ -norm minimiza-
ton based CS reconstruction (LASSO-1STA) produced in this
experiment better average results, with 25.43 dB of MSE im-
provement, as compared to the LSAR and the LSAR-SIN, pro-
ducing improvements of 21.72 dB and 24.52 dB, respeclively.
The LASSO-ISTA outperformed, on average, the LSAR-SIN
due to a signilicant MSE improvement in the Music @ 16 kHz
dataset case. The presented CS method produced 1.95 dB better
result, on average, than the LASSO-ISTA reconstruction. The
largest difference in the results occurs for the Speech @ 16 kHz,
dataset.

3) Comparison With Respect to the Objective Percep-
twal Quality Measures: For perceptual quality evaluation, the
PEMO-Q and PESQ} metrics arc again used as objective mea-
sures. The results for the Music @ 16 kHz datasel are shown
in 11g. 8 (sccond subplot). The pereeptual evaluation results for
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noise appears in blocks of length varying from 1 to S samples. Signals corrupted with impulsive noise and signals reconstructed using median filters of length 3
and 5. low-pass filters with two cut-off frequencies. LSAR and LSAR4SIN (eqnigues. LASSO-ISTA CS method and presented MP reconstruction are compared
with original non-corrupted signals. The figure is related with the results presented in Table I

the Speech @ 8 kHz and Speech @ 16 kHyz are presented in
Fig. 12

From the PEMO-Q scores in Fig. 8 (second subplot) we may
conclude that the presented CS reconstruction, having the av-
erage scorc of —2.12 outperforms the LASSO-ISTA (- -2.4¥),

the LSAR+SIN (=2.95), and the LSAR (—3.13). However, (or

some signals the LASSO-ISTA outperformed the presented CS
method. In accordance with the MSE results from lable 11, the
LASSO-ISTA outperfomed the LSAR and the LSAR+SIN in
this experiment.

The PESQ scores, shown in Fig. 12, maich the results pre-
sented in Table I1. For Specech @ & kH/ daraset, the average
PESQ score for the presented CS reconstruction s 2.44, outper-
forming the LSAR+SIN (2.15), the LASSO-ISTA (1.96) and the
LSAR (1.83). For Speech @ 16 kHz dataset the average scores
are: the presented CS reconstruction (2.93), the LSAR+SIN
(2.53), the LASSO-ISTA (2.13), and the LSAR (1.68). As indi-
cated in the previous scenario, the pereeptual guality improve-
ment is larger for the dataset Speech @ 16 kHz.

VIII. CONCILUSION

As one of the most significant signal transforms, incorpo-
rated in many compression algorithms, DCT s analyzed here
within the framework of a reduced set of observations. As it
exhibits many specific properties, the analysis of the DCT is
different from the corresponding Fourier analysis, The prop-
ertics ol partial DCT matnx acting as measurement malrix in
the considered framework. place it in the middle posttion be-
tween the commonly analyzed partial DIFI and Gaussian based
measurement matrices. Based on the analysis of the DCT
coefficients corresponding o the under-sampled signal, the
cohcrence-based reconstruction condition is derived, with fess

conservative theoretical bounds guaranteeing successful recon-
struction. Additive noise influence on the reconstruction of sig-
nals sparse in this particular domain is also analyzed. Assum-
ing that a nonsparse noisy signal is reconstructed under the
sparsity assumption, an explicit analytic expression of the re-
construction error is provided in this paper. A reconstruction
algorithm inspired by the presented analysis is proposed. Nu-
merical examples on audio signals confirm the accuracy of the
presented theory and efficiency of the reconstruction algorithm
as compared to other base-line algorithms for the audio signal
reconstructions.

APPENDIX A
PROOF OF THE THEOREM |

Monocomponent signals: Let us observe a mono-component
signal case, /X' =1, k; = k). Without loss of generality, the
amphtude 4, — | is assumed. Starting from the theorem as-
sumptions, the initial DCT ol a signal with A7 available samples
can be calculated as:

M
X (k) = Z 2(ky, k,ng).

=1

(26)

where z(hy, k) is defined by (6) with A; = 1. As the signal
and basis functions are orthogonal, it can be wrillen

N

Z (k) k)

w0

5k — k). (27)

The case for k-l For analysis simplicity let us first con-
sider & - /oy and analyze the corresponding DCT coefficient
X4 (k) Ttis a random variable. According to (27), and duc to
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the fact that all values < (k. k)0 ) are cquatly disiributed with
expected values T/ N it can he casily concluded that the mean
value of X (k1) equals:

. M

R — F Cog -

pxg )y =L {Xu (hi)} = N

For A| # 1 the mean value (28) is multiplied by A,. Next, we
derive the variance of this random variable. ILis given by

(28)

Mo

+ Z Z 2(ky ky o)z (kL .'n/)} - /lj)\.‘[y e

i=1 y=1
7
Starting from (27) for k& = &, by multiplying the left and the
right side with c(k, &y, ). and taking the expectation ol both
stdes we get:

E{z(k k), 0z(n, by k) 4 (b kN = Dz(ky, k)

= E{z(k,, k., n _

(olhy, ki) =

Values z(ky, k1, n) are equally distributed. Therefore, expecta-

tions E{z(ky, k), m)z(k) . k1.q)} form # ¢. m, g € Nare the
same and equal (o a constant £, We may write:

(29)

(N = 1) B+ E{z (ki ki) 77 (30)
The vartance can be now expressed as follows:
2 y 2 3 y M?
OX'?(/.'I):]\[E {4 (kﬁ] , A],ﬂ),)} +M (A[ - 1) B - m‘
an

with € M C N. The expectation appearing in the first term
ol (31) cquals [y { ey ///}} = — 243 < fork, /0. For
ky = Ohns equal to a; . Incorporating this resuttinto (31) with
B expressed from (30), then multiplying the variance expression
with A7 and replacing the values of ay, we get the result as in
Theorem 1:

)  M(N - M)

- \-\ 2
X§ k0 T NN ) (L+d(k)) | Aj.

k= (32)

1
o =
2
The case k # ky: The DCT at non-signal (noisy) positions,
XS (k). k # ki is arandom variable with statistical properties
different from the previously analyzed case. Namely, due to (27)
and the fact that all values z(ky. &, n,) are ecqually distributed,
1t can be concluded that its mean-value is cqual o zero, e

Lo ) = E{X§(k)} =0,k # 4. (33)
For the zero-mean random variable. the vanance reads:
M

(T; = E{ Z S T

Moo l

DDA E N BN
=1 _;::l J
i/
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Now, starting Irom (27), multiplying the lelt and right side by
:(ky .k, n), and taking the expectation of both sides we get sim-
tar resull as (29) with right side equal to zero. As in the previous
case, we may assume that the values of z(k, k, n) are equally
distributed, and that the expectations [ {z(ky, k, m)z(k,, k, q)}
form # ¢, m, ¢ —0,1,..., N — 1 are the same, and equal 10 a
constant [ leading to

(N =)D+ E{Z ki k,m)}y =0 (34)

Since b # k. then the unknown term b’{zQ(k, , /c,m)}, as-
suming that & # N — Ly, can be expressed as

9 . 1
{2 (kb)) = B {a(ka oy m)} B (el )} = 5,
m=0,...,N - 1. According (0 (27), all values of z{k,, k|, m)
e, z{k, k,m) are equally distributed. It can be easily shown
that 2" {z(ky hu) B {z(kk,m)} = I/N. FPork = N ~
k' unknown expectation becomes previously calculated

1
I {:,"Z(/\w, N - A:l,:za,)} = [ {22(1111,1;‘1,11;,)} = B4
mo U N1, for ky /0 and E {2k, N—k),m)} =a} ,
for & = 0. It can be concluded that tor the coefficient at the
position k& = N — k the variance cxpression (32) holds.

Starting from (35), that is ”i’;‘ w = ME {22(/«, k) ,n,L-)} +

MM 1) D,k # ky and following the previous conclusions
and incorporating the non-zero amplitude A, # 1 we get
; VI(N - M) , T ,
a \." () = W‘Z/\/ ———)Al 1 - 50(1\ — (N — kl)) s (’)’5)

where k # k|, leading to the result of Theorem 1.

Gaussian distribution: Consider the distribution of X{’

Y :

(k) =5, lg z(ky, k,n,) for large M and k| # k. The proba-
bility density function ot a normalized zero-mean random vari-
able ¢ = X{ (ki)/o vy, according to the Edgeworth expres-
sion (701, is
, 1\ F i o S it 1
(¢) = ¢le) + - l—'" () 4 —'.r,b"’c} O(——)c.
1) = ote) + 7 |16 (@) + 128 (0)] + O(57)(@)
The first term is the Gaussian distribution ¢(¢) = ¢ “*/2/V/2m,
while the remaining lerms are the deviations from this dis-
tribution. The variance, third, and fourth order moments of
2(ky. k,n,) are denoted by o2, Ky, and sy, respectively. In
our case, for a large A, we have ol — ]/Nz, Ky — 0, and
kg — 9/(ANYY . Therelore 1y /(AIM o) — 3/(32M) — Qand
/(( j— y')l('),

Multicomponent signals: The analysis provided for mono-
component signals is extended (o the case of multicomponent
signals next. The analyzed random variable (26) is now:

. e 2 T(2n, + 1)
Xy (k) = Z Za,’: Aj cos N —ky

2+ 1)
X COs (TL) .

According to the previously presented results, for the case of
multi-component signals the DCT coefficients at the {-th sig-
nal position X (k), & = k; behave as random Gaussian vari-

(36)



1234

{
1

ables with non-zero mean values equal o gey ey Ay,
1,2, ..., K whereas the DCT coefficients at non- <1gnal positions,
X§ (k ), k £ k; also behave as Gaussian variables. with mean-
values equal to zero, since the noise caused by missing samples
is zero-mean. These conclusions follow from the classical cen-
tral ltmit theorem [71], and from the fact that the summation
of Gaussian variables produces a new Gaussian vanable. The
DCT coefficients mean-value for a multicomponent signal can
be written as: e ) = A S Ak ).

The variance of the DCT coelficients X! (4) at nonsignal
positions k£ # k; equals:

9  M(N - M)

Ty ————/\W( V.1 (37D

ZA, [1 - -o(/c- (N = k) ]

1

This expression 1s easily obtained, as at the positions &k #
by the missing samples in cvery signal component con-
tribute to the and the noises from cach compo-
nent are Gaussian, uncorreJa[ed and zero-mean, with vari-
ances AL’((\—‘I’) (1= 38tk — (N =&)L= 1, K, for
the noisc that originates rrom the (-th signal component. Note
that the result (37) holds in the sense of an average vanance of the
DCT coelficients al nonsignal positions, as the statistical inde-
pendence of the random variables is assumed. However, strictly
speaking, components of signal multiplicd with basis functions
may cause a coupling effect if they are placed at positions sat-
istying certain condirions. For example, in a two-component
sparse signal with DCT coelhcients at positons Ay and Ay
if the condition k| + ko — 2k is satisfied, the coupling cffect
causes the increase of variances at positions &, | = (ky - k»)/2
and k., = (ky - k1)/2. However. at positions N
N — k., the variance is decreased for the same values. Conse-
quently, the average vartance ol DCT coellicients at nonsignal
positions & / k; remains the same and equal (o (37).

noise,

1 and

According 1o the presented analysis [or the mono-
component signal case, the K-th signal component at the
.. N-=A
position k =k,, p ¢ {1,2,..., K} has varance 4' /”_, - I"

1= $(1+6(k,))] and mean value iy, = AZM/N. Ad-
ditionally, at the position k =k, the noise muwd by missing
samples in the remaining A - | components is also present.
This means that the sum of random variables originating from
{120 R} L #

random  vari-

other signal components at positions Ay, /1 =
7 15 added al the position k,.
ables are Gaussian, zero mean,

These K 1
mutually uncorrelated, with

vanances/\’%’(\—“/l 1= £6(k = (N = k)| and ! % p, with
l=1,..,K,p=1,.., K.Theresulting random variable is also

Gaussian, with the mean-valuc iy = AZM/N and the

vartance equal to:

) M(N-M) | , ‘\ it
x5t T NN 1) | [1 = gl os))|
" r |
+Y A7 - ﬁo(/w(/v ki) | (38)
fzh )

Unification of the resulls given by (37) and (38) leads to Theo-

remy | statement for the varance
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1. Introduction

Recently, the Hermite transform (HT), in both continuous and
discrete forms, has drawn a significant research interest in various
practical applications [1-9], showing a better performance com-
pared to the commonly used Fourier-based approaches. For in-
stance, the HT is extensively applied in the processing and com-
pression of ECG signals, as well as in the automatic recognition
and classification of QRS complexes [1-9]. Other important appli-
cations include biomedicine [4,5], image processing and computer
tomography {2,9], molecular biology |2], radar signal processing
[10], etc. In the light of popular compressive sensing scenarios,
the HT was also considered as a domain of signal sparsity | 111/].
Therein, it has been shown that signals, exhibiting sparsity in the
HT domain, can be efficiently reconstructed from a small set of
random measurements. Besides many application examples, Her-
mite functions (HF) have been the subject of extensive research
in the context of the discrete fractional Fourier transform [1% 30].
These Hermite~-Gaussian like functions, being closed-form Discrete
Fourier Transform (DFT) eigenvectors used to define the discrete
fractional Fourier transform, can be also used to define the HT.
Various approaches have been reported in this context [1%]: meth-
ods based on nearly tridiagonal matrices | , methods based

+ Corresponding author.
E-mail address: milosb@ac.me (M, Brajovic).
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0165-1684/© 2018 Elsevier B.V. All rights reserved.

The influence of an additive Gaussian noise on the discrete Hermite transform based signal representation
is analyzed. The Hermite coefficients of noisy signals are random Gaussian vartables. Based on the derived
respective mean values and the variances, an efficient nonlinear threshold for a simple signal denoising
approach is introduced, suitable for signals well concentrated in this transform domain. Moreover, the
results are casily incorporated into a coefficient thresholding based compressed sensing algorithm for
the reconstruction of noisy signals with missing samples. These approaches and the theory behind are
motivated by the signals concentrated in the Hermite transform domain, such as the QRS complexes and
UWB signals. Numerical examples validare the presented theory.

© 2018 Elsevier B.V. All rights reserved.

on orthogonal projections [24-29] as well as methods based on
closed-form vectors. {4,30].

An interesting example of signals with suitable representation
in the HT domain can be found in communications and remote
sensing applications. namely, the ultra-wideband (UWB) signals re-
ceived at antennas. Signals from this class typically have the Gaus-
sian waveforms, such as Gaussian doublets or other shapes resem-
bling the derivatives of the Gaussian function {31-34), that exhibit
a compact support in the HT domain. The UWB signals are charac-
terized by an inherent fine resolution in time as well as by good
penetration into many common materials and therefore, these sig-
nals are widely used in the remote sensing applications [33-37].
However, the presence of noise, rhat is common in real scenarios,
often leads to the performance degradation of algorithms dealing
with UWB signals (37,36}, thus making the denoising techniques
especially important. Having in mind the waveform similarity be-
tween the UWB signals and the Hermite basis, the UWB applica-
tions, including the denoising. may benefit from the HT (33). The
HT has been continuously related to QRS complexes, particularly
important parts of ECC signals. Recently, it was shown that the
compressed sensing based reconstruction of these signals is pos-
sible exploiting rhe Hermite transform |11]. Moreover, HT based
compression of QRS complexes has been a widely studied topic,
and the literature suggests the amenability of this particular trans-
form [1,8]. However, neither the HT based compression nor the
compressed sensing has been previously studied for signals af-
fected by common white Gaussian noise.
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In this paper, the influence of an additive white Gaussian noise
(AWGN) on the discrete HT is considered. This is particularly im-
portant, as the discrete HT form ordinarily assumes the Gauss—
Hermite quadrature applied in the accurate numerical calculation
of integrals defining Hermite coefficients, which inevitably leads to
a different behavior of this transform in noisy environments when
compared with common linear transforms [210,11]. We also dis-
cuss an alternative form of discrete Hermite transform, recently
studied in [5,6,32]. The influence of AWGN is modeled through the
expressions for the mean value and variance of noisy Hermite co-
efficients. Based on these expressions, a nonlinear threshold which
separates signal components from the noise is derived. It enables
an efficient signal denoising, Moreover, we incorporate the results
into a compressed sensing algorithm based on the detection of sig-
nal support ({38,39]), leading to the successful reconstruction of
noisy signals with missing samples.

The paper is organized as follows. A basic theoretical back-
ground about Hermite expansion method using the Gauss-Hermite
quadrature is presented in Section 2. The matrix form of the dis-
crete Hermite transform is presented in Section 3. The influence
of AWGN on the HT domain is analyzed in Scction 4, while the
thresholding method and denoising applications are presented in
Section 5. The presented theory is put into the compressive sens-
ing and sparse signal processing context in Section &, The conclud-
ing remarks are provided in Section 7.

2. Hermite expansion

The pth order Hermite function is defined as:
=1 12
Yp(t,0) = (027p!V/m) 7 ew Hy(t/0)

=t 12 1* p .iw"-l
= (azpp!ﬁ) : ez-:'«"(—l)"e--?’rd—i}e{—z. (1)

P

with Hp(t) being the pth order Hermite polynomial (HP). A scaling
factor o which stretches or compresses HFs is often used in the
definition (1) in order to match the analyzed signal [1531]. With-
out loss of generality, it is assumed that it has a value o =1 [1,11],
and can be omitted in further notations. Hermite basis functions
can be recursively calculated [1-3]:

1 2 fi( 2,
_ . pmie2 3 I )
Yolt) = \Vﬁe e, Y (t) = \,;/ﬁe . 2
2 -1
‘/’p(f)zf,/E ‘//p—r(f)—\/pb - Ypoalt).

The signal representation using the Hermite basis is referenced
as the Hermite expansion:

fo. )
s() =Y Cp)y, (). (3)
p=0
For a continuous signal s(t), an infinite number M — oo of HFs is
needed for an accurate signal representation. Otherwise, (3] is just
an approximation of the analyzed signal. The pth order Hermite
coefficient ((p) is calculated by:

Cp) = f SO, ()t (4)

2.1. Discrete Hermite transform based on the Causs-Hermite
quadrature approximation

The discrete Hermite transform can be considered as a dis-
cretized version of the continuous-time Hermite expansion
Namely, if HFs are sampled at zeros of the Mth order HP, then the
summation {3) becomes the inverse form of the Hermite trans-
form, [1]. In that case, any discrete signal of length M can be

uniquely represented by expansion (3), with a complete set of M
discrete basis functions. The integral of the form (4) can be accu-
rately calculated by the Gauss-Hermite (GH) quadrature [3,8,10]:

M
cipy = Y (tm)

- M m=1 [wM—l ([m)]z

where t;;, 1 <m <M is used to denote zeros of the Mth order HP
[t-11]. functions Yp(tm). 1<m <M, 0<p<M—1 obtained by
sampling the continuous HFs at points t,, are orthogonal [1]. When
the sampling points are proportional to t.. the transform (5) is a
complete signal representation [1,2,11]. This form of the discrete
Hermite transform will be further denoted as DGHmT.

Note that a proper calculation of (5) requires a specific form of
sampling. However, as indicated in our previous research (8], when
the continuous signal s(t), with assumption of a compact time sup-
port, s(ty =0 fort ¢ =T, T]. is sampled uniformly to obtain the
corresponding finite duration discrete-time signal s(n) = s(nAt),
then the discrete signal values at desired points t, (or at pro-
portional points Aty where constant A is directly related with the
scaling factor o (dilation parameter)), are obtained applying a re-
sampling procedure. Without loss of generality, assume an odd sig-
nal length M=2K+ 1, n=-K,..., K, with At being the sampling pe-
riod. The continuous-time signal can be reconstructed and resam-
pled at the desired points Aty, At;..... Aty using [8]:

‘ o Sin (77 (At — NAL)/AL)
$(Am) = HZKS(”A[) 7 (M — ALY/ AL
where m=1...., M, n=-K..., K.

The truncation error (40,41} using sinc interpolation is largest
for time instants near the edges of the considered discrete grid.
However, in the case of compact time-support signals, the trunca-
tion error will be significantly reduced. Finite signals interpolation
problem is additionally discussed from the perspective of FIR filter-
based sinc interpolation in |40], where it is emphasized that the
truncation effects could be alleviated by multiplying the interpola-
tion kernel sin{m (t — nAt)/At)/(m (t —nAt)/At) with a window
function. The interpolation error has been derived in {42]. Recently,
it has been confirmed that this error is negligible for signals with
finite-time support, {8].

s{tm). (5)

(6)

2.2. Discrete Hermite transform based on symmetric tridiagonal
matrix that commutes with a centered Fourier matrix

The previous form of the discrete Hermite transform has been
considered in many different application contexts [810-12]. Re-
cently. it has been successfully applied in the compression of QRS
complexes [8], and in the reconstruction of compressively sensed
UWB signals [51]. The highly successful applicability is related to
the strong resemblance of these basis functions with analyzed sig-
nals. However, as it will be shown in next Section, the DGHmT
matrix based on (5) is not orthogonal. As it is generally known
that the sampling of continuous HFs does not lead to a compati-
ble discrete orthogonal basis. significant research efforts have been
made to determine other approaches for discrete Hermite func-
tions definition [5,6,32]. For example, it has been shown that dis-
crete HFs can be generated as eigenvectors of a centered or shifted
Fourier matrix [5,6]. These alternative HFs will be further denoted
as Yp(n.o) when o =1 and lﬁp(n) in the case when time-axis
scaling factor o > 1 (dilation parameter) is assumed. Note that n
denotes discrete time index at a uniform time grid related with
the sampling theorem. Other alternative approaches for the dis-
crete HFs calculation can be also found in [13-30].

Observe a discrete-time signal s(n) of length N, sampled accord-
ing to the sampling theorem. with 0 <n =M —1. For such sig-
nal. there exist a set of orthogonal digital functions ¥,(n,0). p=
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Fig. 1. Examples of: (a)-(f) DHmMT and {g)-(1} DGHmT basis functions for M =201.

0. .... M—1being strongly related to continuous HFs (). It
was recently shown that such functions are obtained as eigenvec-
tors of the centered Fourier matrix F¢ 15], satisfying

Fop(n.o) = jM,(n. o),

where j = V-1, The set of functions is obtained based on eigen-
value decomposition

Fc = QAQ' (7
as columns of martrix Q={ o ¥, Y 1 Column
vectors l,/;,,, p=0,....M—1 contain values of discrete HFs

1/7,,(n,a), n=0..... M -1 and A is a diagonal matrix containing
eigenvalues of matrix F¢. It was shown that these discrete HFs can
be generated in an computationally efficient manner as the set of
eigenvectors of a symmetric sparse tridiagonal matrix defined by
[56.32]:

@(0) ¢(1) 0 = 0
@i (1) @) ¢»i(2) 0
T=| 0 (2 ¢(2) . 0 (8)
: : o (M-1)
0 0 0 @g(M—1) @gM-1)

with

@o(n) — —2¢o0s (%) sin ( ””2> sin (
o Mo M

for0 <n<M-1and

¢ (n) = sin (,\;mz)Sm (%(M—n)).

—1—n)).

(m) RMSE between functions.

for 0 <n <M~ 1. Eigenvalue decomposition of the form

T =QAQ". 9
leads to the same matrix of eigenvectors as in (7),
in a computationally _ efficient  manner [5].  Functions
(Yoln. o), ¥, (n.o)..... VYu 1 (n.o)} form an M-dimensional

basis of the alternative discrete Hermite transform, further de-
noted as DHmT. Discrete HFs obtained in this manner are visually
very similar to the continuous-time analogous functions. Similar
to the continuous case, these functions are non-zero valued near
the interval of the definition, and they are odd or even depend-
ing on the value of index p (which also counts the number of
zero-crossings of the signal), just as in the continuous case [5]. As
previously noted [6], the difference between the continuous-time
and discrete HFs produced by the presented method increases as
the index p {order of the HF) increases.

This issue is illustrated in Fig. 1, where some of the DHmMT ba-
sis functions (left column) are compared with corresponding ba-
sis functions of DGHmT (right column), obtained by sampling the
continuous HFs at the roots of the Hermite polynomial of order
M=201. For the better comparability, functions are normalized
with respect to their maximal amplitudes. For functions with p=0,
2 and 5 there is a high similarity between ¥,(n) and ¥ ,(n), as
presented in Fig. 1, first and second rows. For p =39, the difference
becomes more obvious (third row), and it increases, as illustrated
for p=88 and p=99 (fourth and fifth rows). Fig. 1 emphasizes
the DGHmT relevancy for applications requiring a strong similarity
with continuous HFs. The RMSE between DGHmMT and DHmT basis
Tunctions is shown in Fig. 1(m), versus HF order p. It is important
to note that calculation of the DHmT is numerically more efficient
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than the calculation of the DGHmT. For example, when M =201,
the average computation time needed for generation of the set of
DHmT basis functions is 0.0025 s, compared to 0.0060 s needed
to generate the set of DGHmMT basis functions (tested on the same
computer with Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz and
8GB of RAM). For M=500. these computation times are 0.012 s in
the first case, and 0.016 s in the DGHmT case. However, it should
be also noted that DGHmT requires an additional computational
burden if the analyzed signal needs to be resampled, according to
(6). as well as for the Hermite coefficients calculation based on (5).
The accuracy of DHmT basis with respect to continuous-time HFs
can be improved by producing a larger set of functions and prop-
erly adapting the dilation (time-axis scaling) parameter, [5].

3. Discrete Hermite transforms in matrix forms
The direct and the inverse DGHmT, given by (5 and [ $), respec-

tively, can be written in a matrix form. First, we define HT matrix
TH:

Volly) Volhy) _ Yalm) -
(‘f’M—;(h))Z (‘f’m-l((z)}z (o (tw))*
Vi) V() Wt )
T 1 (Yar 1 () (Yrnoa (020)° (Ve 1)y (10)
M : : . : '
W () Y llz) My ()
(Ymos () (Wna (a))” (Waey (t))*

and the corresponding inverse DGHmMT matrix T,;‘ (of size M x M)

Yoltr)  ¥i(t) Ynmoa ()
Yoltz)  Ylt2) Ynm-1(62)

T, = _ ' ‘ : (1)
Woltm) ¥ (tw) Y (tn)

If C=[C(0), C(1). ....C(M = 1)]" denotes the vector of Hermite
coefficients and s = [s(f;). s(t3). ..., s(ty)]T is a vector of M signal
samples, then:

C= THS, (]2)

represents the matrix form of the DGHmT. The inverse discrete
DGHmT has the following matrix form:

s=T,'C. (13)
The inverse DGHmMT matrix can be written as a product
—1 T

T, =T,D, (14)
where the matrix D is a diagonal matrix whose form is presented
in [1], confirming that the discrete HT matrix is not orthogonal.
The standard QR decomposition of the DGHmT matrix Ty leads to
the product T;; = QR with Q being the orthogonal matrix, satisfying
QQ"=1, with I being the identity matrix and the matrix R being a
diagonal matrix with elements:

dn = (=) [VMYor ()] m=1, 2, M, (15)

Orthogonal matrix Q, taking into account {10) has the following
form:

Vo) Volly) Vollm)
Y- (1) a1 {12) Vaty ()
) o ) Yiltp)
] [N 7Y RIS Viny U
Q= — (16)
VM : : - :
Yu-1 () Yy l2) Vi1 ()
(2] Va1 ilz) Va1 (1)

Due to the form of (14) and (15) where d,, =1 does not hold for
every m=12..., M, we may expect that the common AWCN will
influence the DGHmT in a different manner, compared to standard
orthogonal transforms, e.g. DFT.

in the case of DHmT, the transform matrix has the following
form

Yo(1)  Yo(2) Yo (M)

) () @) Ui (M)

Ty = (17)
Y (1) Pu(2) Ynor (M)

Let us denote with € = [C(0). C(1). ....C(M = 1)]" the vector of
DHmT coefficients and with s = [s(0). s(1)....,s(M —1)]" a vector
of M signal samples obtained according to the sampling theorem.
The DHmT can be written as

C = THSA (]8)
As it is formed based on eigenvectors of symmetric matrix (9),

matrix Ty, is orthogonal, implying that T5' = T], and T,T], = 1.The
inverse DHMT has the following form

4. Additive Gaussian noise influence

Observe the DGHmT of zero-mean AWGN vector ». Without loss
of generality, it is inherently assumed that the signal and noise
samples are available at the discrete points ty, m=1,...M cor-
responding to the roots of the Mth order HP. The discrete DGHmT
of noise reads:

din(ty) 0 0
0 dan(tyy - 0
E=Tyn=QRn=Q
0
0 0 dymn (tm)
(20)
Thus. scaled noise samples dyn(tm). m=1.2..... M are ex-

panded on the orthogonal vector space basis consisted of rows of
matrix Q, Note that in the case of DFT matrix, non-scaled noise
samples n(ty) appear in Ry, which means that AWGN differently
influences the HT compared to the DFT.

Next, we derive the statistical properties of HT coefficients cor-
responding to the signal s(ty) affected by AWGN n(tpm):

X(l-m)zs([rn)‘Fn([n))- (2])

Since the HT is linear, (21} leads toX(p) = S(p) + Z(p). with
S(p) and Z(p) being the DGHmT of the signal s(ty) and noise n(ty).
respectively. Since the noise 7(ty) is a random Gaussian process,
due to the central limit theorem and the definition (5), it can be
concluded that =(p) and X(p) are also Gaussian random variables.
We further analyze statistical properties of the random variable
X(p). The mean value can be expressed as:

ux(p) = E{X(p)} = S(p) + E{E(p)}. (22)

For a zero-mean additive noise E{n(n)} = 0 we have:

=Sy + L3 V) g sy @)
Mm:l [V/M—l([m)]
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Fig. 2. Functions appearing in variance definitions: {a} v{p. M). (b) &(M).

Let us now calculate the variance of the random variable X(p)
with the assumption that the n{ty,) is a zero-mean noise:

o () = E{IX(D) = ix()[*} = E{IS(p) + EM)[*} - 1} (p)

S I Yplm) Yty
- 1 2 E
M2 n,Z: mzzl “[/M 1 ["1\ )] [wM 1 [ln; )] {

For a white noise with variance o,f the autocorrelation function

180 Py (Omy . Oy ) = E(0(tm, M1 (tm, )} ~ 01 (6, — Im,). Hence, al(p)
can be further written in the form:

2y = 2 i Vo)
o _rerms
ni= l[wM 1([171)]
This result indicates that the variance of the DCHmT coeffi-
cients depends on the coefficient index p. The mean value of the
expression (24) can be now derived [ollowing the HFs orhonormal-
ity [11{:

1 M=)
G = MZUXZ([J
p=0

1{tm, )17 (Em, )}

= y(p.M)o. (24)

o, 1S Yt ¥, (tm)
M2 rf: IWM l('-m)] %{) I"//M—l(lm)]2

2

O S s )
MZ m=1

The function y(p, M) for M= 100 is shown in Fig. 2(a) and the
function £(M)is shown in Fig 1(b). The mean value of the func-
tion y(p. M) in Fig. 1(a) is 0.2753. It means that first 60 coef-
ficients have the variance (scaled by y(p. M)) below rhis mean
value, while the remaining coefficients are scaled by larger values
and are more sensitive to the noise. Also, the observed sparse sig-
nals are mainly concentrated on the first few DGHmT coeflicients
[1.8], indicating that a proper threshold can be used to distinguish
between signal and noise components. Fig. 2(b) shows that the
mean noise variance decreases as the number of M increases. Us-
ing these results, a polynomial fitting can be applied to approx-
imate these functions and to define a general DCHmT-based de-
noising threshold.

In the case of DHmT, based on the matrix + orthogonality,
and as the rows are normalized (being eigenvectors of matrix T),
we conclude that the coefficient variance is

=EM)al (25)

5)?(13) = 01)2'

assuming that noisy samples are available at the uniform discrete
time grid in (21).

5. The Hermite transform based denoising

The presented discussion can be applied in signal denoising.
The consideled signal |
variance o,, Note that the noise-only DGHmT coefficient at the
position p 1s a random variable described by the Caussian distri-
bution N (0, a)?(p)). The denoising is done using hard-thresholding

') is affected by a zero-mean AWCN of

procedure {45]:

_ 1) IC(p)] > T(p)
Cden(p) = 0. |C(P)| < T(p) (26)

Observe that the threshold is dependent on p, due to the form
of variance given by (24). Namely:

T(p) =loy(p) =1/y(p.M)o,, (27)

where { is a constant ensuring that the noise-only coefficients are
below the threshold level (27). For many real signals such as UWB
signals or QRS complexes, the lower coefficients in the HT are the
most significant ones |1,11]. The non-linear form of the thresh-
old (27) increases the probability for the successful separation of
noise-free signal and noise-only Hermite coefficients in the denois-
ing process (Iig. 2(a)). For [=3, according to the well-known 3-
sigma rule, noise-only coefficients are below the threshold with
probability of 99.73%. In the case of DHmT, standard threshold
T = lo, should be used.

As the presented denoising approach may serve as an alter-
native to the standard DFT-based denoising, the additional cal-
culation burden is analyzed here. Based on the fast algorithms
for the HT calculation {12}, the discrete HT requires approxi-
mately O(Mlog% M) operations with real values, comparing with
O(Mlog, M) operations with complex values in the case of DFT.
The increase of the complexity by log,M times asymptotically is
moderate even for a large M. For the threshold calculation in (27),
additional O(M) operations are needed.

6.1. Numerical examples and the discussion

Example 1. Consider the part of ECC signal known as QRS com-
plex grs(ty), sampled at the points proportional to the HP roots
and sparsified according to the procedure in [1], with M= 51 sam-
ples. It is obtained from the MIT-BIH ECG database [43] (originally
available as uniformly sampled in accordance with the sampling
theorem) and corrupted with artificial zero-mean AWGN, such that
SNR is 6dB. The results for the QRS complex denoising based on
DGHmMT are shown in Fig. 3(a)-(d), illustrating a significant noise
reduction. Parameter [=3 was used in the example. Interestingly,
the signal coefficient at p =3, although smaller than the noisy coef-
ficient at p=47, is properly selected by the threshold (being above
the threshold), due to the non-linear characteristic of the proposed
threshold. Only a few signal coefficients much weaker than the
noise remain under the threshold, at p=6, p=7 and p=8. The
MSE between the original noise-free and noisy signal of —28.71dB
is reduced to —35.83 dB after the denoising procedure is applied.

Now consider the shifted version of the considered noisy sig-
nal, grsy(ty) = qrs(ts, — ¢). where ¢=0.028 s. In this case signal
will not be optimally concentrated in the DGHmT domain, as illus-
trated in Fig. 4(a)-(d). Degradation of the denoising performance is
illustrated in Fig. 4 (the MSE of the denoised signal is increased for
about 2dB). In this case, prior to the hard-thresholding procedure
20}, optimally concentrated DGHmT can be found solving

M-1

1
Vo = min ||C, = S(fm - (28)
pt H 1Cuf ; r; [V 1(fm)]

and shifting the analyzed signal for value —v,, . Problem (28) can
be solved by performing a one-dimensional search over possible
values of v. Upon finding v,y the hard-thresholding (26) is ap-
plied on the DGHmT of signal shifted in opposite direction —vep.
We calculated the concentration measure in (28) for values of v
in range [-0.04s, 0.088s] with step 0.004. Results are shown in
ig. 4(e). The global minimum of this function corresponds to shift
value ¢=0.028 s. DGHmT of the signal grs, (tm + vop) leads to the
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results presented in Fig. 3. Other signal examples suitable for the
presented denoising procedure can be also found in [&].

Example 2. In this example, we observe a real 1.3 GHz UWB sig-
nal transmitted between two UWB antennas 1 m apart, through an
indoor environment, in experiment described in |34/, First M= 165
samples of the signal ‘"ACW7FD45.dat’ from the database 44| are
observed. The artificial AWGN is added to this signal. such that
SNR =3 dB. The noisy UWB signal is shown in Fg. 5(a), while the
corresponding DGHmT with the threshold (27) and I=4 is shown
in Fig. 5(c). The original signal and the denoised signal are shown
in Fig. 5(b), while the corresponding HTs are shown in [ig. 5(d). It
can be seen that the noise is significantly reduced. It is assumed
that the noise variance a,? is known since it can be estimated as
described in [45].

The non-linear threshold is able to sclect signal coefficients at
p=6 although having approximately the same value as the noise-
only coefficient at p - 154 (that remains under the threshold). Only
the smallest coefficients will remain below the threshold, but these
are much weaker than the noise and do not contribute significantly
to the resulting signal.

For the comparison, the signal denoising using a DFT-
based hard thresholding approach is considered (with thresh-
old TDFT:INO,f, and the same value [=4). The results are pre-
sented in Fig. 6, showing a significantly degraded denoising per-
formance. The resulting MSE between the original (non-noisy)
and denoised signal, for the case of DGHmT-based procedure is

—24.23dB, whereas for the DFT-based procedure the achieved MSE
is —16.07 dB. The MSE reduction in the first case is approximately
11.8dB, and only 3.63dB in the DFT case.

Example 3. Additionally, previous experiment was conducted for
a range of SNR values: from —10 to 15dB, varied with step 1.
For each SNR value, the MSE between the denoised and original
signal was calculated based on 500 independent realizations of
artificial AWGN added to the signal. The results for the DGHmT
and DFT hard threshold based denoising of the UWB signal from
Example 2 are shown in Fig. 7(a). The results confirm a signif-
icant MSE improvement when using DGHmT and the proposed
non-linear threshold.

Moreover, the experiment is repeated also with the Discrete
wavelet transform (DWT) serving as a basis for signal denoising.
We consider denoising based on Symlet 8 (sym8) and Daubechies
8 (db8) wavelets. In both cases decomposition of level 5 is con-
sidered. These particular wavelet types are chosen due to their vi-
sual similarity with the considered signal. Denoising is performed
using two different threshold selection rules to the wavelet co-
efficients: Stein’s Unbiased Risk Estimate (SURE) for db8 wavelet
case, and Donoho and johnstone’s universal threshold with level-
dependent estimation of the noise for sym8 wavelet [52-55]. In
each case, the hard thresholding is applied. For this experiment
we use MATLAB wden implementation from the Wavelet Tool-
hox. The threshold rescaling is done using a single estimation of
level noise based on the first-level coefficients. As seen in Fig. 7(a),
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denoising using various paramerter | values

two considered methods performed similarly. This experiment con-
firms that DGHmT's ability to represent signal sparsely can be cru-
cial in the denoising, even exploited in very simple methods such
as the hard-thresholding. We additionally test the performance of
the Discrete cosine transform (DCT) based hard-thresholding. The
threshold level is set to Tper = la,?. and the same value [=4 is used
as in the case of the DGHmT. The DGHmT-based method outper-
formed the DCT-based hard-thresholding (Fig. 7(a)).

Finally, we include the DHmT-based denoising based on hard-
thresholding in our comparative analysis. with T(p) =lo,. The
same value =4 is used as for the DGHmT. in both versions of
the discrete Hermite transform, dilation (scaling) factor o = 1 was
used. As shown in Fig. 7(a), DGHmT slightly outperforms DHmT,
Interestingly, visual similarity of MSE curves in accordance with
the visual similarity of two sets of basis functions.

We hypothesize that the performance of DHmMT can be im-
proved by setting a proper dilation parameter (time axis scaling
factor). Namely, let us denote with T, (o) the DHmT matrix. with
basis functions ¥p(n. o). n. p=0....M — 1 This matrix retains o1-
thogonality [5]. The improved DHmT concentration can be ob-
tained by solving

M—1 (M-
Oop = min |[Ty(o)s||, =min 37 |3 " s(mp(n.0)),

n=0

(29)
p=0

being a standard ¢,-norm minimization from the compressive
sensing and sparse signal processing framework. Solution of
{29) corresponds to the dilation paramerer producing the best pos-
sible concentration of DHmT coefficients. It can be found by a
direct search in the given range of possible ¢ values. The same
procedure can be performed for DGHmT |#]. However, the fur-

ther development of this concept and a comprehensive compara-
tive analysis of the performance in the case of these transforms
with optimized parameters is outside the scope of this paper, and
it is a topic of our further research. Note that in all presented
experiments, for each considered SNR value, the MSL was calcu-
lated based on 500 independent realizations of the artificial AWGN
added to the signal.

An experiment with a range of SNR values is also performed for
the QRS complex from Example 1. Results are presented for vari-
ous values of parameter [: I=3 (Fig. 7(b)), I=3.5 (Fig. 7(c)) and
1=4 (Fig. 7{d)). For a fair comparison, DFT based hard-thresholding
was performed for both the original uniformly sampled signal case
available in [43] (in Fig. 7(b)-(d) denoted as DFT 2) as well as for
the non-uniform sampling case (in Fig. 7(b)-(d) denoted as DFT
1). In both cases, the same noise was added to signal samples.
Results indicate that the DGHmT based denoising produces dom-
inantly lower MSE values in all cases.

For |- 3 we compare the denoising performance with the DCT-
based hard-thresholding method, where the threshold is set ac-
cording 1o the DCT noisy coefficients variance, TDCT:I(;%. The re-
sults shown in Fig. 7(b) indicate the lower MSE obtained using the
DGHmT-based method. We also compare the results with an ad-
vanced state-of-the-art ECG denoising algorithm, Sparsity-Assisted
Signal Smoothing (SASS) [46]. We use the implementation available
online, with the original parameter set [47]. The results are pre-
sented in Fiz. 7(b). The presented MSE curve for the SASS method
is obtained in the following manner. As this algorithm is originally
set to work with entire ECG signals, instead of proceeding as an
input only the selected QRS complex, the original full length ECG
signal from the MIT-BIH ECC database [43] (part of which is the
observed QRS complex) was corrupted with AWGN with same vari-
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ances as the QRS complex used for other methods evaluation. The
denoising of this whole ECG signal was performed using SASS al-
gorithm, with the default set of parameters. Then the QRS complex
of interest was extracted from the denoised signal, and compared
with the original QRS complex. As for other methods, the exper-
iment was repeated 500 times for each SNR value, and averaged
MSE is shown in Fig. 7(b). In this way, we were able to use the al-
gorithm without any parameter changes. Results shown in Fig. 7(b)
indicate that this method moderately outperforms the DGHmT-
based denoising, in the SNR range from 0dB to 10dB. However,
the cost of this improvement is a significantly higher numerical
complexity of the SASS algorithm. Nevertheless, the simple hard-
thresholding procedure results are comparable with the results of
this advanced denoising technique (in the context of QRS complex
denoising).

6.2. Statistical validation of the variance

In order to statistically confirm the derived variance {24) and its
average value (25), we perform two experiments using ngisy UWB
signal from Example 2. In the first test, the SNR level of 5dB is
observed (the noise variance o2 =0.030). The variance of DGHmT
coefficients is numerically evaluated based on 10,000 independent
realizations of the noise. High match with the theoretical expres-
sion (24) is achieved and shown in Fig. #(a). The average variance
(25} is also shown by dots. In the second experiment, the input
noise variance o is varied from 106 to 1, with the step 1072, and
the average variance of DGHmT coefficients is calculated. Observe
that the results show high matching ratio with the variance {25}
Fig 8(b).

6. Application in sparse signal reconstruction

In this Section, we present an overview of the presented the-
ory applicability in the reconstruction of signals from a random
subset of available samples (measurements, observations). To this
end. observe a signal exhibiting sparsity in the DGHmT domain.
Such signal can be represented with a small number K of non-
zero Hermite coefficients, with positions belonging to the set P
{p1. p2. .... pk). It has the following form:

K
s(tn) = Y cyrp, (tn).
=1
Sparse signals can be reconstructed from a reduced set of ob-
servations {38,39,48 49}, Assume that only M, out of M randomly
positioned samples are available. The available samples have ran-
dom positions denoted by

fneMy=(6. 6. i) M= {0 oty
Set M contains the sampling points of the full-length signal,

and these points correspond to the roots of the M-th order Her-
mite polynomial. M, is the random subset of M containing the

(30)

sampling positions of available measurements. The common math-
ematical model for the compressive sensing procedure based on
the randomly selected/acquired signal values involves the random
measurement matrix ¢:

ses= OT;,'C = AC, (31

with s¢s denoting the vector of available samples of the analyzed
signal, and C=Tys is the DGHmT coefficients vector of signal
{30} containing all samples. The matrix A is obtained from the in-
verse DGHmT matrix T,; , by omitting the rows corresponding to
the positions of missing samples. Set of M, linear Eq. (31) with
M unknowns can be solved if the additional sparsity condition is
assumed for the solution. Therefore, sparse signal reconstruction

problem is formulated as

min ||C||, subject to s¢5= AC, (32)

where the so called ¢p-norm corresponds to the number of non-
zero coefficients in C. It is known that the ¢y-norm cannot be
used in the direct minimization and thus the problem (32) is usu-
ally reformulated using ¢,-norm, exploited in the application of
efficient linear programming and iterative approaches. Indirectly,
problem (32) can be solved by properly estimating the positions
of non-zero DGHmT coefficients in the solution. If the signal sup-
port is known or appropriately estimated within a set P containing
K < P < M elements such that P c P, the reconstruction is done us-
ing the pseudo-inversion [39]:

. -y
Cx ,(AI.CA,-,) Alscs. (33)

often used in standard matching pursuit approaches, for example,
in the OMP algorithm. The matrix A‘., is the sub-matrix of matrix

A, with omitted columns corresponding to positions p ¢ p.

If samples are omitted from the signal, it produces the same
result as if these samples assume zero values [38,39,51]. Conse-
quently, a reduced number of signal samples can be considered as
a complete set of samples, where some of them are affected by
an additive noise. When missing samples assume zero values, the
initial discrete DGHmT of such signal is

Colp) = ZZ @ l[/p(t)l//p, t)
i=1 =1 (1//M—1(li))

Hermite coefficients Cy(p) are random variables. Two categories

of these coefficients can be identified. Coefficients corresponding to

signal components, thatis, p=p;,, I=1,..., K are random vari-

ables with Gaussian distribution and mean values a, +4([38,50])

and variance o2 (p,) : N (e, \rﬂw o2(p)), 1=1...., K. Coefficients
that are not placed at positions conespondmg ro signal compo-
nenrs that is, p# p;, are zero-mean random variables with variance

38,50, );_

M-t

, MMM

O =~ MQ(M 1 L (34)
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not depending on coefficient position as long as p #p; holds, that
is, M(D. 02).

The probability that M ~ K, M >» K independent noise alone co-
efficients are smaller than a value « is

K M-K
PS(K)ZEFf(ﬁU) . (35)

where the CDF of the Half-normal distribution being g(x,oy) =
erf( -£-) is used. If we set this probability to a fixed value, for

example Pe(k) = 0.99, then, the threshold

Kk = 20erf! ((PS(K))W):R) ~ V20 erf! ((PS(K))’IW) (36)

will, with given probability, separate noise-only coefficients from
signal coefficients. If amplitudes «; have close values, and a suffi-
ciently large number of measurements M exists, then this thresh-
old will help to detect positions of all coefficients corresponding to
signal components, that is, P = arg{|Co(p)| > «}. In that case, the
reconstruction is simply achleved in one iteration, directly exploit-
ing the pseudo-inversion (33).

Now assume that the available measurements are affected by a
white Gaussian noise with variance 0“,3. Both the external additive
noise and the noise caused by missing samples are now sources of
disturbances in the considered discrete Hermite domain. These dis-
turbances are uncorrelated and Gaussian, and therefore the noise-
only coefficients have the following variance

MM — Mi
M?(M Zal

with constant (7}5 whereas oy 2(p) is dependent on coefficients
positions. Therefore, we mtroduce non-linear position-dependent
threshold for the detection of Hermite coefficients corresponding
to signal components:

K (p) = V2o (plert™ (Bt ). (38)

Threshold (38) is incorporated in the efficient reconstruction al-
gorithm presented in [39]. If amplitudes «; do not have close val-
ues, then the variant of CoSaMP (OMP) based reconstruction can
be easily developed based on the presented theory [349]. In this al-
gorithm, based on initial coefficient vector g, the hlSt set of com-
ponent positions is estimated as
P =arg{|G(p)| > k (p)}. (39)

In the next step, partial sensing matrix A; = A; is formed
from the sensing matrix A, using only columns with indices P.
First components are obrained by solving the system of mea-
surement equations, using the well-known pseudo-inversion:Cy
(ATA,)71ATs,,. Subsequently, the signal s; = A,Cy is calculated. In
case that e sy holds, vector Cg is the problem solution and algo-
rithm terminates (single iteration variant). If this is not the case,
then the estimated component is removed from s, and the signal
e =Sy —§; is formed.

Subsequently, the procedure is repeated for signal e, where the
set P is expanded with new detected positions. The process iter-
atively continues until the solution is found, or until a required
precision ¢ is acquired. A reasonable choice of parameter ¢ is the
mean variance of noisy DGHmT coefficients , being the new
stopping criterion for the reconstruction of signals in the pres-
ence of AWGN. Detailed description and analysis of presented re-
construction concepts and algorithms (single-iteration and iterative
forms) can be found in [39].

of (p) = 0% + i (p) = y(p.-Myo?  (37)

Example 4. Consider signal of the form (30}, sparse in the DGHmT
domain, with amplitudes oy = 2.0y = -3.03 = 2.7.04 = 2.1.tt5 =
2.1, wg =14, and corresponding non-zero coeflicients positions
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=0.py=1,p3=3.p4=6,ps =7, and pg = 18. It is affected by
an additive white Gaussian noise; such that SNR is 7dB. Then only
M4 =54 out of M= 128 noisy samples (42.19%) are taken at random
positions. The reconstruction is performed in only two iterations
of the algorithm [39] with the modified threshold (38). Results are
shown in Fig. 9. The initial MSE between the original (noise-free)
and noisy signal of —11.67dB dropped for ~12dB after the CS re-
construction. The resulting MSE between the original (noise-free)
and the reconstructed signal is —23.66 dB.

7. Conclusion

The discrete Hermite transform of signals affected by zero-
mean AWGN is analyzed. The particular scope was on the discrete
Hermite transform calculated based on the Gauss-Hermite quadra-
ture. The mean values and variances of corresponding noisy Her-
mite coefficients are derived and statistically verified. Based on
the modeled noise influence, a nonlinear threshold for the separa-
tion of signal and noise-alone components in the discrete Hermite
transform domain is derived. Consequently, a method for signal de-
noising is proposed. It is based on a hard thresholding approach.
The signal denoising is tested using real UWB signal and QRS com-
plex, showing the benefits of using the derived nonlinear thresh-
old. Moreover, the results are easily incorporated into the sparse
signal reconstruction framework.
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1. Introduction

The Hermite transform (HT) has been studied during the last
few decades, particularly as an alternative to the Fourier transform
[1-16]. Although covering a wide range of possible applications
due to many interesting properties, Hermite transform has been
extensively used for the representation of QRS complexes. espe-
cially for their compression, as well as feature evaluation and ex-
traction [1-9,11]. Other applications include: molecular biology
[8], image processing and computed tomography [8,9,11], radar
signal processing {12}, physical optics { 13] etc.

QRS complexes, as the most characteristic waves of ECG signals,
are important for medical diagnosis and treatments. In the pro-
cessing and compression of ECG signals and QRS complexes, many
authors applied different kinds of wavelets and corresponding
transforms [17-19]. Recently, it was shown that the Hermite
transform may provide far better performance, when it is appro-
priately optimized |1 ]. Namely, the Hermite transform is found to
be a suitable mathematical tool for the representation of QRS
complexes due to their similarity with Hermite functions (HF). In
other words, these signals can be represented using a few Hermite
coefficients [1-7,10}. This property has been exploited in the de-
velopment of several compression algorithms for QRS complexes
[5-7], thus establishing a theoretical framework with a lack of
practical applications due to the use of continuous domain
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The concentration and sparsity of signal representation in the Hermite transform (HT) basis may highly
depend on a properly chosen scaling factor and discrete time shift parameter. In that sense, we propose a
simple and efficient itcrative procedure for automatic determination of the optimal scaling factor. The
optimization criterion is based on the #;-norm acting as a measure of signal concentration in the HT
domain. Instead of centering the signal at the zero time instant, we also propose to shift the center for a
few points left or right, which will additionally improve the concentration. An important application of
the proposed optimization approach is the compression of QRS complexes, where properly chosen
scaling factor and time-shift increase the compression performance. The results are verified using syn-
thetic and real examples and compared with the existing approach for the compression of QRS com-

© 2016 Elsevier B.V. All rights reserved.

functions [1]. An algorithm that proposes the use of discrete
Hermite functions is presented in [1,2]. Hence, we start from the
HT based algorithm [1,2], which significantly outperforms the
compression based on other transforms, such as DFT, DCT and
DWT, in the applications with ECG signals. This approach uses an
experimentally obtained value of the scaling factor, which “stret-
ches” and "compresses” the QRS complex to match the orthogonal
basis. Herein, we employ a concentration measure based algo-
rithm to get optimal HF parameters [20]. It leads to better per-
formance of approach proposed in |1.2]. The idea arises from the
currently attractive area of compressive sensing and sparse signal
reconstruction [14-22]. Hence, an iterative procedure for the de-
termination of the optimal scaling factor and time-shift is pro-
posed leading to the improved compression performance, as ver-
ified on real ECG signals database [23].

The paper is organized as follows. In Section 2, an overview of
the discrete HT calculation for uniformly sampled signals is pro-
vided. The optimization of the spread factor and time-shift para-
meter is proposed in Section 3. Section 4 presents the numerical
results, while the concluding remarks are given in Section 5.

2. The Hermite transform
2.1. Discrete Hermirte transform

Hermite polynomial ol the p-th order, widely known among
the orthogonal polynomials, can be defined as [1-14,24}:
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e @€

0y =( — .
Hp) = (¢ drp (n

The p-th order HF is related with p-th order Hermite poly-
nomial as follows:
[Z
— Ppl -2,y
wp(t o) = (a2PplyE) e 20l Hy(t]a). 2)

where the scaling factor o is introduced to "stretch” and "compress”
HF, in order to better match the signal |[1-10|. The Hermite ex-
pansion is defined as |[1-14]:

T = 3 Gyt o),
p=0 3

where ¢, denotes the p-th order Hermite coefficient:

G= [ JOptod, p=01, .. M-1. @
For the numerical calculation of the integral (4] the Gauss-
Hermite quadrature approximation |1-8,14]:
M
(I, 7)
¢, = % I Y ), p=0.1, e M1,
mot L1 (G o) ] (5)

is commonly used, where t,, denotes the zeros of the M-th order
Hermite polynomial (1). As it is discussed in the literature
[1,24,25], there is no closed-form expression for the roots of the
Hermite polynomials. Also, some examples of the roots for the first
10 Hermite polynomials are given in [14].

In general, for the case of continuous-time signals, an infinite
number of Hermite functions is needed for the representation of
the signal without approximation errors in (3}, [1]. In the discrete
case, it is assumed that discrete HF and analyzed signals are ob-
tained by sampling their continuous counterparts at non-equis-
paced sampling points associated with the roots of Hermite
polynomials [1,2,4,13}. Namely, in that case any discrete signal of
length M can be uniquely represented by the expansion of exactly
M discrete Hermite functions in (3), meaning that the signal re-
presentation is complete [1].

The time axis scaling factor o is used to "stretch” and “compress”
HF relatively to the analyzed signal f{t). As proposed in [1.2], we
can alternatively fix =1 and intraduce an equivalent parameter 2
to "stretch” and "compress” the signal f{t) relatively to the HF basis.

The inverse and direct HT given by (3) and (5} can be written in
matrix-vector notation. Let us introduce the HT matrix as:

_wo(h, 1) ywolla, 1) ) W (v, 1_”| )
wo T wh G 1) wi_ (w1
1 with 1) w1 iy, 1)

Wy = 7 wi_ (D) wk (1) Vit D

ot D)ooy, 1) p—1ltm, 1)
W@ D v D i), e
If we introduce the vector of Hermite coeflficients
c=[ca .., (MAJT and vector with M signal samples

f- [f(All).f(Alz), ...,f(A[M)]r at the points proportional to the
roots of the M-th order Hermite polynomial: Atq, At,,..., Aty then
according to the Gauss-Hermite quadrature formula (5) the HT can
be written as:

c= WHII§ (7)

Having in mind the expansion (3), the inverse transform matrix
1s:

wolh, )y, 1) Wp-1(0, D

_ wolla )y 1) Wyl 1)
W,,‘: 0 7 1 : . M 1' .

wo (lm. 1) (. IO V/M_l(rM- D

Based on the previous matrix definitions, the inverse HT for the
case of discrete signals reads:

f- wi'c (8)

2.2. Hermite transform of uniformly sampled signals

Consider a continuous-time signal f{t) with compact support,
such that f(r)=0 for t ¢ [ =T, T]. The signal is sampled uni-
formly to obtain the corresponding finite duration discrete-time
signal fin), of odd-length M=2 K+1, n=-K...., K, with at being the
sampling period. According to the sampling theorem, the con-
tinuous-time signal can be reconstructed and resampled at the
desired points Af,, At,,..., Afy according to:

sin(x(Atm — nAD/AL)

K
Al = Al .
s Z fnat) (Al — NADJAL (9)

n=-K

where m=1,.._, M, n=-K,..., K, or in the matrix form:
N
[~Af 10)

with ? being the vector containing signal values sampled at the
desired points t = it, corresponding to zeros of the M-th order
Hermite polynomial {1) and f is the vector of original signal
samples taken uniformly according to the sampling theorem. In
the case of even-length signal M=2 K, the values n=-K,.., K- 1 are
assumed in (9).

In the expanded form, (10) can be written as:

f('”l) ay Oz - G]MA f(‘K)
fay) a1 Gy oM || f(-K+1)
Uy Gpa - (uu Jr('l() an

where M=2 K+ 1 and elements g; being defined as:

fan

ag = sin[ 1 — ¢ = K = DAD/a][ # Gt = ¢ = K= DHAD/AL],

with {je (1, 2, . M}. As recently presented in |26], the
truncation error [27] using sinc interpolation is {argest for the time
instants near the edges of the grid. However, in the case of com-
pact time-support signals, the truncation error will be negligible
even at the edges (e.g.,—50dB for signal given in Example 1).
Furthermore, the problem of interpolation of finite signals is also
discussed rom the perspective of FIR filter-based sinc interpola-
tion in [28], where it is emphasized that the truncation effects
could be alleviated by multiplying the interpolation kernel
sin(x(f - nat)jat){(x(t — natjar) by a window function.

The uniformly sampled signal and the corresponding HT now
can be related by combining {7) and (11) as:

C = Wyf ~ WAL (12)

3. Parameter optimization
3.1. Scaling factor

In this Section, we propose to employ the concentration mea-
sure of the Hermite transform vector ¢ to calculate a suitable value
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of 4, which will lead to the most concentrated (or even the spar-
sest) signal representation. It is important to emphasize that the
criterion is defined such that the classical uniform sampling of
signals is assumed, without need for new sampling devices. The
concentration measures, such as the #;-norm of transform coef-
ficients, have been used in optimizations where it is crucial to
concentrate a signal transform in a small number of coefficients
[4,20-22]. One of the most recent applications is the compressed
sensing. The #;-norm of the HT can be calculated as:

M~

M=lielh = 3 ol
p=0 (13)

Thus, the optimal value of 4 is obtained by solving:

A = arg minjjcll; = arg min{WyAf)),.
2 A (14)

Note that (14 is a 1D search problem over the possible range of
A values. Thus, one can perform the search over the range of
possible values of A, finding the one that minimizes the con-
centration measure. This range can be determined such that the
roots of the Hermite polynomial are mainly placed between the
existing sampling points, as discussed in | {].

The basic idea behind the proposed algorithm is to iteratively
search for the optimal value A, starting from a predefined value
A9, In each iteration k, a small value A is added and subtracted
from the current A, to determine the change of concentration
measure. Then, A¥ is updated by a value which decreases the
measure (13) in a steepest descent manner. Similar approach was
employed to reconstruct missing samples of sparse signals [4,21],
The algorithm is given as follows:

Algorithm 1. Calculation of the optimal scaling factor A.

Require:
» Signal vector f of length M = 2K + 1
e Step parameter u
e Transform matrix Wy, calculated according to (6}
1: Set 40  Matl[ 2(JxM = 1)/17 + 18)]
2; Set A — 2/ty
3:Set v« 10710

While 4 > ¢
ahy afy, - afy ay ap o Gy
+ + = - -
g Ape | O |
iy Qi - Qi G Gy o Uum
sin| #{ G ) —G-K=Dar)jat| . . .
F 2,
aU a{ h+aiti=¢ =K -hatjjar ' Ljel(n 2. M)
M-1 - = M-1 _
5: Mt et = B0 WRAIL M- < liclh = X5 WA

6: VR « (M* - M)}IM
7. 2kl otk Fv(k)
8. f — sign(v”‘) v“’-“)
9:If p<0then a4 « 42
End while
10: Return ;&

Here, A“”:MA[/[Z(J”(M D17 + 1.8)] is used as the
starting point, which is the lower bound for the scaling factor
defined in [15,16] in order to ensure the convergence of the al-
gorithm. The values of y and A are chosen to provide optimal
results for all considered signals. A too small step ; leads to slow

convergence, while on the other side x should be as small as

possible to keep the algorithm stable (i.e., to ensure that the upper
bound i < [\/‘er/l.7 + 1.8]/[2;:W] is satisfied |15,16), with W
being the frequency bandwidth). Hence, the value of x is set up
empirically as a trade-off between these two requirements.
Maximal number of iterations corresponds to the signal length (in
the experiments, the convergence is obtained even for number of
iferations equal to the half of the signal length). The computational
complexity of the algorithm can be approximated as follows (one
iteration is considered): a) to generate the argument of the sinc func-
tion in Step 4, we need 2M?*+ 2 additions (or subtractions) and 6M?
multiplications with constants; b) the interpolation is done with M?
multiplications and M(M— 1) additions; c¢) For the two HT calculations,
the complexity is 2M? additions and 2M? multiplications; d) the con-
centration measure requires 2M—2 additions. Hence, the proposed
algorithm requires 5M* + M additions and 9M? multiplications in total.
Two-dimensional (2D) Hermite transform can be obtained by
calculating one-dimensional Hermite transforms separately in
both directions {14]. Hence, the proposed approach can be gen-
eralized in a straight-fTorward manner for the case of 2D signals.

3.2. Shift parameter

The basis functions can be also shifted left or right along the
time axis {10]. Instead of centering the signal at the zero time
instant {1,2), here we propose to shift center for a few sampling
points left or right, before the calculation of the coefficients. In
other words, instead of f(nat), we use: f (nat)=f(n = hat) in
(9), with [ = [—[max, lmax] .

For every discrete shift value I, optimal A is calculated in order
to minimize {14). The measure vector L is formed by using the
minimal measure value (14) obtained for the optimal A, for every
considered I. Then we find the value of [ corresponding to the
minimum of L, by solving:

I_alg‘mmL (15)

Note that [, has a small value, e.g. l,,.x=3 for the case of QRS
complexes, and thus a direct search in (15) is applied. The integer
shift values are used in this paper, since the fractional shifts may
require an additional interpolation, which causes difficulties in the
minimization of the concentration measure {10].

4. Numerical results

Example 1. Let us observe the signal of the form:

2
fity= -3 sin(Sn[)exp[—(Mrg ]
20,

0 (16)

with M=61, sy =125 -1/2 <t < 1/2, sampled with at=1/M
to obtain  discrete  values at  the uniform  grid
n= - (M-1)/2, (M - 1)/2. Original signal with uniformly
sampled points and the corresponding Hermite coefficients with
»=1 are shown on Fig. 1(a) and (b) respectively. Note that the
signal is characterized by the compact time support and it has the
similar shape as the Hermite basis functions. Hence, these types of
signals (windowed or low-pass filtered sinusoids, QRS segments,
short-duration signals such as FHDSS, or UWB signals) are
amenable to the proposed approach.

The proposed iterative procedure has been applied in order to
find the most concentrated HT of the resampled signal. The ob-
tained result is 2 = spat = 1.25/M since we have intentionally
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Fig. 1. Scaling factor influence on the HT: (a) original signai (16) and (b) the corresponding Hermite coefficients: (¢} optimally scaled signal resampled at the roots of Hermite

polynomial, and (d) Hermite coefficients of the resampled signal.

incorporated the spread factor as the parameter of the Gaussian
window in (16). The resampled signal with appropriately rescaled
time axis, sampled at the roots of the M-th order Hermite poly-
nomial, and corresponding Hermite coefficients are shown on
Fig. 1{c) and (d). We can observe that the optimal value of the
scaling factor will assure that there is only one significant coeffi-
cient at p=2, while other coefficients are close or equal to zero.

In order to check whether the proposed algorithm finds the
optimal value, the concentration measure is calculated for differ-
ent values of scaling factor 2: 1/At < i/At < 2/At, varied with the
step 0.01/Af. The results are plotted in Fig. 2a, where the global
minimum Ay, = 1.25/At is clearly visible on the curve.

Here, it is assumed that the lower and upper bounds ol 4 are
satisfied [ 15,16]. Lower bound is controlled by the algorithm in-
itialization, and suitably chosen step ; assures that the upper
bound is never reached. In this interval. a global minimum is ex-
pected, corresponding to the most concentrated Hermite trans-
form. Further, the learning curve of A/At with respect to iteration
number is given in Fig. 2b. It can be observed that, as the algorithm
reaches the minimum of the concentration measure, it stabilizes.

The influence of truncation error introduced by the finite sinc
kernel is also examined calculating the MSE between the inter-
polated signal f, (At,) (interpolation is done based on uniform

v

3 12

<

g

c o1

2

[

=

8

g 09

“ O 12 14 16 18

WAL

397

samples fin} and relation (10)) and the original (analytic) signal
(16) observed at points ¢ = Ay, MSE = %Zi) {fin (A) —f(lfm)|2~
Hence, the signal length M is varied from 21 to 401 samples (with
step 2). The results are shown in Fig. 3 (Jlogarithmic scale) showing
that even the largest error caused by sinc interpolation is as small
as ~50dB.

Example 2. In the framework of the considered compression
problem, it is important to represent QRS complexes with the
smallest possible number of coefficients, with a medically accep-
table error. The compression algorithm proposed in [1,2] operates
as follows. It is assumed that the ECG signal (i.e. QRS coAmplex)j([)
is sampled at points At}, Aty,..., Aty to obtain the vector f. Then the
HT coefficients ¢ are calculated by (7). Further, the vector ¢ is
formed by keeping L largest coefficients in ¢ and setting others to
zero. The signal approximation can be obtained according to (8):

f=wjle a7

Here, we will refer to the algorithm presented in {1,2] which
can be further improved, by the proposed optimization of the
scaling factor and the time-shift. The continuous signal f{t} was

s ————

i0

200 30 40
[teration number

50

Fig. 2. a) The concentration measure in terms of A/At, b) the learning curve of Afat through the iterations.
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ratio

sampled at the points Aty, At,,.... Aty, where the scaling factor 4 is
chosen to obtain smallest number of coefficients in & under the
condition that the relative reconstruction error:

gl - fil,
£l (18)
is below 10%, which is medically acceptable [ 1,2]. However, several

problems arise. To determine the optimal scaling factor A, starting
from the continuous ECG signals, sampling process needs to be
repeated for every A from a suitable range of possible values,
which can be a technical problem for sampling devices. Then, the

Original QRS complex
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0.5
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nAt 8]
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|
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-1 7 ©
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HT is calculated for every possible A, and (18) is used to find the
optimal 4 such that £ < 10%. The other possibility is to use a fixed
value of A. However, it can be shown that improper A leads to the
larger number of Hermite coefficients in ¢&. Moreover, our ex-
periments as well as those in [1,2} show that each QRS complex
has a different optimal value of A, which means that the sampling
device has to be continuously readjusted. On the other side, when
dealing with the discrete QRS complexes in [1], the signal is re-
sampled according to (11) and search for the optimal 4 is done by
measuring the compression ratio, which has to be maximized
under the condition that E < 10%. However, this approach is nu-
merically exhausting, since both direct and inverse Hermite
transform need to be calculated for each observed number of the
largest coefficients and for each 4.

In this paper, we propose to search for an optimal A by mini-
mizing the concentration measure, before the compression is
done. The compression procedure is done as in {1], while the
improvement is provided using the scaling factor optimization and
the time-shift optimization based on concentration measure (14).

We have extracted Q—=1486 QRS complexes, from the first 10 s
(first lead) of 168 ECG signals obtained from the MIT-BIH Com-
pression Test Database [23]. The signals are uniformly sampled
with At =1/250. Three different signal lengths are used [1}:
2K+ 1€ {27, 29. 31). The compression results are shown in
fable 1 in terms of the average number of coefficients (producing
L <10%) and the average compression ratio:
ACR = $%, (2K; + 1)/ £, L. (where L; is the number of nonzero
HT coefficients in the i-th complex producing E < 10%, while 2K;+1
is the length of the i-th QRS complex). The second column (as well
as the third and the fourth) shows the result published in [1].

In the original approach [1] that uses a demanding search over
all possible 4, average number of 5.8 coefficients is needed for the
proper reconstruction with £ < 10%. The proposed method (first
column of Table 1) shows further improvement, if the set of

Standard Hermite transform

200
100

-100
=200 (b)

25

B s

p

20

Optimized Hermite transform

g M IR i

0 !

)
—-100

=200

—-300

a (d)
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14

-400

Fig. 4. Optimal scaling, shifting and resampling of QRS complex: (a) original signal (biue) and its shifted version (red); (b) Hermite coefficients of the original signal
(standard Hermite transform): (c) shilted resampled signal with rhe optimal scaling (actor (solid line) and reconstructed signal using the largest 4 Hermite coefficients
(relative error < 10%); (d) Optimized Hermite transform of rescaled and resampled signal (circles denote the largest 4 coefficients). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. a) Application to the ECG T waves, b) application to the UWB signals.
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considered  time-shifts is  extended  with Imax = 3,

le{-3,-2 -1, 0, 1. 2 3} Namely, when both the time-
shift and scaling factor are optimized as proposed, the same error
level is achieved even if only 5 coefficients are used, which means
that the improvement over the original algorithm is about 13.8%.
The average value of the scaling factor over all Q=1486 QRS
complexes is A[Ar = 42495 (in seconds A = 4.2495/250 = 0.017,
which is the value experimentally obtained in {2], thus confirming
the accuracy of the proposed approach). The step » = 0.05 is used
in the experiment.

Let us consider the estimate of the average number of bits per
sample: a) for the time domain we need 9 bps. b) in the case of
optimized HT, there are 5 most important real-valued coefficients
out of 31 within QRS complex {one zero value may appear be-
tween 5 nonzero coefficients, and thus approximately 6 coeffi-
cients are encoded), which results in the rate 2 bps: ¢) in the case
of DFT, there are approximately 8 most important coefficients
(with real and imaginary parts) to be encoded out of 31, which is
approximately 7 bps in average.

An example of the analyzed QRS complexes from the database
[23] is shown in Fig. 4, Original signal is shown on Fig. 4. (a), with
the Hermite coefficients in Fiz. 4(b). The concentration measure is
lowest for the time-shift /=1, with the corresponding optimal
scaling factor 2/at = 0.4352 (in seconds 2 = 0.0176). The optimally
shifted signal, resampled at the roots of Hermite polynomial (with
M=27 and i/at = 0.4352), is shown in Fig. 4(c), with the Hermite
coefficients given in Fig. 4(d). The reconstructed signal is given by
dash-dotted line in Fig. 4(c).

Example 3. It is interesting to emphasize that the same approach can
be applied to other types of signals such as the T waves of ECG signals,
but also to the commonly present UWB signals (known as Caussian
doublets). Transmitting common Gaussian pulses directly to the an-
tennas results in filtered pulses modeled as a derivative operation
producing [29-31}: s(r) :Jl - 4n({/z,,,]zj|€ . A discrete ver-
sion of this signal is considered, sampled at 2 GHz, of length 100 ns
and with r,, = 22.2 ns. The results of applying the proposed method
on the ECG T waves are shown in Fig. 5a. After applying the proposed
algorithm, the observed part of ECG signal can be represented with
only 14 coefficients out of 106 (13%), assuring the relative error {18)
smaller than 10%. The average number of coefficients for the entire
MIT-BIH Compression Test Database (first lead, first 10s of 168 ECG
signals) {23] is approximately 23% of the total length. In the case of
UWSB signals, the algorithm shows a high level of efficiency, providing
a compact support with only 2 significant coefficients (Fi¢. 5b). Hence,
in the context of UWB signals, the proposed approach has a potential

=2a{tgm)

in design of UWB receivers, allowing the signals to be easily detected
at the receiver.

5. Conclusion

An optimization approach for the Hermite transform scaling
factor and time-shift is presented. Concentration measure of the
transform is employed as the optimization criterion. An iterative
search algorithm for the scaling factor optimization is presented.
The results are confirmed on both synthetic signal and real ECG
signals. The presented theory is applied in the compression of QRS
complexes, reducing the average number of coefficients that need
to be stored. Finally, it has been shown that the same concept can
be also applied to other segments of ECG signal (such as T waves),
but also to the UWB signals in communications.
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ABSTRACT

instantaneous frequency (IF) estimation of non-stationary signals embedded in high noise is addressed.
When present, high noise represents a dominant error source in the IF estimation, Additive Gaussian
noise with variance proportional to the signal power is assumed. An estimation approach based on
the ant colony optimization (ACO) and time-frequency (TF) analysis is proposed. The ACO algorithm is
adapred for the IF estimation starting from the Wigner distribution (WD) of the considered signal. The
proposed technique is also applicable to numerous other representations, without any change in the pa-
rameter setup. This method surpasses the influence of high noise in the IF estimation; for thar purpose,
we have designed a pheromone deposition gradient and a mechanism for the variation of the agents’
population size. The introduced approach improves the fast-varying IF estimation accuracy, overcoming
known issues in the state-of-the-art algorithms dealing with high noise. The basic principles of the pro-

posed method are illustrated and performance validated through numerical examples.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Time-frequency (TF) signal analysis has drawn a significant at-
tention during the last few decades |1-42|. various TF represen-
tations enable efficient analysis and extraction of information con-
tained within time variations of the signal’s spectral content [4.G].
One of the key topics in this area is the instantaneous frequency
(IF) estimation of a signal [4-10]. Numerous TF representations and
algorithms have been proposed in order to facilitate the IF estima-
tion, but no TF representation exists, nor the estimation algorithm,
that resolves this problem for all classes of signals and under all
circumstances [4,5]). These facts make the IF estimation problem
still scientifically attractive [G).

The [F estimation arises in numerous application fields includ-
ing communications based on frequency modulation (FM), radar
and sonar systems, speech analysis and recognition, analysis of
video signals, seismology, biology, bio-medicine [6,16,25].

Many TF representations have the property of concentrating the
signal energy at and around the IF [15,29-31]. This is the rea-
son why the IF estimation formulation. in classical estimation ap-
proaches. reduces to determination of the TF representation max-
ima {4,5,6]. The Wigner distribution (WD) has been widely used
as an IF estimator of FM signals, since the signal representation

* Corresponding author.
E-mail address: pvesna®@ac.me (V. Popovi¢-Bugarin).

http:/jdx.doi.org/10.1016/j sigpro.2017.03.022
0165-1684/© 2017 Elsevier B.V. All rights reserved.

in the TF plane is highly concentrated {8,26,27|. However, due to
higher-order signal phase derivatives, the WD contains inner inter-
ferences. Moreover, when multicomponent signals are considered,
the undesired cross-rerms appear in addition to signal components
referred to as the auto-terms. The cross-terms can mask the auto-
terms in the TF plane {3.25]. Besides the principles presented in
[4] and [G], a comprehensive analysis of the WD as an IF esti-
mator is given in |{7] and [8], where the estimation error sources
were classified into four categories: bias, errors due to variations
within the signal’s auto-terms, errors due to frequency discretiza-
tion and errors due to high noise, Techniques that deal with the
first three error sources are presented in [4,9,27,28]. The influence
of high noise has attracted a significant attention, since it repre-
sents a dominant error source when it occurs [7-9]. Errors due to
high noise appear since the high noise induces false maxima {max-
ima outside of the auto-terms) in the TF plane. Under the term
“high noise” we assume additive Gaussian noise of the constant
variance proportional to the power of the contaminated signal, as
considered in |6-9,14].

An instance of the Viterbi algorithm (VA), originally introduced
in [&], has been applied in the IF estimation in order to overcome
the negative high noise impact. The performance of the VA-based
approach in various estimation problems involving high noise has
been confirmed during the recent years [6,9-13|. Another IF es-
timation approach based on a high-dimensional search of the IF
curves in the TF plane has been proposed in (30], for the case
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of wavelets. The search of curves is based on a stochastic re-
laxation procedure, This approach has certain robustness to high
noise. The generalization of this approach towards the TF represen-
tations with an introduction of a new stochastic search procedure
has been presented in [31].

Artificial ant colonies (AACs), a biologically inspired paradigm,
represent muiti-agent tools for problem solving without a cen-
tralized control {44-59]. The whole set of optimization techniques
based on the AAC concept, widely known as the ant colony opti-
mization (ACO), has been developed and applied in different sci-
entific areas, especially where the hard-solving focal optimization
problems arise [46-5G]. The AACs are one of many concepts in
the so-called swarm intelligence, where a population of artificial
agents forms a collective intelligence over a specific environment
[44]. Important application fields in digital image processing in-
clude edge detection, pattern recognition and feature extraction
{48-56G]. For the problem considered in this paper, an especially
interesting ACO application is in edge detection in digital images
[49,54,56]. By taking into account that edges represent image seg-
ments with high contrast and/or color variations, the median dif-
ference in agents’ neighboring points has been used as the main
criterion for edge detection [50,54,56].

In this paper, the ACO algorithms proposed in [49] and {50] are
adapted for the TF-based IF estimation. A new gradient which
takes into account the IF properties is introduced in order to
achieve a robust estimation in high noise: the IF should pass
through as many as possibie points of the TFR with highest mag-
nitudes, while the IF variation between two consecutive points
should nor be too fast |8].

The estimation is performed based on a generated pheromone

map, representing a new TF representation with significantly re-
duced disturbances. The inirial version of the algorithm is proposed
in {59]. In this paper, we improve the performance of the algo-
rithm {59} by introducing variable population size [49.50]. In ad-
dition, we evaluate the performance of the proposed method ver-
sus signal-to-noise ratio (SNR), provide comparison with the state-
of-the-art VA-based algorithm and illustration of cross-terms sup-
pression in the case of muiticomponent signals, as well as the
IF estimation illustration for real-life signals. The concept of vari-
able population size provides an additional control mechanism
for the mass behavior of an AAC. The basic idea is to retain the
agents moving across the TF points corresponding to the auto-
terms, while tending to eliminate as many those not corresponding
to the auto-terms as possible. The agent's ability to survive during
the iterations is measured by its energy, which is related to the
proposed gradient, In this way, the influence of the gradient on the
mass behavior of agents is emphasized. The distributed nature of
the proposed algorithm and carefully designed gradient make the
estimation more robust to fast IF variations. In this way, it over-
comes, at a certain level, the sensitivity of the VA to fast IF varia-
tions, which is confirmed for signals with fast IF variations. Addi-
tionally, the proposed approach suppresses inner interferences, as
well as cross-terms in multi-component signals.
Basic theory concerning the I[F estimation problem is given
in Section 2. The ACO algorithm within the framework of the
TF-based IF estimation is presented in Sccuon 5, Sectiun 3 also
introduces the pheromone deposition gradient and the variable
population concept, both adapted for the IF estimarion, the esti-
mation algorithm and a discussion on the algorithm parameters.
Section 4 presents numerical examples with the estimation results
and a statistical verification of the proposed method by a compar-
ison with the WD maxima and the VA estimators. Section 5 con-
cludes the paper.

2. Background theory

Consider a complex amplitude and frequency modulated signal
[6-91:

s(t) = A(t)el®W) (1

where A(f) is a slowly varying amplitude with respect to phase
variations, i.e. |dA(t)/dt] « |d¢(t)/dt] and ¢(t) is the signal instan-
taneous phase. Note that for real-valued signals positive frequen-
cies are taken into account or the corresponding Hilbert transform
of the signal is calculated. Some alternative signal models are also
discussed in the literature {17-22]. The IF of s(t) is defined as the
first derivative of its phase, i.e.

Q) = dp(t)dt. (2)

The signal of interest is embedded in complex additive white
Gaussian noise (AWGN) (t) with zero-mean and variance o2, with
independent and identically distributed (i.i.d.) real and imaginary
parts, that is

X(t) = s(t) + £(0). (3)

The signal is sampled with the sampling interval At to ob-
tain x(n)=x(nAt), where n represents discrete time variable. In the
case when s{t) contains multiple components, i.e. when x(t) can be
written as

s
X(U) =Y s () e, (4)
1=1

where S represents the number of components s,(t) defined by (1),
the IF of each component can be calculated as the first derivative
of the corresponding phase component. This concept has not fuil
theoretical foundation, but it has clear justification when compo-
nents are well-separated in the TF plane.

Further, we observe the WD of the signal x(n). well known for
its advantageous propertties in the IF estimation of noisy signals.
The IFF approach that we present may be applied on other TF rep-
resentations as well.

The WD of x(n) [8] is defined as

K/2—1
WD(n k) = Y wlmx(n+ m)x* (n — mye /7 mK (5)
m=—K/2
where -Kf2 = k < K/2-1 represents discrete frequency index, K de-
notes the length of a real-valued symmetric window w(n), whereas
- denotes complex conjugation. Without loss of generality even K
is assumed. It is also assumed that the discrete signal length is Ng.
For a given instant n, the IF (w(n) or Q(nAtl) = w(n)/At) is esti-
mated as the WD maximum position [68.25]:

k= arg maxWD(n, k). (6)

This simple IF estimator is a common tool in practice. However,
a high noise causes the WD maxima to be located away from the
IF points, thus resulting in erroneous IF estimation [7.8].

The state-of-the-art approach overcoming the IF estimation
problem in high noise is an instance of VA, originally introduced
in (4}, whose performance is reviewed in [6]. This algorithm com-
bines a non-parametric method based on the WD maxima with
the minimization of IF variations between consecutive points. As
the VA incorporates a criterion thatr assumes slow IF variations be-
tween consecutive points, it is sensitive to fast [F variations.

3. IF estimation by using ant colony optimization algorithm
3.1. The review of basic ACO concepts, notation and terminology

Basic ACO algorithm is explained in [46], while details on ACO
applications in edge detection and feature extraction can be found
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in {49-53]. The discrete WD, i.e. a matrix of size Nx K, where N =
N; - K can be observed as a rectangular grid in which artificial ants
move across adjacent cells. In other words, we observe the do-
main consisted of TF points (n, k) € [0.N) x [-K/2.K/2). Ants are
initially placed at random grid positions, with random orientations.

Transition of an ant from cell (0’ k") € [0.N) « |-K/2.K/2) to a
new cell (n, k) occurs in each iteration /. An iteration is finished
when each ant from the colony moves from a previous position
(n’, k") to allowed neighboring position (n, k). In every cell visited
by an ant a certain pheromone level is added. Pheromone level
deposited at the position {n. k) is denoted by ®(n, k). A matrix
known as the pheromone map ¢ is used to store the pheromone
level for every cell (position) in the observed grid. In this paper,
the pheromone map represents a new TF representation, which is
used for the IF estimation. When a predefined number of iterations
is reached, or another stopping criterion is met, the algorithm ter-
minates.

The general ant transition rule from the current cell (n’, k)
to the new cell (n, k) in iteration I, is defined by probability
P((,’,? 4, (1K), which depends on the pheromone level ®(n. k). and
a heuristic function dm,_k,)(n,k), 146,50- 53], Herein, we use the
adapration of the basic ACO algorithm {405] for the case of digital
images, presented in [50], where this probability is defined as:

@O miyd (k)

¥

. . 2 T = nkyeQn' k'
P<(n?.m(”, k) = 1 Toncqma @Dk Ay o ik .19 € QA )
0, otherwise.

(7

where Q(n’, k') is the set representing the permissible ant’s
movement range, i.e. the local neighborhood of the current ant’s
position (n’, k’); parameters § and ¢ control the influence of
pheromone and heuristic information, respectively [46,50,52]. As
it is emphasized in [45], instead of (P(n, k))# and d, 4o, (n. k)
other monotonic non-decreasing functions g(d(n, k)) of the
pheromone leve] can be used, and several of them are proposed in
the literature, depending on applications [45-55]. In this paper, we
fix £ =1 and adapt the original ACO algorithm via a pheromone
update rule. In the end of each iteration, the pheromone decreases
globally in the whole pheromone map, thus allowing the control
of the pheromone map content by a suitably defined pheromone
update rule.

3.2. Ant colony optimization

3.2.1. Initialization

At the beginning of the optimization algorithm, y percents
of the TF representation points are randomly covered with in-
telligent agents (ants). The initial ant positions (ng. k) € [0.N) x
|=K/2.K/2) are obtained by a random number generator with uni-
form distribution. The initial ant orientations are defined by values
P(n, k) stored in an auxiliary matrix P with elements:

r, (n,k): (no,ko)
0. (n.k)# (ng ko)

where 1 iS a random integer with uniform distribution in the range
{1.2,..., 8}. Each r value corresponds to one of eight possible orien-
tations (1 denotes the upwards orientation, 2 icft upwards, 3 left
etc.). In all subsequent iterations, the ant orientation for the new
cell (n, k) is determined by its movement from the old cell (n’, k').
For example, if an ant moves from (n’. k')= {(n4- 1, k) to (n, k), then
it is upwards oriented, i.e., P(n, k) equals 1. When ant leaves {n’,
k'), the corresponding value in the matrix P is set to zero.

Ants communicate with each other via a crucial concept of
pheromone deposition and evaporation. Initially, the elements of

P(n k) = (8)

i1/2 | 112
L-el
/.;5" 45’"
\

% \
g | AT 0 41/4
\ (n', k) /

RN -135Y
S mo"l - »
1712 120 1/12
Fig. 1. Agent oriented upwards with P(n’, k') =1 and corresponding values of

d( e 4, (n. k)) for possible discrete directions - angles (dots). The permissible ant's
movenient range Q(n’, k') is shaded.

the pheromone map at the positions occupied by ants are set to a
simall positive constant ¢y < 1:

®p.  (n, k) = (no. ko)

) —
S (n. k) = 0. (n. k) # (ng. ko).

(9)

The ant movement and pheromone deposition mechanisms are
crucial for the control of mass behavior of artificial ants [45-56].

3.2.2. Ant transition rule

After the initialization, in each algorithm iteration ants move
according to certain rules. Let us observe one ant’s transition from
cell (n’, k') to a neighboring cell (n, k} e Q(n’. k’). Every agent can
move only to adjacent cells (positions), depositing a certain level
of pheromone on that cell. One cell can be occupied by only one
ant, and ants do not move if they are completely surrounded by
other ants. An iteration ends when all the ants move to adjacent
cells (except the rotally surrounded ones).

An ant chooses a cell to move to based on two criteria: the
pheromone level in adjacent cells (46,50) and its current orienta-
tion {53-55]. Since a discrete rectangular grid is considered. an ant
located at the position (n’, k') in the I-th iteration can move to one
of eight adjacent cells (n, k) belonging to the set Q(n’, k¥’). An ant
at the position (n', k') is shown in Fig. 1, where the corresponding
neighboring cells (n, k) € Q(n’, k') are shaded.

An ant at the original position (n’, k') has a certain orienta-
tion P(n’. k) according to (8), that is, the orientation of the point
(n’, k') towards the adjacent cells (n, k) € Q(n’, k') as depicted in
Fig. 1. Values of P(n’, k') are fixed. P(n’, k') ¢ {1, 2, .., 8). where
P(n’. k") = 1 denotes an upward oriented ant, while other numbers
correspond to the orientations towards the remaining 7 cells in
counterclockwise direction. The orientation has an important role
in the choice of the targeting cell (n, k) e Q(n’, k’). The angles be-
tween an upwards oriented ant at (n’, k') and the adjacent cells
positions are illustrated in Fig. 1. As in [54], a discrete variable
O(n. k) e (0° +45°, £90° +135° 180°} is introduced, depend-
ing only on the position of the cell {n, k) ¢ Q(n’, k') relative to
the cell (n’, k') corresponding to the ant's orientation shown in
Fig. 1. The corresponding angles © . .y (n. k) for other possible
ant’s orienfations can be calculated as:

Ournnk)=0(nk)—[P(n' k') -1] 45 (10)

where ©, 11y (n. k) represents the angle berween the current ant's
orientation and the adjacent cell.

Depending on the application, different heuristic functions
di y(n. k) used for defining the probability (7) have been pro-
posed [45-59]. In this paper, we use the heuristic function
d(O e (n.k)) as defined in [49,53-55], i.e. the function of angles
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Oy gy (n. k) calculated as:

1. @L”/_k/] (”._ k) =0
]/2, ('*)(,,r.k/)(n.k) = +45
d(@(nllk:)(n, k)) = 1/4, (’T)(H/.k')(n' I\') = 190 (]])
1/12, G)U],ka)(n, k) = +135
1/20, ®(ﬂ/.k')(n' k) = 180",

for (n, k) e Q(n’, K').

Heuristic function d(® ., ,(n.k)) in (11) is defined so that
agents most likely preserve the orientarion from the previous itera-
tion, thus d(© s, (n. k)) has the largest value for angle @ (n k) =
0. with the increase of the angle, the value of d(Q, (1 k)
gradually decreases, also decreasing the probability that ant moves
to these directions, as it can be seen in (7). In this way, very
sharp turns are much less likely than turns through smaller angles
[53-55|, which is also in accordance with the IF estimation prob-
lem [6-9.25).

The second parameter that influences the movement of an ant,
and which can be used for the ant colony behavior control, is de-
pendence on the pheromone level ®(n, k), given by a function de-
fined as [4G-54]:

®(n k) )b. (12)

g(@{n.k)) = (‘ T1rsm b

A large value of 8 results in ants heavily attracted by the
pheromone level and vice versa. The parameter § controls rhe ant’s

sensitivity to the pheromone concentration [53-56G/. With the in-
troduced function g{d(n, k)), the probability | /) is now given by
Ab-44]:

)

Pt ey (k)

PP (ANA(B) (1K)
= & Xinksequr k0 EQUTMENA(B 0 o) (LK)

(n. k) e Q(n’, k") (13)
otherwise.

3.2.3. Pheromone update
When an ant moves to a neighboring cell (n, k) € Q(n’/, k'), the
pheromone level is updated according to |46~ ]:

DN (nk) = ¢V k) + uVin k) + & (14)

with £ being a small constant level of pheromone, V(n, k) is
the gradient, i.e. a dynamic pheromone value which is added to
new position (n, k) visited by the agent and p is a paositive step
that controls the pheromone amount added by V(n, k).The fixed
pheromone amount & is added in order to ensure that, after the
pheromone evaporation at the end of the current iteration / by
value &, all visited positions have the pheromone level at least
equal to the gradient V(n, k) value |5:-55]. For the IF estimation,
the gradient V(n, k) is defined taking into account the specific na-
ture of the considered problem. It is analyzed in the f{ollowing sub-
section.

At the end of each iteration a constant pheromone amount &
evaporates from all cells, as it is discussed in detail in [45-50G], ie.
for each (n, k) the pheromone map is updated according to

dD(nky—&, SN k) >¢&
0

S (n k) = dD(n k) <&

(15)
If the new pheromone level is negative, then it is set to zero.
The previously described algorithm is  summarized in

Appendix A,

3.3. Pheromone deposition gradient in the IF estimation

For the definition of gradient, the narure of the considered
problem, i.e., the IF estimation, has to be taken into account. The IF

("

i it n

Fig. 2. llustration of the 3 = 3 neighborhoods of (n, k), which correspond (o auto-
term positions. The WD values have been rounded to the nearest integer for illus-
tration clarity.

Table 1
Values of functions (17}, |17} and (18) for 3 x 3 matrices shown in Fig. 2.
(a) (b} (c) (d) (e) (03
W(n, k) 60.310 21,021 25.842 17,167 48,840 8911
=(n, k) 40.44 2767 30.22 27.56 36.67 20.78
Aln. k) 151.032 114,070 171.000 193,662 209,560 204,435
Table 2
Values of functions (17). (17) and (18) for 3 x 3 matrices shown in Fig. 3.
(a) (b) (c) (d) (e) 0
Win k) 43449 ~29.63 —10,920 0 63.33 34222
Z(n, k) 711 -0.78 5 13.44 -1133 23
An, k) 10,488 660 29,140 2440 17496 12,400

estimate should be extracted from the pheromone map, obtained
after the algorithm has finished. To this aim, we use the fact that
although the WD maxima in a high noise environment are likely
to be dislocated from the true IF of the signal [7], at each time in-
stant n one of the largest WD values will still be positioned at the
IF |7,9.25). Dislocation is a consequence of high-level noise peaks
which surpass the WD values inside the auto-terms. On the other
side, it is known that IF variation between two consecutive time
instants should not be large, which is the most common case in
real applications [8]. Taking into account these two facts, we intro-
duce a new gradient V(n, k) form. which defines the pheromone
gradient in (14)

Vink)y=Ww(n k)=(n k)A(n k). (16)
We define the function W(n, k) as

1L o
Win k) - 2_7-.ﬂ Z WD+ j k3 i), (17)
i==1j==1
i.e. as the product of the mean values of columns of the 3 x 3
adjacency in the WD matrix, centered at point (n, k). Namely, if
an auto-term appears within the observed 3 x 3 adjacency of the
point (n, k) then a large value of W(n, k} is expected. It is expected
that an auto-term appears in all three columns of the 3 x 3 adja-
cency, as shown in Fig 2(a)-(f). On the other side, if a 3 x 3 ad-
jacency contains only noise, then W(n, k) has a small value, since
high-level noisy WD points are usually isolated in the TF plane.
Hence, it is expected that only few high-level noisy points exist
in the local neighborhood of (n, k), whereas other points are of
lower level (Fig. 3(a)-(f)). The function W(n, k), whose values are
presented in Tables 1 and 2. has high values for the matrices from
Fig. 2, containing the WD auto-terms, and lower values for the ma-
trices in Fig 3, which represents 3 x 3 neighborhoods of point
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Fig. 3. lllustration of the 3 x 3 neighborhoods of (n. k), which correspond to non-
IF positions (noise). The WD values have been rounded to the nearest integer for
illustration clarity.

(n, k) placed outside the auto-terms, containing noise only. In this
way. \b{n, k) emphasizes the auto-terms presence in the gradient
calculation (16}

We define Z(n, k) as the mean value of the observed 3 x 3
adjacency, i.e.

M_
M_.

=(n k) = WD(n + J, k +1). (18)

]

1
9.
i=—1j=-1

.
1l

It is expected thart Z(n, k) has small values for noisy WD points
(outside of the auto-terms), since high-level noise peaks are usu-
ally isolated |G-9|. On the other hand. due to the windowing ef-
fects in the WD calculation and the fact that only linear FM (LFM)
signals are ideally concentrated in the WD, it is expected that if
the local 3 x 3 adjacency centered ar point (n, k) contains an auto-
term, it will occupy three or more points in the neighborhood. If
the signal is not ideally concentrated, even the whole observed 3
x 3 WD sub-matrix may be occupied by an auro-term, thus pro-
ducing a large Z(n, k) value. Therefore, the largest values of Z(n,
k) are expected to occur (or auto-terms. Note that the WD values
are Gaussian in nature, with non-zero mean within the auto-terms
and zero mean outsice the auto-terms

Now consider again the matrices shown in Figs. 7 and 2. The
corresponding values of Z(n, k) are shown in Tables 1 and 2 (sec-
ond rows). This function mainly produces higher values for the ma-
trices from Fig. 2 than those from Fig. 3. The exception is the ma-
trix shown in Fig. 3(f), whose Z(n, k) value exceeds that of the
matrix shown in Fig. 2(f). This problem is solved by incorporating
the function A(n, k) in [ 16), which is shown to output significantly
higher values for the matrix in Fiz. 2(f) than for that in Fig. 3(f).
The funcrion A(n, k) takes into account the fact that the IF has
small variations at consecutive time instants n, also in the 3 x 3
neighborhood of the point WD(n, k):

1 1
Anky=max || [TWDm+ik+i) [[WDm+ik-i

i=—1 i=—1

1 1
[TWD+ik—1) []wDn+ik)
Ii=—1 | 1
1

ﬂ WD(n ik 1) ] (19)

The first term is the product of the elements on the main di-
agonal of a 3 x 3 neighborhood of the point WD(n, k), whereas
the second term is the element product on the secondary diagonal

Table 3
Gradient values {16) calculated for matrices shown in Fig. 2 (second row) and
Fig. 3 (third row). Values are scaled by 10'° for better presentation.
(a) (b) () {dy (o) 0
Viln, k)10 3684 6.63 13.36 916 3753 3.78
Va(n, k)10 00324 0O —-0.1591 0 -0.0013  0.0976

of this neighborhood; third, fourth and fifth elements are element
products in the first, second and third rows of the neighborhood,
respectively. The heurisric function (19) takes the maximal value of
the vector consisted of these products.

If the WD values corresponding to the IF are within the ob-
served 3 x 3 neighborhood of the point WD(n, k), at least one of
the products in (19) is expected to have a large value. On the other
side, one or two isolated WD points with a large value correspond-
ing to the noise will probably produce smailer A(n, k) values.

The values of A(n, k), catculated for 3 x 3 neighborhoods of the
point (n. k) given in Fig. 2 and Fig. 3, are shown in Tables 1 and
2 (third rows). Clearly, this function gives preferences to matrices
with large values distributed along rows or diagonals of the matrix.
These shapes most likely correspond to the IF points {auto-terms).

Finally, the heuristic functions product in (16) results in a large
value for the neighborhood of auto-terms. Table 3 summarizes the
gradient values for the matrices in Fig. 2, denoted as V,{(n, k), and
the matrices in Fig. 3, denoted as V,(n, k). As expected, V{(n, k}
exceeds V,(n, k) to a great extent in all considered cases.

The summary of the proposed algorithm for the pheromone
map generation is given in Appendix B.

3.4. Population size variation

In the literature, methods for the variation of agents population
based on both aging/dying and reproduction process, i.e. positive
and negative feedback are presented [49,53--55]. Our adaptation
consists of the elimination of the agents which move through un-
desirable positions, i.e. points where the pheromone level is suffi-
ciently low during a certain number of iterations. In this way, ants
which are too far from the TF points corresponding to the auto-
terms are eliminated.

The IF estimation is performed using the pheromone map .
Since the pheromone deposition conrrol is established through the
gradient (16]) in (14) for each ant independently and locally, our
aim is to find a method for additional control of the ants num-
ber, based on the pheromone amount which they have left dur-
ing the previous iterations. In the considered framework, it is
important to eliminate as many undesirable agents as possible,
since their pheromone trace usually causes large estimation errors.
Namely, the idea is to give an advantage to ants that often move to
cells corresponding to the auto-terms, depositing more pheromone
in these cells. This can be measured with the gradient V(n, k).
The population reduction concepts are implemented as presented
below.

At the beginning of the algorithm described in Appendix A, in
Step 0. a fixed level of energy 1 + « is assigned to every ant, stored
in auxiliary matrix E:

1+« (nk)=(ng ko)

S0} ¢) =
EO k) = (n.k) # (no. ko). w

The parameter o < 1 is a small positive constant. The initial «
value gives agents a chance to survive during at teast two following
iterations [49,53-55].

Ler us observe again one ant’s transition from cell (n’, k') to a
neighboring cell (n, k) € Q(n’, k). In Appendix A, Step 2, the en-
ergy corresponding to new position determined by the probability
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Table 4

Parameter values used in the proposed approach. The Range row represents the ranges of tested values of
some parameters that produced satisfactory results in numerical examples.

Parameter v 3 a o] B 8
Value 210 70% 0.07 0.7 0.2 35 02
Range o= LY 0% oy < 90% 0 <=& <01 Ocwel 01 <dg=02
1715 updated according to [45-54]: Z(n, k) ~ ¢ and A(nk) ~ ¢3. Therefore, when the gradient “de-

EMDn k) = ED ' K) +anVin k). (21)

where the gradient V(n, k) calculated in (16) is used. Then, the
energy matrix E is updated by setting the element corresponding
to the previous ant position (n’, k') to zero, i.e.:

EHY ' k) = 0. (22)

In Step 3, the energy level of all ants kept in the matrix E is
decreased by «. for every

(n, k) € [0.N) x [=K/2,K/2)
EMD (n k) = D (n, k) —«r. (23)

In this step, all ants at positions with energy E(n.k) <0 are
eliminated by removing the corresponding elements of the matrix
P, for each (n. k) € [0. N} x [—K/2.K/2):

P (n k) = 0 IEY D (n. k) < O. (24)

Since the population of agents is decreased during the itera-
tions when the IF is detectable, the stopping criterion of the al-
gorithm can be the minimal permirted number of agents. obtained
from the matrix P as the number of non-zero elements. In the case
of ideally concentrated TF representation of a non-noisy mono-
component signal, the IF will have exactly N non-zero values, ie.
one value for each time instant n, if it is defined for every N. How-
ever, if we take into account thar in a high noise environment
the algorithm can remove a certain number of auto-term points,
as well as the fact that, in general, signals are not ideally concen-
trated, the algorithm can be stopped when the number of agents
falls below 80-100% of N.

3.5. Parameter discussion

Determination of the optimal ACO algorithm setup is a complex
task [44-59], especially in applications such as image processing,
due to a large number of parameters [4%-56]. The same holds for
the application of ACO in the IF estimation problem. It is also im-
portant to emphasize that the parameter setting of ACO could not
be mathematically derived [50]. Hence, in this pdper. as it is usual
in ACO applications [44-59], a part of suitable parameters is de-
termined empirically, whereas the certain number of them is set
based on detailed analysis and numerical results in the literature
[49-56], as it is presented in the sequel. In Table 4, the set of pa-
rameters used to obtain numerical results in the paper is given. In
Section 4.4 some numerical results regarding the parameter selec-
tion are presented.

1. Step ¢ represents one of the most important parameters in the
pheromone update (14) and energy update (/1. In the pro-
posed algorithm, the p value is heuristically determined. [t is in
fact a normalization factor for the proposed gradient { 1], and
thus it has 1o be set in accordance with the gradient structure.
If the step is too small, the influence of V(n, k) is not strong
enough to dictate the pheromone deposition on the auto-term
points.

Let us denote with ¢ the maximal value of WD(n. k) 3 x3
neighborhood, when it belongs to an auto-term. If we analyze
the functions (17), (18) and (19), it follows that W(n, k) ~ ¢,

tects” an auto-term, it is proportional to ¢’. Generally. ¢ is not
constant due to amplitude variations and noise influence. In ad-
dition, it is generally smaller than the global TF maximum

L= r(mi))({WD(n.k)}, (n. k) e [0.N) x [=K/2,K/2). (25)

Hence, we propose to choose the step p in (14) and (21), used
for scaling the gradient V(n, k), as follows

1
n > Ik (26)

Note that although the same fixed value of the step p = 2/L% is
used for all presented numerical results, a more suitable choice
of this parameter may lead to better estimation results of the
proposed approach. The condition (26) is experimentally evalu-
ated as shown in Section 4.4.

2. The next important parameter is the initial population size, de-
fined as the percentage y of the product N x K, where N and
K are the TF grid dimensions. If the initial population is set
too small, there is a risk that agents will be eliminated from
the TF plane before they even approach the auto-terms. More-
over, there is a risk that, due to the auto-terms corruption in a
high noise environment, only a small number of ants will reach
the auto-terms, deposit pheromone according to (14) and con-
sequently attract other ants. In addition, the population control
using (21) would not be efficient. In this case, it is reasonable
to choose a population size which is not too low. We have an-
alyzed the performance of the proposed method with various
values of y and it has been shown (Section 4.4) that 0.5 < y <
0.9 cannot endanger the algorithm output. Thus. in this paper
y =0.7 is used for all presented results.

3. The constant & is known as the pheromone evaporation rate,
which is used to avoid limitless deposition of the pheromone
trails and restrain the ants from choosing the same cells [50].
It is also the part of the pheromone update rule (14), ensur-
ing that all positions visited by ants have the pheromone level
at least proportional to the normalized gradient after the evap-
oration. Our numerical results indicate that & <0.1 should be
used.

The pheromone constant ®q used for the initialization of the
pheromone matrix in (Y) can be set such that &3 < 0.2. In
this way, during the first few iterations pheromone level still
remains positive in these cells after the evaporation. We have
tested many proposed values of this parameter [49-54] with
different signals and different SNRs, and our experimental re-
sults have shown that in the range of values presented in the
literature 0.1 < $g < 2 algorithm is quite robust to the selec-
tion of this parameter at lower SNRs, whereas it should have
smaller values ®y « 0.2 at higher SNR values.

We have found suitable to use values ¢ =0.07 and ¢y = 0.2 ob-
tained empirically and confirmed numerically as presented in
the literature [49,53,54].

4. Parameter « is used for the energy update (21) and for the en-
ergy decrease in (23), similarly as the parameter £ is used in
the pheromone update process. Parameter « is originally intro-
duced in {49,53,54|. However, unlike the pheromone that is re-
lated to a position in the pheromone map, the energy is asso-
ciated with the observed ant. According to (21), when an ant
moves, the energy matrix is updated in a way that the energy
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in new agent’s position (n, k) is calculated based on the energy
in previous agent's position (n’, k'). This fact explains the need
for new parameter, different from &. This parameter dictates the
rate of energy decrease, and the dynamics of ant dying process.
A too large value leads to the elimination of all agents. How-
ever, note that in order to prevent this. we have proposed that
the algorithm rerminates not only when the maximal allowed
number of iterations Imax 15 reached, but also when the num-
ber of agents falls below 100% of N, to ensure that a reasonable
number of agents remain to perform the estimation. Since the
gradient normalized with the parameter ¢ is used in {21), we
experimentally determined value of the parameter as ¢ =0.7.
This value is used in all presented numerical results, and it has
shown a robustness to [F form, SNR level or TF plane dimen-
sions N and K, as it is shown in Section «

5. The last parameters are the design palamewls £ and §. The
parameter £ is well discussed in wide ACO literature [45-59].
It controls the influence of the pheromone on the transition
of ants in {13), whereas § controls the ant’s sensitivity to the
pheromone concentration [53-56]. We use the values of these
parameters 8=3.5, § =0.2 as proposed in [33-5G].

3.6. The IF estimation from the pheroinone map

The pheromone map ¢ can be understood as a new TF rep-
resentation robust to high noise influence, Thus, the IFF estimation
problem can be formulated as:

/A<:argm’:axd>(n,k). (27)

Median filter could be applied on the IF estimation to connect
discontinuities (due to dying of agents) in the [F estimation pro-
vided by the pheromone map [14]. Since the variable population
approach is used to remove as many TF outliers as possible, the IF
estimation is conducted based on the kept points. In a high noise
environment, several percents of the TF points corresponding to
the auto-terms is expected to be removed due to high noise cor-
ruption, and thus, interpolation techniques such as cubic interpola-
tion [GO] could also be used for the proper IF estimation in regions
with missing auto-term values. Instants with eliminated points are
easy to detect, since the estimation (27) is equal to zero at these
instants. When the ending points are missing, their values should
be set to the nearest non-zero values, or extrapolation can be used.

4. Numerical study and examples

The presented theoretical concepts and the proposed estimation
procedure’s performance are verified through a set of numerical
examples. The WD is calculated using the Hanning window.

We set Ipax =100 and all parameters as in Table 4. Median
filter with length 3 is applied in the IF estimation (27) in all
examples.

Note also that the true IF is obtained from the corresponding
non-noisy WD, or other considered TFR. In this way, other error
sources, primarily the estimation bias due to IF nonlinearity, are
not taken into account. Since our aim is to improve the estima-
tion robustness in high noise, and not to deal with high-accuracy
IF estimation, the true IF is adopted in this manner . The con-
sidered synthetic signals have a unity amplitude. Slow variations
of the amplitude do not affect the algorithm'’s accuracy, ie., these
variations affect the accuracy as the overall SNR affects the accu-
racy of all algorithms analyzed in this section. The considered real
signal has a time-varying amplitude.

4.1. Monocomponent signals

The influence of complex zero-mean AWGN g(n) with variance
a? and with i.id. real and imaginary parts is analyzed in all exam-

D(n,k), ltcration | O(n.k), lteration 2

IWD(n,k)|

v
n (a) n b . n (c)‘.
{(n.k), lteration 3 D(n,k), Iteration 4
_,
<l>(n.k) licration 6 D(nk), teration 100
-

Fig. 4. (a) WD of an FM signal from Example 1. (b)-{i) pheromone map at the end
of ierations 1-7 and 100 {last iteration).

ples. The SNR of the mono-component FM signal (1) is defined as:

2
SNR[dB] = IOIogw(%). (28)

Example 1. Consider an FM signal

.. {35m(n+64) o /n+64\2
x(n) exp(msm<——]2—8— _>_j35< = ) )+8(n>

(29)

of length N, = 256. The WD is calculated for the middle N=128
points, the signal values are defined at instants n e [—N/2.3N/2),
and the window lengrh is K=128. The signal is corrupted with
noise with SNR-- -2 dB The WD of the signal, as the starting point
of the proposed algorithm, is shown in lig. 4(a). The pheromone
maps observed after first 7 iterations, and after the 100-th it-
eration, are shown in Fiy. 4(b)-(i). It can be observed that af-
rer the first iteration a large number of ants have deposited the
pheromone at many TF points. However, due to the gradient influ-
ence in (14), the pheromone has already started to concentrate at
the auto-term, as can be seen from Fig. 4(b).

At the end of iteration 3 {Fig. 4(d)). the number of ants is re-
duced at points outside the auto-term, due to the energy update
mechanism (21)-(24}, and small gradient (16) values, used in {21).

Fig. 5 presents the true IF (circles), the IF estimation obtained
using the proposed approach (red solid line), the WD-maxima
based estimator (dotted line) and the VA-based estimator {blue
solid line) [8].

Example 2. Here, we consider again a noisy FM signal with poly-
harmenic frequency modulation

. 137 (n +32) 5m(n+32)
x(n):exp(ﬂsm( 555 >+ 3sn(~2—56—)>

+ &(n) (30)
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Fig. 5. IF estimation for the signal from Exarmiple
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Fig. 6. {a) WD of a FM signal with poly-harmonic modutation from
{b)-~{i) pheromone map at the end of iterations 1-7 and 100 (last iteration}.

of length Ng =320, defined at time instants n < |-N/2,3N/2),
where the WD is calculated for the middle N= 256 points. The WD
window length is K=64 and SNR=-2 dB

The pheromone map changes over iterations arc¢ shown in
Fig. 6(b)-(i). Fig. 7 depicts the true IF as well as the IF ¢stimations
obrained using the proposed method, the WD-maxima approach
and VA-based estimator. The proposed approach significantly out-
performs the other methods.

Observe the pheromone map (TF representation) after the last
iteration (Fig. 6(i)). It can be noticed rhat some points correspond-
ing to the IF are missing. However, they are easily detectable and,
after the cubic interpolation [60], the IF is reconstructed based on
the existing neighboring values.

4.2. Multicomponent signals

The carried out numerical experiments show that the proposed
method significantly suppresses WD inner interferences. In order

Vi(crhiﬁ o True IF Proposed J

S0r R - R
Q SO {00 150 200 250
n

Fig. 7. [F estimation for the signal from Example 2.

to further illustrate this property, as well as the property of the
proposed method to suppress cross-terms, consider a multicompo-
nent signal comprised of two sinusoidally FM signals:

x(n) = ex 21 sin <——3ﬂn) + '_]00”)
- p(’J 128 )"/ 128
2 .30
+ €xp (j271 cos (%) 11—27;’1) +e(n). (31)

In the non-noisy signal case, the cross terms as well as inner in-
terferences are suppressed by the proposed algorithm (Fig. 8, first
two plots). It can be explained by the similarity of these distur-
bances with noisy TF regions, which are detected and suppressed
by the proposed pheromone deposition gradient. When the signal
is corrupted with noise, the algorithm performs similarly to the
non-noisy case. The second two plots in Fig. 8 show the WD and
pheromone map of a noisy signal with SNR=-1dB

The IF estimation of multicomponent signals can be performed
using the obtained pheromone map and classical estimation ap-
proaches [5,8,25]. The approach based on the elimination of the
strongest components cannot be successfully applied here, since
the pheromone level is not dependent on components amplitudes,
and this information is lost in the pheromone map. Hence, the es-
timation can be performed by identifying the regions of compo-
nents and estimating IF of each region separately [25].

4.3 Statistical analysis

For all following experiments, we have calculated the MSE ver-
sus variable SNR (from —10 to 5dB in Experiment 1 below, and
from —10 to 13 dB for Experiments 2 and 3 below, with an 1dB
step). The MSE is defined as

MSE — E[k(n) — kr (m)]]. (32)

where k(n) represents the estimated IF and kg(n) the true IF fre-
quency index, i.e. position of the WD frequency bin closest to the
true frequency for a given n. The MSE is calculated over 100 itera-
tions. We consider the IF estimation using the WD-maxima based
approach, the proposed ACO-based algorithm and the VA-based es-
timator [8]. The IF variations are measured using the instantaneous
chirp rate, that is, the second derivative of the signal (1):

M) = " (1). (33)

For all considered signals. we calculate (33) for their
continuous-time form, and then take the maximal absolute value
ol the discretized instantaneous chirp rate in the considered inter-
val of discrere-time index n for which the WD was calculated.
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Fig. 8. Suppression of inner interferences and cross-terims reduclion in multi-component signals. Noise-free multicomponent signal (first two subplots); Noisy multi-

component signal {second two subplots).
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Table 5
Parameter values used in (34) ro define three signals from Exper-
iment 1.
Measure of IF variations
a b c d  based on i1

Signal 1 1 15 2 5 20.6981

Signal 2 2 13 35 317746

Signal3 1 20 6 335403

Experiment 1. Let us consider three signats of rhe form

x(n) = exp [ jasin brr(n + 32)> — dm(n 32)
= exp |jasin { =557 ) +e i

¢ e(n). (34)

The signals are of length Ny =320, defined at n ¢ [-N/2.3N/2),
where the WD is calculated for middle N=256 points. The WD
window length is K =64. Parameters defining the three considered
signals are given in Table 5.

We consider the {F estimarion using the WD-maxima based ap-
proach, the proposed ACO-based algorithm and the VA-based es-
timator [8]. The obtained MSEs are shown in Fiz. ¢ {left, middle,
right) for signals 1-3 defined as (24 with parameters given in
Table 5, respectively. Signals with fast IF variations have been se-
lected in order to confirm good performance of the proposed ap-
proach in such scenarios.

Due to the distributed nature of the optimization, the proposed
approach is robust to the 1F’s shape, i.e. to the IF's non-linearity.
Observing the results in Fig. 9, we conclude that by slightly in-
creasing the IF variations, similar improvement level of the pro-
posed method over VA-based and the standard WD-based estima-
tor is obtained.

Table 6
Patameter values used tn (35) to define four signals ftom Experiment 2.

a b c d e f Measure of IF variations

based on {33)

Signal 1

4 27 3 T 10 9 71.5671
Signal 2 3 35 5 10 5 10 90.1180
Signal 3 5 32 10 3 10 3 102.0618
Signal 4 4 41 3 10 5 10 143.2051

Experiment 2. Let us now consider four signals of the general
form

s(n) = exp (ja sin (___bn(g; 32)) + jccos (——d” (2[; 32))

- jecos (fﬂ(n " 32—))) +£(n),

SH (35)
of length N. =320, defined at time instants n e [—-N/2,3N/2),
where the WD is calculated for the middle N=256 points. The
WD window length is K==64. This type of signal was used in
135} to evaluate the level of IF variations. The parameter values in
35} defining considered signals along with the IF variations mea-
sure values are given in Table 6.
The considered signals have different IF shapes, as well as dif-
ferent levels of IF variations. The estimation results are shown in
10(a)-(d). for signals 1-4 respectively. The proposed approach
outperforms both the WD-maxima based and the VA estimator. It
can be observed also that, in general, as the level of IF variations
increases, the relative improvement of the proposed method com-
pared with the VA estimator also becomes higher.

Experiment 3. With the aim to analyze the influence of the level
of IF variations, we consider the signal of the form

X{(n) = exp (L‘ZE sin (%Lj))) ~&(n)

(36)
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with length Ny =160, defined at time instants n e [ -N/2.3N/2),
where the WD is calculated for the middle N= 128 points. The
WD window length is K=32. it can be easily seen that the sec-
ond derivative of the signal (36) is directly proportional to the
constant a. Hence, by increasing a. the introduced measure ol IF
variations linearly increases. The parameter g is varied in range
113,21] with step 1. Observing the results in F I1, we conclude
that by increasing the IF variations, better performance of the pro-
posed method over the VA-based and the standard WD-based es-
timator is obtained. Note that the WD-based IF estimation can be
affected by fast IF variations even in noiseless case, which in turn
can compromise our “True 1F” estimation. However, we have kept
the value of a within the range that ensures a meaningful “True IF"
estimation. In this paper, the estimation hias due to IF nonlinearity
is not taken into account since our aim is to improve the estima-
tion robustness in high noise, and not to deal with bias removal in
the WD-based IF estimation |3},

4.4. Numerical study of parameters

The parameter setup has been determined based on a large
number of staristical tests as well as on the results presented in
the literature [49-56{. Some statistical results for parameter selec-
tion are presented next.

In our numerical analysis we have observed four noisy signals
of the form

x(n) = exp (j%o sin (%ﬁ)) +e(n)

with a ¢ {12, 15, 18, 21}, having a different level of IF variations, as
discussed in Section 4.3. The signal length is N; =160, defined at
time instants n e |[-N/2 — K72, N/2 +K/2), where the WD is calcu-
lated for middle N=128 points. The WD window length is K=32.
Three different SNR values are considered: 50dB, 3dB, and 0dB
In every experiment, for each observed signal, each SNR level and

(37)

each parameter value, MSE (32) was calculated based on 100 in-
dependent realizations of noisy signals. The last set of parameters
was tested on a signal with a=15.

During the variations of each considered parameter, all remain-
ing parameters were fixed to their values presented in Table 4 (first
row).

The step p was varied in a wide range, from 10~ to 102,
with each value 10 times higher than the previous. The results
are shown in Fig. 12 (first row). The vertical line shows the value
w = 1/L% used for each considered signal, with L defined in (25),
indicating thar the maximal WD value can be used to define the
lower bound for the step. It can be observed that for each SNR
value and each considered signal, the step satisfying (26) produces
approximately the same MSE value. It can be also concluded that
the estimarion breakdown occurs only when a too small step is
used.

The initial population size, defined as the percentage y of the
product N x K, was varied from 10 to 100%. The results shown in

1w, 12 (second row) indicate that y values greater than 50% and
smaller than 90% guarantee the lowest MSE. The vertical line indi-
cates the value of 70% used for the results presented in this paper.

The pheromone evaporation rate £ was varied in a wide range,
from 102 to 1 with the step 0.02 and from 1.5 to 5 with step 0.5.
According to rhe obtained results shown in Fig. 12 (third row) best
estimation results are obtained for & <0.1. This is in accordance
with the results presented in the literature [49.53,54), where the
value & ~ 0.07 is suggested, which is also used in our numerical
yesults (vertical line).

The energy update constant « was studied together with the
stopping criterion of the algorithm, as these two parameters are
closely related. Namely, we propose to stop the algorithm when
the number of agents falls below 100% of N. Parameter & was var-
ied from 0.1 to 2, whereas the stopping criterion was varied from
40% of N to 400% of N. From Fig. 12 (fourth row) we can observe
that the algorithm is quite insensitive to the values of « in the
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considered range (except for small MSE increase {or values larger
than 0.5 at high SNR (please have in mind that MSE is not shown
in dB)), as the gradient used for the energy update (21} is already
scaled with step . In this paper. we use ¢ =0.7.

4.5. Real signal

We consider a real-life signal to additionally verify the proposed
merhod. A mong-component bat (Myotis Daubentom) echolocation
sonar signal s(n) is observed. It was recorded with a sampling fre-
quency of 230.4 kHz and an effective bandwidth of |8 kHz, 80 kHz|
as described in [42]. Estimation of parameters of these signals, es-
pecially IF, is a well-known problem in TT signal analysis [41-43].
We added artificial additive Gaussian noise with SNR=-3 dB Since
the observed signal is real-valued, the corresponding Hilberr trans-
form is calculared prior to WD calculation, to avoid the appearance
of the component at negative frequencies and cross-terms [6,% 28]
The WD of the original signal s(t) and the corresponding noisy ver-
sion, calculared with the Hanning window of length K - 128 are
shown in Fig. 13{a) and (b) respectively. The estimation results
are shown in Fig. 13(c). It can be observed that the WD-maxima

based estimator does nor provide accurate resuits except in short
ranges where the auto-term is very strong. The VA-based estima-
tor provides accurate estimation results, with the exception of cer-
tain number of errors in the first half of the considered time in-
terval where the signal strength is low. As it can be observed in

13(c), the IF estimate obtained by the proposed approach
matches the true IF.

4.6. Applicability to other time-frequency representations

The presented algorithm can be applied to other TFRs hav-
ing the property to concentrate the signal energy at or around
the IF. The approach has been successfully applied to STFT, S-
method [29], reassigned spectrogram [36,37], and wavelet trans-
form [30,32,39]. TFRs are shown for clean and noisy signals, as
well as the pheromone maps obtained in the noisy signal cases.
Cstimation results are shown for TFR maxima approach (in case
of complex TFRs absolute value is exploited) and for the proposed
technique and the VA applied on noisy TFRs.
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Fig. 14. STFT of a non-noisy sinusoidally modulated signal (first raw) and the noisy
signal {second row); the obtained pheromone map (third row).

The noisy signal of the form

x(n) = exp <j22sin ( 147r% 32)) ¢ ji6cos ('7"7'(21\)112'))

+ ﬂecos(w(;—,\;m)) +£(n) (38)

is considered for the case of STFT (SNR level of —1dB), whereas
the signal

x(n) = exp (j8 sin (36-1-(-;,\/% 322) + f6cos (F)n(;%\;[_BZ))

+ j10cos (TELIDY) e (39)

is considered in the case S-method (SNR leve! 4 dB). As the STFT
is complex valued, its absolute value is used as the ACO algorithm
input. Both signals have length Ns =320, and they are defined at
time instants n € [-N/2.3N/2), where the TFR is calculated for the
middle N=256 points, with window length K=64.

The STFT of the non-noisy and noisy signal as well as the ob-
tained pheromone map are shown in Fi¢ 14, The estimation results
are given in Fig. 15 for the proposed method, STFT absolute value
maxima and the corresponding VA estimartor. For the case of the
S-method. the results are shown in Figs. 16 and 17,

VA o True [F

Propoﬂ

0 50 100 150 200 250

n

Fig. 15. IF estimation results for the signal {38) based on STFT.

ISM(n.k)| — original signal

0 50 100 150 200 250

0 50 100 150 200 250

0 50 100 150 200 250

Fig. 16. S-method of a non-noisy sinusoidally modulated signal (Arst row and the
noisy signal (second row): the obtained pheromone map (third row).

For the case of reassigned spectrogram, we consider the sig-
nal

x(n) = exp (j2 sin (%’%ﬂ) +j22cos (6—7{%25
+j20cos(5”(gM 3Q))+5(”)» (40)

The signal length is Ny =320. The reassigned spectrogram and
the obtained pheromone map are shown in Fig. 18, where the SNR
of 1dB is considered in the noisy signal. From Fig. 19 we can ob-
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Fig. 18. Reassigned spectrogram of a non-noisy sinusoidally modulated signal (first
row) and the noisy signal (second row); the obtained pheromone map {third row).
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Fig. 19. IF estimation resules for the signal (40) based on the reassigned spectro-
gram.

serve that the reassigned spectrogram maxima based estimator has
outliers that both ACO and VA estimators can correct.
In the case of wavelet transform (Morlet wavelet) the PPS signal

o /n+32\ . /n+32
= — J50( —— i g(n). 4
x(n) exp(;Sn( S ) J ( M )) £(n) (41)
is considered. The signal length is Ns =320. The scalogram is
shown with discrete frequency indices k in Fig. 20, whereas the

estimation results for wavelet transform is shown in Fig. 21 for the
SNR level of —4dB We may observe that the proposed approach

WT — original signal

200
¢ .
] ="
0
0 50 100 150 200 250 300

n
WT- noisy signal

0 50 100 150 200 250 300

0 50 100 150 200 250 300

Fig. 20. Scalogram of a non-noisy sinusoidally modulated signal {first row) and the
noisy signal (second row); the obtained pheromone map (third row).
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50 100 - 1.%0 Z(I)O 2;0 50
"
Fig. 21. IF estimation results for the signal (41) based on the wavelet rransform.

shows better results at higher frequencies where the signal energy
concentration is fow.

4.7. Time-frequency plane splitting on non-overlapped subintervals

The PPS signal

, n—96y\> n+ 32
x(n) = exp (—112007{<?2- ) +1100<ﬁ)> +e(n)

(42)

of length Ns =320, defined at time instants n e [-N/2, 3N/2) is
considered, where the WD is calculated for the middle N=256
points. The WD window length is K=64. The WD TFR plane is di-
vided into non-overlapped strips of width 8, 16, 32, and 64. The
proposed algorithm is applied on each strip (subinterval of the
rime axis) separately and the MSE in the IF estimation was cal-
culated, for various SNR levels based on 100 signal realizations for
each SNR level. The results are provided in Table 7. For comparison,
the MSE results obtained when the algorithm is applied on the en-
tire TF plane are also presented in the table. We can conclude that
good results are obtained even for subintervals of length 16 and
32. whereas in the case when the TFR plane is divided in strips of
width 64 results are very close to those obtained when the algo-
rithm is applied on the entire TF plane.
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Table 7

MSE of the IF estimation based on WD and the proposed algorithm shown for different subinterval lengths.

SNR (dB|  MSE |dB]| subinterval size: 8 MSE |dB] subinterval size: 16 MSE (dB) subinterval size: 32 MSE {dB] subinterval size: 64  MSE [dB] Entire TF plane
3 12.69 -2.29 —-4.79 -4.95 -5.07

2 12.22 -2.54 —4.06 —4.81 -5.06

1 12.71 1.31 —1.53 -3.10 -3.54

0 12.63 9.1 -0.08 -0.12 -1.06

-1 14.08 8.88 7.99 4.06 3.64

-2 16.55 13.44 9.99 10.53 10.52

-3 17.98 16.48 15.06 14.70 13.64

5. Conclusion

The modified ACO-based algorithm is proposed for the IF es-
timation in high Gaussian noise environments. The algorithm is
adapted to the IF estimarion from the WD of the considered sig-
nal. The pheromone deposition gradient is developed based on the
two important [F properties: IF should pass through as many as
possible points of the WD with highest magnitudes, whereas the
IF variations between two consecutive points should not be too
fast. The varying population concept has been introduced to im-
prove the IF estimation. The estimation performance of the pro-
posed algorithm is illustrated with numerical experiments includ-
ing a real-life signal, which clearly confirm that it outperforms the
WD-maxima based estimator in high noise environments. More-
over, it outperforms the state-of-the-art VA-based estimator when
IF fast variations are involved. The presented approach is applicable
to other time-frequency representations as well. Algorithm param-
eters were studied in extensive statistical test, showing the robust-
ness of the approach to parameter selection in wide ranges. The
atgorithm was compared with the VA and the WD-maxima estima-
tors in statistical tests with various signals with different levels of
IF variations, measured using the maximal instantaneous chirp rate
of the considered signals. The presented algorithm can be applied
in post-processing of WD, reducing inner interferences and cross-
components in multi-component signals. The applications in post-
processing of multi-component signals with close components as
well as in real practical scenarios are the part of our further re-
search.
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Appendix A

Summarization of the basic ACO algorithm is given as follows.

Step 0: Place the agents at random positions and with random
orientations over the discrete grid, by forming the matrix P
according to (8). [nitialize the pheromone matrix ¢ according to (U

Repeat steps 1-3 lnax times:
Step 1: For every agent compute the probability
the agent to an adjacent cell which
eis characterized by the highest probability and
*is not occupied by other ants.
Update the corresponding elements of the matrix P.

Step 2: For each grid pont (n, k) visited by an agent in Step 1
update the matrix @ using (14,

Step 3: Update the pheromone matrix ¢ according to /151,

. and move

Appendix B

The proposed algorithm for the pheromone map generation can
be summarized as follows.

Input: time-frequency matrix of size N x K

Initialization:

Place ants at initial random positions (ny. ko). by forming the auxiliary
marrix P according to (8} and initialize the pheromone matrix ¢ and
the energy matrix E according to {9) and (20). respectively. Form the
auxiliary orientation matrix d according to (11).

Calculations:

While the number of iterations is less than In. and the number of
non-zero elements in P is larger than 80-100% of N repeat:

Step 1: For every non-zero element in P compute probabilities

3. based on (11 and (12), and move the agent to an adjacent cell
which is characterized by the highest probability and which is not
occupied by other ants.

Update the corresponding elements of position matrix P.

Step 2: For every grid point visited by the agent in Step 1, calculate
the gradient V{n, k) according to (16). Update the pheromone matrix
® using ‘14; and the energy matrix E using (21) and (22).

Step 3: Update the pheromone matrix ¢ according to (15). Update
the energy matrix E according to (23). Update the mauix P
according to 24

Output: pheromone marrix ¢
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ABSTRACT

A solurion of the notoriously difficult problem of characterization and decomposition of multicompo-
nent multivariate signals which partially overlap in the joint time-frequency domain is presented. This
is achieved based on the eigenvectors of the signal autocorrelation matrix. The analysis shows that the
multivariate signal components can be obtained as linear combinations of the eigenvectors that minimize
the concentration measure in the time-frequency domain. A gradient-based iterative algorithm is used in
the minimization process and for rigor, a particular emphasis is given to dealing with local minima as-
sociated with the gradient descent approach. Simulation results over illustrative case studies validate the
proposed algorithm in the decomposition of multicomponent multivariate signals which overlap in the
time-frequency domain,

Instantaneous frequency
Signal decomposition
Concentration measure
Estimation

1. Introduction

Signals with time-varying spectral content are not readily char-
acterized by the conventional Fourier analysis, and are commonly
studied within the rime-frequency (TF) analysis &, Research in
this field has resulted in numerous representations and algorithms
which have been almost invariably introduced for the processing
of univariate signals, with most frequent characterization through
amplitude and frequency-modulared oscitlations [6,9].

Recently, the progress in sensing technology for multidimen-
sional signals has been followed by a growing interest in time-
frequency analysis of such multichannel (multivariate and/or mul-
tidimensional) data. Namely, developments in sensor technology
have made accessible multivariate data. Indeed, the newly intro-
duced concept of modulated bivariate and trivanate data oscilla-
rions {3D inertial body sensor, 3D anemometers /|) and the gen-
eralization of this concept to an arbitrary number of channels have
opened the way to exploit multichannel signal interdependence in
the joint time-frequency analysis [10-12]

The concept of multivariate modulated oscillations has been
proposed in [10], under the restricting assumption that one com-
mon oscillation fits best all individual channel oscillations. In other
words, a joint instantaneous frequency (IF) aims to characterize
multichannel data by capturing the combined frequency of all in-
dividual channels. It is defined as a weighted average of the [Fs

* Corresponding author.
E-mail addresses: | stankoviciese org, [julisadiac e (Lo Stankovié).

hip:/fdx.doi.org/10.1016/j.5igpro.2017.08.001
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Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved.

in all individual channels. The deviation of multivariate oscillations
in each channel from the joint IF is characterized by the joint
instantaneous bandwidth. With the aim to estimate the joint IF
of multichannel signals, the synchrosqueezed transform, a highly
concentrated time-frequency representation (TFR) belonging to the
class of reassigned TF techniques, has been recently extended to
the multivariate model [?}. Following the same aim of extracting
the local oscillarory dynamics of a multivariate signal, the wavelet
ridge algorithm has also been introduced within the multivariate
framework | 10]. Another very popular concept, empirical mode de-
composition (EMD). has been studied for multivariate data, [18-
27]. However, successful EMD-based multicomponent signal de-
composition is possible only for signals which exhibit nonoverlap-
ping components in the TF plane.

By virtue of high concentration and many other desirable prop-
erties, the Wigner distribution is commonly exploited in numer-
ous IF estimators developed within the TF signal analysis [6-8].
However, in the case of multicomponent signals, undesirable os-
cillatory interferences known as cross-terms appear, sometimes
masking the presence of desirable auto-terms. To this end, other
representations have been developed, commonly aiming to pre-
serve Wigner distribution concentration, while suppressing the
cross-terms. One such algorithm is the S-method [G] which was
also used as a basis for the multi-component signal decomposition
algorithm, proposed in [1]. This particular type of decomposi-
tion makes it possible to analyze and characterize signal compo-
nents independently, allowing the IF estimation for each separate
component |1 -4].
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In this paper, multivariate Wigner distribution is studied as
the basis of multicomponent multichannel signal decomposition.
Namely, the strong interdependence of modulations of individual
components within all the available data channels is exploited in
the joint TF analysis, leading to a reduction of undesirable oscilla-
tions present in cross-terms. The inverse multivariate Wigner dis-
tribution matrix is decomposed into eigenvectors which contain
signal components in the form of their linear combination. Further,
a steepest-descent algorithm that enables a fast search for a linear
combination of eigenvectors that produces the best possible com-
ponents concentration is applied. Using the advantages of multi-
channel interdependence, the proposed TF-based decomposition is
shown to be successful in the case of multivariate signals which
overlap in the TF plane. while preserving the integrity of each ex-
tracted signal component.

Notice that the conventional time-frequency decomposition
techniques cannot separate crossing components of arbitrary
forms, which may appear in various signal processing applications.
One such scenario is in radar signal processing. where reflecting
points may assume the same velocity along the line-of-sight. These
components will cross in the time-frequency (time-Doppler) rep-
resentation. The same effect appears when the target signature
crosses with the clutter or stationary body reflecting component in
the time-frequency representation of radar signal return. The pro-
posed method assumes that multiple phase independent received
signals are available. They can be obtained using polarization or
multiple antenna systems [Z23]. Signals with low frequency varia-
tions, when the amplitude changes are of the same order as the
phase changes, can also be treated as signals with crossing compo-
nents. Such are the ECG signals, for example, Multivariate forms of
these signals are obtained using multiple sensors at different loca-
tions. The presented approach can be applied to rhe decomposition
of this class of signals as well.

The paper is organized as follows. Basic theory regarding multi-
variate TF signal analysis is presented in Section 2, In S¢ n 3, the
Wigner distribution of multivariate multicomponent signals is an-
alyzed. In Section 4, we present the basic theory leading 1o the de-
composition of multivariate multi-component signals, whereas the
decomposition algorithm is presented in Section 5. The theory is
verified through several numerical examples in Sectione.

2. Multivariate time-frequency analysis

Consider a multivariate signal

a, ([)e}d’l“)
a; ([)g}’f’z‘\”

xO=| ", M

ay (e ®

obrained by measuring a complex-valued signal x(t) with N sen-
sors, where by each sensor the amplitude and phase of the orig-
inal signal are modified to give a;(()exp(jg;(t)) - o, x(t)exp{j¢,).
If the measured signal is real-valued, its analytic extension

x(0) = xp(t) + jH{xe (D)}

1s commonly used, with xx(tr) being real-valued measured signal
and H{xg(t)} its Hilbert transform. Analytic signal contains only
nonnegative frequencies and the real-valued counterpart can be
reconstructed. This form of signal is especially important in the
instantaneous frequency interpretation within the time-frequency
moments framework.

Since all time-frequency representations may be considered as
smoothed versions of the Wigner distribution, this distribution will
be the starting point for a review of rime-frequency hased multi-
variate signal analysis. The Wigner distribution of a multivariate

signal x(t) is defined as

Dyeierdr, (2)

WD(w.t) = /w X! — %)x(t n

where x'!(t) is a Hermitian transpose of the vector x(t).
The inverse Wigner distribution is then given by

Xt - —)x(r+ / WD (w. 1)l de, (3)

2

The center of mass in the frequency axis of the Wigner distri-
bution of a multivariate signal x(t), defined by (1), is given by

/7 eWD(w. tydw

I WD(w, Hdw

or, more explicitly

A LR
Xt = 53X+ 5o

_ P XOxX () - xM(0x(n))

2 xH(O)x(6) '

where X'(1) = dx(t)/dt denotes derivative in time.

The expression for instantaneous frequency of a multivariate
signal follows straightforwardly from the previous relation in the
form:

(w(t)) -

{w(h)) -

< [)> :I;I 1 n([)a (r)
Lﬁ:l ai(t)

If a multivariate signal is obtained by sensing a mono-
component signal x(t) as a;(t) exp(jg;(t)) = a;x(t)exp(jg;) with
x(t) = A(tyexp(jy (t)) and |dA(0)/dt} « Jdy(n)/dt], then {w(D)) =
d (t)/dt. since dg;(t)/dt = dyy(t)/dt. The condition for ampli-
tude and phase variations of real-valued monocomponent sig-
nals a;{t)cos{¢,(t)) can be defined by Bedrosian’s product theorem
[17]. It states that the complex analytic signal a;(t)exp(jg;(t)) =

tycos(g;(t)) + jH{a;(t) cos(g;(t))} is a valid representation of
the real amplitude-phase signal g;(t)cos(¢;(1)) if the spectrum of
a;{t} is nonzero only within the frequency range (w|<B8 and the
spectrum of cos(¢;(t)) occupies nonoverlapping higher frequency
range. A signal is monocomponent if the spectrum of a;(t) is of
lowpass type.

This analysis can be generalized to other time-frequency and
time-scale signal representations.

A deviation of the signal spectral content from the instanta-
neous frequency is described by the local second order moments
(instantaneous bandwidths). The expression for the instantaneous
bandwidth is obtained from

(4)

200y = —— - 2W R dew — {w(t 2
as(f) ST (OX() /_w(u D(t. w)dw — (w(t))
D Dl
- X (Ox(0) ~ (0@
For the signal in (1) it has the following form:
02([) — S‘i\v’ } (a”(f))z Ln 1 an [)a”(
’ 257, ad(0)

In general, for the case of multicomponent signals, the compo-
nents are localized over more than one instantaneous frequency.

3. Multicomponent signals

Consider a mulricomponent signal

I
x(t) = pr(()
p
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the components of which are of the form
X, (t) = Ap(0)e/¥eit)

with the component amplitudes Ap(t) having a slow-varying dy-
namics as compared to the variations of the phases (1), ie,
[dAp(D)dt] < |dy p(t)/dt]. The corresponding multivariate signal is
then given by

apXp()eson
P apxp(t)elve
p2ip
X(t) =" , , (5)
p=1 :
appr([)eJ‘/’pN
The individual components x; (t),.... xp(t). measured at differ-
ent sensors, differ in their amplitudes and phases but share the in-
stantaneous frequency wy(t) = dyr,(t)/dt corresponding to (wp(t))
in (4), with p being the component index.
The Wigner distribution of this multivariate multicomponent
signal is
[
WD(w. t) ZZL/ O il g X p([ + I )X(’(f )Q’W —@ylp- Jnud.(
p=lg=t =177

with i being the sensor index. It may be written as 4 sum of auto-
terms and cross-terms

Y

~

WD(w. ) / Xp (U + 5)x(t - e ¥ldr
p=1i=1 ~
P P N .
+ ZZZQD,%,/ Xplt 4+ 50 (L — Syen vwlem it dr,
p=14q=1 j=1
qip
= WDy(w.t) +WD:(w. t) (6)

The phase shifts of the components of the multivariate signal in

cancel out in the auto-terms WD.{(w, t). This important prop-
erty implies that the auto-terms, obtained from each variate of a
multivariate signal, are summed in-phase, independently from the
(different) initial phases in the individual signal components. In
the cross-terms, the phase shifts do not cancel-out in the resulting
WD (w, t), leading to an out-of-phase summation. The cross-terms
in the multivariate case are a sum of N signals with arbitrary (ran-
dom) phases. They are consequently reduced with respect to the
Wigner distribution of an univariate signal. Therefore, for a large N
we would expect the auto-terms only, while the cross-terms will
tend to a small value with respect to the auto-terms. it is ex-
pected that the cross-terms, for a large number of sensors N, be-
have as a time-frequency dependent zero-mean Gaussian random
variable, the variance of which depends on the cross-terms value,
var{Wb(w, t)} = 02 (WDc{(w, t)). The auto-terms are dererministic
for a given signal, since they do not depend ot random phases,
as seen in the corresponding Wigner distribution term WD,{w, t).
This means that for a large N

WD(w, t) ~ N(WDy(w, t), o> (WD (w. 1))
4. Inversion and signal decomposition

The inversion of a Wigner distribution ol a multivariate signal
in the analog domain is given by

H _ L/ (f] +f2 > Jwlty =)
XHx(h) = o | WD{— & dw.

By the discretization of angular frequency, w - kAw. and the time,
{y =mAL ) - myAL with an appropriate definition of discrete
vdalues, we easily obtain

K/2

X ()x(m) = o5 3 WD(L— k)

k=—K;2

-._-k(lh-—nz} (7)

Upon introducing the notation

K72

Rimm) = gy 3 W(BS 2 )erdirkinon), (8)
kf~K/2

we obtain

R(ny. my) = ¥ (n2)x(my). (9)

Therefore, for multicomponent multivariate signals, the inver-
sion produces a matrix with the elements of the form

N PP

DS apiargixp (ny)x; (ny)elPn $w, (10)

i1 p=tg=1

(ny.ny) =

If we now use the assumption that the cross-terms in the Wigner
distribution of multivariate signals can be neglected with respect
to the auto-terms summed in phase, this yields

N P P

Rmm) = 303 abxp(n)x; () = 3 Bpxp(n)xp(nz) (1)
i=1 p=1 p=1

where By - ¥ a2,

As for any square matrix, the eigenvalue decomposition of a
K x K dimensional matrix R gives

K
=3 M (e (), (12)

p=1

R=QAQ

where A, are the eigenvalues and gu(n) are the corresponding
eigenvectors of R. Note that the eigenvectors qp(n) are orthonor-
mal,
For a P-component signal, in a noiseless case, the elements of
this matrix are
P
R(ny.np) = Apqp(m)gy (). (13)

p=1

Let us consider several special cases:

—

For a univariate signal and the Wigner distribution, the signal
itself is equal to the eigenvector q;(n), up 10 a scaling by a
complex-valued constant [1], with the corresponding eigenval-
ues Ay =Ex. 2y -0, Ak = 0. The fact that the Wigner distri-
bution based inversion produces only one nonzero eigenvalue
is also used to check if a given two-dimensional function is a
valid Wigner distribution.

If the components of a multicomponent univariate signal do not
overlap in the time-frequency plane, then it is possible to calcu-
late the distribution which will be equal to a sum of the Wigner
distributions of the individual signal components. This calcula-
rion is performed using the S-method and the property (11:

N
~—

P
=3 WDp(n k). (14)

p=1

SM(n. k)

Since the non-overlapping components are orthogonal, the

eigenvalue decomposition will produce
Bpxp(n) — Apqp(n), p=1,2,....P

where B, iS a constant. Note that, by definition, the energy of
the corresponding eigenvector is equal to 1,

lap(m]* = 1. (15)

We can conclude that

V= (Vasam) (Visanm)

B,,x,,(n)x
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and

- 2 K/2
Ap _.|I\/qu,,(n)jl = 1By (M* = Y Bpxi(n) = Bpks,.
: ' K2

n

where Eyp is the energy of the signal pth component. The eigen-
vector gy(n) is equal to the signal vector x,(n), up to the con-
stant amplitude and phase ambiguity.

If the signal components x,(n) overlap in the frequency plane,
then the decomposition on the individual components is not
possible using the state-of-art methods. except in cases of quite
specific signal forms (such as linear frequency modulated sig-
nals, using chirplet transform, Radon transform or similar tech-
niques [14,::], or for sinusoidally modulated signals using in-
verse Radon transform, {1G,17]). In general. these kinds of sig-
nals cannot be separated into individual components in the uni-
variate case. However, the multivariate form of signals reduces
(changes) the cross-terms in the Wigner distribution. thus of-
fering a possibility to decompose the components which over-
lap in the time-frequency plane.

(S8

5. Decomposition algorithm

Consider a multicomponent signal of the form (%), with sig-
nal components x,, p=1,2,..., P whose supports 1, may par-
tially overlap in the time-frequency domain. We also make a re-
alistic assumption that there is no signal component whose time-
frequency support completely overlaps with other component, and
Dy <Dy <-.- < Dp. where D, is the area of the support [,

The frst signal component can be expressed as linear combina-
tion of vectors g, with coeflicients 1, to give

Xi =134y + 72192 + - + 7jp1Qp, (16)

Since we have assumed that the signal components are well
concentrated in the time-frequency domain, we can use a concen-
tration measure in order to find the coefficients 7,,. To this end,
we form a linear combination of the basis vectors q,. with weight-
ing coeflicients Bp. p=1.2..... P. to arrive al

y=5q+ bt + -+ Bl (17)

and calculate the concentration measure M{TFR(n. k)} of the time-
frequency representation TFR(n. k) of the normalized signal y/|lyll,.
The choice of the TFR is not crucial here. We can use the spectro-
gram as the simplest TFR. By solving the concentration measure
minimization problem we then obrain the global minimum corre-
sponding to the best concentrated signal component.

The most straightforward way (o solve this problem would be
to use the zero-norm as the concentration measure of TTFR(n. k)
and perform a direct search over the coefticients 8, p=1.2..... P,
Then, the coctlicients 5, are the solution of rhe minimization
problem

R/ IR npy] = arg min || TER(n, k).

Bi....br
For these values of coefficients || TFR(n. k)|ip is equal to the ayea of
the best concentrated component support D,. If any two rhe small-
est areas are equal we still find one of them.

Note that this minimisation problem has several local minima
as the coeflicients 8, iny = B1q; + £,02 1 -+ BpQp which corre-
spond to any signal component x, will also produce a local min-
imum of the concentration measure, equal to the area of corre-
sponding component support. In addition, any linear combination
of K <P signal components X, will also produce a local minimum
equal to the area of the union of the supports of included signal
components.

After the best concentrated component is detected, the corre-
sponding vector q, is replaced with the extracted signal compo-
nent. The extracted component is then removed from the remain-
ing vectors q, by subtracting the projection of the extracted com-
ponent to the vectors qp, p=2.3..... P (signal deflation procedure
[31]). The procedure is repeated with the new set of vectors g,
by forming the signal y = 8,4, +--- + Bpqp, and then by varying
the coefficients f, a new global minimum of the concentration
is found, which corresponds to the second signal component. The
procedure is iterated P times.

However, since in practical applications neither the direct
search nor the norm-zero concentration can be used, several meth-
ods have been developed in literature based on the optimization
of problems with several local minima. In general, all these meth-
ods can be divided into three large classes: deterministic [27],
stochastic [25.26], and heuristic (ant colony optimization (28], ge-
netic algorithm, hill climbing |30}, simulated annealing [29], parti-
cle swarm optimization...). in this paper we will adapt a gradient-
based approach to solve the minimization problem. The zero-norm
1s replaced by its closest convex counterpart, the one-norm. The
proposed algorithm is presented next,

- In the first step, we calculate the matrix R of the multivariate
signal x(n) according to (8) or (9). The number of signal compo-
nents P is equal to the number of non-zero eigenvalues of matrix
R. In the noisy signal cases two approaches for determining the
number of components can be utilized: (a) The number of compo-
nents is assumed. As long as it is larger than or equal to the true
number of components P, the algorithm works properly, producing
noise only as the extra components. (b) A threshold is set to sep-
arate eigenvalues corresponding to signal components from those
corresponding to the noise. This threshold determines the number
of components in the decomposition.

- For the time-frequency representation of the signal we can
use the spectrogram, the S-method with narrow frequency win-
dow (for example Ly = 1), or any other appropriate representation.
Since these time-frequency representations are quadratic, a con-
centration measure equivalent to the one-norm should be defined
as |z«

M{TFR(n, k) = 3 % | TFR(n. k)| 72 (18)
nok

where the summation is performed over all available time and fre-
quency indices n and k.

The decomposition procedure is outlined in Algorithm 1,

- The measure minimization is implemented by using a steepest
descent approach presented in Algorithm 2. Here, we fix the coeffi-
cient 8, = 1 and vary the real and imaginary parts of the remain-
ing coclficients by + A. The gradient of the normalized measure,
Yp. is then calculated and is used for coefficient update. The ini-
tial value of the parameter A is 0.1 and it is reduced whenever a
further coeflicients update does not yield a smaller measure.

- When the pth component is extracted, the corresponding vec-
tor qp is replaced with the extracted signal component. The ex-
tracted component is then removed from the remaining vectors q,
by subtracting the projection of the extracted component to vec-
tors qp k=p+1.p+2..... P. In this manner, we ensure that the
pth signal component will not be detected again.

- This procedure is repeated until there is no more updates of
vectors qy.

For a two-component signal, the considered minimization prob-
lem is now convex, with a single, global, minimum. For a three-
component signal, the local minima exists for signals obtained as
a sum of any two components. This is the reason why the decom-
position procedure is repeated after minimum of the concentra-
tion measure is found. In the next iteration, the pair of compo-
nents corresponding to the local minimum are separated as in the
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Algorithm 1 Multivariate signal decomposition.
Input:
« Multivariate signal x(n)

1. Calculate S-Method SM(n. k) of the multivariate signal x(n) and
matrix R with elements
K/2

] g Sy Yoo
R(nl-nz):m L §M(§,‘ 2_” A](>€J“-'l‘ neeng)

ke K72

as in (1] If the Wigner distribution is used then the SM(n, k)
should be replaced with WD(n, k), or we can calculate ele-
ments of matrix R as R(ny, ny) = xH (ny)x(ny).

2: Find eigenvectors q; and eigenvalues A; of matrix R.

3: P « number of non-zero eigenvalues

4. repeat

5 Nupdmm' <0

6: for i=-1.2 ... P do

7 Solve minimization problem

P
. 1 .
min M { TFR gp‘;}ﬂpqp subject to ff =1

BB

where mM{.} is concentration measure. TFR{.} is time-
frequency \epxesentanon of a pnovxded signal, and

€= \/ 2_1) lﬁPqP”

is used to normalize energy of the combined signal to 1.
Coefficients ;... ... Bp are obtained as a result of the

minimization.

8: if any B, #0, p#1i then

[)

1

9: Qi < I Zﬂan

D=
10: fork=i+1.i+2 . .Pdo
n: s —q'qy
12: q — \/l-l__{;" (qy —sq,)
13: end for
14 Nuprlurcs - Nupdufus +1
15: end if

16: end for
7o until Nypgee = 0

Output:
« Number of signal components P
« Reconstructed signal components q,.q;..... qp

two-component signal case. For a higher number of signal compo-
nents, the number of local minima increases. Then several repeti-
tions of the procedure are needed in order to separate the com-
ponents in an iterative way. Recall that a gradient-based algorithm
can find any local minimum, each corresponding to a combinations
of K < P signal components. This means that each local minimum
reduces the complexity of decomposition vectors ¢, leading to the
full signal decomposition in an iterative way. For more details, see

“ thr 2
gonthms.

6. Numerical examples

Example 1. Consider a real bivariate signal x(t) = |x,(t). x> ()",
where the signal from channel i has the form

Algorithm 2 Minimization procedure.
Input:
e Vectors qy.q;. . ... qp
» Index i where corresponding vector q; should be kept with
unity coefficient §; = 1
» Required precision &

"By l] fOIAp. 3
0 forp#i

2 Myjg < 0

3 A =01

4. repeat

[)
5: y — Z /Spr
p=1
. y
6: Mncw — MJTFR -
fiylf2
7: if Mnew > Mo(d then
8: A« A/2
9: Bp < Bpt vp.
coefficients update
P

10: V< B
p=1

forp=1.2...., P Cancel the last

1: else

12: M[,m — Mpew

13: end if

14 for p=1.2.. . P do
15 if p ( then

g
ly-+ aa,ll;

: - Y- 4G

17 M7 M{TFR{ V= B0, H

+jAqy ”
|Y+ JjAqpll,

19: M < M[TFR[ Y- jag, H
ly — jagpll,
] - + M~
20: Yo <—8A{V’Lﬂ'-+j8Aﬁ/"'—ﬂ
MY’I(’W new
21 else
22: yp <0
23: end if
24: end for
25: Bp < ,8,, - Vp- for p=1.2.....P o Coefficients update
26 until 3 /’ L 1¥pl? is below required precision ¢

Output;
« Coefficients 8,. ..., Bp

Xi(1) = e" 28 cos ((1/16)%/128 — 87 (1/16)2/64 + ¢;)

= 0.5¢
+ e—j((:/lG)"/)zsr Sn(r,rlG)7/G4-¢,)I

:Xll(l’)+X2|'(l'), i=1, 2, (]9)

it/ IZS)Z[GI(\{/ 16)%/128-8m (1/16)4/64+¢,)

for ~128 <t < 128, as shown in Fig. 1 (a) (for the first channel),
The phases ¢, #¢, are random numbers with a uniform dis-
tribution drawn from the interval [0,27]. As this signal is real-
valued, two symmetric components xy;(f) and x,,(t) exist in the
Fourier transform and the time-frequency domains. However, these
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Fig. 1. Bivariate real signal analyzed in I
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(hy

{a) signal shown in time domain. {b) estimation of the IF: black - true IF, red - IF estimation using the analytic signal,

green and Blue - IF estimation based on components extracted using the proposed approach. {¢) PWD of the analytic signal. (d) PWD of the original signal. (¢) and (f) PWD
of the eigenvectors. {g) and (h} PWD of components extracted using the proposed approach. (For interpretation of the references to colour in this figure legend. the reader

is referred to the web version of this article.)

components partially overlap, and thus they are inseparable using
these representations.

A common problem is to estimate the instantaneous frequency
(IF) of the signal. To this end, for real signals it is usual to calcu-
late its analytic form based on the Hilbert transform. The true (F is

shown in Fig. 1 (b), black line. The time-frequency representation
(TFR) of this analyric signal is shown in Fig. 1 (c). However, the
IF estimate based on the analytic signal, shown in Fig. 1 (b), red
line, obviously significantly differs from the true IF. Namely, the
IF estimation based on the standard TFR maxima approach does
not appropriately track the IF variations, as they are lost in the
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Fig. 2. Bivariate two-component signal shown in: (a) rime domain. (b) frequency domain, (¢) time-frequency domain (spectrogram).

corresponding TFR due to significant overlapping of the compo-
nents and the fact that amplitude and phase variations are of the
same order. Notice that Bedrosian’s product theorem condition for
amplitude and phase is not satisfied in this case.

On the other hand, if one calculates the TFR of the original sig-
nal (19), the two components x,;{t) and xy;(t) overlap in the TF
plane, as shown in f1g. 1 (d). These components are also nonlinear
and thus, none of the known techniques can be applied for their
separation in order to estimate the I of such overlapping highly
nonlinear components. As these components highly overlap, they
are not orthogonal, and consequently the S-method based decom-
position [1] cannot be applied in a straightforward manner.

However, it is crucial to note that the cross-terms in Wigner
distribution (WD) are changed and two eigenvalues different from
zero do appear. Therefore, the two corresponding eigenvectors,
whose pseudo Wigner distributions (PWD) are shown in Fig. 1 (e)
and (f). contain both components, appearing as a linear combi-
nation. Using the proposed multi-component decomposition al-
gorithm, we were able to calculate the coeflicients £, and f;.
forming the linear combination {17} of eigenvectors. The minimum
concentration (sparsity) measure of this linear combinarion corre-
sponds to two separate signal components, as shown in Fig. 1 (g)
and (h). It can be observed that the IF estimation based on these
two TFRs maxima {using positive IF parts), shown in Fig. 1 (b),
green and blue dots, is accurate up to the theorerically expected
bias caused by the IF non-linearity, which can be further reduced
using some well-known IF estimation techniques [t

Example 2. In this example we consider a bivariate two-
component signal x(t) assuming that each sensor measures

X,'(():X],(()-‘:-Xz,'((), i=1. 2 (20)
whose components are given by

X (t) = ]_ze—(r}%)’e—i12n(1/16)z/2‘yv)l",‘zbbzwp,,. (2])
Xy = 0.9e ‘\!/lzti;"(, g ,’u,’lh;‘,lUUy,‘_. [22)
with phases ¢,;. ¢, i=1. 2 simulated as random numbers with

a uniform distribution drawn from the interval [0,27|. The real
part of the signal from the first channel, and the corresponding
Fourier transform are shown in Fig.2 (a) and (b), whereas the mul-
tivariate spectrogram is shown in Fig. 2 (c). It can be observed that
the signal components cannot be separated using the spectrogram,
without significant auto-term degradation. Note that the rwo signal
components have non-linear frequency modulation, and are thus
insepatable using common component decomposition algorithms.

When the proposed algorithm for decomposition of multicom-
ponent signals is applied, aiming to extract each component of the

analyzed signal, then in accordance with the presented theory, the
Wigner distribution is used as the initial time-frequency represen-
tation for the eigenvalue decomposition. The Wigner distribution
of the analyzed signal is shown in Fig.3 (a) whereas the eigen-
values of autocorrelation matrix R are shown in Fig.3 (b). It can
be seen that there are two non-zero eigenvalues containing linear
combinations of the signal component. Further steps of the pro-
posed decomposition method assume that a TFR is calculated and
the proposed minimization procedure is applied in order to find
the coefficients producing the eigenvectors combination (17), lead-
ing to the best component concentration. Our numerical experi-
ments have shown that a similar performance of the minimiza-
tion using Algorithm2 is obtained when the Wigner distribution,
the spectrogram and the S-method are applied as underlying TFRs
on the observed eigenvectors. In Fig. 3, we present the results ob-
tained in the case of the Wigner distribution. For visual clarity,
pseudo Wigner distribution with Hanning window of length 256
is shown for each eigenvector in Fiz.3 (c¢) and (e), although the
Wigner distribution was used in the minimization procedure. Sim-
ilar results would be obtained for any other TFR in the minimiza-
tion step. The pseudo Wigner distribution for each separated signal
component is shown in t1g. 3 (d) and (f), for signals x,,(t) and x,;(t),
respectively.

Example 3. Consider a multivariate three-component signal x(t)
for N =4, for which the jth channel signal is defined as

Xi(0) = X5 (6) + X () + x3i(0), i=1...., 4, (23)

the components x;;(t) and x,;(¢) are given by (21) and (22), for i =
oo 4 whereas the third component has the following form
X3 = 0.9e—{1/128)" o= jmt /B jl/16)"/100+ps, (24)

also having the phase ¢5;, i=1,....4 simulated as a random num-
ber with a uniform distribution drawn from the interval [0,2m].
The signal from the first channel, its Fourier transform and the
multivariate spectrogram are shown in Fig.4 (a)-(c) respectively.

The Wigner distribution of the analyzed signal is shown in Fig. 5
(a). whose inverse matrix R is the subject of eigenvalue decom-
position. The obtained eigenvalues are shown in Fig.5 (b) while

i (¢), (e) and (g) show the pseudo Wigner distributions of the
eigenvectors with largest eigenvalues in subplot (b), and illustrate
that the components are not separated. Namely, as in the previous
example, the intersected components are not orthogonal and con-
sequently, each considered eigenvector contains a linear combina-
tion of signal components, For the obtained eigenvectors, we apply
the proposed minimization procedure, in order to find the coeffi-
cients that combine these eigenvectors to produce the best con-
centration, corresponding to the signal components. All three sig-
nal components were successfully extracted, as shown in Fig.5 (d),
(fy and (h).
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Example 4. A multivariate signal x(r) consisted of three intersected The signals from each of N = 3 channels are defined as follows
components and two non-gverlapping components in the TF plane,

Y-ty 5-¢;
given by Xy () = e~ WO QI 105 ) (26)

Xi(0) = X33 (0) + %3 (0) 4+ X3 (0) + Xai (0) + x5 (1) (25)  xp(0) = 1.2e71/96) I 7 (16182 U160 ) (27)
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X3l‘([) ~0.9e 7(1/123JZeil/r({,’IL:')"/ZOO+IT(,’8‘q,; (28)
xai (1) = e~ /16 i 3n1/4: 92} (29)
xs;(t) = o~ (1/96) o j(=6m (1/16)% /25471 /44-p5,) (30)
where i = 1. 2. 3 denotes the channel index, In this example the

S-method is used as the initial TFR, as shown in Fig G (a). Applica-
tion of the S-method is crucial here since we have five components
and a trivariate signal only. The S-method would be able to sepa-
rate {decompose) all non-overlapping components from one real-
ization. Then, the available realizations are used for the gverlfapped
components only. The eigenvalue decomposition of the S-method
inverse autocorrelation matrix R produced five eigenvectors, corre-
sponding to the five largest eigenvalues shown in Fig. G (b).

As the two non-overlapping signal components are mutually
orthogonal and with the rest of intersected components, accord-
ing to the theory presenred in [1], there are exactly two eigenvec-
tors corresponding to these two components (one eigenvector for
each compornent). The pseudo Wigner distribution for these two
eigenvectors are shown in Fig. 6 (c¢) and (i). Therefore, these two
components are easily extracted, as shown in Fig.6 (d) and (j).
The three remaining components are obtained based on the proper
linear combination of the three corresponding eigenvectors using
coefficients g, obtained by the proposed minimization procedure.
The pseudo Wigner distributions of these three remaining eigen-
vectors are shown in Fig. & {e), {g) and (k), whereas rhe separated
componenls obtained based on their proper linear combination ave
shown in Fig. ¢ (f), (h) and ().

The same experiment was repeated for the noisy signal X(f)
x(t) -+ €(t). The signal from each channel corrupted by additive,
white zero-mean complex-valued 1.i.d. Gaussian noise €;(r) with
the variance of real and imaginary parts o2 = 0.152, The SNR level
for one (linear FM) component was 7.13 dB, that is, quite low. The
results of the proposed decomposition approach are presented in
f1e. 7, illustraring that the proposed algorithm is robust against the
additive Gaussian noise influcnce.

7. Conclusion

Decomposition of non-stationary signals overlapping in the
time-frequency plane is still an open problem. Exploiting the fact
that the Wigner distribution of multivariate signals exhibits sig-
nificant cross-term change due to their arbitrary phases whereas
the auto-terms are added up in phase, we have revisited the time-
frequency based signal components decompaosition. in this paper,
we have shown that even with a small number of signal chan-
nels, relative to the number of components, an accurate decom-
position can be performed with an appropriate linear combination
of the signal autocorrelation matrix eigenvecrors. Next, the decom-
position and eigenvector combination algorithms have been pro-
posed. Their efficiency has been illustrated over several examples,
which conclusively validate the capability of the proposed algo-
rithm to perform a complete and accurate extraction of overlapped
and non-overlapped components. The robustness of the proposed
approach has been illustrated over an example on a noisy signal.
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Gradient-based signal reconstruction
algorithm in Hermite transform domain

M. Brajovi¢, I. Orovi¢™, M. Dakovi¢ and S. Stankovic

An algorithm for compressive sensing reconstruction of signals in the
Hermite expansion domain is proposed. The compressive sensing
problem is formulated in the Hermite framework, allowing fast and
efficient reconstruction of missing data by exploiting the concentration
of signal's represcntation in the Hermite basis.

Iniroduction. The Hermite expansion approach has drawn significant
attention in certain signal processing applications where  classical
tools. including also the Fourier transform, are nol suitable for analysis.
Namely, the Hermite cxpansion i1s an orthogonal transform used in
image processing, tomography, analysis of protein structure, biomedi-
cine [1-3]. The Hermite functions have been uscd as a suitablc basis
for representation and compression of QRS complexes of ECG
signals, important for diagnosis and medical trcatment. Particularly,
the application in compression algorithims shows that the reconstruction
of ECG signals can be done using a few Hermite cocfficients [1].

Compressive sensing (CS) as an alternative sampling theory assumes
signal gparsily in a certain transform domain to achieve successful
reconstruction of missing data. A reduced set of observations in CS
may appear as a conscequence of a sampling strategy, or by omutting
samples highly corrupted by noise. The reconstructed signal can be
obtained by using the ¢;-norm minimisation via convex optimisation
algorithms {4-0], which could be complex in terms of the realisation
and the number of iterations. Here, we provide an iterative reconstruc-
tion approach bascd on a stcepest descent method using #-norm mini-
misation in the Hermite transform domain. Namely, the CS framework
is defined in the context of the Hernite expansion, while the achieved
results demonstrate successiul reconstruction using the gradient-based
solution [7]. The proposed approach provides faster performance com-
pared with the other convex algorithms such as the commonly used
primal-dual method within the #-magic toolbox [i].

Hermite expansion. The pth order Hermite function can be related with
the pth order Hermite polynomial:

Uytt. o) = (02"t /7) e (4

o/’

(1)

where the parameter ¢ can be used to stretch or compress Hermite func-
tions, to match the analysed signal [1].
A signal representation using the Hermite basis is referenced as
Hermite expansion [1-3]:
®

F0 =", o). 2)

=0

For a continuous signal /{7), an infinite number N — co of Hermite func-
tions is needed for an accurate expansion. However, in practice, a finite
number of N Hermite functions iy used, as an approximation of the
signal. The pth order Hemmite cocetficient ¢, is defined as:

& = J FAQIAGS (3)

If Hermite functions are sampled at zeros of the Mth order Hermite poly-
nomial, then the summation (2) becomes a finite orthonormal represen-
tation for the case of discrete signals [I]. In numerieal calculation, the
quadrature approximations (as a discrete form of the Hermite expansion)
are used 10 obain integral in (3). For instance, the Gauss—1lermite quad-
rature is defined as:

& W)
¢, N — — s f ), )
g N; ['//,v—l("")]z

where x, denotes zero of the Nth Hermite polynomial. For a signal
of length A, the complete set of discrete Hermite functions consists of
exactly N functions [[]. In some applications, a smaller number of
Hermite functions (compared with signal length) can be used [ -], To
simplify the notation, in the sequel the argument v, will be replaced
with the order 7 (of the Hermile polynomial zeros). The expansion
using A Hermite functions can be written in mamix form. First, we

define the Hermite transform matrix Wy (of size N x N):

M) @) N
W (1Y (i 20 (Yo (M)
Y (1) P1(2) P (N)

W=y ot (DF Wy (22 W E | (5)

() @)

Yo (V)
L (oo (D) (g (2))° (e (N

If the vector of Hermite coefficients is: ¢ ={cg, ¢, ..., C,v_l]T, and vector
of M signal samples is: £=[/(1). f(2). .... AM", then we have:

c=Wyuf. (6)

Having in mind the Gauss-Hermite approximation (4), the inverse
matrix ¥}, contains ¥ Hermite functions is given by:

(1) Wa(2) . (V)
() @) o )
= : : - : = )
v (1) by (2) Un_1 (V)
Now, the Hermite expansion can be defined as follows:
f=Wile=We (8)

CS problem formulation: Let us assume that the CS is done using a
random selection of M, signal values modelled by a random measure-
ment matrix ®:

Yoo = Bf = PWe = Ayyc. ©)

Here, y., denotes the vector of available samples, matrix A, is obtained
from the inverse Hermite transform matrix W by omitting the rows cor-
responding to the missing samples. Hence, we deal with undetermined
system of M, linear ecquations and N unknowns. Although this system
may have infinitely many solutions, the idea is to search for the sparsest
onc. Thus, the reconstruction problem can be defined as:

min Jic||,, subject 10y, = Aec. (10)

Gradient based reconstruction algorithm: A previous minimisation
problem can be solved by adapting the use of gradient descent [7] in
the Hermite transform domain. The idea of the proposed method is to
iteratively recover the values of missing samples, by a small appropri-
ately estimated gradient-based step. The #; norm behaviour is examined
in the Hermite expansion domain acting as a sparsily measure.

Assume that the positions of available samples are defined by the set
O, where © consists of M, <« N elements and @ C N={1, 2,..., N}.
Denote by n, indices defined by:

_ i €O
"o ieo
The missing samples positions form the set O, such that ® UG = N.
The assumed signal sparsity is K < N.

The algorithin starts from the column vector y which contains avail-
able samples ., and zero values al the positions ol missing saniples.
Hcenee, y can be defined as: v(n)  f(n), for n € ©, otherwisc y(n)=0
(with f(n) being the original signal samples). Assume that the initial
value of the step is A - max(y]). Each iteration (denoted by &) consists
of the following sleps.

(1) Form a matrix ¥ with N repeated vectors y:
Yo = y® = [y“‘) g ym}‘

where the notation 1.y is used [or all-ones matix of dimensions | x N,
(ii) Calculate two test matrices as follows:

=l Ol = res
3 r L 3
Yal - s e yf&_} =y9 - (12)
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For better understanding, the previous matrices can be written in an
expanded form given by:

y(k)(]) 'Vlk)“)
,\’m(z) v‘“(2)
YW, =yW + A=y 1, tas L
P PHw)
8(1 —my) 0 0
0 82 —ny) ... 0

0 0 SN — ) Iy, »

where A is obtained by multiplying constant A by a diagonal matrix with
elements &(n — n;), fora, i~ 41,2, ..., N}
(111) Based on calculated test matrices Y‘:)I and Y‘A

G 15 caleulated as:
G = = [ H("{Y“’} lH(uty(A I ,J
“wm,m l|

=se((Iwwid ],

I, ot

. the gradient vector

Wil ]
wwls [ ]] o

with H'9{.} being the operator that Ccl]Lll[dlLb the Hermite coefficicnts
along the matrix columns, and operator |-/} caleulates ¢) norm for
gach column separately. Note that gradient vector has zero values for
signal samples at available samples positions.

(iv) Finally, the signal vector y is adjusted as follows:

Y =W 4 W a) (14)

As G is proportional to the error y — f; the missing values will converge
to the true signal values. To obtain a high reconstruction precision, the
step A should be reduced when adjustments in (14) docs not improve
precision. This can be detected cither by measuring reconstructed
signal sparsity or by detecting oscillatory nature of the adjustments {/].

'th il

300 400 ﬂU 3()0 '\f)\) ‘-00

4 d

Fig. 1 Reconstruction results

« Desired signal (solid linc) and available samples (crosses)

b Reconstructed signal

¢ Desired Hermite coefficients (solid line) and coctficients of signal with missing
samples (crosses)

d Hermite coefficients of reconstructed signal

Experimenial evaluation: Let us observe the signal in the form:

.
vl =Y A, () (9

=1

which s sparse in the Hermite transform damain with K 35
components. The signal 15 corrupted by white Gaussian noise, with
SNR =30 dB, and only 50% of samples are available. The amnplitudes
A; of components and the orders of Herme functions p, are randomly
chosen. The recoustruction is done using the proposed approach
(Fig. 1), with MSE ~107", We may observe tha, although the signal
is not strictly sparse, the exact reconstruction 1s achicved. Comnpared

ELECTRONICS LETTERS 8th January 2016 Vol. 52 No. 1

with the £-magic algorithm {8] which belongs to the group of convex
optimisations as well, the processing time (in Matlab) for the proposed
algorithm is 2 10 4 times lower (depending on the random measurements
and amplitudes). Moreover, the proposed aigorithm will progressively
accelerate as the number ol available samples increases.

The algorithm is examined also on a real QRS complex of the ECG
signals [V, shown in Fig. 2. To achieve sparsity, QRS complex needs
to be sampled at the points proportional 10 the roots of Hermite poly-
nomtal. The sparsification is done according to the procedure in 1] to
obtain signal values at adequate position. The error due to sparsification
1s 5.23%, which is medically acceptable as long as it is less than 10%
[1]. The reconstruction MSE is 1.262 % 1077 obtained afier 18 iterations
of the proposed algorithm. The reconstructed results are compared with
original signal in Fig. 2.

0.4 : 02
| A |
1
0
: i ~0.2
. l
0.4
L SRR | SO e P T s e
[ 0 10 2q 30 4Q 58
t p
a b

Fig. 2 Reconstruction results for ECG signal (QRS complex)

a Desired (solid line) and reconsiructed signal (dashed line)
A Hermite coetficients of desired (solid line) and reconstructed signal (crosses)

Conclusion: A gradient descent algorithm based on the Hermite trans-
form domain solves the problem of CS reconstruction for signals that
exhibit sparsity in the Hermite basis domain. The highly accurate algor-
ithm performance is proven on both synthetic and reai data.
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Sparse signals, assuming a small number of nonzero coefficients in a transformation domain, can be reconstructed from a reduced
set of measurements. In practical applications, signals are only approximately sparse. lmages are a representative example of such
approximately sparse signals in the two-dimensional (2D) discrete cosine transform (DCT) domain. Although a significant amount
of image energy is well concentrated in a small number of transform cocflicients, other nonzero coefficients appearing in the 2D-
DCT domain make the images be only approximately sparse or nonsparse. In the compressive sensing theory, strict sparsity should
be assumed. It means that the reconstruction algorithms will not be able to recover small valued cocflicients (above the assumed
sparsity) of nonsparse signals. In the literature, this kind of reconstruction error is described by appropriate error bound relations.
In this paper, an exact relation for the expected reconstruction crror is derived and presented in the form of a theorem. In addition
to the theoretical proof, the presented theory is validated through numerical simulations.

1. Introduction

Signals that can be characterized by a small number of
nonzero coetlicients are referred to as sparse signals [1-11].
These signals can be reconstructed from a reduced set of
measurements [1-25]. The measurements represent lincar
combination of the sparsity (transforin) domain coefticients
[1, 7, 24|. Signal samples can be considered as measurements
(observations) in the case when a linear signal transform
is the sparsity domain. Signal sparsity in a transformation
domain can be observed in a number of important applica-
tions. For exarnple, ISAR images are commonly sparse in the
two-dimensional Fourier transform domain, whereas digital
images are well known for their good concentration in the
domain of two-dimensional (2D) discrete cosine transform
(DCT) (8, 21-24].

The idea of reduced number of observations is stud-
ied within the compressed sensing (CS) theory and the
sparse signal processing framework. ‘The reduced number of
measurements may appear due to different causes. [n the
CS applications, it arises as a consequence of intentional
sampling strategy, aiming to reduce the signal acquisition

titne, equipment load, and subject exposure to potentially
dangerous radiation during the acquisition in biomedical
applications, or, simply, there is a particular interest to
reduce the amount ot acquired samples while preserving the
complete information (compression) [1-15]. In certain cases,
physical unavailability can be a cause of a reduced number
of measurements. In many applications, strong disturbances
{noise) can significantly corrupt the signal samples. Such sig-
nals are processed by detecting and intentionally neglecting
the corrupted measurements [7, 9, 23]. Regardless of their
unavailability reasons, under certain reasonable conditions,
missing samples can be reconstructed using well developed
CS methods and algorithms (1, 2].

The DCT is an important and frequently used tool in
signal processing [21-27]. Many signal classes can be more
compactly represented in the DCT domain than in the
Fourier domain. Due to its superior compressibility, the
2D-DCT is one of the most exploited transforms in the
compression of digital images [24]. Moreover, this trans-
form domain has been convenient for the reconstruction
of digital images with missing pixels and/or noise corrup-
tion using the sparsity assumption [21-23]. Measuring the



2D-DCT coefficients concentration (using the £, -norm based
measure) and varying missing samples values to obtain the
sparsest possible solution leads to the prominent compressive
sensing reconstruction results [20, 23]. In the orthogonal
matching pursuit (OMP) framework, successtul reconstruc-
tion is easily obtained if the coeflicients corresponding to
signal component positions are successfully identified [12,
28-30]. In that case, the true coefficient values can be
calculated using the identified component positions and
the 2D-DCT measurement matrix [9, 24]. However, it is
important to note that, in practice, digital images are usually
only approximately sparse or nonsparse in the 2D-DCT
domain [21-24]. It means that besides the coctlicients with
significant values, carrying most of the signal encrgy, small
valued coeflicients may appear instead of zero-valued oncs.
As sparse recovery algorithms assume certain sparsity level,
these coefficients will remain unreconstructed [8, 24]. This
leads to inevitable reconstruction errors. The reduction of
the amount of available samples manilfests as a transform
domain noise (7, 9]. During the reconstruction, this noise is
completely cancelled out, if the sparsity assumption is strictly
satisfied. However, if weak signal coefficients of a nonsparse
signal remain unreconstructed, their contribution to the
noise in the reconstructed coefficients remains. If a nonsparse
signal is reconstructed with a reduced set of available samples,
then the noise due to the missing samples in unreconstructed
coeflicients will be considered as an additive input noise in
the reconstructed signal [8].

The existing compressive sensing literature provides only
the general bounds for the reconstruction error for nonsparse
signals (reconstructed with the sparsity assumption) {1, 2,4, 5,
28). The error bounds for the DET and DCT are considered
in [6] within the reconstruction uniqueness framework. In
this paper, we present an exact relation for the expected
squared error in approximately sparse or nonsparse signals
in the 2D-DCT domain. It is assumed that these signals
are reconstructed from a reduced set of observations, under
the sparsity constraint. Missing measurements influence on
the transform domain is modelled by an additive noise [7].
The noise originating from missing samples in each signal
component is statistically modelled as a Gaussian stochastic
process, and its mean-value and variance are determined.
The results are further exploited in the derivation of the
relation for the error in the reconstructed signal if the sparsity
assumption is used for the reconstruction of nonsparse
signals. The theory is illustrated and verified by numerical
results.

The paper is organized as tollows. Basic deflinitions
regarding the 2D-DCT domain are provided in Scection 2,
In Section 3, the main result is presented in the form of
a theorem which will be examined and proved in the next
sections. In Section 4, the 2D-DCT transform is put into
the framework of the reduced number of observations and
the error of nonsparse images reconstruction is analyzed.
In Section 5, the theory is validated with several numerical
examples, while the concluding remarks are given at the end
of the paper, along with Appendix with special cases.
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2. Basic Definitions

Consider a 2D discrete signal (digital image) of size M x N
denoted by s{m, n). The 2D-DCT of this signal is defined by
(24]

M-1N-1

Clp.a)= ), Y stmmgy (m p)on(ma), ()

m=90 n=0

where p=0,...,M~landq = 0,..., N—1lare the transform
coefficient indices, and

[z n@m+1)p
sty [ as (0

2 2
en(nq) = \/—1\7605<ﬂ( n+1)9)) G0

>, p#0
)

2N

are the normalized basis functions. For p = 0 or g = 0 these
functions are of the form @, (m, 0) = V1/M and @5 (n,0) =
VI/N., respectively. The corresponding inverse transtorm is
given by

M=tN~

s(m,n) = Z ZC(P»‘Z)‘PM (mplen(ng) (3

p=0 4=0

withm = 0,....M-1,n = 0,...,N = 1. The 2D-DCT
transform can be written in a matrix form as [24]

C = ®s, (4)

where C is the 2D-DCT coefficients matrix, ® is 2D-DCT
transformation matrix, and s is the matrix containing pixel
values of a digital image. For the inverse 2D-DCT the relation
s = WC holds, with ¥ = @7

An image of the form

K
s(m,n) = ZAI<PM (m, pryon (n.q) (5)

I=1

is sparse in the 2D-DCT domain it the number of nonzero
2D-DCT coeflicients K is much smaller than the number of
image pixels; that is, K < MN. The components are located
at the DCT indices ( p;, ;) withamplitudes A;, I = 1,2,..., K.

Assume that only N, € MN randomly positioned pixels
at (m,, n;) € {(’”1,”1%(’”2:”2)7-~~'(’”N, ,nNA)} =N, ¢N-=
{(0,0),(0,1), ..., (M=1,N~1)}are available. If we rearrange
the available pixels y into a vector with elements

y (i) =s{m;,n;)
M=IN=1 (6)
= Y CpD)ou{m.p) oy (n.q).
p=0 q=0
wherei=0,1,...,N,, we can write it in the matrix form as

y = AC ?)

representing the mathematical model for the compressive
sampling procedure, where A isan N, x MN measurement
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matrix. [t is defined as the partial inverse 2D-DCT matrix,
containing rows of ¥ that correspond to the available pixel
positions.

Compressive sensing reconstruction inherently assumes
the signal sparsity. An image s(wn, n) is K-sparse in the 2D-
DCT domain if only K of its 2D-DCT coefficients assume
nonzero values. The nonzero coeflicients at the positions
(pq) € g ={(p1,9,), (P2 Ga)s .- (Prr gx)} will be defined
as Cy.

The 2D-DCT of an image reconstructed under the K-
sparsity assumption will be denoted by C,. This is a vector
with K reconstructed nonzero coeflicients al (p, q) € Tlg.

An image is approximately sparse or nonsparse if the
coefticients C(p, q), (p, k) ¢ Il are small or of the same order
as the coefficients C(p, q), (p,k) € Iy, respectively. In that
case, the vector Cy contains K largest values of C. The vector
Ck zero-padded up to the size of the original C and written
in the same format as C will be denoted by Cy,.

3. Reconstruction Error Energy

The main result of the paper providing the exact formulation
of the expected squared reconstruction error in the case of
nonsparse images will be given in the form of a theorem.

Theorem 1. Assume an irmage nonsparse in the 2D-DCT
domain, with largest amplitudes A, 1 = 1,2,..., K. Assume
that only N, out of total MN sumples are available, where
I <« N, < MN. Also assume that the image is reconstructed
under the assumption as it was K-sparse. The energy of error
in the K reconstructed coefficients |Cy ~ Cyll; is related to the
energy of unreconstructed components |Cyq = ClI3 coefficients
as follows:

K (MN - N, ) sty
”CI\' = CR”; E "\T‘(N[}\_ “li) “CKH - (” v (8)
where
: K(MN-Ny) &,
“CK - CR“z - VA(—MN_—I)I:;,‘ i
9
MN

“CKO - C“ﬁ = ; ,\Z A?-

The theorem will be proved in the next section.

4. The Reconstruction Process and the Proof

The proof will be presented through four subsections. In the
first subsection, we will define the 2D-DCT (ransform pul
into the framework of the reduced number of observations.
Then, we will describe how the missing pixels affect other
components in mono- and multicomponent cases, respec-
tively. Finally, the reconstruction under the assumption that
the signal is K sparse is considered.

4.1, Initial Estimate. The initial (norm-two based) 2D-DCT
estimation uses the available pixels only

Colpa)= Y stmmgp(mp)on(ng), )

{mn)eEN,

where p=0,1,...,M=1,9=0,1,..., N-1.The same results
are obtained if the missing (unavailable) pixels assume zero
values (7]. In a matrix form we can write

Co=Aly. )

The coefficients in (10) act as random variables, with
different statistical properties at positions of the image com-
ponents, (p,q) = (p;,q;), and positions not corresponding to
image components, (p,q) # (p. g)).

4.2. Noise-Only Coefficients in Monocomponent Signals. We
will first observe the monocomponent signal case, that is,
when K = 1, and then generalize the result for multicompo-
nent signals. Without loss of generality, we will agsume that
the amplitude is A| = 1. From (5) and (10) we get

Colpa)
(12)
= Y e (mop)en(ma) ey (m p) ey (ng).
() €N,
The variable
Xpq, 001 poq)
(13)

= ou (m, p) on (may) oag (m, p) oy (n,9)

is random for random vajues ol (m, ). Its statistical proper-
ties for (p,q) # (p;,q;) are studied next. Special cases are
considered in Appendix. The initial 2D-DCT estimate can be
written in the form

Colpa) = ) xp, (mupq). (14)

(ma)eN,

When (p,g) # {p,9,), the 2D-DCT coefficients corre-
spond to nonsignal (noise) position and Cy(p, g) behaves as
a random Gaussian variable [7]. Using the basis functions
orthogonality

M=1N=1
Y xpg (Mo pg) =6(p-prg-g,) (15
m=0n=0
and the fact that values of x, , (11,1, p,g) are equally dis-
tribuled, it can be concluded that the mean-value of Cy(p. q)
is equal to zero:

(p.q) #(prg,).  (16)

In the case of the coefficient corresponding to the image
component, using the same orthogonality property and the
assumption of equal distribution of values x, , (m,n, p,q), it
follows that

Heylpg) = E {Co (p’Q)} =0,

N
e g = EC (pg)} = =250 (pog) = (pray). (7)

MN



For the zero-mean random variable, the variance definition
is

mon, p,q)

E 2 xf’u‘?l (

{m.n)eN,

Z z Xp, {m,n, p.g)

(mmeN, (i, j)eN, (18)
(1, ))#(m.n)

2
cipay =

xp a0 (b Prg)

As in the case when (p,q) # (p,,q,) is observed, it can be
concluded that

M-1IN-1

Z Z Xpy mn pg) = 0. (19)

m=0n=0

Multiplying the left and right side of (19) by x, , (i, J. p.q)
and taking the expectation of both sides we get

M-—1N-1
Z Zx/w (mon pog)x,, (z,_),p,q)} =0, (20)

m=0 p=0

with (i,7) € N. Values Xy, (m,n, p,q) are equally dis-
tributed. Therefore, terms Efx, , (m,n, p.q)x, , (i. j. p.q)}
for (m,n) # (i, j) are the same and equal to a constant D.
The total number of these terms is MN ~ 1. Further, based on
(20) we get

(MN-1)D+E{x},  (mnpg)f-0. (21)

The initial variance definition can be written as
2 2
OCA(P"{) = N/\E {XP

as there are exactly N, expectations with quadratic terms in
the first summation and N4(N, - 1) terms in the second
variance summation equal to D. In order to determine
the unknown term I?{x;”“(m,n, pry)}, several special cases
should be taken into account. Special cases of the 2D-DCT
indices are considered in Appendix.

Consider the general case when p# p,. p# M -p,. g #
q,, q # N — ¢, are satisfied. ‘then

N (m,n, p,q)} + (Nf\ - NA) D, (22)

E{leq‘ (”””'P:‘I)} = E{ zzw("' Pl)(PN (n, ‘11)}
X E {oi

"7 P) @n (m, 61)} (23)
l
MZNE
holds. Incorporating this result into (21) we get that

1 1
D= 24
M2N? MN -1 (24)
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Further, based on (22) the variance can be written as

2 N, (MN-N,)

OL (pq) MZNZ(MN—I) (25)

This result also holds when (p,,q,) = (0,0). Note that when
A, # 1, the result is multiplied by A%.

It can be easily concluded that the average value of the
variance (A.12) when all special cases from Appendix are
included is constant and equal 10

2 Na (MN___M (MN—Q).

"M2NZ(MN - 1)? (26)

As MN > 1, an accurate approximation for the average
variance of noise-only coeficients follows

2 =2

_ ~ A2 N4 (MN" NA)
IN=9¢, =8 o T oy 1y

MEN?T(MN - 1) 27)

4.3. Noise-Only Coefficients in Multicomponent Signals. In
the multicomponent signal case, the observed random vari-
able becomes

Z ZAI(PM (m, p)on (nq)

(mn}cN, =t (28)

Cy(p.q) =

X @pr (m, p) oy (mq)

In this case, the coefficients at noise-only positions
(p.q) # (p;q;) are random variables Gaussian in nature
and zero-mean, as they are formed as the summation of
independent zero-mean Gaussian variables over /. Namely,
now the missing pixels in each image component contribute
to the noise, and the noise originating from each component
is proportional to the squared amplitude of that component,
following (27) with A, | = 1,..., K. Therefore, 2D-DCT
coefficients mean-value for a multicomponent signal (image)
can be written as

K
tHe Colpg) Z P Pl q- ql) (29)

The average variance of noise-only coefhicients in this case
casily follows

& 3 Na(MN - Ny)

—2
OCD_,Z UMENET(MN - 1)
=1

(30)

However, it is important to mention that components
of the image multiplied with basis functions may cause
a coupling effect if they are placed at positions satisfying
certain conditions. Consequently, this effect may cause the
increase of the previously derived variance at these positions.
However, if it appears, for example, at the position (p,,g,)
then the variance will be decreased for the same amountat the
position (M —~ p;, N — g,). Therefore, we can further neglect
this effect and assume that the variance expression in (30)
holds in mean, which is crucial for the following derivation
of the error in the nonsparse image reconstruction.
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4.4. Nonsparse Signal Reconstruction. We consider that an
image is reconstructed under the assumption that it is K-
sparse and that it satisfies the condition for unique recon-
struction in the compressive sensing theory. The number
of reconstructed components is K. According to (30), each
unreconstructed component in the image behaves as a Gaus-
sian input noise with variance

N4(MN-N
a@:ﬁ;ﬂL—-4Q. (31)
MINT(MN - 1)
Therefore, all MN — K unreconstructed components will
behave as a noise with variance

. 2 N.-\ (MN - NA)

0y = A= .
! ,,__;H "MINZ(MN - 1)

(32)

After reconstruction, the total noise energy from the
unreconstructed components (in K reconstructed compo-
nents) will be

M’N* K(MN-N,) &
Cy-Cplff = K=ol = - — ALY 42
“ K Can K Nf\ 9y N, (MN - 1) ]:;4/‘/ (33)

The noise of unreconstructed components can easily be
related to the energy of the unreconstructed components

2 MN
Ick-cll,= ). 4 (34)

1=K+1
That is, the total error in the reconstructed components is

KIMN =Na)yo . 09

Cx - Cils =
[k = Cal; N, (MN - 1)

This completes the proof of the theorem.

5. Numerical Results

In this section, the theoretical result from (35) is numerically
checked on a number of test images. ‘The images are used for
the numerical calculation of the expected squared error with
various sparsity K per block. The block size is assumed to be
B x B. The squared errors in one block are calculated as

Epu = 10108("CK - CIH;) (36)

to obtain the numerical result, whercas the theoretical curves
are calculated using the right side of (35), that is,

B’ - N, 2
Epeo, = 1010g | KA |lC, -] . (37)
o = 10105 K P e - o)

These errors are calculated for each block separately and
then the results are averaged over all blocks in an image. The

statistical peak signal-to-noise ratio (PSNR, ) is defined as

2557
PSNR,, = 10|og<- = LM (38)
s (‘,,\-IE.;

K

5
TasLe I: Error and PSNR for 8 test images.
I Error PSNR
Test image o o
T Statistics Theory Statistics Theory
Boat -19.13 —19.20 81.97 82.13
Poul -2732 ~2738 80.35 80.42
Pirate -10.10 -10.23 70.97 71.10
Lifting Body -24.78 -24.86 82.97 83.11
Pears -25.60 ~25.67 78.77 78.86
Autumn —-15.80 -15.88 90.81 90.92
Peppers -22.16 -22.22 79.16 79.23
Football ] _—18_.72_7 _ ”_—1_887 68.69 68.83
and the theoretical one is calculated according to
PSNR o, = 10
255° (39)
log ; > Bk
K((B - NA)/(NA(B - 1))) HCK - C”z

where 255 is considered as the maximal pixel value of an
image. They are used to additionally validate the results. In
all following examples the reconstruction is performed using
the OMP algorithm.

Example 1. The considered image is the grayscale image
“Barbara” of size 512 x 512. The image is first split into blocks
B x B =16 x16. It is assumed that 60% of pixels are available.
In the reconstruction, the sparsity is assumed to be K = 16
per each block. The original image is shown in Figure 1(a),
the image with the available pixels is shown in Figure 1(b),
and the reconstructed image from reduced set of pixels, with
assumed sparsity, is shown in Figure 1{c).

The statistical error and the theoretical one are shown in
Figure 2. We considered various sparsity levels K per each
block, changing between | and 16. The red asterisk represents
the statistical values and the theoretical result is presented
with the black line.

Example 2. Let us consider the RGB image “Lena” of size
512 x 512, We will again split the image into blocks of size
Bx B 16 x 16. It is assumed that 60% of pixels are
available. The sparsity isassumed to be K = 16 per each block.
‘The original image, image with the available pixels, and the
reconstructed image are shown in Figure 3.

The statistical error and the theoretical one are shown in
Figure 4. The results are obtained by averaging errors from
each block and each channel. Sparsity K per each block was
varied between 1 and 16. The red asterisk represents the statis-
tical values and the black line represents the theoretical result.

Example 3. A test image set with standard MATLAB images,
shown in Figure 5, is used for this example. Each image is
split into B x B = 16 x 16 blocks. The reconstruction is
performed under the sparsity assumption K = 16, with 60%
of randomly positioned available pixels. The statistical and
the theoretical errors are calculated according to (36) and
(37), whereas the PSNR is calculated using (38) and (39). The
results are presented in Table 1, confirming a high agreement
between the theory and statistics.
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FIGURE I: Reconstruction of image “Barbara” with 60% available pixels and sparsity K = 16 per cach block of size 16 x 16: original image (a);

noisy image {b); reconstructed image ().

Error (dB)

Assumed sparsity K

Fraure 20 Error caused by the unreconstructed components with
various sparsity per block in image “Barbara™; ved asterisk: statistics,
black line: theory.

6. Conclusions

In this paper, we considered the influence of nonsparsity in
the reconstruction of images. Images are originally sparse
or approximately sparse in the two-dimensional discrete
cosine transtorm domain. The reconstruction error relation
is presented in the form of a theorem. The reconstruction
results are checked on a number of images, both grayscale and
color. It is confirmed that the statistical results are close to the
derived theoretical results.

Appendix

Special Cases of Indices

The values of 2D-DCT coelficients variance, for (p,g) #

{p,.q,) are considered in Section 4.2. Other special cases of

indices are considered in this Appendix.

Case 1. When nonsignal (noise-only) positions satisfy p =
Phg#q,q# N-g, wehave

E {X;l‘j! (”" P LZ)} (A1)

= E{py (m, p))} x E{o}, (n.a))} E {0 (n.q)}.

Using the property E{g2(n,q )1E{p}(n,q)} = 1/N?, we
can further write

2

E {Xl)lql (”1’ ™ P ’q)}

L0, (A.2)
= i L2 o B o (2t

This holds for p, # 0. In the previous derivation, we used

the fact that the function ¢,,(m, 2p,) has a zero mean-value

for random m. Using the cosine function periodicity, we may

write E{py, (1, 2p)} = 1/M. Finally, we get

3
E {x?mn ('”””P1>‘l>} T OMINE (A.3)
Incorporating this into (21) and (22) leads to
N,(MN - N
2 3N (MN = N,) (A4)

TCutrd) T IMPNT(MN < 1)’

for p, # 0. When additional condition p = p; = 0 holds,
then

(A5)

E{xf’)'h (m)”'P’q)} = ——1\4_211\—[2-

is obtained, which leads to the same result as (25).

Case 2. Using same derivations as for Case 1, it is easily shown
that the result (A.4) is obtained for p# p,, p# M - p,, g =
g; # 0. Condition g = g, = 0 also leads to (25).
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(b)

Figure 3: Reconstruction of image “Lena” with 60% available pixels and sparsity K = 16 per each block of size 16 x 16: original image (a);
noisy image (b): reconstructed image (c).

Error (dB)

Assumed sparsity K

FIGURE 4: Error caused by the unreconstructed components with
various sparsity per block in irnage "Lena”; red asterisk: statistics,
black line: theory.

Pears Autumn

Case 3. Observe now thecase p=M - p;, g+ g,,9+ N -

g,. Also assume that p; # 0. The unknown quadratic term
becomes

E {,\"IZ)](/I (rrt,m, M~ p|,(/‘/)}

=F {(/)17\] ()’H, ‘DI) X (/)12\4 (IH,A/I - ])])]
2 2 1 (A6)
-E {(/’N (i q) @n (m,ql)} = N

-E {(Pzzvl (m.py) l///zvt (’”)Pl)} »

where y,, (m, p,) :;\/571\2 sin{m(2m+ 1) p, /(Q2M)) for p) # 0
and v, (m, 0) = V1I/M.

Figure 5: The test image set used for the analysis in Example 3.



Note that we used identities xpi,(m,M) = 2/M and
@y(m M) = 0 that appear in @y, (1, M - p,) when it
is expressed as @ (rm, M)@ (1, p) + was(nn, M)y, (m, pr).
Using the trigonometric identity for the sine of double angle
and expectation E{q/?v,(m,Zpl)} = 1/M, analogous 1o the
quadratic cosine expectation casc, we get

1
2
E {xiw. (1, n, M = Pw‘{)} T AN (A7)
Putting this into (22) leads to
) MNeN)

7Cp) = SMENT(MN - 1)’

which holds when p, # 0. When p, = Uit is casily shown that
(25) holds.

Cuse 4. In theequivalentcase when p # p,, p M- p,, g =
N — g, results are the same as in Case 3. When g, = 0, result
(25) holds.

Case 5. Observe the condition set p = p,, g = N - q¢,.
Combining the derivations for Cases  and 3, it is easily shown
that variance becomes

, 3N, (MN = N,)

_ Lk A9
Colp) = 4AENT(MN - 1) (49

Otherwise, when p, # 0 or g, # 0(25) holds as shown in
previously analyzed cases. When (p,,g,) = (0,0) is assumed,
result (25) also holds.

Case 6. In the analogous case when conditions p = M -
Py = g, are satisfied result (A.9) holds, whereas under
additional conditions that p, # Oorg, # Oor{p,,4q,) = (0,0)
the variance becomes (25).

Case 7 When p =
expectation becomes

M - p, and g = N - g, unknown

l

Elx,, (mnM=p N -q) | AD
for (p,,g,) # (0,0), leading to
2 Na(MN - N,)
ICpa) = ARINT (MN = 1) (A1)
For (p..q;) = (0,0) we have E{x;,(m,m M, N)} =

1/(M*N?). ‘Therefore, in the casc of noisy cocfficient (M -
PN —g,), the variance becomes (25). It can be shown that
for either p; = 0 or g, = 0 this variance is equal to (A.8).
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Note thal the variance expressions obtained in all consid-
ered cases are multiplied with Azl when A, # 1. Previous
results can be unified as follows:

2 _ 2 Ny (MN - N,) x| 1+(1
etpa = UMPINT(MN - 1)

N
Pw‘l;))(iz d(p,,0

1M
S(p-pha- E_Z 8(0,9,))
S(p-ig-q,) %Z 3(M - p,,0))
S(p-(M=p)oa-i)-3
M- ' (A12)
-2 (1-8(0.N=q))8(p-ia-(N-g,))
F 2 (1-0(p0) - 6(0.9))
S(p-M=-p).g-(N-q))
- (1-6(p10)-5(0.4))
§(p-ruoy (N“h))
‘%(1*5(1’1»0)_8(0»‘71))

'5(P’(M_P1)‘°11)>]'

where 8(p.q) =
otherwise.
The variances are statistically checked in the next exam-

ple.

Lif p = 0andg = 0and 8(p,gq) =

Example A.l. Assume a monocomponent signal in the 2D-
DCT domain, defined as

s, m) = A g, (m M), (n,N), (A.13)

where M = 16, N = 20, A = 1, p, = 9,and g, = 16.
Only N, = 128 randomly positioned samples of the signal
are available and 20,000 independent random realizations of
the signal are observed. Based on the initial estimates (10), the
variance of 2D-DCT coefficients is calculated numerically,
averaging initial estimates over all realizations. The results are
shown in Figure 6, scaled with constant term (25). Special
cases considered in Appendix are denoted in Figure 6.
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T
Case 2,9 = g,

I)

FIGURE 6: Variance of the initial 2D-DCT esumate. It is obtained
numerically based on 20,000 independent realizations of a M x N =
16 x 20 monocomponent signal sparse in 2D-DCT domain, with
N, = 128 randomly positioned available samples.
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the Creation of new Policies for Sustainable Competiveness and Technological
Capacity of SMLs, “ADRIATinn” [PA Adnatic Cross-Border Cooperation, 2014-
2016, http://www.adriawealth.eu/project/adriatinn/

Modelovanje analognog sistema obrade signala frakcionog reda (Modeling of analog
fractional order signal processing system), bilateral research project between
Montenegro and Croatia, Montenegrin leader Budimir Lutovac (budo@ac.me), 2017-
2018

Kompresivno  o¢itavanjc 1 vremensko-frekvencijska analiza sa primjenama
(Compressed sensing and time-frequency analysis with applications), bilateral
research project, Montenegro-China, Montenegrin project leader Srdjan Stankovic
(srdjan(@ac.me)

Digitalizacija u Crnoj Gori, Istorijat, stanje 1 perspective (Digitalization in
Montenegro: History, Current State and Perspectives), research project, Montenegrin
Academy of Sciences and Arts, 2018-2019, project leader LjubiSa Stankovic,

(ljubisaf@ac.me)




Strani jezici:

o Engleski jezik
e Ruski jezik

Rad na racunaru:

e Operativni sistemi Windows 1 pratece aplikacije, Active Directory, operativni sistem
Linux

e Pogramski paket Microsoft Office, LaTeX

o MATLAB/Octave, C, MySQL, Oracle, PHP, HTML, C++, C#, CLIPS
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Danilo P. Mandic is a Professor in signal processing with Imperial College London, UK,
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Dear Danilo
President's Award — Research Supervision 2014

| am writing to let you know that your department has nominated you for the President's Award
for Excellence in Research Supervision 2014. |t gives me enormous pleasure to tell you that
you are a winner.

The Award celebrates and acknowledges staff who are considered to have made an
outstanding contribution to the enhancement of research supervision. Providing world-class
research supervision for our students is hugely important for the Coliege and core to our
mission, so | would like to express sincere thanks for your exceptional endeavours and
dedication. In recognition of this, you will be presented with an award of £250 and a certificate
as a lasting record of your achievement. The Education Office will contact you in due course
with details of when the presentations will take place.

With very many congratulations

e
R

Sir Keith O’Nions
President

imperial College of Science, Technology and Medicine
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the Brain Science Institute RIKEN, Tokyo. Japan. Dr. Mandic is
a Member of the IEEE Signal Processing Society Technical
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SYSTEMS I, and Associate Editor for International Journal of
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