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Swarms on the 3-sphere with adaptive synapses: Hebbian and
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We introduce and analyze several models. of swarm dynamics on the sphere §% with' adaptlve {state-
dependent} interactions between agents. The equations describing the interaction dynamics are varia-
tions of the classical Hebbian principle from Neurostience, We study asymiptotic behavior in models with
various realizations of Hebbian and anti-Hebbian learning rules. The swarm with the Hebbian rule and
strictly nonnegative (attractwe) interactions evolves towards cansénsus; If the Hebbian rule allows both

Keywords: attfactive and repulsive interactions the swarm convefges to bipolar configuration, The most interesting
Multi-agentsystem 1s the rodel with anti-Hebbian learning rule:with both attractive and repuisive interactions. This-mpdel
3-spiiere displays 2 rich variety of dynamical regimes and stationary formations, depending an the number of
EE:;{;I‘IIE.II}:QH agents and system parameters, We prove that the model with such anti-Hebbian rule evolves towards

a stable stationary. configuration if thessystem parameter is above a ceriain bifurcation threshaid. Fmally‘
some simulation results are presented demmonistiating how these theoretical results can be applied (o
«coordination of rotating bodies in 30 space; thisis clone by mapping the trajectaries.from 5% to special

Adaplive synapses

oribiogonal group S0{3},

© 2018 Elsevier B.V, All rights reseived.

1. Introduction

Theé broad area of cooperative and distributed control com--
prises problems of consensus; balancing, formation keepirig and

coordinated motion in multi-agent systems. Special subdiscipline,,
named Geometric consensus theory (or, more generally, Geometric

coordination theary) deals with these problems on non-Euclidean
mianifolids [1,2). Coordination algorithms are naturally formulated
on homogeneous spaces |2,3], However, coordination of agents de-
‘pends greatly on geometric and algebraic properties of the under-
{ying manifold, and algorithms dn different homoegenecus spaces
‘petform- differently. Hence; although the recent theoretical ad-
vances developed a fairly universal.approach to coordination prob-
lems on arbitrary homogeneous spaces, there are few universal
‘results tegarding convergence to desired equilibrivm configura-
tions.

Some: problems-pf Geometric coordination theory are formu-
lated as minimization of appropriate objective functions on spe-
eific. Homogeneous spaces. Gradient descent methods for these
minimization probléms provide distributed coordination proto-
cels: One example of this kifid is consensus problem on the circle §

*  Cotresponding author at: Faculty of Technical Engineering, University of
Bihaé, Ljubijankicava, bb., 77000 Ehhac. Bosnia and Herzepoiina.
E-mefl addresses: alagincralic@ushbiba (A, Conlde), viddimi f@ar.me
{V. Jacinovic),

Paiparirdat o 10 TOTE. \56(0:1102018 J{EX 3
0167-601 & 2018 Elsevier BV, Al tights réserved,

over the weighted graph G.The gradient flow for the disagreement
cost functionvields the system of ODE's on §'. This systert of ODE's
is essentially the famous Kuramoto model. of identical oscillators
that-are coupled through the graph 6. This observation mdlcates
an intriguing rélation between consensus on homogeneots spaces
and universal natural phenomenon of synchromzatwn of coupled
oscillators, [4}. Coordination algorithims on §* have straightforward
applications i cooperative control of collective. Bianar motions |5).

Inthe present’ paper we consider the coordination of the swarm
on the 3-sphere 52, There are two good reasons. to: fogus on. this
specific manifold. First, geometry of spheres $° (with the exception
gf the circie S 1) favors consensus. Indeed, consensus.algorithins on’
5" perform miusch betterthen their analogues onspecial orthogona!
groups S0{n} [6]. Second, 5% is, along with S7, the only sphere with
the ‘group property. This makes 5° a very convenient setting for
various coordination algorithms {6,7].

‘The inspiratien for this paperto seme extent stemsfrom thie fact
that gradient flows for consensus problems on higher-dimensional

‘homogeneous spaces are known in Physics as non-Abeligh Ku-

ramoto models, see [8], This observation extends the relation be-
tween consensus and synichronization; while the consensus on §°

cofresponds to: synchranization i the-classical (Abelian} Kuramoto

model, the consénsus on §2 corresponds to guantum synchromzu—
tion innon-Abelian Kuramoto model {8,9].

Most papers on. Geometric coordination theory deal with the
swarm of agents. that communicate through the constant graph
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of interacfions, In the present paper we study the swarm with
adaptive (state-depéndent) interactions, Oneé nataral principle for
introducing state-dependent synapses is inspired by the classical
Hebbian rule from:Neuroscience. This nile states that the pairs
of agents wiiose states are close to each other strengthen their
synapses, or: the cells that fire together, wire together, Kuramoto
miodel with synapses that obey certain variations of Hebbian {or
anti-Hebbian} learning rule kas been studied in- several papers;
sée[10-12], To purbest knowledge, non- AbehanKuramotnmode[s
with Hebbian learning rule have not beeri considered sir far, No-
tice, however, that swarms on $” with state- -dependent synapses
have beén studied in [13.14]. Also, the paper [15] deals with thé
swatming on sphere with various cooperative rules in discreté-
time models, In this paper we demonstrate that swarms ori §3 with
some natural and simple learning rules for synapses exhibitvarious
behavioral patterss and stable confi igurations.

In the next Sectioni we deserite the model -of swarin dynarmics
on'S3 and recal some- eanng results for the case of time-censtant
interactions. I Section 3 we introduce-the specific Hebbian learn-
ing rule that allows both atiractive and repulsive interactions. As
one might expect, such swarm tends to a bipolar configuration, In
Section 4 the mode] with. ainti-Hebbian learning rule is studied:
this model ailows for a vanety of nontrivial. dynamlcai regimes and
equilibria depénding on riumber of agents and the: $ystem param-
etérs. Coordination algorithms. on.$? can be mapped to algorithms:
on the group 503} ‘of 3D rotations using the double cover map
53— 50{3).This is equivalent te representation of 3D rotadons by
unit'quaternions. it is well-known that such. representation may
pradute same peéculiar effects, due to the fact that two antipodal
quaternions correspond to tiie same rotation. However, in. many
cases such appreach has significant advantages over designing

-methods directly:on, 50(3) In Section 3 we provide several short
videos ini ‘order to visualize. different dynamical regimes on the
‘group SO( 3). Finaily, Section 6 contdins a-brief conclusion,

2. Swarms on the 3-sphere with constant iriteractions

Consider the swarm of ¥ agents evolving 6n the 3-sphere $%. In
orcer to introduce the coordinates on-§* we will use the algebra
‘of unit quaternions. The states of agents at the moment ¢ will be
deseribed by unit quaternions-gs{t); . .., gx{t) or by corresponding
it vectors in B4 {t), ..., xalE).

We suppose that the evolution of éach agent is‘described by the
followirig quaternion-valued ODE on $3:

G =ghig—F j=1... N (1)

Here, g;{t} is a unit quaternion, descnbmg the position of the jth
agent on S*and ff = filh. ... gu) are guaternionic functions
calted coupling filnctions or communication protocols depending on
the coritext. The notion @ stands for quatermomc conjugation of
quaternicn o {the conjugate of a unit quaternion ceincides with the,
inverse one: @ =0™"),

Notice that Eqgs, (I)presewe 53 this is easily verified by check-
ing that ¢;(0} € §* forall j = . N implies g{t) € $* for all
[

One can introduce different forms of coup]mg functions f, de-

pending on spec;f' c goals. In this paper we consider the coupling

functions of the foliowing form:

o o
f=—g= 'TI-'jkfIk. {2)
2N ¢

A=1
where the bar denotes guaternionic conjugation as before;
Pluggmg (2}into {11yields:

g =a Z:_ WgaG — G J=T N, @)
k=l

The ceefficients wy in{2}are mterpreted as strengths (we:ghts)

-of interactions between agents, in this. paper we will deal with

the case when interactions’ can be of any sign (attractive, repulsive
ortime-dependent). If - wy. are strictly nonnegative, the system (3}
provides distributed consensus -algorithm..

The system (3} can be equivalently written in real coordifates

with unit vectors x4(t), ... i xw(t) € R
N .

R=a) walte—&ax) J=1,... N {4}
k=1

The systerm in the formt (4) has already been studied in various
contexts: it has been interpreted as the swarm on sphere in {13],
opinion dynamics in [15] and. gradient descent system forconsen-
sus problem-on sphere in [6].

The system of maitix:ODE's an spécial orthogonal. groups S0{n)
that are analogous to {3} appear in [2,3] as gradient flows for
consensus problems on S0{n}.

Definition 2.1. The configuration of agents with
= =gy (5)

is called consensus.

Remark 2.1.  There is a certain ambiguity in the literature re-

.garding the terminology. For instance, in [3] the confi iguratioins

that satisfy (5} arecalied synchronization, while the term conisensiis
has broader meaning; In such terminology, synchronization is .a
partial case of consensizs, On the 6ther hand; most-authors do.not
distinguish between the two terms and use them as synonyms:for
configurations {5). In the present paper we will also stick to this,

convention. In addition, in some papers the terms alignment and
Tendezvous are also used with the same meaning.

Definition 2.2, The point

18
m(g) = E 9
J=1
is called thecenterof mass (or ceéntroid)of agents'statesqy. ... ; qy.

Obviously, m{g} is a peint in 4-dimensional unit baif,
‘the central notions in the theory of coupled oscillators are the

state coherence-and the order parameter,

Deﬁmnon 23. The numbet 1 = ryep = |m{g)], 0-< r < 1iscalled
the globatorder parameter of the ccnf’ 1guration,

Along with the gIobaI ordet parameter, we also introduce the
notion of angular order parameters, For that purpose we use the
Hopfcoordinates o §3. To this aim, we ‘represent quaternions ay
in the Cayley-Dickson form: gy = zp + vif, wheré zi, and vy are
complex numbers. Furthermore, as g, are unit quaternions, z; and
vy-can be written as follows: zj = é" sin#, vy = /¥ cos by, with
gy €(0,27), ¢ (0. 3). _

Now, iniroduce the following complex numbers:

r (r}e”‘(" - z et ad ralt m{t} — E e"*’km (6)

=1 k—.‘l

Obviously, r,(t) and.ry(t) are real numbers in [0, 1},
Definition 2.4; We refer to.r, and ry as angular order parometers.

Definition 2.5. The configuration. 1, . gy is called balanéed, if

.m(q) = 0(or, equivalently, r = 0)..
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We further cutline several known facts regarding the consensis
antl balancing in the model with constant inferactions.

Theorem 2:1, Suppose that interactions Wi in {3) are constont and

symimetric, Le. wpy = wig foralll < £h k<N Then (3)15 the gradient.

descent system for the following poteritial fanction:
1 . 1. _

V= W E w1 — 5(%‘5}:& + 1))
T

Theorem 2.2 {{16]). Suppose that interactions wyi, {3} are constant
ond symmetric. Ther the'system converges to a stationary equn'rbnum

Theorem 2.3 ({6}): Consider the swarm on the sphere Sfornz= 2
with agents:interacting through connected and undirected commu-
nication. graph. Then the set of consensus. contfigitrations is almost
:g.'obm'fy stable for the system. In other words, the set of all iriitial
dataqy(0},.... ., qu{0) forwhich the swarm doesnot converge towards
CORSENsUS has zero Lebesgue measure on 5™ x -+« 5%,

Theorem 2.4 ({7]). Suppose that each.pair of agents-is connecied
with equal negative synaptic strength wig = w. < 0.In addition,
suppose that the initint points qi{0), .. . . gy(0) are alf distinct, Then.
(3}-converges to a balenced configuration.

Remark 2.2, Theor emns 2.1 and 2.2 hold for any sphere 5%, while
Theoteh 2,3.halds for any sphere ST withp = 2,

Remark 2:3. The gradient fiow system on-S0(n) analogous to (3)
isa distributed protocol for consensus probiem on $0(n), see {2,3].

However, Theorems 2,2-2.4.da net hald for the system on SO{n)

when.n » 2. This remark’ emphasizes the essential difference
berween consensus and ‘balancing algorithims ori spheres and those
on special orthogonal groups. This différence can be roughly sum-
marized by statinig that geomnetry of spheres (with the exception of

the circle} is much-mere favorable for consensus than’ geometry of

rotation groups.
3. Swarm on §7 Witﬁ.HEbbi_an learning rule

_ There are several ways to design the state-dependent interac-
tions in accordance with the Hebbijan ledrning principle. In order
ta obtain some equilibria different from consensus, we introduce
the learmng rulethat resultsin both attractive and repulsive inter-
actions . Consider the swarm governed by the system {3} with
coeffi cients wy, obeying the following system of ODE's:

Wi = o(Qiy F Gy —pug). >0, j=TN, k=TN (7)

with the: mmal CGI}d]thI‘iS satisfying wi{0) = wn {0} for all 1 <
J k= N.This ensures that interactions wi(t) are:symmetric for
any furthermoment t = 0.

The parameter £ in. {7}is interpreted as leariing rate.

The system {7} defines a kind of Hebbian rule: in order to
irthderstand this, notice that the. guaternionic expression z(qjqk +
qkq,} is real~ vaiued and equals cos () = {xi 2 }E), where px(t)

is an angle between the unit vectors xi(t) and x,(£). Hence, the

equilibrium interaction Wik between agents j and & is maximally
attractive when agents j and k are- aligned-(g; = q). Onthe
contrary, thé interaction is maximaily repulsive if the dgents are
p051troned in antipodal points, g = .

It is not surprising that the system (3 (7} ends-up in bipslar
{antipodal) configuration on s3n Fig.1 we depict the evolution of
pairvise cosines cos pjk(r) =0, X)) for some pairs x;, X,

Reimark 3.1. In-all sitnulations the initial conditions for agents’
states 1(0}, . . ...qn{0) are chosen randomly from the uniform dlS-
tribution on$3, the interactions are initially set'to.zero, uy{0) =

far ali j, k, meaning that network does not exist at't = 0.

Definjtion 3.1, The configuration of agents, such that
th =~
is called bipolar (or antipodal).

T m =i = = Gy, Where0 < m < N

Notice that the sét of bipotar confi igurations include all consen-

sus configurations. [n other words, consensus s bxpoIar configura-

tion with m = M.

Proposition 3.1. The set of bipolar configurationsis asymptoticatly
stable for the model {3), €7},

Proof, Denote by X = (%, ... 4% bi ipolar equilibrium config-
uration with the: correspondmg mteractlons W = (£=1,..., &1
The dimensions 'of vectors ¥ and W are equal to 4N and N2 - N
respemvely _ .
Write the linearization of {4}, {7} around the point (X, W):
X=IX+TW+DOOX, W =PX+MW + GLXX:

Then the matrix of linear. approximation-of {43, {7} in-the vicinity
of (X W} is:.

1=(f n?)

Here, T = ;LR WM = X,
hand sides of{B} and (7}

). where f and g are right

N
SX Wy=a Z:'wjk(q;quj — Q) =&y wnlxe— (%, X))

ka1 k=1
and

(X, W) = (fgs + Gug; — o) = E{20%, xe). — poai).
Simple differentiation gives:
“J "
G _ o (

()U)' - - (Xkr' Xj)xk) +

Tl'llS expression equals. zero at bipolar configuration, when % =
=xy, thatis:

of

m(f{, W) =0, forallj and.k.

Also, by dlfferentiating g

Ok _ J—ep, Fj=s k=1t
g, 0, otherwise,

Hence, the matiix T consists of zeros and M is (N2 - NJ % ( — N}
diagonal matrix with diagonial elements -z,
The cha_racten_stlc polynomial of | reads

det(L— t) det(M — t) = det(L — t)(wjz — t)*~N

It fo]luws that antipodal equilibrium. (X W ‘of {4}, {7} is stable
whenever X is’a. stable. EthlIIbl']l.lm of {4) w1th corresponding.
interactions e == 1 for.all jiand k;

To conclude the proof we refer to results. of [13,16] stating that.

-antipedal configuratior is asymptotically stable equilibrium of {4}

ifinteractions wy, aré symmetric. 3
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4. Swarm on $° with anti-Hebbian learning rule

In this Settion we.consider the model {3) with slightly modified
rule for-the dynamics of syndpses:

g = ol—~{Gj0 + Gaq) — pigd. o> 0, f=TN, k=T, . (8)

are Symmetric, ensuring that w(t) = wy(r) for dny t > 0.

The system (8) defines the rule that is.in certain sense oppo-
site'to the Hébhian: the interaction between two agents becomes
repulsive when their states are sufficiently close.

Tihie anti-Hebbian mode! (3, (8} exhibits a fich variety of equi-
librium configurations and dynamical regime$ depending on the
parameter jrand thenumber of agents N. For this reason, it is rmore:
difficult fo obtain some theoretical resuits. We start with some
numerical simulations for different number of agents N,

Asin Section 3, we again suppose that initial conditions w{0)

4.1. Cose Ai N <-4 ageérits

. This case is very simple: the swarm evolves towards the con-
figuration where all interactions 4wy, vanish. Such disposition is
achieved when the system of vectors x,. ..., xy is orthonormal,
Fig. 2 fllustrates-the evolution of 4 agents towards this stable
configuration,

4.2 Cose B: N = 5 agents

For ¥ = 5 the-situation is. mare involved. The agents tend to
occupy arthonormal system of vectors on 53,sothatall interactions
iy, vartish. However, such configuration is not possible, since the
dimensien of the: ambient: space is insufficient and there is ane
redundant ageiit. Hence, they seek for a compromise, and if the
interactions can be made sufficiently weak, this compromise turns
ot to be stable. '

In-Fig. 3 we depict the evolution towards the stable configura:
tion when the parameter j is sufficiently large.

rsion.of this arficle.)

In fact, for any gt > g9 = 1.39 the same stable equilibrium
configuration (with cosines of all angles between vectors equal to,
+0.25) is achieved, o

-On the whole, simulations suggest that for any ¢ > 1.39 there
exists essesnitially unique{up to rotation on 5% and remunerafion of
agents) stable equilibrium, _

For g < '1.38 thisequilibrium is-.unstable and the whole systemn
osciflates; this is {llustrated ini Fig. 4. Hence, as j decreases, the
system undergoes an oscillatory bifureation at 1 ~~ 1.39.

4.3, Cose C: N =6 agents

The:medel with & agents has bifurcation value 3 approxi-
mately at 1.59, For i = jy the system tends to a stable egui-
librium. There is an. essential difference with the previous case;
this equifibrium is not unique and the final configuration depends
on dinitial conditions. In other words, the system with. 6 agents
and > py & 1.5%'is muitistable, with several (essentially
different) stable equilibria, The convergence towards one stable
corfiguration is shown in Fie, 5.

For ji < pq the system exhibits.oscillatory behavior, see Fig: 6.

Summarizing thie above discussion, the simulation results indi-
cate that the-agents will achieve'a compromise if the parameter jr
is sufficiently large. Ir other words, for sufficiently large j¢ there
-exists either a unique (moduto 4D rotations and refmuheration of
agents) stable equilibrium (when N = 5), orseveral-essentially
different stable equilibria (as.with N = 6 agents). The following
theorem claims that this is valid for arbitrary number of agents,

Theorem 4.1.  For p suﬁ‘?_tieudy. large the system (3} with anti-
Hebbian leqraing rute {§) tends to a stable stationary equilibrium,

Proof. For.simplicity; we will work with real vectorsx, . ..
and the system in the form {4},
First; introduce the vectors:

o = Z.H’.jk_xk_. J=1....N
kef

YXN
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Vector oy can be interpreted as the total infitence :0n agent, i from _‘Taking'into.accolint that x; are unit vectors it is easy to check.
all.other agents. that £(t) = 1 itk

Substituting.c; into £4] we obtain: Rewrite the system {8 in real vectors;
X = 0y — oy, %)% Wi = =<, Xy — pwg, o> 0. {9}

Define the kinetic energy of the system: E(r) = 3y J”: , ;;‘9(;5){2___ For the proof we neéd the following auxiliary.



A Crnkié, V. jacimovic{ Systems & Conirol Letters 122 (2018) 32-58 37

Lemma 4.1. For 1 sufficiently large it holds

NN
D0 TR < B+ (),

=1 k=1

where e(t) is o differentioble function that coiverges.to zero whem
t — po.

The proof of this Lemma is provided in Appendix A.
{n.order to prove the Theorem consider the following function;

N N
. .1
Ff) = Z{Xj. o) + i.,'_,t ZZ wﬁ\,.
=1 J=1 kesi
Differentiation of F(t} along the trajectories of (4}, (9) vields:
win= D i gy + > g +.#_Z..Z_wjkwjx. =
dt ; - wais
Do e+ 3D )+ Y D g ) —
i ik ik
H Z Z"wjk.(xj._ xXi) — 41t Z Z mﬁ =
ik ik
Do bna) + 30w i) + 3 v xd-
i k f . §

K 4
i Z{Z i, Ky) — Z ij‘zk _
ko Pk

It

{using {9).and the symmetricity of interactions. wi(t) for-all £)
Z"('-?'fj ')+ 'Z‘(m. )+ Z Z(“’(Kj.,-.xk) = W)X Xi) —
P * ik
5 Z’(Z.Ti}jkﬂje X} = 2 ZZ _wﬁ_ = 2.2.'(321,1@_;)—
ko i & ¥
Z .Z;(Xﬁ o —p Z.{Ufk--xk) —H Z'{Xj_, o5 —
7k k 7
e Z:Z u\ﬁ: = 4E(I) — ZZ{XJ Xi)P—
ik J ok
22 b7 5 S
ik ik
)~ 3 D e ned — g = 4E() — 30 Y uk,
T i %k

The kiretic energy E(t) is a nonnegative function, Applying
Lemima 4.1 we now obtain that $F(€) > 3E(6)+e(t) = ¢ty where
€(t) —~ Owhent — co.

Further, the function F{t) is bounded, since

FET < 1) 0% ol k) 3wk =

g JoK
20D St + )3 w3 S g + )
Ik ik i &k

and the functions w;(t }are bounided as solution of {9) with sz > 0.
Hence, F'(f) > e{f}and [F(t)) < ¢ and we conclude that
F'{t) = Owhent -» oo,
One novwhas that 3E(t) + €(t) < F/(t) - Dast — oo and
E(t) > 0. Hence, E(t) — 0 and the system tends to-a stationary
equilibriurn when ¢ - vo;

5. Apalications and visuilization

As emphasized in Introduction, the geametry of 5% makes it
very convenient und'er]yin_g space for the design of ronsensus and

ceordination algorithms, This suggests- that in many cases, it is.
advantageous to design algorithms on rotation groups S0{3) and
S0{4) by using group homomorphisms of 3, This is"achieved by
running simulations on '§* and mapping the trajectories of all
agents from 52 onto SO(3) (and from $3 x §? to SO(4)). 1t -is well
known that in certain situations this approach may cause sprie
undesired effects. For example, bipolar configuration on §° corre-
sponds to consensus on 5¢0¢3),

In Appendix B, we provide séveral short videos illustrating dif-
ferent dynamical regirnes in swarms with 5 and 6 agents with anti-
Hebbian learning. rule (8). These videos are obtained by mapping

trajectories from $% to SO(3).

“The first two videos illustrate the convergence towdrds equitib-
rium configurations with 5 and 6 agents respectively. The pararn-
eter value is.... = 2 in'both simulatioris. '

Further, we illustrate oscillatory regimes that occur whern 1 is
below bifurcation threshold. The third and fourti: videos demon-
strate ‘an oscillatery’ behavior in swarms. with 5 and 6 agents
Tespectively. The parameter value is set at o= 1.

6. Conclusion

Recent papers [6,15] brought a significant progress in undei-
standing consensus algorithms on spheres aver arbitrary commu-
nication graphs. In particular, it hasbeen showt: in {6] that consen-
sus set'is almost globally stable for. swarms on spheres consisting’
of agents communicating.through connected: undirected graph.

In the present paper we have analyzed swarm dynamics on
sphere with sfate—_dependenf.i_nteract_icns that satisfy cértain re-
alizations of Hebbian and anti-Hebbian learning rules. The model
with-anti-Hebbian rule can exhibit various stablé formations or
pscillatory behavior 3depend_ing_ on systerm parameters, We have
proven the theorem stating that the swartm tends towards a stable
equilibrium provided that the system parameter is sufficiently
large,

Underline that all theoretical results of this paper held.for-any
sphiere S™ (and nof for 5% exclusively). We have focused on §2
sincé this particular case is of special importance in applications,
In addition, group property of $* miakes it: convenient to introduce
different communication protocols and algorithms and to present
simulation résults more transparently. For instance, the notion of.
angular order parameters introduced.in this paper makes sense for.
$3only. '
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Appendix A
This Appendix containis the proof of Leynina 4.1.1n arder to sim-

plify notations, set: bft) = —{&i, X)), (1) = uye(t). Then Eq. {9}
is writtén as

x=h{t) — pux.
The solution of this ODE is'wiitten as foliows
o
x(t) = x(0)g~# A j bi{s)e™# J-sti‘frd_s =
4 . ’ !
{0)e ™ f b(s)e Mg o x(0)e MY 4 =T f b{5)eds =
Jo ;
: g
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{using integration by parts) =
'l

et (b(f}e’" b(O}-»-f b{s}e“‘ds)
I

rb{r) o gt f His)e'ds + e~ (x(0) — —b({)}}

Mulnplymg this'equality by ;2 we obtain

X0} 4-

FR(E) — B(E) = —g™0 f bs)EM ds -+ eft),
A1)

wlhiere ¢{tdenotes a function that converges to-zerowhen { - o,

‘By taking limitwhen't — oc and using L'Hospital’s fule we get

. b(tiert Bt

Jex(t) = bt} — _._.[_}i = —~—Q when ¥ — .
JLent Ji

Evaluating the squares of the above equality

(x(E] = BEY? = f”

(£
Turning back to the original notations vields
(rex(e) = (e} = (rupdf) + (. 2 () =

(d%{x} Xk}{t]}z

aig(t) = p + £(t).

Now, it'is easy to check that {% (x;.-zé;;)(ti)z' < cE(t) for some
positive constant ¢, Indeed; C

(d, a2 A b
__E;{X;,xk)_(t) = (4 X 0, %) + 208 k6. k) <

Bt - el P - el 2081 - bl - gl - i =

Bl ol 200 ol < e 3R = cE().

i
Hence,
] i 2 Nz
E wak: {—352 ; (;E(Xf" ch'}'(r)) +eft) = %E{t)%—e[t)
F J k ’

and for ;¢ sufficiently iarge: E P qu < E(t)4¢(t)

Appendix B. Supplementary materiaf

Supplérmentary material related to this article can be found
online at hittps:ffdoi.orgf10. 10164 syscornile. 2018.10.004; This ma-
terial contains short videos illustrating the swarm ‘dynamics with
5.and 6 agents under the anti-Hebbian learning rule. See Section 5
for details.
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Mibius transformation

Cross.ratio

Complex networl:

1. Introduction

The classical Kuramoto model, studied in his seminal paper-[1], describes globally (all-to-all} coupled heterogeneots
papulation of phiase oscillators:-

N
. K - P :
G =t 7 ) sl — g, J=1. N, (1)
i=1
Here,;{t} and o denote the phase and the frequency of oscillator J, and K is a global coupting strength, the same for each
pair of bscitators.
‘Probably the most important feature of this model is its mean-field character. In fact, Kuramoto started the analysis of (1}
by introducing order parameter r(t) and mean-phase u{t}, defined by:

r{t)eht! =: m Z eiltl, (2)
-

In new variables, {11 can be Tewritten in its mean-field form:

@ = wj+ Krsin(u —g) J=1,....N. (3)

This form unveils the meari-field effect of the global coupling: it acts Iike all oscillators would be coupled tothe same external
field 2t} with the common coupling strength Kr{t) {see also [2]). This property makes the classical Kuramoto model so
snathematically tractable, On the other hand, it is not frivial; its intrigue stemis from the fact that both mean phase (i) and
the strength of mean field Kr(t) vary in time and depend o states of all oscillators at éach instant of time,
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__E-mai_[ address; aladin.crnkicgunbiba (A Crnkic).
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The same mean-field. arguinent is valid for more general types of coupling, such as time-delayed coupling with global
delay 7, phase-shilted coupling (Kuramoto-Sakaguchi model), time-dependent coupfing K(£), or noisy coupling with the
common noise. It is essential that the coupling is global —thatis, the same between each pair of oscillators.

It is natural to try the similar reasoning when dealing with the:population of escillators coupled: through the complex
network of interactions, Given the sufficiently large network, it can be:conceived that centributiens of all {or the greater
part of) oscillators to:collective dynamics.are infinitesimally smalf (negligiblé) and interactions between o_sc:ii'iators can be
approximated by introducing one or more mean fields. However, the situation is obviously far more complicated in this
case, as the:mean field does not have the same effect on all-oscillators, More precisely, dynamics of different oscillators is
governed by different mean fields: The challenge isto chioose appropriate mathematical objects that describe mean fields in
complex network. o ’ _

In this paper; we introduce the, mathematical model of mean fields in networks of coupled oscillators. Our approach,
inspired by the paper{3], is a continuation and extension of [4].and can be used to characterize the network topology, detect
communities, compare different networks, etc. ' '

The:concepts. introduced in this paper are particulasty transparent when applied te globally coupled population. In this
¢ase; there exists a global mean field that can be represented by a unique Mibius transformation at any moment. This is.
explained in Section 2. In Section. 3 we discuss how this idea can be ‘adapted when dealing with complex networks. in
Section 4, the mathematical frameweorlk: for description of mean fiélds in"complex networks of oscillators is introduced,
Based on it, we develop the statistical method of comgputation of'mean fields and apply it to characterize some regular and
randcm networks. Finally, in Section 5, we draw some:conclustons and briefly discuss potential applications of our approach.

2. MMS principle-an'd mean fields in globally coupled population

‘We start frem the particularly simple case of the homogeneous population with global coupling, i.e. model (1) with all
oscillators aving the same intrinsic flequency w; = e. Following [3], rewrite’( 1) in more general form:

qu :fe.‘.';l’-‘j o _|_fg";iﬁ, j=1 ..., N. )

where f i5 a global complex-valued coupling function. Introducing the new variable zj{t) = &%t we.répresent the state of
oscillator j ds a point on the unit circle S 1in the complex plane. _ _

Denote by G the (sub)group of Mobius transfermations that preserve the unit dise B in the complex plane. The general
transformation belonging to Gcan be written as:
o Yz g
M2y = ———— 5
1) 1+ aelvz’ 5)
for some € [0, 27] ande € € o} < 1.

[In [3}, it is shown that the states Z;(t) of globally'coupled population of identical ‘'oscillators {4) evolve by the action of
one-parametri¢ family of transformations{5) with the parameters ¥ and-« satisfying the following system of 'ODEs [5]:
{_:'{ = .’U{'thz +. w‘{__—i-_f{'t)}.; 6)
¥ = f{t)e +w +f(1)d. '

We will refer to this result as MMS prificiple..

il

Remark 1. MMS principle states that {4) admits many constants of motion and can be reduced o three-dimerisional
dynamics {6} of global variables.a(t) and (¢} It is important for-our further considerations to emphasize one consequence
that follows from the Lié grouptheory: given the initial stafes of oscillators.zy(0); .. . , zy{0), their states z3(t}. . .. »Zn(t) at
each moment t are obtained by the aétion of certain disc-preserving Mabius transformation. In other words, for eacht > G,
onehas z(t} = A (z{0)), =1, .... N forsome M, & G. Notice however, thatit isimpossible-to specify this transformation
M, a ptiori, as it depends on coupling function f and states of all-oscillators ateach instant of time,

There are several pt’J'ss'_ihie ways to derive MMS. principle. In [3i two _methqd_s are exposed.'on'e based -on analytic and
anctber on algebraic and geometric aiguments. Differént-method with more algebraic details is exposed in [6] it is based
.on observation that the formal substitution z(t) = e'#i{% in {4} yields'complex Riccati ODEs:

ZJ #IU'ZJZ + wZ; —[—f) {7)

First, notice that (7 with @ € R defines the flow on the unit circle — that is, given the initial condition z{0} on S*, one has
thatz{t) & S* for any t > 0. Furthermore, it can be shown that Eg. (7} defines one-parametric family of disc-preserving
Miibius transformations. Indeed, Poincaré maps of Riccati equations are Mébius transformations, see for instance [7.8].

However, there is an important nuance in the abave reasoning. By referring to (7) as Riccati ODE, we implicitly assume
that the coupling function f depends on ¢ -ofily, and not ofi z;, . . . ,.2y. This s essentially mean-field approximation; by
adopting it we:conceive that equations for the states of ascillators are coupled only through some comrmon complex-valued
function f{t).
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Fig. 1. Evolution of the mean field on-time interval ¢ & [0. 4]4n population of N = 500 oscillators with global-coupling strength K = 2,

For sufficiently large globally coupled population this approxlmatmn is vahd and we can treat {7} as Riccati flow on.S!
with time-dependent coefficients f(t} : R — C and & R. The situation is'more involved-if coupling is not global, i.e. if
oscillators are coupled through the compléx fetwork. This will be discussed in the next section. We start by intraducing the
mathématical mode} of a{unique) mean field in globally coupled population.

Definition 1. Mean field in globally coupled population (4} at the mument_'l'_z 0 is a Mobius transformation Ay € G, such
that-states of al} oscillators-at T are given by z(T).= Mr(z{0)},f = 1. ..., N.

1t follows from MMS principie {see Rerark 1) that such Mbbius transformation exists forany T = 0.

With each disc-preserving Mabius transformation {5) we associate the CDTTESpGRdan parameter o € €, |af < 1.Inthis

way,.mean field in globally coupled population {4} at +- > 0-s represented by the point in the unit disc a(r) safisfying the
first ODE in (6}, see Fig. 1,

Remark 2. Geometric meaning of parameter a(r is also clearly exposed ia [3]. The evolution of states of oscillators. is -
governed by a certdiit one-parametric family of Moblus transformations M; & G. Then; it} turns out to be the image of

the centre under the action of the family My: et} = A ,(0} In an exceptmnal casé, when the initial distribution of phases

is uniform en [0, 277], «(£) s simply the centroid of oscillators’ states at the moment f, Another parameter of AM;, the angle

¥(t) € [0, 277}, is the overall rotation of oscillators on tite initerval [0, ] and is essentially irrelevant for characterization of
mean field.

Clearly, mean field evolves with the. time and .its evolution depends both on coupling strength and initial _st_a_tes:-of-_
oscillators.

3. Mbbius transformations in complex network of oscitlators

I Section 2 we have introduced mathematlcal definition (in fact; the model) of a mean field in the population of globally
coupled oscillators, Bur next goal is to.extend this model in order to study the complex networks of oscillators. Consider the
{sufl ﬁcaently large) netwarlc A of identical Kuraméto oscillators:

N

@ =+ - ZK‘J sin{gr — ). f=1.... N (8)
r-—"l
The networl of interactions v is given by the matrix. K. Matrix K,j can be asymmetric, moreover, the whole approach is
valid also for the networks with phase-shifted,. time-delayed or noisycoupling.
For the sake of consistency of exposition, suppose that initial phases of osciilators arte chosen from the uniform
distribution on [0, 27 ]:

o0 e Ul0,27], j=1....,N.
Rewrite ( $tin more general form:,
=fe% o+ e, j=1,... N 19)

As above, the state of oscillatorj is represented by the unit complex number {paint on 5') z{t) = el Substltutmn in(9}
yieids the system of complex ODEs:

=iz +wz +hy j=1.0N (10)
for some coupling functions fi{t. 2y, ..., zy)and w € R.
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Fix-oscillatorj and consider his.equation { 19}, Strictly speaking, it is not Riccati equation, since the function; depends on

21+ + . - » Zy. However; by conceiving that the contribution ofj to. rietwork dynamics is infinitesimally small, we can fieglect
‘the d_ependen_ce of fiunctions fi... .. fy on'z; and regard {10) as the Riccati flow equation on S':
5 =)z} + wz + KON (1)

Obviously, in globally coupled {and large} population, all oscillators‘satisfy the same Riccati equation (73 In-complex
‘networks different oscillators in general satisfy different equations (11): Our approach is based on detection of the groups
of oscillators that {approximately) satisfy the same Riccati equation.

inwhole, if osctllator j satisfies the Riccati flow equation of the form {11}, his'state evolves by the action of one-parametrie
families of Mébius transformations with parameters () and W{£) satisfying (6). Howeves, knowing the dynamics of one
“oscillatos at time initerval £ € [0, T] is not encugh to determine if it evolves by the action of Mabius group. The action of
Mibius transformation can be detected anly by observing dynamlcs of groups consisting. of p=4 oscillators and computing
cross ratios {see [4]). We will use this methed in'sinulations in the next section.

4. Mean fields in complex networks of Kuramoto oscillators

Consider the model {8} of oscillators coupled thr_ough the.complex network & with'initial phases tpj(l}) sampled from the
uniform distribution on [Q, 2]

Definition 2 ([4]).

1. We say that four oscillators i, f, k. I agree, if at’ any time 't > 0, there exists a Mobius transformation A4, that maps
pointsz{0), z{0). z¢{0), {0)-to points z{t), zJ(t} zk(r} z;(t] respectwely

"2, We say that the group of p >4 oscitlators iy, . ..., i; live in the common field, if at any time ¢ > 0, there is.a M&bius
transformation A4; that maps poinis z;, (0); .. ., 2,p 0} to points z;, {£), ..., Z,(t), respectively.

Natice that the above cancepts depend both on network topology and initial phases of escillators. In other words, four
oscillaters.can agree in the netwark A7 for certain initial conditions and disagree in the same network for some-other initial.
COl‘ldlthI‘lS Underllne also that two sets of oscillators living in two commen fields can intefsect, since one oscillator caa live
in more than one common field.

Remark 3. Given fourosciltators in the network A7, an efficient way to chieck if they agree is provided by the concept of cross-
ratio of four points on §1, see [4]. '
Definition 3;
1. We say that Mobius transformatlon M lspresent in the network A7 at the moment T = 0,if there exist four oscillators.
1.j. %, I.such thatz,(T) M(2(0)), Z{T) = M(z{(0)), z{T) = M(zp(0)), z(T) = M(z.-(o)] In otherwirds, M is-present
in the netwark A7 at the monient T, if one-car find four osullatars in A that agree on A at T.

2. Assume that A1 is present mNa_t__T = 0. Then, the weight of M is 4N.where m <N isthe total number of oscillators
that five in the common field M at T.

Definition 4. Mean fields in the network A/ at'the moment T > 0 are alf Mabius transformations that are-present in A at T.
Weights of mean fields in A7 are weights of corresponding Mdbius transformations.

Fix-the set of initial states z;{{]) .,.zy(07 and the moment T > @, Denate by Yi the set of all quadrupies {i, J, k, I} that
agree, Obviously, Yy is finite; as it has at most (”) elements. Eackeelement from Y4 defines a unique Mabius transformation
at T. Consider the-function gy % Y4 — G, mapping quadruplés to Mdbius transformations: Domain of gy is the finite set
P C G cofisisting of af Mobius transformations that are presentin A7 at T.

Each Mohius transformation ‘from P is.represented by the corresponding parameter . In this way, mean [lields in A at
the moment T > 0 are represented by the finite set ("cloud”} of (weighted) points in .

Suppose that mean fields in the nefworl¢ A" atthe moment T > 0 are represented by thecloud” of points ey, . . .. oy in B
with corresponding weights . ..., w,, Our next steps require rotion of distance between points ay, «. . . & Recal]mg that
these points.are images. of the zero point under some Mobius transformations My, ... . My, it is natural 10 use hyperbolic
distance{Poincaré disc moclel see [9]).

Denote w = 1wy + - - - -+ wip. Define the fuaction:

rmﬁ}j“fsm}

k...
where

- ws;u+w4ug
dt.g)=m{ 2 T TR
. ) m(ﬁswlhﬂ€—ah
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Fig.4. Mean fields in ER graphs with{a}d = 0.1, {b}d =0.5and {c)d = 0.9at T = 5.

‘is'a hyperbolic distance in I between points £ and . Functiof f has the unique minimuen Binl, cafled the Poittcaré barycentre
(or, inmore general context, Karcher mean, see [10,11]} of thé set {my,. ..., ap} '

Definition 5. The average mean field in the network A at the moment T > 0 is the Poincaré barycentre B(T) of the set
{ixb P ﬂ'p}_ = E}j-

Denoté by (T} tié value of function f at the minimum point B(T),
‘Definition 6. The h-coherence of the network A7 at the moment T = 0 is:r{T) = H—E(—ﬂ

Remark 4. Notice that h-coherence (hyperbolic coherence} of the network differs from the notion of coherence, introduced
in [4]. ' N
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Mean fields in the netivork consisting of two perfectly coherent communities with inrra- comimunity coupling i’ = (.675. and Inter-communicy

F'gG

coupling v = 0.325 at T = 50, 200, 250.

Remarlk 5. For a given network Af, average mean field B{T} and h-coherence r{T) are functions of time,

Remark 6. It is obvious that for the globalty coupled po‘pulation.'smdied in Section 2, (T} = O.for any T, Therefore, its
h-coherence equals one at any T. We say this'is perfectly h-coherent:netivork. For-any other network, one hias 0 < rfT) < 1.
Typically, h-coherence is a decreasing function of time.

In

Figs. 2-6 mean fields in different networks are depicted. The method of simulations is based on the-above definitions

and nice properties. of mathematical ub]ects we use. However, in order to study complex networks, some adaptaticns.and
relaxations are necessary and e briefty explain the method (some of the foilowing steps are exp]amed mare thoreughly
in{4}]).

1.
2.
3.

6.
7.
8.

Pick the random initiai phases ¢1(0). . ... ; px(0) from the uniform distribution on [0, 2x7).

Solve{8)ont & [0, T] with thesé initial phases to obtain’ phases of-oscitlators at the momént T; ¢y(T), .. ... @N(T]
Substitute z{0)-= €% and z(T).= ¥ forj = 1,..., N to obtai states of oscillators at moments t = 0 andt =T
as.points on 5.

. Pick randomly 1000 quadruples of oscillators. For-each-quadruple &, j, 'k, I checle if they agree. This is verified easily by

comparing cross ratios of points z; z, z, z; at moments t = 0 and ¢ = T, I the cross ratio is présérved, then i, j, k, |
agree. However, we need some ﬂexﬂllllty at this point-as the cross ratio is almostnever perfectly preserved in camplex
network. Theréfdre, we. allow some small error by supposing that oscillators agree’ if cross ratio is.approximately
preserved up to. g = 1072,

. Suppose that oscillators i, j, k, I(approximately) agree. Then, using cross.ratio, find all the- Dsc1llamrs that (approxi-

mately) agree with the triple § +J. k. Denote by m < N the total number ofoscillators thatagree with i, j, k (counting
them as well},

For the quadruple i, j, k. 1, find their Mﬂbms transformation A1 (with some small error). The weight of M is 1%

Write A4 in the form {5)ip order to find the correspongding &.

Depict & in B with the correspanding weight.

‘Smmallerror is tolerated at the step 4 and consequently in all subsequent steps. However, since cur method is essentially
‘statistical, this approximation does not. affect simuldtion results:significantly,
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“Table 1.

h-coherence of Watts-Strogatz graphs.{coupling strength is st to. K= 7 and T =3),
WS graphs with k = 50 f=0 A=01 p=u0s p=09 =1
h-cohérence -0.543087 0.955081 0967391 08974492 0.974103
WS graphs with k = 250 =0 £=01 f=105. =09 B=t1
h-coherence 0.253563 027055 0.723713 0.79834% 4.801305
WS graphs with k = 450 B=0 =01 p=05 H==0.9 B=1

~ h-coherence 0.473923 0.430417 0.60308 0.638407 0.585943

Mean fields-and h-coherence depend both on network topology and initial distribution of phases of osciltators. In-this
paper we explicitly assume uniform distribution:of initial phases. in order to focus on.topology only. However, there are
othier possibilities. One might compare mean fields in one network for different distributions of initial phases (for instance,
by taking uniform anid vor Mises initial distributions in two simulations).

In all simulations the same set of initial phases is used; this is convenient when comparing betweentwo networks inorder
‘to-avoid the ambiguity with random mean phase #(t). Otherwise, when considering two networks one shoutd compare two
sets of points modulo group SO{2)-of planar rotations:

We present the resuits of simulations for some Erds-Renyi (ER) and Watts-Strogatz {WS}) graphs(see [12,13]), In Figs..2
and 3, the evolution of mean fields in ER graphs with liriking probabilities d= 0.1 and d = 0.9 are illostrated by depicting
snapshots at different moments. Mean fields in different ER and WS graphs at T == 5 are.shown in Figs. 4 and 5, The coupling
strength on the link is set to be K = 2in all simulations. _ '

‘The average mean fieid (barycentre B(t)} is represented by the black starin all figures.

1In generai, random networks are more h-coherent than the regular ones. WS networks get more coherent as the
Pprobability of rewiring frincréases, from minimally coherent with § = 0(perfectly regular network}, to maximally coherent
when § — 1 (yielding perfectly random network, i.e. ER graph}); see Table . _

In Fig.6, the evolution of mean fields in the network with two perfect communities {ali-to-all coupling, with intra-
‘communities couplifig K == 0,675, stronger than inter-community coupling v = 0.325} are depicted. This model with
phase-shift - = 7 — 0.1 in the coupling is the simplest network exhibiting chimera state, sce [14]. As expected, Fig. 6
shows presence of two dominant mean fields, created ingide two communities. When chimera state cccurs, these twao fields:
diverge, one evolving towards the circle S* and another performing (quasi)-periodic evalution in the interior of the-disc .
This example shows thaf mean fieldscan be very serisitive to small fluctuations in initial conditions.

5. Conclusion

in this paper we. suggest that the group of Mabius transformatians can serve as an adequate mathematical -ohject to
describe mean fields in networks of coupled oscillators. This approach enables us to take advantage of rich mathematical
theory related to Mébius transformations, including classical concepts of Complex Aralysis, Projective Geomelry and
Algebra, For instance, crass ratio is used fo detect Mdbius transformations based on dynamics of fu’ur'oscijl]a‘toi‘S. Also, the Lie’
group properties of the set of Mobius transformations are essentially used to visualize mean fields and measure the distance
between them.-Our method-is:statistical and applicable for the networks that ¢ontain hundreds of oscillators, or more.

The idea’is particularly transparent for globally coupled population {complete graph). In this network, at each moment:
there i a global mean field, répresented by one Mébius transformation and further visualized by a single point in 1, We say
that-this network is perfecily coherent,

Mean fields in the network are represented by the set of points in disc B with hyperbolic mettic: This set of ‘points
provides characterization of the network topology. Based on-this set, we have introduced notions of average mean field
and h-cohérence of the nétworlk. The h-coherence decreases if the total coupling strength over the network grows. On the-
other hand, if the total coupling strength is fixed, the h-coherence increasés with number of links. Therefore, it is natural
ta compare the h-coherence in networks with equal {(expected) number of links and equal total coupling strength. In this
setting, the h-coherence can be seen as a ineasure of randomness of the network This is confirmed by the results presented
inTable 1. For weighted networks, the h-coherence is maximal if the weights are-uniformly disteibutéd (equal) over all links.

This modei can. be appiied to detect communities in networks. Kuramdtoe modél has been used to study the network
topalogy in number of papers (see [ 15,16] for more details); these methods are typically based on observing thie process of
synchronization.in the network. In.contrast, our idea is based on detecting mean fields. We say that the group of oscillators.
{1, ., I} s coherent, if the-set-of mean fields {ay, ..., g} wheré {if, ..., iy} live; is contained in the small dis¢ inside ».
(In particular, the group is perfectly coherent, if the set of mean fields is a single point), Coherent groitps. can be sparsely or
densely interconnected (the latter are regarded as communities}), However, in our approach they are clearly distinguished:
densely interconnected groups correspand to the points that are distant from the centre of [, while spatsely interconnected
ones correspond to the points that are close to the centre, '

As another potential application, we mention the interesting possibility of measuring similarity between networks by
comparing the corresponding sets of points in Poincaré dise model, _

Finally, underline that the whole approach (including all definitions of this paper) is valid for networks with various types
ol interactions, including noisy interactions, time-delayed interactions; etc.
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This piper deals. with the low-dimensional - ‘dynamics in the general non- Abclmn Kuramoto model
«of mutually juteracting generalized oscillators on the 3-sphere. If all osczllatms have identical intrin-
sic generaljzed frequenciés and the coupling is global, the dynamics is fully determined by several
global variabies. We state that these generatized oscillators evolve by the action of the group Gy of
{quaternionic). MOblllS transformaticns that preserve $3. The global varizbles satu,fy a certain system
of quatemion-valued ordinary differential equations, that is an extension of the Watanabe-Strogatz
system. If the initial distribution of oscillators is uniform on $%, additional symmietries arise and the
dynamics-can be restricied further to invariant submanifolds of (real} diménsion four. Published by

AIP Publishing.: hitps:/fdoi.org/10.1063/1.5029485

Low-dimensional dynamics in the Kuramoto model with
global ¢oupling is well known and extensively sindied. The
first theoretical tesvlt of this kind has been obtained by
Watidnabe and Strogatz in 1994. Ini 2009, Marvel, Mirollo,
and Strogatz provided a. group theoretical explanation of
this low-dimensional dynamics, It has been shown that
Kuramoto oscillators evolve by the action of the group
Gg-of Mobius transforinations that preserve §'. More-
over, parameters of these Mibius transforinations are
the global variables; they satisfy the system of ordinary
differential equations (ODE’s) known as the Watanabe-

Strogatz system. Consequently, the dynamics takes: p_lace'

on the 3-dimensional invariant siibmanifolds that lie in
the orbit of Gg. In‘this paper, we report an analogous
result for the non-Abelian Kuramoto maode! on- 5°. Non-
Abelian Kuranioto models have been recently introduced
as extensions of the Kuramoto model on §'. It is shown
that oscillators in S*-model evolve by the action of the
group Gy of Mibius' transformations- that preserve S°.
The evolution of global variables is described by a cer-
tain system of quaternion-valued ODE’s; this system is
an extension of the Watanabe:Strogatz. system. Finally, the
evalution of the distribution of escillators is restricted on
invariant submanifolds of a real dimension 10, Along with
theoretical interest, this study can have various applica-
tions in:Science and Engineering; some of them are bricfiy
pointed-out in the paper.

L INTRODUCTION

Synchronization in"large ensembtes of coupled oscilla-
lors is a universal phenomencn with gréat variety of mian-
ifestations - in Physics and Life Sciences. and applicationk
in Eng1nccnng1 A paradigmatic model.of. this. kind wis
introduced by Kuramoto? in 1975;

N
b= 0 ) s - e, j=1o N (1)
7 sl
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Here, & is the total number. of oscillators, ¢;(#} and wi €
R are, respectively, the phase and ihe. intrinsic frequency
of ‘the. j~th oscillator, and K is the global coupling
stredgth.

One can also consider a riiofe: ‘general form of the
Kuramoto model

G =feltarfeh, j=1 N, @
with -2  global complex-valued coupling  function
f f(r(ph-- OWN)

The system (B)is ebtained from (2):for the specific choice
of coupling function:.

-—z-—-—~ E e,

:-I

1t is iinportant. for our further: exposition 10 makea dis-
tinction, and wé will refer'to (1) .as the -basic Kuramoio model
and to (2) sitply ds the Knrarioto model.

Notice that the formi (2} includes various generalizations,
such as phase-shifted coupling (Kuramoto-Sakaguchi model};
delayed or noisy coupling, etc,

In this paper, we assume:a simple setup with an ensem-
ble conisisting of identical- oscillators. with a globial (ali-to-all)
coupling. Then, (2) is rewritten us follows:.

=fe‘99} 4w _I...f'e'le’ j: Lo, N (3)

Individual oseillators in models (13-(3) are called Kuramoto
oscillators (or sinusoidally coupled pscillarors). This term-is
used to stress that (a). amphmdes of oscillators are neglccted
and (b) the coupling depends only on the first harmonics 2%
and-e™% {and riot on highet har monics}.

At the beginning of the: 19905, it has teen numercaily
observed®® that (3) exhibits seemingly lowsdimensional
d_yndmlcs, for ‘instance, -neutrally stable solutions such as
so-called splay states.

These experimental findings have been followed by the
theoretical result: Watanabe and Strogatz” reported a spe-
cinl transformation of vanables reducing (3) to-the three-
dimensional dyhamical system and found & -3 constants

Fublished by AIP Publishing.
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of motion. In the end of the 2000s, new insiglit info low-
dimensional behavior of (2) has béén achieved® ¥ in saveral
papers.' ! _

The paper of Marvel er al.'’ is particularly enlight-
ening since it offers a group-theoretic .explanation of this
low-dimensional dynamics: the evolution- of oscillators is
govemed by the action of Méhins transfo:matlons In
order to explain this, we introduce new complex variables
Z(f} = plwtt} Tepresenting the states of osciflators. In the
absencé of coupling, each oscillator perfornis rotations on the
unit circle S7 inthe complex plane:

g=iwg, j=1,...N, wek @)
Substituting (1) = " into (3) yields complex-valued Ric-
cati-differential equations:

=il +wg+f), j=1,...,N, (5)
with a global coupling f =f{t,2),..
intrinsic frequency w & R,

Complex-valuéd Riccati equations are closely related to.
Mabius transformations in the extended complex p]ane In
‘addition, the equation of the specific form (5) preserves the
it gircle, ie. if 3(0) €S, then z(1) € §" for all .0,
(Tlns is c:mly verified by 5howmg that £(0)z(0) = 1 implies
G [z(r}z{f)] = 0.) Henceforth, we deal with the subgroup Ge
of Mobius transformations that preserve. the unit dise in the
-complex plane.

‘The general §'-preserving Mobius transformation. ¢an be
written in the following parametrization:

v eVzta
M{z) = ms {(6)

with pariimeters iy € (0,27) and o € C, Jee| < 1.

The set of all $'-preserving Mibius transformations is
a three-parametric subgronp G of the group of all Mbius
transformiations in the. complex plane. Marvel ef al. have
shown that the states z; of oscillators evolve by the action
of Gg. More precxsely, Z{#) = M,[z;(0)] for any t >.0 and
j=1,.
Mablus trdmfonmnom. in Gg. Thus, the evolution of the
distribution of 05c111at0r~. is restricted to-a three-dimensional
submanifold lymg in the space of distributions on 5!, More-

over; parameters ¥ and o in (6) safisfy the system that was

obtained erlier by Watariabe and Strogatz:’
& = iffe® + wo +f), o
¥ =fo+o+fa.

This line of research brings a new- intrigue into the study
of Kuramoto oscillators {along with traditional focus. on
frequency synchronization and phase. transitions from/to
<cohierent states): relations with hyperbolic geomelry, complex
analysis, and 1mpllcat10ns A major step in this direction was
maile in the'recent paper * by Clien ef al. Among other things,

.»Zy) and a common.

N, with M, being a. one-parametric farily of
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they have demonstrated that @ wide class of syétems of the
forra (3) exhibits the. gradient Apw dynamics in the Poincars
disc. As one consequence, copformal barycenters of probabil-
ity medsures on S' ¢an be computed by selving (1) with the
negative coupling sirength (K <0)."?

The result of Marvel er al relies to a great extent
on geometric reasoning, especially on Lie -group prop-
erties of both the unit circle ' and the group Gg. of
Mbbius transformations acting on it.!” This observation is
the muin motivation for the present. study: the analogous
analysis can be conducted on some higher dimensional Lie
groups (at least ou the sphere S‘} with -intriguing interpreta-
tions.

Itturns out that the corresponding models have already
beeri introduced in 2009 by Lohe."* Lohe considered the
extenision of the classical Kuramoto model (1) to the group.
U (n) of unitary matrices;

N
. iK .
U = By — 50 Y (U = G0, j=1,...,N. §
"=

This is the system of matrix ODE’s for complex 71 X 1t matri-
ces Uy, and #; are given Hermitian matrices. The notion f

-stands for the conjugate matrix of U;. Notice that {8) preserves

U(n); i.e., if the initial conditions satu,fy Ui(0) & U(n), one

-has that Uj(r} e U (n} for all 7.

Following. the terminology of Lohe, we. will refer to

(8) for n.> 1 as the basic non-Abelian Kuramoro mod’el

Alternatively, researchers’ also call it the Loke .fnodei.___The--
model desciibes the coliéctive motion of mutually interact-.

ing generalized oscillators; whose stutes are ‘given by unitary

matrices Uf). These generalized oscillators are referred to
as Kmamom Lohe oscillators. Tn the absence of coupling
{K = 0), these oscillaters satisfy.simple equations:

Up=—iHU;, j=1,:..,N. (&)
The matrices iH;-belong o the Lie algebra su(i), we will
consider them- a$ intrinsic generalized Jrequencies. of the
Kuramoto-Lohe oscillators: For 1 = 1, (8). defines the moliga
on the group (1), which is precisely the basic Abelian
Kuramaoto model (1). '

In. this paper, we foens on the parficular casé n—2
corresponding: to the motions on S{/{2) with the: group man-
ifold §°. Intrinsic generalized frequencies it e su(l) are
skew- Hermman zero-trace matrices,

In whole, there are two exciting-ongoing research direc-
tions. The study of low-dimensional dysimics in-the Abelian
Kuramote model started in 1994, and in 2009, relations with
hypcrbohc geometry and complex -analysis are exposed. The

-second line of research, initiated by Lohe in 2009, works with

non-Abglian Kuramoto models on unitary groups U and
elaborates. new - patadigms of quantiita synchronization.'16
The présent paper is intended as.a continuration and conibi-
nation of these two-research ditections.

In Sec. I, we intreduce the non-Abelian Kuramoto
model, which is a general version of the' Lohe rmodel on
3. One technical nuance is that the goverriing ‘equations are
written down in quaternion-valued variables.
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In Sec, Ill, we. provide & group-theoretic déscription of

low-dimensional dynamics in the model as the motion on.

arbits of the group of {quaternionic) Mobiug transformations.
Parameters of Mobius transformations are global vidriables
that detefinine the-evolution of the ‘whole system, The dyham-
icd of these global variables is given by the generalized
Watanabe-Strogatz {WS) : system. Furthermore, this reasoning
allows ug to identify symmetries and constants of motion, In
Sec. TV, we pass-to- ‘Hopf (angular) coordinates on S* and
1dcntlfy a spectal form .of the coupling function which turns
the- system- into the basic non-Abelian Kuramoto' model. In
Sec. V, we introduce an addj tional aséumption that the initial
distribution of oscillators is uniform on S, Similar as with
the classical Kuramoto aiodel, this assumption Jéads. to a fur-
ther reduction of the dimension and a simple ODE describing
the evolution of the order parameter. Tn Sec. VI, we point ot
some applications.of the model in Mathemalics and Engineer-
ing. Finaily, we conclude.the paper with a brief discussion on
somie theoreticalissues and mtcrconnectlons that are still to be
addressed.

Il. THE MODEL OF COUPLED GENERALIZED
OSCILLATORS ON §°

Theré are different ways. to introduce ‘coordinates on.

S*. For our purposes, the algebra of quaternions is prob-
ably the most convenient 'one. Following an analogy with
(4); consider a-single generalized oscillator whose motion
is -described by the quaternion-valued ardinary differential
equ.illun {QODE):

g=wq+qu, (10)

where. g{f) is i wnit quaternion -and w and u are: “pure”
‘quaternions’ [meaning that Re(w) = Re(i2) = 0]. The set of
unil quaternions is identified with the Lie group $* with
the com:spnndmg Lie a]gebra cons:stlng oir pure quatel-
nion, then the solunon g(r) will be a unit qudtemlun
fm aif 1 In other words, the motion ¢10) is. restricted
on $°. We say that the particle deséribed by (10) is a
Kummoto-Lohc (KL) oscillator with intrinsic frequencies w
and u.

Furthermore, conceive an ensemble consisting of N
uitaily interacting identical KL {Jscﬂldtms that satisfy
quaternion-valued Riccati differential equation:

7 = qifqy+ wa; +qpu ~f, j=1,...,N (11)

Here, f =fit, 41, ..., qx) 1S a quaternionic function, Tepre-
senting the coupling between KL oscillators. The aotion f in.
(113 stands for the conjugate guaternion, i.e. lff =fi i +
JR+ Mathenf =fi —ifs — jfs — &fs.

The system (11} is non-Abelian Kuramoto model on 5%
for Lohe model for #.=2). As we will see in Sec. IV, it

is the generalization of (8) in fhe same wuay as (2) is the-

generalization-of (1). In this paper, the main focus is- on low-
dimensionial dynamics.and group- -theoretic properties of (1 1).
Underling that we: assume Highly an idealized setup, with
an easemble consisting of identical (v and 5 do. ndt depenc
on.j) and globally coupled (f does not depend on jy KL
usct]l.ltors
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. One ecan verify that ¢G{Mg(0) =1 implies
Lg1(8)g;(O} = 0, meaning that (11) peserves 53,
I conclusion, we mention that guaternion-valued Riccati
differential equations of the form (1) have been studied in
several papers. /712

lli. LOW-DIMENSIONAL DYNAMICS OF GLOBALLY
COUFLED GENERALIZED OSCILLATORS ON 8%

Denote: by H the algebra of quaternions. The set.
of Mobius (fractional linear) transformations acting on
4-dimensional sphere [ U {oc} i§ the- group GL(Z H). Then
Liealgebra of GL(2, H) consists of matrices that generate vec-
tor fields of the form gfy+ bg + gc + 8, where f,b,c,and g e
Ml are arbitrary quaternions.

Consider the subgroup. Gg < GL(2 H) of all transfor-
mations that preserve the unit sphere §°, This subgroup hiis
the Lie algebr.x consisting. of matrices that genemte vectot
fields with g = —f and Re(b) == Re(cy = * Thetefore; the
dynamics (11} can be described in terms of the actions of
Mébius transformations that preserve $2.

In order to explore this in more detail, consider a generic
M@bius trausformmation thiat preserves $%:

Mig)

for some. unit quaternions p and 7 and a ‘quaterniod
a €M, fa| < 1. The inverse trangformation yle[ds a slightly
different parametrization;

Glg)

Theorem'l. Consider an ensemble of N cotipled par-
ticles whose dynamics is: governed by (11) ivith the initial
conditions ¢i{0), . .., q5(0). Then, gty = g,[q, (03] for some
ane-parametric farml}' G ofn cmsfo; mations belonging to Gy,

Mareover, ‘parameters a(t}, p(t), and () of G, satisfy. the

=p(l —qa) "' (g~ ay,

= (BgF+ a)(l + apgR ™. (123

following set of QODE" LN

d:afa-kwa'—}-aujf;
p=—plw +af —af); (I3
F=—r{u ~af + af}.

The system (13) is an- anialogue (or extension) of the
Watanabe-Strogatz. system. (7).

The ghove theorem éstablishies Tow-dimensicnal beRavior
of (11):-the dynamics is restricted to B* x §3 x.8%, whichis
submanifold of a real dimension 10. (Here, B¢ dendtes theunit
ball in the 4-dimensional space.) The system {13) is obtained
by the direct derivation of G,,.corresponding-calculations . are:
shown in the Appendix.

Remark 1. The Mobius transformation G is pararetrized
iri such a way:that G(0) = a [see.formula (12)]. Furthermore,
notice that the QODE for.a(r} in.(13) is the same as Eq. (] h
for g;. By considering the extensionof G, from 8% to the unit
ball B4, we réadily see that a(t) is an image of the origin under
the action of Gy, i'e., a{f) = G, (D).

Now, it is.not difficult to gucss what might be the con-
stants of motion of (11). Tndeed, the quantity that is preserved
under Mobius transformations is cross-ratic: In our case, the
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quaternionic cross-ratios

Qg gp greay = (g5 — g (gr ~ g¥ (g — i) (g~ 1),
L =ijkd <N, (14)

are constants of motion. However, the guestion of how many
funciionally ‘independeni cross-ratios one has here is quite
subtle and we cautiously go around it. Quaternionic Mobius
transformation is-not uniquely determined by its action on
four points, and some additional invariants (along with.cioss-
ratiosy éxist. !

1V, DYNAMICS IN HOPF COORDINATES AND SOME
SPECIAL COUPLING FUNCTIONS

“In this section, wewill use the Cayley-Dickson form ihat
allows us (o represent quaternions by pairs:of complex num-
bers, that i5, g = q1 + gaj,f = fi -+ oj, where g1, gz, fy, and fs
are complex numbers, As for pure guaternions, we denote
W= W, - vmf, e iy Haf, where wo, ity € B, and wy, s
are complex numbers. Unit quaternion g-can ulso be written
inangle variables:

q = q) -L gaf where ¢, = ¢ cos#, gy = 2% %ing,

with-p, € (0,27),6 & (0, 3). Substitution into (11) yields

the following system of ODE’s for j== 1. . N

[ ¢ = wut o + 31 tan(pe= =¥
—ity tan(g;) gty _ 1z tan(b],) M=y .
Fwitan(@e WA 4 T (F o o),

H . €05 ( 4
Yy = o — g o+ sl cotige v
vz cot(8)e ) — uy cot(gypeit— (15)

VR Ol) e ) e (B e
81 = -%.['&_p_ e~ WiV g Gl A e )
e D) Lsin(g) (fre 4 fremi)

+CostBy) (fre V1 + Fa'Viy.

This substitution is valid for 6 # 0 and # 5 . Despite seem-
ingly complicated expressions, the ODE’s for angles provide
some feeling. about dynamics. First, notice that the coupling
(terms containing fi or f) entérs the equations in a pretty
simple way; resembling the classical Kuramoto model (3.

Second, observe that the angle w; is coupled to angles

for. ¢ only indifectly, through ¢;. Remarkably, the cou-
pling quaternion £ = f; + 5/ splits: the complex number f; is
responsible: for the coupling of angles ;. while 5. stands for
the coupling of .

“These observations provide a hint on how to choos# the
particular form of the quaternion-valued function F depending
on specific godls: Foriaslance, set:

K ko
f=“.§v“.§qi-—”?§(q)’ (16}

where (g) = 3~ ¢; € B* denotes-the centroid {center of mass)

of the points ¢, ...

+qy €57 With thi§ specific choice. of the
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coupling function £, the systern (15) is rewritten as follows:
(G=watu, -
3l an{fe G — g tan(g) et 8
—t tan(G;) et 4 wyitan{l;ye~ Wi
N
+ oo Llsintgi — g +8) -+ sindp; — ¢, — 0)1;
‘ = .
YEWe— b
3l cot(@e™ I 1 v, cot(get e v
—it3 cbt(@-) PLThd 7) Wiy co’t(&_}}e"“"ﬁ ¥
. N L
+ ey 2-[‘:05(% =V =0 — cos( — ¥ + 0]
. -1
b = Y (et |
-+@2_ef(ﬂf+‘t"}'j + Hzef{wj"\!'j‘ -+ me?ﬂ?j.’*‘}*}])

iy I _ _
*%@ [Cos{y; — @; — 6 + cosly; — ¢+ 6]
=l
k ongd s N. . . .
5 ST — vy +-6) — sin( —; — 6],
b} :

o7

The coupling is attractive if K = 0, in’ this cise the sys-
tem evolves fowards synchronization for any initial conditions
{underline that we assume.'i_d_entical_ generalized fréquencies
and all-to-all coupling). 1t cun be shown?? that synchroniza-
tion: (fully cofierent state) is the: anly asymptotically stable
configiration for X > .

The situation is more subtle for the. case of repulsive
coupling, K < 0. For nearly all iniitial conditions, the system
evolves towards a-fully incoherent state. In fact, the system

-converges.-towards a fully incoherent state whenever the inj-

tial distribution. does not contain a majority cliuster, meaning
that there are no N/2 oscillators locdted 4t the same point.
Given the initia] distribution of KL oscillators, this fully inco-
herent sfate is uaique (up o rotation), it 3s an attracting lixed
point on the otbit of Gy, Chen er al. 2 provided a detailed and
rigorous mathcmaticat description of fixed poiats on orbits of
Gy forthe basic Kuramoto mede! on S

In"order to illustrate the above discussion, introduce the
global feal order parameter of the system in‘the standard way:

_ 1 gn
p=ligh where (g =3 g
fal

Then, the values £ ="l and p = 0 of the giobal order param-
eter comespond 10 coherent state (synchronization) and fuily
incohierent state, respectively.

Along with the global order parameter in this miedel, it

-also” makes sénse to define the angular order parameters p,
‘and py in the following way:

s ]_N:-,' L af 1 N
P = 5Dyt = o D
Figure 1 illustrates the evolution towards coherent state. for
K= 0.5 both global order parameter (a) and angular order
parameters (b) gradually increase towards 1. Tnitial conditions
are samipled from the uniform distribution on 53,

The evolution. towards a fully incoherent state for the
repulsive couplifig K = —0.5 is :shown in ‘Fig. 2 global
order parameéter (a) and angolar order parameters (b) tend to
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04

0.2

FIG 1. The evolution of global order
parameter. o' (6} and angifar order param-
eters oy, (salid tine) and py, {ashed line}.
(b) lor the systern (11} with the con-
pling " !'uncuon (16). The simulation is
performed for M = 100°KL oscillators.
with coupling strength X =0.5. Initial
conditions are sampled rom (he uniform .
distribution, on §2...

6.0

- 2 4 & 8 10 12 14 0 2 4

zero. [nitial conditions in this simulation are sampled from
von Mises-Fisher-distribution oft §% with the mean direction
=12, 1/2,1/2,1 /2) «nd the concentration parameter
k=2,

Remark 2, Underdine that coupling function in the form

(16) is just one: possibility for the'mode] {11). In many situa-
tiens, it might:be interesting to consider some other coupling’
functions. For instance, one can introduce phase shiftsalong

the angles p and i in the following way:

f‘ﬂb e 9“_2}'\-’) :ff((h yue- !qN) +ﬁ{f]h v

follows:

K X
= —— Ze Hei-a} cosd;,

=]

f= o Ze‘“"’* B sing;,

i={

Figure 3llustrates the evolution of the global {a) and angular
{b} order parameters for phase shifts o = p= ,’2 Itcan be
seen. that the global order patamcter remains nearly constant
around 0:2, while angalar order parameters performt irregular
oscillations approximately in anti-phase one with respect to
unothier, The initial conditions for Fig. 3 are:sampled from the
uniform distribution.

Remark 3. By substifntiiig (16) and setting « =0 in
(11}, one obtams

fo;q;q; g+ 5 Z @ (19,

=1 i=1

which is precisely the basic non-Abelian Kuramoto -model (8}

~gi)i.  {18)

where complex-valued functions f; and /5 -ave defined as

6 8 10 12 14

In order to $ec this, multiply (8) by —i and by matrices
Uy from the right. Notice that —iH; are trice-zero skew-
Hcmuhan 2x2 mafrices comprising the Lie algebra su(2),
Using lSOn'lDI‘phISITl between Lie groups, represeént matrices
U; € SU(2) as unit guaternions and —iH; € su(2) as. pure
quiternions. Hencc, the model (B) i rewritten as (19).

V. UNIFORM INITIAL DISTRIBUTION YIELDS 4D
DYNAMICS

Like with the Abelian Kuraimoto madel] (3), there: exists a
special case when'the dynamics {1 1} s cemple[e]y deterrmned
by the single quaternionic parameter g in {12} In- this case,

.equations forp and rin (13) decouple fiom the. equatton for a

and the dynamiics is restiicted on the 4-dimensional invariant

“submanifold.

Consider (11) in ttie thermodynamic limit, ¥ — oo, and
suppose that the initial distribution of KL osciilators is uai-

form on 5, Then, the distribution evolves onthe subnianifold
consisting of measures that are obtained as Mobius transfor-

mations of the uniform Lebesgue measure-on §7. It is known

that Mobits: transformations of the uniform measure -on g2

yield harmonic measures (or, in probability terms; wrapped'

Cauchy distributions?®) with the density function:

T-la@PT

where a() € B* is 2 parameter of the distribution.

Remark 4. Given the probability distribution.on 57 -one
can focus on two important points in_ B centroid (center of
mass} (q} (£) and the conformal barycenter a(f). There is a
$pecial feature of the case when the initial distribution is uni-
forra: only in this case, these two. pomts coincide. In other
words, only in this case centroid is an imuge of zero under the

i
plyaln]=.
T

FIG 2. The cvolution -of global orier

parimeter o {a} and angalarorder pargm-
eters p, (solid ling) and Py {dnshed
line) (B} for (i1} with the cuuplmg-
fonction (16). The simulation is per-
formed for ¥ = 100 KL aseillators, wiili
caupling. strength X = —0.5, Iniial con-
ilitlons are sampled from the von Mises-
Fisher on $% wilh mean direction jg ==
{0.5,0.5,0.5,0.5) and thc conc:.nimnun
=2

on.$3,

{a) (b}
1.0 . . - — 1.0
0.8 o8-
0.6 0.6
041\ 0.4 Y
0.2 0.2}
% B 12 1 G
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(a) (b)
1.0, - R £
0.8 0.8
0.5 0.5

FIG. 3. The evolution of global. order’
paraimicter g (a) and angularorder param-
clers p,, {50lid fine) and py {dashed line}
{b) for {11) with the cuuplmv funclion
{I8). The simulalion is petformed tor
N =350 KL oscillators, with coupling
strength K = 2 and phase shiftse = 4 =

# /2. Initial conditions are wnpled from
the snifarm distribuiion on §7..

action of one-parametric family G, 6f M&bius.transformations
{cf. Remark 1),

Consider the basic non-Abelian Kuramoto model and
assume the uniform jnitial distribution on $% Only in this

particular case, the evolution of the real ‘order parameter

p(f) = |{g}] is given by the simple (real-valued) ODE:

d K N
al = “[p P

Vi. POTENTIAL APPLICATIONS

Variitions of the: classical Karamoto. maodel found inter-

esting- (and sometimés unexpected) applications in different

fields. 2" Tn this section, we point out some potential appli-
cations of the model (11,

We start by one purely mathematical application. Sup-
pose that probability measure 2 on $? is givén. Assume in
addition that ¢ does not contain atoms. with the weight = 1/2,
‘Then, the coaformal barycenter of g cun be found by solv-
ing the basi¢ noi-Abelian Kuramoto system (17) with K < 0
and with the initial ‘conditions’ sampled from the measure

1. 2% This further makes it possible to compute the Doyady-
'_barlc extension™ of the homeomorphism f + % - 5% to the
self-map of the ball B?.

In order to: proceed with some Engineering applicatiods,
we point ouf some relations between non-Abelian Kuramoto
madels and algorithms fiom. Geometric consensus hieory.
Geomelric consensts theory is a recently developed subdisci-
pline'ia the broad field of Distributed and cooperative control,
which deals with consensus and coordination problems on
certain non-Euclidean (notably homogeneous) spaces. 222

The setup for consensus problems is the swarm of iden-
tica} individuals (agenis) that communicate through the given
unditected comnected graph P.In such @ seiup, the consensus
problem can be stated‘'as minimization of a certain potentlal
cost function,

The first example is consenses on the unit'circle S!. Then
Kuramoto. model- with zero trequcnc:es dppears as the gra-
dient descent. system for minimization of a certain potential
function that is defincd on the torus 7% = §' x « - x %, I
particular, the system (1) with w; = O zppears in the consensus
problem with the comipletc communication graph P. For the
<ase of general communication graph, one obtains the model
of. Kuramoto oscillators that are coupled through the graph. P,

More generally, there is an important class of consensus
problems on matrix Lie groups SO(n) and S/ {n) with a num-
ber of -applications in robatics, space navigation, and swarm
control.**3" The-consensus algorithm is obtained by applyinig
the gradient descént method to the problem ‘of mintmization
of the potential cost function. This gradient descent system
turns-out to.be precisely the non-Abelian Kuramoto model (8)
with zero generilized freguencies H; = 0.

One particular case of special importance is conseisus.on
Lie groups §% and SO(3). This is due to the fact that quater-
nions Pprovide a convenient. way 10 work with rotations in the
3-space; in fact, this was the original motivation for Hamilton
to introduce this algebra in 1843. The representation of 3D
rotations by unit quaternionsis based on the; doublé cover map
from $2 to'S 0(3) The consensus and coordination: algorithms.
on 53 and SO(3) solve some important problems in space nay-
igation such as autitide synchronization and formation Nying.
The system {11) with the coupling function (16) pmwdes an.
algorithm for conisensus (for K > 0) and balaucing (for X <
Oy problenis. (Fully incoherent states dre typically reférred to
as balariced states in Distributed contral theory.) For some
‘other coordination probléms, one can consider different cou-
pling functions f, one example heing explained i Remark 2.
Underline, however, that (11) with. general coupling function
Jf different from (i 6) does not exhibit potential dynarmics, i.e..
‘itis not’a gradient dc;cent_sy;_{cm for any cost fanction.

Finally, we mention that quaternionic Mobius. trans-
formations are used in designing conformal deformations
of meshes. in the 3-space with applications in anima-
tion and. graphics.* This means that (11) provides a way
of computation and dynamical generation of continuous
conformzl deformations of 3D meshes.

VII. CONCLUSION AND QUTLOOK

In. I.hts paper, we study the coliective dynanmiics in an
enhcmble of identical ‘generalized oscillators-on S* with the
giobal coupling. The goveming equations. are guaternion-
vatued Riceati differential equations- for, equivalently, matrix
Riccati differential equations on the group SU(Z)] Then,
an ehsemble evolves by the action of the group of Mobius
transformations in H U {oa} that preserve 5% This is a group-
thearetic explanation for the low-dimensional behavior in the
madel. This stidy is to a great extent inspired by the results on

‘Tow-dimensicnal behavior in analogous classical Kuramoto

model,*'® In bur model, this low-dimensional dyriamics takes
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place on invariant :;u'bman_ifold's_'of 4 real dimension 10, The.

dyriamics of global variables is-given by the system:(13); the
artalogue:of the Watanabe-Strogatz system for the model {3).

We believe thal a significant value of the present study
lies in potenitial applications in Mathematics, Machine learn-
.ing, Data mining, and Robotics; some. of them are mentioned
i Sec. VL. For different applications, one needs to consider
variations of the model (11) without the assumption -that
the- coupling is global arid/or thut generalized osciliators are
identical. '

‘The system (11) has one possible physicat interpretation
as the system of coupled quantum oscillatois' %1% or coupled
{ime-evolution . operators on SU(2). It is dlso dppealing to

work with various non-Abelian Kuramoto models on compact

Lie-groups in order ® elaborate a unified gcomelri¢ point of
view ‘on self-organization mechanisms, such as syrichroniza-
tion and swarming, In ow point of view, the model {11)on
the partictlar manifold S might have u central role in such
interpretations..
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APPENDIX: PROOF OF THEOREM 1

Here, we shorily provide the calculations used in the
derivation of (13). Calcilations are guite cumbersome due to
the-fack of commutativity in the algebri of quaternions,

Fix a base point k. € 5%, and let g = Gek).

From 'Eq_. (12), we get

q(t +apkP = ph¥ + a,
and then ve differentiate the above equation directly, keeping
k-constant:
g = [Pk + Pk + & — q (AGKF + GpkF + apk7)]
% (14 apk) ™!
= (D7 + pT + & — qipkT ~ qapkF ~ qipki)
X (pki+a)™' q. (AL)
Inverting the equation for g = §(k) gives

@FhF+ )™t = {1~ flal2) ™ G —a).

Substituriag. this in (A1) yields

b= (1 - f!allz)ml.[“ — gi)pp(l ~ gay~"Yg — a)
+ (g a)i i — qall — gy Mg — )} (G — )

e o I s
= (I~ fal”) [(1 qa-}pp—-—-—h”] w_qa”z_ifq all’q

+lg—ayr(l — ag) +a(l — ag)

= - u
- :;a"*m—:g—_fﬂq - a_le_g} .
0l ~ qai

Chaos 28, 083105 (2018)
Since |11 — qal® = flgi? - 3 — 7 = lig - all%; we have
N T m-bpee z . =
¢ =~ Wal®) " [ppa ~ 4ppy — fpa + qappa + qri
~ art — qrrig + artag + & ~ big — qaq+ gaa) .
Comparing this to.(11), we get the following systerii;
(U= lali®y™" (~app ~ rid— &) = f;
(F~al®)~" @p-+ arvi — 4a) = w;

(l - ”auz}-](aﬁpa +'J'? -‘f- L‘I(-I .x 1{; _
A —jlaf®! (—ppi — arr 4 &) = =f,

(A2)

The system (A2) ciin be algebraically rearranged to give
the set of QODE's (13).
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s proposed.

It is well-knawn now that dynamics of large populations of globally {ali-te-all) coupled oscillators can
be reduced to lovw-dimensional submanifolds {WS transformation and OA ansarz). Marvel et al, (2009}
described an intriguing algebraic structure standing behind this reducticn; oscillators evolve by the action-
of the group of Mébiis transformations, _

Of course, dynamics in.complex networks: of coupled ascillators is-highly complex and not reducible,
Still, closer loak unveils that even iﬁ.complex.net\'i\fbrks some {possibly averlapping} groups.of oscillators -
evolve by Mabius transformations. Inthis paper, We study properties of the network by identifying Mabius
transformations in the dynamies of oscillators, This.enabies: us to introduce some new (statistical) con-

.Cepts that characterize the network. n particular, the notion of cokierence of the network {or sub_nethrk__}

This canceptual agproach is meaningful for the brnad_-__c_las_s of networks,.including those with time-

detayed, noisy or miixed interactions. _
{n.this paper, several simple (random} graphs are studied iltustrating the meaning of the concepts

introduced in the paper.

©2017 Eisevier BY. All rights réservéd,

1. Introduction

-Exténsive research of large populations of coupled oscillators
led to remarkable progress since 1975 and seminal paper of
-Kuramoto [1}. In some cases, better understanding of dynamitcs
and-collective behavior of coupled oscillators unveiled unexpected
relations to différent mathematical theories. One idealistic model,
for - whicl. the -dynamics is particularly. well understood, is
-2 population of identical,. glebally. {ali-to-all) coupled phase
Joscillators with sinusoidal ‘type of coupling function. In 1993,
Watanabe and Strogatz [2,3] reported transformation of variables

* _C'onespondin_g.aulhar‘
E-muil ngdress: vigdinsi@facimovicme (V. Jacimavic).
heipfidx deliorgd 10, 101651 physd 2076, 12,007
0167-2783/© 2017 Elsevier B:V. Afi rights reseived.

that reduced -dynamics. of such populatiort to ipw-diménsional
submanifold. Thisindicates that such systems contain some hidden
Symmetries .and admit many constants of motion. Furthermore,
in 2008, Ott'and Antonsen [4.5) reported new intriguing results,
for the case when initial phases of oscillators are uniformly
distributed on [0, 27 ]. For such initial data, tire evolutior equation
describing-distributien of phases admits solutions belonging to
particularly fine class (that are precisely Poisson kernels, see {6))
with reduction.of dynamics to the submanifeld of dimension
two. These reduictions to low-dimensional dynamics are now well
known as WS and DA ansaiz, respectively. In'2009, Marvelet al. [ 7]

T gA-ansatz applies also for nonidentical populations, for instance, if intrinsic
frequencies:of psciliators are chosen fram Lorénézian distribution, -
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-summarized these results and placed it in'a béoader mathematical

context by explaining algebraic structure that stands behind them,
They showed that such populations -of oscillators dynamically
generate automorphisms of unit disc as they aré governed by
the action of one-parametric family of Mobius transformations
preserving the unit. disc. There are many applications and
consequences of this theoretical resuit (MMS principle?} that are
still to be explored. In our point of view, the most important
is in. relating collective behavior of coupled oscillators to some
fascinating mathematical objects that are extensively studied sifice
KIX century up to today. _

"For this paper, it is of key importance to clearly emphasize
under . what cenditions a population of ‘roupled oscillators obeys
MMS principle. First, oscillators are suppesed to. bé identical,
meaning that their intrinsic frequencies w(t) are all equal. Second,
each pairof oscillators is coupled with the same coupling strength’
K{(r). Third, the coupling function must be of sinuseidal type
{sometimes also referred to as Kuramoto-type couplinig), meaning
that oscillatars are coupled through the first harmonics.only, and.
not throtigh higher harmonics. Of course, these are very réstrictive
assumptions, especially the second: one:.One cannot expect that
such a fine algebraic structure (and low-dimensional behavior) will
be found in any complex network of oscillators.? Nevertheless, in

soine papers, OA ansatz is applied successfuily to study complex
networks ‘of coupléd oicillators [8;9], hetetogeneous [10], or.

hierarchicaily organized [11] populations of osciltators.

In this paper, we characterize complex networks by detecting
collettive behavior of oscillators in it: However, collective behavior
is not observed through syrichronization phenomena, but by
presente: and diversity of Misbius transformatioris it dynamics
of coupled os¢illators on given time intefvals, We investigate
somie topological and structural properties. of. complex networks.
by measurring to what éxtent algebraic structure described in [7]
‘persists.in the network. Roughly, the more complex-the network
is, the less of this structure will be found in it

The idea of applying coupled -oscillators to study propetties of
complex networks is frst examined in 2005-2007 in [12-14] It
is based on observation that_gradual synchronization process in
the complex networl of Kuramoto oscillators (see [i3]) reveals:
essential inforfoation about networl topology-and, in particular,
helps to detect interconnected. clusters. This idea has been
pursued. further in severai papers that study network properties
by observing synchronizdtion process in it [16=18). Méthods of
investigation of cornplex nétworks by studying appropriate model
of coupled oscillators had certain impact and- applications inthe
last decade, along with miore traditional methods that are:often
based on classical results from Graph theery or random walks cn
netwarks (18,201,

In'the next section, we recall several basic facts from Complex
Analysis, introduce some new ‘concepts and explain the main idea
by studying idealistic models. In Séction 3, we reconsider and
-upgrade these concepts:to make them meaningful forrandom and
realistic complex network. Finally, in Section 4, we draw somé
conclusions and raise some open questioris for further study.

2. Concepts: coherence of the network, carrespondence of the
node

We _cons_Ide_r Kuramoto model of identical- phase oscillators
coupled through the netwotk of interactions:

T I S _ — _
= 4 ‘*N“ E K}j(f} Sll'l(_qu — ¢,‘), i=1, N te [DT] {1]
J==3

2 we tend 16-refer to chis resilt-as WS ansaz {after Watanabe and S_lrogatz) or
MMS principle {after Marvel, Mirollo and Strogatz). )

3y fact, MMS principlé can be slightly extended to some ct_her'idealistic models
(say. network with two idéal efusters), as we will mention below,

Here, ¢y € {[0,27) is a pliase (state) of oscillator i, e is an.

-intrinsic frequency of all osciltators and Kj; is'a matrix of pairwise

interactians (Coupling strengths) between oscillators | and jin the
network & '

We will assume' that number of oscillators. N is sufficiently
large (say. N. > 100). Another. assumption is that initial phases
of oscillators are random, chosen from some specific probability
distribution '6n [0, 27 ]: '

(0 =¢°, i=TN. (2)

For Instance, in all examples throughout this paper, we will
assume that initiat phases of osciliators have uniform distributicn
on [0, 2. Hence, one might assume ¢? ~ W0, 21].

In the sequel, it will be convenient té représent the phase
of each oscillator by the paint on unit circle S in the .complex
plane: z(t) = @ Accordingly, the initial distribution of points
(0}, i= 1, N is uniform 6n §7,

In the case of global caupling (K;(H) = K, ¥ij =
T, N), the points z evolve by the action of the group of MbBhius
transformations that preserve: the unit disc [7]. At each: given
moement f, points are governed by the -action of certain disc-
preserving Mébius. transformation. Then, from the theory of Lie

-groups, it follows that points z, (T}, ..., zy(T) are ebtairied from

2:{0), ..., zy(0) by applying some Mibius transformation (that is
very difficult to specify apriori), _
It is"very ‘well known that for two points Zi, wy, there exists.

‘infinitaly many Mubius transformations that map z into. w;. The

same. holds.if one has two distinet points z;, 7 and two.images
uwy, wy. However, Mabiug iransformation is uniguely. determined
by its action on. three distinct points;

Proposition 1. Let ‘77,72 be. three -distinct- points on §' and
Wi, W, Wy Giother three. distinct points -on §'. Then, there exists
unigiie Mgbius transformation that maps z; to wi, Z-10 wrand z, (e wy.

The above proposition is a basic fact from Complex Analysis [6].
Based on it; we introduce certain terminology that will be used in
the sequel. Let 2{0), ..., zy(0) be initial states of oscillators and
zy(T), ... 24 (T) their states at the moment ¢ — T {governed by
the system {1}). '

‘Definition 1. 1. We say that four oscillators 1, j, k, [ agree, ifatany

time T >0, there éxists a M&bius transformation My that maps-
points z(0), {0}, z(D), 1(0) to points z(TY, z;(T), 2 (T). z(T),
respectively. i
2. Wesay thatp > 4oscillators iy, .. ., iy five in the same field; if 4t
any time T > 0, there exists a Mébius transformation A tlat
maps points z;, (0), ... . Ziy(0) to.points 7, (T), . .. 2, (T).

Remark 1. Notice that the concepts inthe abave definition depend.
both.on network topology and initial statés of all oscillators, In
particular, four oscillators in“the network can agree for certain
inifial conditions {2} and disagree in the same netwerk for some
other initial conditions. However, as simulations: confirm, if four
oscillators agree (disagree) at the certain time interval (0, t1} then
they agree (disagree} at all time intervals. {t, &5).

Remark 2, The comimot: field can be created both by external force
{influericing frequencies w) and oscillators {network) thémselves
(through theii mutual interactions I(.-;_--}.

Defivition 2. Coherence of the network & of coupled os_cillato_rs_: is
a probability that randemly chosen fodr oscillators from & agree.

We denote coherence of the network M by ry; 0 < ry < 1.
For the group of oscillators # C {1, 2,..., N}, we define the
colierence of the group ¢ in the network & in the same way.
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Fig. 1. Distribution of phases At moment T = 1 governed hy-the system (1} for
uniformly distributed nital phases for three graphs. From, 04 ansarz and MMS

principle’itfollabs that the distribitio 1 for globally coupled pop ulationis a Poisson .

kernel with certajn parameiers. As expetted, distribution of phases for Erdbs-Renyi
graphiwith p = 0.97s closer o Peisson kernel then urie with p = 05,

Remark 3. Being a statistical measure, coherence does not depend
on initial states of individual oscillators (given the network is

sufficiently large). In other words, one specific quadruple of

oscillators might-agree for some-injtial conditions and disagree
for the another; byt the probability that four randomly. chosen
‘osciflators agree will be approximately the same for fixed network

topology and specific distriburion of initial phases.

Mow, fix an osciiiator i and choose randomly three oscillators
1. J2-73 distinct fram 4.
Definition 3. The-carrequndence.':'eve"l of oscillator { in the network
A is 2 probability that quadruple i.J1, J2. Jy agree, divided by the
network coherence r,

We denote corrésponderice Jevel of ascillator. iby-m.

Obviously, we can-also _consider ‘correspondence ‘level of an.

oscillator in any group ¢ of ostiltators in the network .
1t is obvious that in each nietwork average correspondence leve!
equals one,

. ‘Theriotien of correspondence can be used to identify important
(influential} escillators in the network, {By influential oscillators,
we (roughly) mean those thatinfluénce existénce of cormon fields
significantly.) Indeed), oscilistors that have extremely low or high
correspondence levels are suspicious to be important {or marginal)
ones.

As we hiave seen, it is important forourconsiderations to checlc
if four osciilators agree, As one can guess, the most efficient way

to check this is given by another basic geometric concépt: cross’

ratic. Recall {21] that cross ratio of four points 2y, z;; za, 24 in the
complex plane is given by

Zy—Z; Zy—Z
CR(zy, 23, 23, 24) = o 0 225
) 23 —23 Z3— 73
Proposition 2. Let 7y, 2y,75. 2, be four distinct points in complex
planz:and wy., iy, ivs, wy another four-dr‘sﬁnc_t points. Thén, Mabius
transformation that maps z into wy i = 1,4 exists if and only if
CR(z1, 23, 23, 24) = CR(w. 13, w3, wy).

Remark 4. Cross.ratip of four points.zy,.zz, 23,24 is a real number
ifand oniyifz;, 2, 23,24 are cocyclic (or colinear),

In our case; all points lay on the unit cycle: therefore, all cross
ratios will be real numbers: '

Now, consider séveral Simple models.. N

Model 1. Consider the model of globally coupled population:
from [7]. Each pair is connected by the link with fhe rconstant
coupling strength Ky = K. In [7), it is shown theoretically. that
at each time interval (¢, &) all ‘oscillators are governed by the
‘Same Mabius transformation, (Using above terminology, we say
that thiey all live in the same field.) Therefore, coherence of this
network 5 maximal, v = 1 and the correspondence level of each
oscillator equals-one, Of course, simulations support this, We say
that'this iz 3 perfectly coherent network,

Remark 5. Asa partial case'of the above model, empty netwark of

identical oscillators {i.e. no interactions{coupling, Kj = K =10)is

also perfectly colierent, Indeed, in this: model,.oscillators perform

‘simplé rotations.on 57 with-equal frequencies w, Sucir rotation is a

trivial case of Mébiu$ transformations.

Model 2. Consider the network consisting of two communities,
where each:pair of oscillitors is coupled, if z and z; belong to.the
same comimunity, then coupling strength Ky = K, whereas. for
two osciilators that belong to different communities £ = v «
K. In other words, each pair of sscillators is coupled, but. inter-
cominunity coupling X is stronger then intra-community coupling
v. This. model is studied in [22,23] as a simple example of popu-
lation of coupled. oscillators that-can-exhibit puzzling phenomena.

-called chimera state. In [7], this model is not Mmentioned, but it is

easy to show theoretically that the result therein can also be ap-

plied-tothis model [1 0] Therefore, both communities evolve by ac-

‘tions ofthe group of Mébius transformations {at each moment twa

different Mébius transformations for two, communities). In other
‘words, there.exist two fields here, the first is common for one com-
munity; the second for another,

Coherence of the network depends on the ratio of sizes of
the two communities: Coherence is minimal if 3the-|:01'nrm'n‘1itif:s
are of the same size, then it equals 1 = (1) = 3. and the
correspondence level of each oscillator is m; =1, '

If-one-commuriity is twice larger then-another, then the cohep-
ence will increase: r = (1)* ()" = §- Let i be an.oscillator
belonging to the'smalter-arid j to the bigger community. Thes, for
correspondence levels of f and j, one has, respectively;

RE] . a4 3 ;
mf:‘-(""%l*=—ili=i -'m_',‘=-'(—§-)—'—=-2‘?—1.=-2i.
r %:;1 17 r é-% 17

In whole, this is not a perfectly coherent network (r < 1), but
jtcontains two perfectly coherent Eroups,

Model 3. Now, we consider Erd&s-Renyi(ER) random graph [ 19]
where eachi pair of oscillators i, j is cougled with the probability
P'= 0.9. One might expect that dynamics (distribution of phases)
will evelve close to the ideal network (Model 1}, as only 10% of
interactions (edges in the Zraph) are now missing { Fig. 1}. How-
ever, we cannot hope for any thearetical result regarding éxistence
of Mébius transformations in it and we fully rely on simulations.
Simulations show that:a random quadruple almost never perfectly
agree, e, thecross ratiois almost never perfectly préserved, There-
fore, we-examine how ofter the ¢ross Tatio is afmost preserved, We
consider system {1jont & [0. 1] and study relative différence of
cross.ratios given by '

CR(1) — CR(0)
' CR{D)
where CR(0} and CR(1) stand for cross ratios of four peints taken
atmoments t = 0and't = 1, respectively. We take approximation
&= (.01, ie. say that four.oscillators (almost) agree, if |X] < 0.01.
In this.case, simuiation shows that coherence of the network is
appraximately 0.2 (for the coupling strength & = 4),

3. Random networls

The Jast example demonstrates that we need toslightly modify
and relax all definitions in orderto obtain meaningful concepts for
random {and realistic) networks;

Consider a nétwork of coupled oscillators . Choose: four
random oscillators 1, j, k. { from & and cansider. their initial states.
(chosen fromU[Q, 27 1} z(0), Z(0), z¢(0), 2(0) and their states. at
the riomentt =T governed by the system (1} z (T}, z(T), z(T),
&(T). Denote the corresponding cross ratios. atmomentst = {
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and ¢ = T by CR(0) and CR{
difference of cross ratios:

QT — CR(0}

T CR(O)
As n_scj'_llators'i,_j,_ k. are chosen randomly, one can treat X,; as.a
random variable. In this way, with each network & we associate

random variable X,,.

T), respectively. Consider relative

1. Yor Model 1, Xy is completely concentrated at zero, its dénsity
function is.delta function-sy (x).
2. For Model 2, X hasa nenzero probability of zera point {for the

case of equally large communities the probability of zero equals.

3 ) Hence, in this case, distribution of X  is aiso singuiar (i.e. not
absolutely continuous),

Conclusion: If random variable X, has positive probability of
point zero, then the networlt & ‘contains a perfectly coherent
group.On the other side, random variables associated with randont
networks turn to be absolutely coatinuous.

We now introdute modified definitions. of coherence and
correspondence level that will be- meaningful for random networks

-as well, Fixsmall £ > 0and T > O:

Definition 4. For a given & > 0, coherence of the network & is
Tu =Pl—e <Xy <)

‘As. before, we. introduce notion of coherénée of the group of
oscillators.in the same.way.

Remark 6. Notice thatin the above definition, coherence depends
on both & and time T. In simulations, coherence decredses with
T: since the deviation of cross raties {or. computation error)
accumalates on longer inteivals, Therefoie, when comparing two
networksitis importantto fix the same ¢ and T for both, Moreover,
coherence also depends oninitial distribution of phases. This is the
reason that in Section 2 we specified initial. distribiition of phases
to be'wniform on [0, 27].

One can dlso introduce another possible definition of coherence.-

thatisindependenton e

Definition'5. S-coherence of the ne’thrk_.JV ‘is-an entropy of the
corresponding random varidble X,

Now, consider one oscillator i, Pick randomly three oscillators
distinct from {, denote them byj. k, I. Denote their states:at each
moment ¢ by the points w;(r), wjlL), welt), wy(ty at the circle ST
LCross ratio of these four poinfs.at each moment ¢ is:a real number,
‘denofe it by CRy,(1). Setp} = P(—p < Fall=thin® _ oy (1 other
wo:c_l"_s, P is probability that w; and threé random oscillators agree
untosmalls > 0.}

Definition 6. Correspondence level of an oscillator i in the
network N is my= %‘;

Here 1,y stands for-coherence of the network . Notice that
the correspondence level of an oscillator depends both on his
interactions (.. network topology) and initial states {phases). of
the entire system.. N _

Choosing random. oscillator § from the network, we consider
his-correspondence level m; as a randoim variable. In this way, we
Introduce one more random variable that is associated with the
netwotlk &, Denote it by Y.

Remark 7. We briefly explain fwo random variables X w and Yy
that characterize the network . Random vagiable. X v provides
information about coherence of the network. Concentratioit of

distribution of X dround zero indicates presence -of coherent
groups in the network. On the other hand, Y, characterizes
distribution of roles (influence) of oscillatois in the networl.
For specifiéd network interactions Ky and fixed initial conditions
{-2),-"these.'randc_}m variables can take finite set of passible values

((':) and N values; respectively). However, as we suppaose that

initial phase of each oscillator is randorn { uﬁiform]y'dist;ibuted on
[0, 25 ]), we obtain that both randem variables take infinite set.of
-possible values. Domain of X is a real line; while Y takes positive

real numbers.

Samples from two random varjables X, and Y4 can be gener-
ated numerically using Monte Carlo method. In the-examples be-
low, we-depict empirical probability density functicn for the two
random variables and briefly commient the figures.

Remark 8. As X, can be highly centered around zero for some
networks, it is convenient to rescale it by considering random
variable —log,, Xy . We will plot density. functions both for X,
and ~log,, }X | for some examples studied below.

In examples that follow we set ¢ = 001 and T = 1 and
choose random initial phases from the uniferm disteibution on
[0, 27). Notice tha it is ecessary to.chaose T in such way that

synchronization does not take place at interval (0, T) and compare

£F0ss ratios béfore synchronization.

1. For Model 1 density functions are shown in Fig. 2(a)-{c). It can
be seen that for this network p.d.f. for X, is essentially delta
function atzero, and p.d.f. for Yi is delta function'at 1.

2. For Model 2 two cases are shown. Fig, 2(d)-(f) shows density
functions for the case when cormmunities are of equal size. In
that case p.d.f, for X, has weight . (measure) that is equal al
at zero, P.d.f. for Y, is the same as in Model 1. Fig. e
shows p.d.f. for the network in which one Community is twice
smaller then anather, Notice that in that case distribution of Y,
is concentrated at two points: ¥ = %. has. probability _%_'and
Xy = % has probability ER
« Density functions for Erdos-Renyi (ER) networks with p =
0.%,0.5 and.p = 0.1 are shown in Fi&. 3. Coherence 6f these
networks are approximately 0.2, 0.12 and 0.2, As expected,
network with p = 0.5 has lower cohererice then the other
‘two: We ais0 notice that random variables Yy are absolutely
continuous and concentrated od interval (0,.2) with center at
x=1

Consider famous Watts-Strogatz (WS) netwoiks [24,19] with.

N = 500, k == 50 (initial number of connections)and different

p {p is probability of rewiring), Empirical p.df for parameters-

k =50and p = 0.1 are:shown in Fig. 4.

Simulations. show. that the coherence of WS network does not

I

&~

‘depend on probability ¢f rewiting p and is'approximately the same

as one in ER networks with similar number of edges, For instance.
coherence of WS network-with N = 500, k = 50 (and arbitrary p)
is-close to one for ER graph with p = 0.1,

4. Conclusion, some open quéstions and furthier research.

In this paper, we propose conceptual framework for character-
ization of complex network by treating it as a network of coupled
oscillators (where nudes are oscillators and interactionsfedges are
couplings). The idea can be explained in thé following lines. The
network topology is characterized. by collective behavior of pscil-
lators. Cne way:to.identify ‘collective behavior. is to observe syn-.
chronization process in the network fas discussed in Introduction,
see references therein). However, synclironization s a consequence

-of collective behavior that someiimes occurs. Thereforé, we stucdy
-coilective behaviorof oscillators before synchroniz ation eventually

takes place, using statistics of Mibius transformations. Presence of
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Mﬁbius:t_ransfor_matians'in:the netwark is detected using randem
CTOSs ratios,

With each complex network & we associate two fandom vari-
ables Xy and Y ;. Their empirical p.d.f. can be sampled by Monte
Carlo metitod and contain important information about nétwork.
& and its subnetwaorks. Eurther, we introduce notions of cohererice
{of the group ofnodes) and correspondence level (of one node).

* The framework proposed here is suitablé for broad class of
networks {including those with repulsive, time-dependent, noisy,
time-de{ayed and mixed interactions), Another potential advan-
fage is that the method is based on measuring the. state of nodes
{phdses of osciilators).only and does riat rely en any infermation
about interactions. This indii:ates._p_ossibi_liry to characterize the
network without jnformation on interactions. However, this re-
quires further study and new ideas. o

We find it interesting (and probably difficult) to explore rela-
tions hetween notions of the network coherence and some pther

_Statistical measures on- networks sizch as entropy and complexity
of graphs, see [25-27].

Angther interesting quésticn is the following: which networks
{or grapiis) have the minimal coherence? In particular, how dif-
ferent types of interactions influence coherence? Daes the pres-
ence of delayed interactions influence coherence? To what extent
small noise‘in the interactions destroys :coherence? It the further
research; we will address thése questions. theoretically {follow-
ing {7]) witlrsubseq_uent__simu‘l_atiqr_:s._
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In 2010 Kato and Jones described a new, family of probability disttibutions.on circle, obtained .as Mébius
transformation of von Mises distribution. We present the model demonstrarmg that these distributions
appear natura]ly in study of populatlons of coupled pscillators. We use this oppartunity. to point out
certain relations benveen Directicnal Statistics and ‘collective motion of cuupled oscillators,
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1, [ntroduction

Collective dynamics of large populations of coupled oscilla-
tors is a subject of great theoretical interest and varjous applica-
tions: The most important model in this topic, that has served for
decades as a paradigm of coupled oscillators systems in Physics
and Biolegy, was introduced by IKuramoto {1}, This mode! describies
large population consisting of N phasé oscillaters with global {all-
to-all) coupling:

P = @)+ Zsm(w. ¢, J=1...N 120 (1)

t—*1

Here, yp;{t) and w; are the phase and the frequency of oscilla-
“tor .. It is assumed that each pair of oscillaters is connécted with
the same (global) coupling strength K. Another assushiption §5 that
ostillators. are coupled through the sine function onty {and not
through higher harmonies); this type of coupling is usually re-
ferred to as sinuseidal coupling or Kuramote coupling.

Kuramoto started his analysis of {1} by introducing two globat
variables; order parameter r(t) and average phiase. p.(t) defired by
equation

¥ Cofrespending author, ) ]
F-mail address; Jladingeokic@hotmailcom (A, Crnkié).

R daloegf 18 [H18 physteta 017.04.024
0375-9601/® 2017 Elsevier B.V. Al rights reserved,

r(g)et = N Ze“"f(”

;“1
In new. variables systern {1} can be rewritten in mean-field form
{see [1.2]):
@j=wj+ Kr{)sinfpe =), j=1... ., N (2}

This form unveils mean-field character of Kuramota model ak
mutudl global coupling’ results. - the same dynamics:as.-all oscit-
lators would .be coupled to the mean phase p with the coupling
strength Kr(i).

‘Kurdmoto: paper stimulated endusing interest of researchess in
low-dimensional behavior of [arge populations of globally coupled
oscillators. Remarkable progress in this topic has been achieved in-
papers ‘of Ott and Antonsen §3), Marvel et al. [4] and Pikovsky and:
Rosenblum {5}, This progress. brought new insight and paradigms.
into study of collective behavior-and self—orgamzatlon of coupled
ascillatgrs.

Ott and Antonsen in {3} have shown that in some cases {1}
admits many canstants’ of metion arid performs low: d1mensmnal
dynamlcs for large N- and some spema] initial conditions, @0,
J=1,.. N Remarkab]y, ‘explicit ODE describing the évalution of’
l:omp]ex orcler parameter is.dérived ‘not only for thé case of iden-
tical oscillators {w;= w}, but also. if the intrinsic frequencies w;
arechosen from Cauchy {Lorentzian) distribution {and some ather
distributions).en the real line, The den51ty function of phase distri-.
bution-g(i, ) evolves on fnvariant low-dimensional submanifolds
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in the space of ali density functions; Otf-Antonsen [{0A) ansatz is
particularly transparent ‘when all oscillators have equal intrinsic
frequencies, in that case the density of oscillators’ phases evolves,
on two-dimensional invariant ‘submanifold consisting of Poisson
kernels. Under]me however.that OA ansatz holds under. restrictive
assumptions on initial cendifions, incloding the case: when initial

distribution of. phases is uniform on [0, 2rr]. In. most papers .on.

the topic this asstmpticn is adopted, mainly because it yields par-
ticularly tractable compléx QDE far order parameter Besides,. this
assumption on initial phases seems duite natural in many models,

Marvel et al. {4] exposed -an algebraic structure. standmg he-
hind fow- dimensional dynamll:s of :globally coupled populatioss,
Substituting zj{r) = i the state of ‘each oscillator is repre-
sented by the pomt z;{t) on the unit circle SLIF ostillators are
identical {w; = ), then their states evolve by the action of one-
parametric fam]]y of Mhiug transformations that preserve unit
disc. Then, from- the Lie group theary, it follows that the den-
sity function of oscillators' states p(z, t) at each morent ¢ is a
certain Mdbius transformation of the initial distribution P
on S'. in the sequel we wl]] refer to this result as MMS princi-
ple.t Since the {sub)group of disc- -preserving Mobius. transforma-
tions can be parametrized by .three (real} parameters, .it foliows
that p{z,t) evolves on invariant three-dimensional submanifold in
the space of distributions.-MMS principle shed additional light on
Ott-Antonsen result; sojutions in the form of Poisson Keinels arise
as’Mabius transformations of circular uniform distributton. There-
fore, for the case. of glebally coupled pepulation, MMS principle
is generalization of OA ansatz- for arbitrary initial distfibution of
phases. However, unlike OA ansatz, MMS principle does not extend
fat least, so far) ta the case of nonidentical osciitators.

Al this point we briefly emphasize some analogous cencepts in
Directional Statistics:-distributions in the form of Poisson kernels
have been studied for a long time as wrapped Cauchy distributions.
McCullagh in i8] introduced reparametrization of wrapped Cauchy.
distributions using complex. numbers thus Tepresenting. them as
Mobius transformations of circylar uniferm distribution. This anal-
oLy indicates that findings of Directional Statistics can be useful
ini undérstanding dynamics of large poputations of coup]ed oscilla-
tors: In particular, one’ might ask what other circnlar dlstrlhutlons
(apart from circutar. iniform and wrapped Cauchy) arise in dynam-
ics of coupled pscillators.

Another family of d:smbunons that is. central in Directional |

Statistics consists of von Mises-distributions vM(,u,x) Their p.d.f,
are given by (see 178])

Femi@) = exp{x cos(p — )}, O<g@<2m, (3)

1
27 Iglx)

‘where Ty is-an order zero modified Bessel function of the frst-

kind. in stady- ¢f coupled oscillators von' Mises distribution. is men-
tioned mostly in papers on. statistical detection and estimation.of
coupllng Between noisy escillators, see [9- 1] In our context here
it is more important that von Mises.distributions arise as station-
ary distributions in the some simple ‘models of coupled oscillators
with noisy identically distributed frequencies, see Section 2,

In. 2010 Kato and Jornies described a new family of probabil-
ity distributions on the circle obtained as Mébins transformations
of von Mises distributions, For. the fixed mean 4 and condentra-
tion & in von Mises distribution, this family constitutes a: three-
dimensional submanifold in the space of distributions. For brevity,

T MMS principle can be seen as reformulation of the -ofder tesult, known as
VWatanabe-Sirogatz ansatz. However, this refarmulation revealed hidden symmetries
and mathematical abjects standing behind fow-dimensional behavior of globally
-coupled populations of identical oscillators thus. providing completely new:insights
into this phehoniena. ) ) ’

we. will refer to distributiéns bélonging to this family as K-/ distri-
putions. ' B o

In this paper we study the evolution of g]ubally coupled pop-
ulation of oscillaters. in the case when initial distrjbution of their
states is von Mises, This situation is not covered by OA angatz,
since- it does not apply to this family of initial distributions. In-
stead, we rely on ‘Watanabe-Strogatz: ansatz {in the form of MMS
principle} for this case. Referring to- MMS principle; we conclude
that the states of globaily coupled tdentical oscillators will evolve
ont three-dimansional. submanifeld consisting of K-] distributioris.
This observation, along with some consequences and applications,
malkes the main motivation for this paper.

In Section 2, we argue that the assumptmn of von Misés dis-
tribution of -initial states.is quite natural iy various models. In
Section 3, we introduce the mode! of glebally coupled population
whose density funciion g(z, £) evalves on the invariant submani-
fold consisting of I¢-] distributions. In Section 4. we diseuss non-
trivial relation between model parameters: and parameters of re-
suiting K~ distributions. In Section 5, the results of Kato and Jones,
512} are used to make gualitative predictions of possible scenarios
of collective dynamics in our model and relate qualitatively dif-
ferent scenarios to: corresponding value sets of model paraieters.
This is followed by some simulations Hlustrating. different scenar-
tos and supporting our predictions, Qiiéstions. about modafity and
skewness :_:iff'resu]l_:_i_ng distriburions are also-tackied in Section 5. In-
Section 6, we provide explicit expressiens for mements of K-J dis-
tributigns using. formulae from [4). Finally, some conclusions and
open guestions are brie_ﬂy emphasized in Section 7.

2, Coupied oscillators and von Mises distribution,

Synchromzatmn process is typically studied as a transition from

-fully incoherent state (with the initial value r{(]) of the order

parameter sét to zero}, through partially coherert states (0 <

() < 1), towards full ‘synchronization {r{t} — 1). This. setting im-

pligs that the ‘initial distribution of- oscillaters' phases is uniform:
on [0,2m]. For the globally coupled -papulation (ind some more

general cases, as shown in {13,14]), OA ansatz provides a powerful

method to treat such systems, Althongh this assumption sounds:

‘quite reasonable, in some processes certain degree of coherence in
the: population 'is present before the mean-field coupling is estah-

lished. Therefare, in such tases some other distributions appear.as
initial for oscillators’ phases. In this section we briefly explain how
von Mises distributions emeérge as the. resalt of combined effects
af coupling and noise.

-One general observation is that voen Mises distributions

VM (p, &) are the maximum entropy distiibutionn on §? for. the
fixed concentration 'parameter « (the special case ¥ =0 yields uni--

form distribution),

‘Furthiermore, vor Mises distributions arise s the stationary dis-
tributions of a drift and diffusion processes on. the circle with a.
preferred orientation, see {15). In particilar, consider the popula-
tion’ of naisy oscillators that is coupled to the external field pe:

N, =0, {4)

@y=Rsin(m—pp+&, j=1..,

where &; are realizations of Gaussian white noisé with the inten-
sity D > &

&N =0, {EOFHEY) =2D8;(~1").

The statienary distribution of this process.is von Mises. This-can
be stiown by solving Fokker-Planck equation, see [15,16].

In. {16}, the directional mouons of swimming. m1cr00rgamsms_
with a preferred arientation p is ‘described by (4). Another ex-
ample is the problém of estimation of phase coupling betweern
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configuration,

noisy oscillators, the differences of ascillators' phases At =
@Y —pp(t) are’ gnverned by {4} with p =0, see [9}.

Natice, that tean-field model (1) with identically distributed
noisy frequencies w) = w+§; also yields. slationary von Mises dis-
tributton (with rotating mean arigle «(t}), this is discussed in [111,
In j17] the circadian clocks in cyanobacteria populauon have been
studied by using this model for intercellular communication.

3. Model

Consider-the. population of identical .os;:i]l'_aturs_:with glebal_cuu~'
pling:

Gt =0+ — Zsm«a; 1) — i) —v), (5)
i=1"

i=1..,Nt=T.
Here ‘¢ -is a noiseless frequency common for all oscillators and K
is a glabal couplmﬂ strength. Notice that we do not require global
coupling K 1o be positive thus allowing négative (repuisive) cou-
pling as well.

We consider the process {5) on time: interval t'e|T, o) for

some T > 0. Suppose that the initial states of oscillators z)(T) =

el |
vM (s k). ) _

Underline that OA ansatz is not applicable to this set of initial
conditions {unless « = 0, yielding uniform distribution). In oider
to apply MMS principle {or W5 ansatz) we imposed an i:rnp_mjtant

. Zy{TY = 2% (") gre chosen from von Mises distribution

constraint, that all oscillators have identical intrinsic fréquencies ..

Anather key assumption is that the ceupling: is- global. meaning
that the phase shifi v and the deiay t are the same in all pair
wise interactions. The systems of the farm {5} aré referred to as
Kurameto-Sakaguchi model -(118])

Putting. al! together, our -model can be viewed as the process
taking. place in two stages, described by {4) up to the mement T
and by {5) after T, It Is assumed that T is. sufficiently farge, so that
the process at the first stage reaches stationary distribution..

Another assumption i5 that the noisé vanishies at the ‘mo-
ment 7, i.e. oscillators are noisy on ¢ € |0, T]-and noiseless after T,

=3} and K =—4, v =10, T =0, The distribution avolves owards stationary bimodat

A]though this agsumptien may sound art:ﬁcm] at the first glance,
we argue. that this. two-stage dynarmics can serve-as.an adeguate
madel in various sitwations, In: particilar, it can be-tonceived that
the external field is deactivated at the moment T, thus realizing
pairwise interactions and suppressing the noise & e

As ong concrete and intriguing example, we refer to. the exper:
iment on progression of pepulation of cells through the cell cycle.
At-the first-stage poputation’was treated two times with thymidine
blocks to arrest all cells at {approximately} the samie phase, that is.
the begmnmg of S-phase of the.cell cycle. At the moment T the
thymidine was washed out and the: colléctive progression through'
the cell cycie was observed. Some details on this experiment. and
its results are exposed in the textbook of Morgan {19}, page 25. In
this' particular situation, dhe might conceive that the dynamics of
cells is-described by {4} at the first stage (before thymidine was
washed out), and by (3] afterwards.
By applying MMS principle to {5}, we obtain thit the distriby-
tien of phases at each moment ¢ T belongs to K~J family ThlS is
to be investigated further in the next section.

4. Dynamics.of parameters of (-] distributions

The set of ail Mébius transformaticns that préserve the uhit
disc D forms a subgroup. The general disc-preserving Mébius
transformation can bé written in the following form:

Z4u
1+az'

Mz =e# (6}

for some angle 0 < g < 2 and complex number ¢ € D, o =re'¥,

Let the random circular variable z has vori Misés distribution
vM(D, ic). Then the image of z under Mdbius transformatics (6 is
a circular random varjable with the following p.d.f. (see [12]):

- 1
ZFTI[](K) 1412 —2rios{p—y)

ex _[K{E cos(ip — 1) — 2r ¢os 1) ]
TRl 142 -2rcos(p - )

fryl@y=
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alternates {unimadal to. Biinodal dnd viceversa),

where ¥ = 4+ v, F= 14+ 2ricos@2) + 1 and 7 = i +
arg{rf eos(2v) + 1+ irlsin(2v)}.

This distribution depends’ on four parameters: « > 0, 0.< 1,
v oand 0 <1< 1. Parameter & is inherited from von Mises
distribution, while the remaining-three come me Madbius- trans-
formation {G}: _

For the fixed value of parameter «, functions of the form (7}
constitiite the three-dimensional submanifold. in the space of prob-
ability distribution.

As explained in Section 2, the phases ¢{h),,

Mébius: transformatmn {6} with the parameters p(f) &[0, 277 and
aft)ye ., satlsfymg the following system of ODE's (]4,20}):
&=l (Do + gha+ FO):

L w (8)
= fo + g + floa.

. N .
Heré, f is a coupling Function; Tt = —iﬁ% 3 emHpt-ri=} 4pg
: f=1

5{t) =w.
From- the theary of Lie .groups, cne has that at each mo-

mient £ > T there exists a Mobius transformation A, mapping the’

phases @1 (T). ..., @n{T) 10 @1t} ..., PR{L}.

The parameter K is proportmnal toe the ratio- 4. The remain-

ing thrée parameters of | distribution are related to K, v, @ and
r from LS ). However, this relation is very subtle and is mediated

throligh {8} and the action of corresponding fow of Mébius trans-
formations.

in [fact, this dependence is -even more complicated, since the
'u:oup]mg Tunction f(t) in (8} depends also on states of all oscil-
lators at the moment £. Theréfore, parameteis: r, v. and f. depend
not nnly on K, v, w-and z, but also on R and D (through K).

“Therefore, it is very difficult to estimate-the évolution of pa-
rameters. of K-j :distributions if the miodel parameters.are given.
That evolution ¢an be partlally understeod only by physical intu-
‘ition, stmulations and expressions for moments and ‘comparison
with anaiysis of Kato and Jones {12}, This will be studied in the
nexe sections.

. N -_-'{QN(f-_)' ar
each moment £ > T evolve by the action of disc-preserving

5. Evolution of the shape on invariant submanifold of K]
distributions

In the paper of Kato and. [ones it has Been shown that distri-
butions (7).have different shapes depénding on parameters. In this
section we study the evolution of the shape of phase density: func-
tion' in the  model {5} for different paraméter values. This study
is supported by simulation results for some illustrative cases. In
Figs. 1-3 the evolution of density function p{g, t) of oscillators’
phases for three different cases is-shown by depl(‘tmg snapshots at
different moments t. All densities have beén cbtained by solving
the-systeny (4)-(3) for the: papulation c0n51st1ng af N.= 500 oscil-
lators. In all simulations, the mement of transition from the first
stage to the second is"T'=30.

We will simulate the effects of attractive and repulsive cou-
pling, time-delayed coupling with the global delay 7 and phase-
shifted. coupling. Notice that MMS principle is valid for all types
of the coupling mentioned above, hence -dil.density functions de-
picted in figuses belong fo the family of K-| distributions.

The family {7} contains both . syinmetric and asymmetric, as
well as unimodal and bimodal distributions. On the ofher hand,
von Mises distributions are unimodal and symmetric. In our con-
text this means that unjmadal and symmetric initial phase dis-
tribution can evolve into bimodal andfor asymmetric_one under.

“the meap-field. coupling, 1t s interesting to tnderstand how dif-
ferent effects (Such as. negative ‘couipling, time- delayed coupling,

phase-shifted coupling) influence the shape. of distributions. We-
dlstmgmsh several qualitatively different scenarios:

1. First consider the mode} witheut delay and phase shift: 1 =0,

=0

aj If the couplmg is absent -at the first stage {R = 0) and. fe-
pulsive at the second {K < 0} then the density functmn'
Pl Ty is constant -and remains constant for all £ > T,
meaning that states ‘of oscillators have circular uniform dis-
tribution {x =0, r =0).

b) )f R=0and K > 0. the density function p{p, T) is constant
and-evolves further on two-dimensional invariant subman-
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ifold consisting of wrapped Cauchy densities (¢ = 0) to-
wards gradual synchronization (r — 1)

<} if the coupling is attractive at” both stages, K,R'> 0, no
changes in modality occur. We .obtain unimodal K-J den-
sities. for all ¢ > T ‘and gradual synchronization (x > 0,
rei 1) '

d) I the attractive coupling at the first stage R > 0; is followed
by. the repulsive’ one K < 0, the system evolves fowards
stationary bimodal configuration with two concentration
“poliits separated by the angle 7, this scenario is shewn'i in
Fig, LHere, k>0, 0<r—sa<T1.

2. Presence of the global time-delayed “coupling (t = 1) with
R >0 and K < 0, yields oscillatory dynamics;. distribution
changes modality {from untmodal to bimodal and vice veisa)
‘several {or infinitely many) times, see Fig. 2. Here, x > 0, while
r oscillates. THe yuestion of long-time behavior for this case is
quité subite (in fact, it depends on intensity of the repulsive
coupling K}

3. Presence of the phase shift v =% yields strongly asymmetric
distributions, Fig. 3. Thus, phase shift is the parameter-that de-
cidedly influences the skewness of distributions. Notice that all
distributions depicted- ara slightly asymmetric. In fact, K-] dis-
tributions. afe symmeétric only for several special cases: £ =
‘fwrapped Cauchy), r=0 {von Mises} and v =0 or i =7,

We briefly address the question regarding bimodal station-
ary canfigurations mentioned in peint 1d} above. Engelbrecht and
Mirollo. iy {21] ysed MMS principle ro prove that the only possible
limit sets for {5} are. single points. Therefore, despite appearance
of bimodal distributions, the system. can never synchronize at two
distinct poinis, ‘In fact, K~} family does not contain - distributions
with high concentrations at two points, densities are only moder
ately bimedal, such as those depicred in figures. This means thar
the. stationary configuration of phase distribution depends only
weakly on how peaked is initial von Mises distribution. In other
words, stationary bimodal con_ﬁguratit}ns_-ubta'ine_d for the case 1d)
differ only sI'ight_Iy. for k¥ =0.5 and for ¢ very large,

. T = 0. The phase-shift i increases the skewness of dlstnbuuons;
6. Moments

Marvel et al. in 14] ‘have also. derived formulae for the mo-
ments of phase*distribution of toupled oscillators, By simply p[ug—
ging Fourier coefficients of von Mises distribution vM(Q,«} ifito
farmilae (55} {56) from- there, we obtam an expression for the
dynamical evolution of m-th momenir:

m—1. £y |2k
T L P O ko e
O =0+

k=0

i n+k)! I[n+k+ﬂ("f) :(m+n)u’r(r] [
x Z( e Tote) &y, (9
where 7, is a mcdiﬁ'ed Bessel function of the-frst kind of integer
arder I, As before, w(t) and ¢{f) are-solutions to'the system {8}
Their geometric meaning is also unveiled in }4): () is the over-
all counterclockwise rotation of the isitial disttibution up to ‘the
time ¢, and o) is the image of the center (zero) undér the action
of the flow of Mébius tfansformations.

In particular, the formula for centroid of the distribition yieldsy

Zp(x)

It IS interestinig. to compare the above formulae with the ex-
pression for moments given in the paper of Kito-dnd Jones {12].

@0 =@+ (e@P—1 T -1y 2O gz 10y
=1

7. Conclusion

In this paper we presented the model demonstrating how re-
-sults of Directional Statistics. can contribute to the qualitative un-
derstanding . of collective dynarnics of coupled oscillatars. On the
other hand, collective motions of coupled oscillators provide var-
ious' interpretations and justifications for pl’ohablhty distributions

-on circles (and tori). Therefore, we hope that this-contiibution can

be of interest for researchers Irom both fields in different ‘ways.
“The most significant: coriclusions for statisticians mlght be the fol-
lowing:
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s It is. showir that K-| (along with. wrapped Cauchy and von
.Mlses) disctibutions are refevant in study of coupled oscilla-
tors.

a We suggested- possibility that K- dlstnbuuons can mode] re-

sults of some real-life: experiments. Back to the experiments

on cell gycle mentioned in Section 2, figures in Morgan {19)

demonstrate that density of cells progressing tirough the cell

“cycle transferms from unimadal and symmetric into asymmet-

ric and bifnodal with the ‘time, In fact, the initial density de-

picted there lagks pretty much like von Mises with « relatively
high, white the evolution of densities is intriguingly similar'to

‘what is shown m.’-:g. 3 here.

On ‘the-ather hand, there are alsa several points that might be

of interest for study of coupled oseillators:

1It'is demonstrated how unimodal symmetric distribution can

transform into bimodal and asymmetric one under the elfect

of mean-field coupling; We have specified what effects in the
cotpling might be responsible for changes in modality and/or
skewness.

Using the analysis of Kato and Jones {[12]} we-2xplained some

»

possible long-time evelution scenarios of phase distribution

Ander-the influence of mean field.

In conclusion, one might ask what other probability distribu-
tions on the circle {or tor0s) are expected to arise in dynamics
'of coupled. oscillators. One notable example is’ presedted in the

paper {22), whete it is shown that so-called hyperbolic von Mises'

distribution is a statlonary dlSl’l‘lbUtiU[’l for Kuramoto-=Sakaguchi
mode! with multiplicative. Gaussian white noise. Furthermnre. bi-
variate {and miltivariate) wiapped Cauchy distributions, studied

in |23, ?4}, are related with the” model of two {(or more) perfect

communities with dIfferent inter and intra-community. -coupling
strengths; introduced in 12;] and Trequently siudied as paradig-
matic {or so-called chimera states.
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Abstract
Thiere exists a specific class.of methods for data clustering problem inspired by synchronization of coupled oscillators. This
approach réquires an extension of the classical Kuramoto modsl to higher dimensions, In this Paper, we propose a novci
méthod based on so-called non-Abelian Kuramato models. These models provide a natural extension.of the classical
Kuramoto model] to thie: case. of abstract particles {cailed KuramotouLohe oscillators) evolving on matrix Lie groups U(n).
We focus on the particular case.n =2, yielding the system of matrix QDE’s on SU(2) with the group manifold $*. This
choice implies restriction on the dirnension of multivariate data: in our simulations we investigite:data sets where data are
represented as vectors in R¥, with & <6..In our approach each. object corresponds to one Kuramoto—Lohe oscillator on $°
and the data are encoded into matrices of their intrinsic frequencies. We assume global (all-to-all) conpling, which allows
to greaily reduce computational cost. One important advantage of this approach is that it can be naturally adapted to

clusiering of multivariate functional data. We-present.the simulation. results for several illustrative data sets.

Keywords Data clustering - Quantwn synchronization - Non-Abelian Kuramoto model

1 Introduction

Clustering is probably the most important unsupervised
learning problem, Tt deals with detecting a structure in a
collection: of unlabeled data. Thcrc'is no unique. or upi-
versal definition of cluster. A leose definition conld sound
that ¢luster-is a setof nb‘jécts which are sim_ilar.(i_n- certain
sense) to’each ather and less similar to other objects from
the set. Therefore, clustering methods aim to determing the
intrinsic. grouping iri a set of unlabeled data, Clustering
does ‘not use category labels that tag objects by prior
identifiers, ie. class labels. The absence of citegory
information makes the difference between data clustering
(unsupervised learning) and classification or discriminant
analysis (supervised learnirng).
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- Kuramote-Lolie oscillators

One of the most popular approaches to data clustermg,
called K-means, has been proposed around 1960, Since
then, a great number of various methods- and algorithms
have been developed. The most popular approaches arg

based on distance connectivity betweeén data, ¢alcelation of

centroids, statistical distributions and/or density analysis.
There is vast and constantly growing literaturé on cluster-
ing methods, techniques and applications, we. recommend
(Jain et al. 1999; Jain 2010) for concise overviews.

There dlso cxists a Iess_"mainst'feam approach to clus-

ﬁ{er'i'ng_, inspired by self-organization. in complex systems,

notably. by synchrenization in.Kuramoto model of coupled
oscillators’ (Kuramoto 1975), The ‘clagsical Kuramoto
model over the complex network feads:

G=w s
! N i=]

This model describes a poptilation of N. phase oscillators
that are coupled through the complex networks of inter-
actions. The state of each oscillator is given only by his
phase ¢;(t). Intrinsic frequency of the j:th-oscillator is a
real number oy; and the network of interactions is given by
the matrix Kj. Individual oscillators in this model are
called Kuramoto oscillators.

Kysin(p; ~ @), j=1..,N. D
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Variations of the classical Kuramoto model have been

used for different. computing applications, see surveys

(Arcnas et al.-2008; Rodrigues ef al. 2016} and references

therein. As one notable example, we mention thc method of
community-detection in complex, networks based on Kur-
amoto model. (1) propesed by ‘Arenas. et al. (2006). More-
over, it has been shown that the synchronization piocess
unveils essential information about the network topology.

in the paper by Jacimovié and Crnki¢ (2017) Kuramoto

mode! has béen used to characterize n_etWorks by associ-
afing certain random viriables o them.

The idea of Arenas et al. (2006) could aiso be adapted

for data clustering:. However, efficient ¢lustering of mitlti-

variate data requires extensions of the classical Kuramato:
model to higher dimensions. One such method has been:

preposed in:Miyano and Tsutsui (2007): muldivariate data
arc. encoded into vectors of natural “frequencies” in the

specific dynamical system on R” that resembles the Kur--

ameto model, In the paper by Shao et al. (2013). (see also
Novikov and Benderskaya 2014) “frequencies” have been
removed from the miodel and multivariate dati ‘wete
encoded in initial -conditions. However, both ‘methods
involve near-neighbors couplings and, in general, require
the récaleulation of pairwise distances betwéen data vec-
tors at each step. Thus, one might consider these methods
as being based.on distance connectivity of data.

‘In-the present paper we propose the method that is based
on so-called non-Abelian Kuramoto models. Such modéls
has been first introduced, by Lohe (2009):

0= 08+ U0 gy S UGy = U, =B

(2)

Here Uj{f) € /() -are ‘unitary matrices, representing the
states of particles. H; and G; bélong to the Lie algebra u(n)
consisting of nxn skew-Hermitian matrices. These
ma_tri'ces'arc interpreted as intrinsic frequencies of parti-
«cles, The notion U stands for the conjugatc transpose
matrix: to- Uy, Finally, X is a global coupling strength in the
Sysic,

~ Itisimportant that (2) defines the: dynamics on'the group
U(n), meaning that U0} € U(n) for all j=1I,.. N
implies that U;(t}-€ U(n) for all # > 0. Furthermore, let m
be subalgebra of u(n). and M the corresponding subgroup
of Ug).. Assume that T;(0) € M for all j=1,..,,N, and
that Hj and G; belong to m. Then, dynamics-of {2) takes
place on-thie subgroup M. C U{n), that is U;(1) € M for any
1> 0. '

Individual pariicles in (2) are ca]legl Kuramoto-Lohe
{K-L) eseillators. Underline that we consider the popula-
tion of non-identical K. oscillators ‘with the global
coupling.

@ Springer

“by vectors ai, . ..

Notice that we have added .an extra tetm . intc non-
A‘belian Kuramgto model: thie second term on the right-
hand side in (2} that is. absent in the original mode! (cf.
Lohe 2009, Eq. 2). In’ this way, each K-L oscillator has two.
matrices of intrinsic frequencies H; and Gy This slight
generalization makes it possible to double the dimension of
the data {as we-encede the data into frequency matrices, see
the next section).

Non-Abelian Koramoto models of the form (2) are the
most adequate extensions of Knoramoto model to higher
dimensions. Here, we introduce 2 clustering method based
on the model with the global coupling; leading to signifi-
cant simplification in implementation and reduction of
computational complexity. '

From' this point of view, the classical (Abelian) Kur-
amoto model (1) describes. synchromzat:on on the group
U(1) and (2) is a natural extension to {f(i1). Transition to

-synchromization is-pretty. similar in both Abelian and. non-

Abelian models: there exists a critical-copling $trength X,
{that depends on dispersion of intrinsic. frequencies), such
that synchronization effccts take place for K > K;_,.- sce
Lohe (2009) and Lohe (2010},

To conclude_, ‘We  argue that - non-Abelian Kuramoto
models provide a. natural framework for synchronization-

'bas_ed clustering of muitivariate: data; In this. setting we do

not need to consider the near-neighbors dnd recalculate the
pairwise distinces between oscillators at ézch step. Instead,
the coupling is. global and-constant, initial conditions are
randomly chosen and the data are encoded in frequency
matrices of K-L oscillators. The underlying idea is that
K-L oscillators with close intrinsic frequencies -will syn-
chronize first thus unveiling hierarchical cluster stracture: ify
the data set,

In pnm:lplc depending on the dimiension of data vec-
tors, one ¢an use {2) on U for arbitrary a. For smlpllcnty,
in the present paper we focus on the partial case = 2, i.e.,
on the non-Abclian Kurimoto model on § U(2). This
implies a restriction on the dimension of multivariate data:
we .assume that the data can be represented as vectors in the
space R* for k< 6. In other words; we identify chisters in
data sets where each object is given by no more than 6
attributes,

2 Algorithm

In this section we will explain thie method in more details.

Suppose that the data set contains N objects: represented
,ay in RE with k < 6. With cach vector aj
we. associate one K-L oscillator,

Step 1. ‘Encode the vector g; into frequency matrices H;

and G; of the:j-th oscillator. Matrices H; and G;



‘Data clustering based &n quantum synclironization

belong o the Lie algébra su(2) of skew-Hermi-

tian zero-trace matrices, Here, we use an isomor-

phism betiwéen the space su(2) and R,

Pick randomly the inittal conditions. U1(0),
Uy(0) for the: system (2) from: the uniform
distribution on 5%
between ST(2) and §*, transform these random
points on §* into SU(2) matrices.

Solve (2) with global coupling. strength K.
Observe the syncllronlzanon process of K-L
oscillators T (1}, . .
(possibly hierarchlc_al_)_ steucture of data,

Step 2.-

Step 3.
Step 4.

However, there are two ambiguities remaining in the above.

algorithm::

Ql: How the coupling-strength K 1s chosen?
Q2:  What is the stopping criteria?

We dd not have an exact answer- to- the first quéstion, The:

appropriate coupling strength K should ‘be determined

based on scveral realizations of the algorithm. Obviously,

if & is too low (below the critical strength K}, then syn-

chrenization docs not take place at all and no information:
cun be gained. On the other hand, if K'is too large, one
might observe rapid transition towards complete synchro-

-r_iizatia_n, with-similar rgsult. Therefore, K should be chosen
In such a way to ensure that gradual synchronization pro-
¢ess takes place:

When- it comes to the secorid question, we remark that
the -stopping criteria can be introduced in many ways.
However; in most cas_es--c'hec[;ing the s_topping_-critcria-'at_

each step is computationally demanding. Therefore, we.

suggest. to act in-the fellowing way; solve (2) and extract
information about clusters (mutually” synchronized BIOUPS
of K-L -oscillators) only at certain . rhoments, say =
1,5,10... In this way it is possible to identify hicrarchital
structure of the data without checking criteria at-edch step.

An alternative suggestion for the stopping criteria is.

based on ihe observation that synchronization process is
hierarchical. Introduce an (Euclidean) average of matrices
Ul's e Dra\“:

oty = ZU{I)

Notice that U7 does not belong to SLi(2). However, deter-
minant-of matrix I/ is real and 0< det U < 1, with the case
det¥ = | corresponding: to _compictc synchronization,
Therefore, det & is a global order parameter of Lhe: popu-
lation, When' the synchronization in some clusters occurs,

the order parameter detl/ grows rapidly and remains.

z_ﬂmu_st constant afterwards for a -certain time until syn-
chronization between neighbhoring clusters continues.

Using an. momporphlsm-

 Ui(t) & SU(2) and detect

Therefore, simple and computationally inexpensive receipt
might be: stop the algorithm (and extract information about
clusters) when |det U{#+ dr)— det U(r)] <& (for reason-
ably chosen &t and &), ' '

3 Case studies

In this section we present r'esu'l'ts of the method on. twa
rcpreScntaﬁ_\f’e (and small} data sets.

As ‘the first case study, we analyzed the famous Tris
flower data set (Wlk[pedla contributors 2017), consisting of
50 samples from each of 3 species of Iris flower (frzs
setosa, Iris virginica, Iris vers:cofor} Each. flower is.
charactenzed by 4 attributes: the fength and width of sepals
and petals,

‘We solved the system of N = 150 matrix ODE's (2)
with randomly chosen. inifial conditions from ST/A(2). The
four attributes of zach flower have been encoded into fre-
quency matrices H; and G;.(the first 3 attributes into Hj, and
the remaining one into G;). The two redundant catries.of G;
have.been set to. zero. _

The method identifies two clusters: the first one corre-

sponds precisely to the Inis setosa flowers, while the second

cluster includes all Iris virginica and Iris vérsicolorfidwers.

“This result i5 expected and natural from the poirt of view

of unsupervised learning, In fact, it is known that without
using category labels specics Iiis virginica and Tris versi:
color-are indistinguishable. _
Repeated simulations on this data set always yield the
same answer.
For the second study we collected the ‘data characteriz-

ing society and economy in 28 différent countries. With

each country we- associate (he following 6 attributes: GDP
per capita, birth rate, life expectancy at birth, infant mor--

‘tality rate; Gini index (distribution of family income). and

military expenditures (as percent ‘of total ‘GDP}. The
statistics has been extracted from the CIA woild factbook

(CIA 2017).

The data have been roughly scaled and encode_d into the
frequency matrices H; and G; (three attiibutes in -¢ach
matrix). ‘The sysiem of 28 matrix QDE’s (with raiidomly
chosen initial conditions) has been solved. The algorithm
found 9 clusters:

‘Sweden, Germany, Canada, Denmark,
Netherlands:

‘Serbia, Bosnia and Herzegovina,
.Monlencgo Aibama, Bulgaria, Latvia,
Indonesia, Malaysia, China, Thailand,
Chife, Urnguay, Argentina,

First cluster:

Second
cluster:
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Third Togo, Ugands, Senegal, Camercon.
cluster: '

Scparate’ (countries that did not fall into any cluster):
chigters: Saudi Arabiz, Qatar, United Arab Em‘irate's_;

Slovenia, Kyrgyzstan, South Africa,

For this data-set results can slightly vary from one simu-
Tation- to another. However, the fundamental clustering
pattern remains thé same regardless of the realization. For
instance, -the first cluster always consists of the same 3
‘countries, ‘Also, the Balkans countries. are always set jnto
the same cluster.

Figures 1 and 2 illustrate the synchronization process for
the two data sets respectively, Number of clusters decrea-
ses over time (Figs. Ya, 2a), while the global order
parameter increases (Figs. 1b, 2b),

4 Clustering of functional data

The method we propose here allows for varions extensions;

This idea makes it possible to identify clusters over
distinct time intervals. In order to extract decisive con-
clusion over the whole time span, we: calculate matrices of

‘pairwise distances between K-L. oscillaiors at several

moments.
The method was verified on two data sets that have been

studied previously.

The first case study has been implemented on Canadian
meteorological data, see Ramsay and Silverman (2005)
This data set consists. of 35 different locations in Canada
characterized by two timig-varying attiibutes (daily temn-
perature-and precipitation). We found the following - data
structure:

St. Johns, Halifux, Sydoey, Yarmouth;
Charlottvl, Fredericton, Quebec,
Sherbrooke, Montrea}, Ottawa, Toronto,
London, Arvida, Thunder Bay, Calgary,
‘Bagettville, Regina, Pr. Georgé,
“Winnipeg, Edmonton, Kamioops, Pr,
Albert, The Pas, Whitchorse.

First cluster:

In particular, it can easily be adapted to deal with multi- Second Scheffervil, Churcizlll_,__Uram_nm City,
' . o L . cluster; Dawson, Yellowknife.,.
varniate functional data-without dramatic increase in com- A i ’ e
putational complexity Third cluster; “Vancouver, Victoria,
= . o o - o ] . . . Fate. I . P o . .
This ¢an be done by considering time-dependent Sle p?ralg Resolute, Inuvik, Iqaluit, Pr. Rupert.
. . - . clusters:
matrices H;(r} and G;(f) in (2}. The functional data are then usters
encoded inte enfries of these matrices,
Fig. 1 Simulation results for the 1500 « v . 1.0 T
Tris diita set: tatal r_iilmbcr-bf . . 'f
elusters decreases fram 150 102 0.8t &
{a) and the. global order 100 ._.'-
parameter det (1) increases - " 0.8r 2
(b). The coupling strength is set 0.4 s
10 & = 10 50 -
' . 0.2
Qb RN EEEE: _.-' LI B Un . i E
0.0 0.5 1.0 1.5 2.0 0.0 nz 04 0.6 0.8 1.0
(a). (b}
Fig.2 Simulation.tesulis for the agf 1.0
data sel of 28 counlries: total e naa _
numbier of clusters decreases 25 . 0.8
from 28 to 9 (2) and the global 20 -
erder parameter det U (r) . 0.6 5
inereases {b). The coupling 1sf . &
strength is set o K = 10 i0 . _ 0.4 /f.'f'
5 02
2.0 02 0.4 1.6 08 1.0 80 0:2 0.4 06 0.8 1.0
(a) (1))
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- Data chistering based.on quantum synchranization:

Notice that our eonclusions are almost identical to those of
Jacques and Predz (2012, 2014). However, our method
does not require 0 -apriori specify number of clusters and

therefore it allocates foir weather stations in North Canada,

into separate clusters.

The second data set contains ' economic indicators for

16 countries over the period 1990-2008. This 6-vafiate
functiona! data set has been studied by Yamamoto (2012).
Our method tclcnuﬁes 5 clugters;

Australia, Canada, U_hited'..States,
Sweden, France, Denmark, Finland,
Natl}erlands United Kingdom, Belgium,
wal?erlancl New - Zealand,

Notway, Japan, Ireland, Spain,

First cluster:

Separate
clusters:

These resuits are ‘very ‘similar to those obtained by
Yamamoto., However, there are several differences;
Switzerland is classified into the great cluster here. On the
‘other hand, Norway and Spain are sct into’ ‘separate cluters.
By closer examination of the data one.can find the fonda-
mental reasons _for such clagsification, In the case of Nor-
way the distinctive indicafor-is very high export revenue in
the period frot 2004. untif 2006. Whei it comes to Spain
the reason can be found in high unemployment rate,

5 Conclusion and outlook

In this paper-we have proposed a novel algorithm for data
clustermg which is fuIIy bascd on quantomi synchronization
(synchronization. in non-Abelian Kuoramoto medels), We
presented thie method corresponding to the model on ST(2)
assuming that the data are. represented by no more than 6
attributes. For the high-dimensional data we suggest to use
the model on ST}, In this.case freqncncy matiices belong
to. su{u) the set of skew-Hermitian trace:zero matrices,

Notice that su(i) is isomorphic to R, where £= & ;n - L
Since (2) includes two frequency matrices, this means that

SU(ny model is sufficient for clustering the data of the

dimension 1 +»n — 2. Remark that initial wndmons for
(2) should be taken randomly, thus the algnnthm requires
generation.of random matrices from SU(.!:}

Underlirie that this-idea is convenient- for hierarchical

clustering based on the hierarchical néture of synchro-
nization process,

In many cases, the data set consists of objects labeled. by
veetor atmbutcs along with the pairwise relations,

represented by (possibly mululayer) network. Clustering of
a stch data set can be seen as a community detection
problem- i the (mult:iayer) network with (multivariate
functional) node atiributes. This situation cap be studicd by
replacing the global coupling strength X in (2) by the
matrix ,J,{r) of . (possibly time-varying) pairwise
interactions. '
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Abstract

We study consensus and anti-consensus.cn the 3-sphere as the global oplimization preblems:
The corresponding gradient descent algorithm is a dynamical systems or .57, that is known in
Phiysics as non-Abelian Kiranioto model. This observation opens a-slightly different insight
into-some previous: results aad also enables us o prove some novel results concerning con-
-sensus and balancing over the complete graph. In this way we fill some'gaps in the existing
theory. In particular, we prove that the anti-consensus algorithm over the complete graph on
53 converges towards wbalaniced configuration if a certain mild condition on initial positions
‘of agents iy satisfied, The form of this condition iridicates an unexpected relation with-some
important constructions fromt Comiplex Anatysis.

Keywords Consensus - Balancing - 3-sphere’- Synchronization - Non-Abelian Kuramoto.
models

1 Intraduction

Consensus problerns play-an impdrtant role in the broad field of distributed und cooperative
control. Various problems of this kind on Euclidean spaces have been studied under different
constraints and assumptions, see, for instance [13,14] and references therein: However, in
many engineering applications, such.as cooperative rigid-body attitude control [2,20], mobile
sensing. networks {16} or averaging rotations [4], the underlying space is non-Euclidean.
‘Geometric consensus theory [18,22] aims at designing algorithms on certain Riemannian
manifolds and elaborating a unified approach to consensus in Euclidean and non-Enclidean
gettimng.
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There are essential diffefences between these two settings, since convergence properties
of the consensus algorithms depend. stmngly on the geometry of underlying space. In order
10 get some fechnz, about this, it is instructive to start with the problem on the circle S1.

Consider a swarm of N agents whose states are described by points ¢, . .., ¢/"¥ o 81,
Snppose that agénts communicate fo each other through undirected commmucanou & aph

G =(V, E), where'V = (I,. N} is thesetof nedes and E-C {(j, kY j . k e v, j#Ek}
is the sef of cdges, We say lhat aaents J and -k are neighbors if there exists an edge between
them, i.e: if (j, k)€ E.

Biised on the information received from his neighbors, each agent continuously ’1d_]l!St°i
his state Following an analogy with linear consensus algorithms it is namral io suggest the
following continnous-time update of the states of agents [18 217

= %_quk.sjn(ej —85, @>0 k=1,...,N. ()
i=l
bere ajp =-11f (f, k) € E and ajr =0 {j, k) ¢ E.
“The'system (1) defines potential dynarmcs it is a.gradient system for the disagreement.

cost functipnon toe N-torus TH = §T'x ... x St
Val#) = m Z Za;kue*’* o
k= 1,:—1
(5 j — HA .
—s ZZ“J" sm (2}
ZN k=1 j=i : 2

In. other words, (1} is obtaincd a5 gradient déscent ‘method for minimization problem (2):
O = —cr d:; » k= 1;..., N. Thus, trajectorics-converge to critical points:of V, and.all strict
minima-of Vs are stable cc_]ui]ibria- of {1).

‘Remark T The system (1} is well-known as Kyramoto model of coupled oscillators. Notice
that, unlike in the original Kuramoto model introduced in (7], oscillators in (13 have identical
(zera} frequencies and are coupled through the graph G.

The above 'Remark demenstrates that the question of conveigence of distributed corsen-
sus algorithms on some Riemannian manifolds is related to the umiversal phedomenon of
synchronization of. couplcd oscillators, see [17).

Definition 1 The confignration with 8 = . - - == 8y is called synchronization of agents.

It is obvious that synchronization corresponds to the- global minimum of disagrecment
cost function V. Therefore, consensus probiem can be stated as optlnu?atlon of the fanction
Vi However, there i$-no.guarantee that. {13 will converge towards synchronization, since Vi
in general can have critical points different from global minimum. Existence of local minima
dnd ofher critical points of the cost function depends greatly en the communication graph G.

The graph & is said to be 5! -synchronizing, if (2). does not 2dmit local minima different
fromi synchronization. It is an open problem to characterize (at.least approximately) all §'-
synchrom?mg graphs, For ‘example; simulations show that the ring graph with 4 nodes is
S1-synchronizing . while rmg graphs containing 5 and 6 nodes are not[18). One of few
uitiversal results on this question states that complcte graphs {all-fo-all communication) and
undirected trecs are § i-synchromzmg, see [18 211].
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2 Consensus on S* and SO(3) over undirected graphs

As. mentioned in Introduction, mathematical formalization of somie important engineering
problems yields consensus problems on'certain higher-dimensional Riemmanian thanifolds,
In order to develop a mc'mmgful geometric consensus. theory, ‘it is necessary to impose:
some conditions on the class.of Riemannian manifolds on which the problems are stated. -
One natural restriction s to work under the assumption that the undeflying manifold is.a
homogeneous space.

In this paper we will focus on conscnsus ¢and anti- ~consensus) on onc specific manifold:
Lie group SU(2) with the group. manifold 5. _

In order to introduce coordinates on § 3 . we will work with the algebra of unit quaternions.
Consider the following system of quaternionic ODE’son §3:

g =qifigi— fi, j=1...,N. (3)

Here, g--JT {t) is a onit quaternion,’ describing the position of the j-th agent-on $? and fJ =
it ql G i.. GN}AFE quatemlon-v'llucd functions called coupling functions orcommunication
p:oroco{s depending on context; The notion & stands for quaternionic-conjugation of the
Q1ld{cm10n a.

Notice that Eqs. (3) preserve ; .5'3' this is-easily verified by chec!ung that g {0) € S 3 for all
J=1,..., Nimplies g;(t] € §* forall 1 > 0.

One can study different forms of functions. £ in (3), depending on specific 5,0413 For
consensns problems, it makes sense to consider the functions of the Tollowing formi;.

. N
Q- _ o
fi= 3N E . @jkgr, whereo > 0. Iy}
=1

The bar denotes quatérmionic conjugation as before.
Plugging (4) into (3) yields the following system of quaternion-vatued ODE's
a l‘“’
4= > alaiarg; — i) (5)
k=1
Remark 2 "The system (5) (written in real variables) appeared in several papers with various
interpretations, for instance asa swarm on spherein [15] and the model of epihion formation
ob spheréin [1].

The next step is to notice that (5) displays potential dynamics. The disagreement cost
functioni can be writien as follows;

N N P
! 1. o
Velgr....cqn) = —ZZZ (-IME:(q;q:;-%qm;.))
1 N N
= =5 2. 2 el —cosgp), {6)
F=l Bl

where-g ¢ is-an angle between the two vectorson § 3 that correspond to quiternions.¢; and

G-
Therefore; the situation is analogous to thc case of §' that is. briefly explained in the

previous ‘:CCGOH consecnsus problem on 53 can be stated as minimization of the function Vy
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and t:ri}c corresponding gradient descent method (5) provides a distributed consensus algorithm
on: 57,

Along with(6) consideralso the problem of minimization of the fanction Vo (01, ..., Ow)
defined on (SO3))Y (see, For instance, [18,19]);

N N

Vo(Qt, - QW) = 527 3 3 " anTr(Q] Ok, (7)
=N pmlk=d
The gradient descent system for (7) reads:
N
97105 = Y a7 0 - 07 0p). (8)
V-

Remark 3 1t has been mentioned in' Introdnction-that the gradient syster (1) for tonsénsus
problemon $' canbeinterpretedas Ruramotomodelof coupled oscillators with identical zers
frequencics. There is an analogy in higher dimensions: gradient flow systems of the form
(5) and (8} have been intreduced in _[8}" as so-called nor;-AbeIfan Kuramaoto models, This
obscrvation poini§ out some parallet developments.in Geometric consensus theory and the
study of synchronization pheriomena. For ! consensus is related to classical synchronization,
while consensus on -5? i related to the phenomenon named quantum-synchionization, see.

[9].
Definition 2 The configiration with g; =+ - = gy is called synchronization on S°.

It is' obvious that synchronization configurations.are the global minima for fanctions (6}
and (7).

Remark 4 There i a'certain ambiguity in using terms consensus and synchronization in-the

televant literature, In [11] these two notions are regarded ag synoqyms.-On the other hand,

in [18,19,21] the notion of consensus is.more general; the swarm can admit many consensus

configurations, depending on'the graph (7 and thesynchronization is a-particular casc of
CONSENSUS:

The exposition so'far presented andlogous consensus problems and algorithms on spheres
§' and 5% and the matrix group 8 0 (3). However, it fumns out that the convergence properties
of algorithms (1), (5) and (8) are very different due to inufnsic geometric propesties of
wnderlying manifolds.

In order torsee thiis; we start by the recent theoretical result, ptoven in [11]:

Theorem 1 Suppose that the comiinnication graph G is widirected and eonnected, Then,
the serof synchronization configirations is almost globally stable for (). fn otherwards, Hie
set of all initial conditions forwhich (S) does niof converge iowards synchroitization has zero
Lebesgue measure on (5257,

Remark 5 Theorem 1 provides a theoretical basé for consensus algorithms -on $°: the: con-
vergence towards: synchronization: is' almost guarantéed. The geometry of the 3-sphere is
favorable for synchronization. In fact; Theorern | is valid for conscnsus o -any sphere- §”
with n > 2,

At the same time, Theorem 1 does not hold for- 5", Indeed, as explained in lntrodiiction,
there exist many graphs that are not §=synchronizing, The same appligs to' S Q(3), simula-
tions show that the algerithm (8) does not necessarily converges towards synchronization.
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The disagreement cost fynction (7) can have local minima. The structure of the set of local
minima of Vg strongly depends on the communication graph.

Simulgtion: results. In order to lustrate the above point we conducted simulations for the
particular case when N = 5 agents arc coupled into the ring (i.e. communication graph G
s the ring with 3 nodes). The initial staies of agents have been chosen randomly from the
uniforin distribution on S3. Initial states on §0(3) have been obtained by mapping points.
from .S to §O(3) matrices.

“Fhe algorithm(5) on $*reached synchronization in 1000 out of 1000 simulations,

The algorithm (8) on § 0O(3) reached synchronization in 609 ont of 1000 simulations.

Notice that the same experimént has already been reported by Markdahl et al, [10,117;
otr results are consistent with theirs, ' '

Visnalization., OF course, it is problematic 10 visualize the evolution of pol'ntq on the sphicre
inthe 4-dimensional space. We will illistrate the evolution'of the swarm on 3 by displaying.
rotating bodies in’ 3D. Mathematically, we use the doublé cover map from §% to SO3)
and representation -of 3D rotations by unit quaternions. It is very well known thdt such
representation causes some peculiar effects; due to the fact that two antipodal quatérmions g
and ¢ .cofrespond to the $ame matrix in SO (3).

Convergence properties-of (5 and (8) are demonstratéd in two short videos. Thé number
of agents ig ¥ = 5 and the comniunication graph is'the ring with 5 nodes, We hidve randoinly
chosen initial conditions using uniform distribution on 2 and the same initial conditions oh
S0O(3) (by mapping unit quaternions into the corresponding S O.(3) matrices).

Ome cah see that: synchromzahun is achieved on 52 (Online Resource 13, while-6n SO(3)
-algorithm ends in somé local minimum of the disagreemeit cost function (Onlineé Résource
'?) According to the simuiation-results explained zbove the probability of such olifcome is
approximately equai 0.4

3 Consensuson S3 over the complete graph

It is known that for the case of complete conimunication gragh algorithms ¢1), (3) und ¢8)
always converge. towards . synchronization on .S ", 5% and S0(3) respéctively, see [18,19]. In
other words, if G is.the complete graph, synchironization configurations aré the orily minima
of functions Vi, V, and V. ' '

In this section we discuss consensus problem on 52 from a different point of view. Through-
ont this and the next section we asstmic that the cofamunication graph G is complete. Notice
that in somc engineering applications:such-all-to-all topology is very expensive or éven not
feasible. tn the context of coupled oscillators, this situation is named global (all-to- all) or
mean-field coupling. In this case the system (3) is written as:

dj=qpfq;~f. i=L....N, 9)

where f'= f(qi,...,qy) is a global coupling function,
For consensus over.the complete graph, the coupling function is of the form:

N
f= —1 D G, wheree > 0. (10
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Substituting (10) into(9) yields the consensus-algorithm oS3

:—Z(q;qm @), j=1,...,N. (11
AI

Moreover, for the case of the complete graph the disagreement cost function’ Vg given by
6) has a particularly simple form:

Vp=1-r2 (123
where F = ||% Ej\;] g In order to. clarify this, consider aswarm of agents whose states
‘afc-given By g1, .o gy €53 and introduce (g) = w ZJ_I ;- Obvicusly, (g} is a point in
the ball B* {interior of 5%, that is centroid (center of mass) of the set of points Gl - v YN,
Further, r = [[{g}[ is the norm of the: corn esponding 4D vector. In the context of cuupled

oscillators, the real number.r € 10, [[is called the order parameter of the swarm of agents
(i.c: of the population of osciliators). The situation r = 1 {fully coherent state) corresponds fo
synchronization. Opposite situation, when r ='0; is called fully incoherent state in Statistical
Physics, In Sysrems Theory, the 1atcr is referred to.as balanced configuration,

To resume, in the case of the complete graph, the problem of minimization-of the dis-
agreenientcost functlon appears to'be simply maximization of the order parameter (Coherence
degree) of the swarm. The gmdlcnt descent system for (123 is (11).

Proposition 1 18,19 21] The funciion {12) does not have focal minima. different fmm
syncironization. S)nchmnuauon conﬁgnmrmrrs are. global minimi of (12) and the only
asymptotically stable equilibria of (11),

Herice, ‘the problem that we discuss-in this section is fully understood from the point of
view of’ opnm:zatmn theory. However, here wetake a different point of view inorder to point
out some relations with Physics and Hyperbohc geometry and extract some spetific. novel.
resulls.

- A% mentioned. above; system (9) is in fact the non-Abélian Kuramote model-on 5% with
the global (all-to-all) coupling. Recently; the authors have studied some symmetries. of this
systéinin [5]. ' ' '

In order to explain this we start with some. notations. Denote by T the algebra of
quaternions. The set of linear fractlona] (Mablus) I;ransfommtmm acting on. the cxicnded
guaternionic space HU{eo} is the group GL(2 H0y, Cons:dcrthc subgroup G of all Mobius
transformations that presecve $°.

Theorem 2 |5] Ler e swiarmevolves by (9) from ﬂ:eu iniiial positionsg1(0), .. 2 qu{0). Then
A Gy there exists an one-parameiricfamily. 5 of Mébius transformations, such that

gi(t) = gilg;(®) forallt>0andj=1,...,N.

Theorem 2 states that at any instant 7 the positions of agents'on §2 are dbtained from their
‘mitial positions by some Mibius transformation belonging to Gij. Notice that an analogous
fact for the swarm on S 1 tias been. estabhshcd earlierin [12].

Using Theorem 2 and general results of group theory we-can claim that the distribution
‘of'agents on 57 belongs to the orbitsof the group Gy This yiclds the following:

Corollary 1 Suppose that the swarm evolves by (9). Then the-distributioi of ageits évolves
ona certain 10-dimensional inmvariant sikingnifold lying bi the infinite-dimensional inanifold
of all distr sza‘nom‘ on 5%,
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Proof For the proof it suffices to check that the dimension of ‘orbits of the group Gy is 10.
In order to'see this, notice that the general Mabius transformaticn that preserves S3 can be
writtcn-in the following form:

wig) = p{l —qd) g — a)r, forge 5,

where p and r are unit guatérnions and a € H, |af < .

The two unit quaternions p and r gencrate rotations on S*:and a corresponds 1o the action
on the center of the: sphere. Reotations (or unit quaternions) yield 2 2x3=6 independent real
‘parameters, while g is a point in B (4 real- parameters). Now, the Corollary follows from the
general results of group theory. o

The_re._is-.'a unique way to extend the Mébius transférmation g, from. S 3 torthie whole unit
“ball B4, Consider this extension and denote by P{(¢) the image of the center of $? under the
actioti of g, that is P (1) =:¢,(0).

Proposition 2 [5] Leta swarm evolves by (9) and let g, be afamily of Mibius transformations
that is defined in Theorem 2. Then the point P(2) = g,(0) evolves in . B¥ by the foilowing
quaternionic ODE:
dP
— = PfP — f. (13
dt
In the remaining part of this Section and throughout the next Section we will need the
notion-of the conformat ba;ycemer [3] of the probability measure j2'on lhe sphere. Assume
that the probability measure x4 does not contain atoms of the weight = 1.

Following Douady and Barlc {31, introduce the function i u 0N B

SN B S
hila)y == f log [a|,'du(u), u _6'84
i 2 /s la —ul®
and denote by & the gradient of i; in“the Poincaré (hyperbolic) geometry of B*, Then £u
is a vector field in B*.and Douady and Earle-have proven that there is a inigue point B (1)
in B* where the field &y vanishes. That point is called the conformal berycenter of ji.

Remark 6 Let i be a probability measurcon, 87 and w a Mibius transformation that preserves
B, Cousider the measure v = w{w) that is obt-u ned as Mébius Lransformat:on of u. Tt holds
that w{B( (1)) = B{vy, where B (1) and B(v) are conformal barycenters of the two. measures,

This Rémark emphasizes one-special property of conformal barycenter: if the measure
is transformed by a Mibius transformation, then the conformal barycenter is transformed
by the same Mobius (ransformation. Centroid does not liave this unique property, If we
denote by C(3e) and C(v) centroids {mean values) of the measures ¢i-and v, then, in generai

w{C(u)) # C).

Lemmal Consider the. swarm (9) -aned sippose the pumber af agents.is large;, N ~+ oo,
Assume that the initial distribution. of agents is uniform on 53, Then, conformal ba yoenter

of the swarmn coincides witlh n're cemm:d at each moment t. Moreover. the disiribution p of
agents at.any moment t is given by the fﬂ!r’owrf!g density ﬁmcaon 53

Pl

¥e e ed Py 4 T4
p; P(1) = (”v Pf‘)ﬂ') yes, Pitye B . (14}
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Proof The distribution (]4} ts called the Poisson kermel .on $%. It is known (see [6]) that
Poisson kernels-on 53 (as well as on 5! ) arige as MDbll.lS transformauons of the nniform
measure. The centroid of: the: Poisson kernel (harmonic measure) is the i image of zero under
the corresponding Mébius transformation, i’e. point.P (#) from Proposition 2. In othér words,
Pgisson kemels are very special distributions on 53 for which conformal. barycenter and
centroid.coincide, w]

Lemma2 Consider the swarm that evolves by the consensus a!gomhm (1 1) with & > 0.
-Suppme thar ¥ - oo and the. mrrmf dmtrzbmwrz of agents is unifor on 3. Then the order
parameter r{t) satisfies the following simple real-vahued ODE:
dr o, 3 .
— = ey —r7), 15
T 2( ) 13)
Proof ‘Underdine that in th'_is.-L_emma we consider the ¢onsensns algorithm (11).
. Observe the evolution of conformal baryeenter £(f) of the swarm. Due to-Lémma 1, P(1)
is also the centrotd of the swarm, S_in_c_e P() € BY, we write P} = ruit), where u(r) isa
unit guatémion and r(r) = | P{r)| i an order parameter.
Theh the coupling function ¢ 10) resds

N

o S = 2 B = —Sr) 0.
= S T e = —— , q.
N BTy ( 2 *=

Substituting in {13) we obtain:
T a - @« oy
e rp = “Erur_:fru + iru = “.5; i Em.

In the: last equality we have used that r is a real number and-hetice commutes with any
quiternion.
Multlphcauon by i~ from theleft yields

Ft ritn™) = i(r — . (16)

‘The Jast cqua_t_ion_;'is almost what we want io cbtain, but it contdins an exira term en the left
hand side. We notice that (16} is, strictly speaking, & guaternion-valued ODE {the system of
4 real-valued ODE’s) and we are interested in ODE for the real part. In order to-evaluate the
real part of the expression & w1, we write the quaternion & in- the Cayley-Dicksdn form;
u=zi+2j= J"]@""‘”‘ A raelPr
Since ¥ is a unit: -quaternion we knew that rl + L) =1
‘Simple calculations yield expressions for #~! and #:

W = i = pemi® —rpe 5"2}
= (i + e’ + (1 +_i;‘2¢z}e’._""3j'.

Using the last two equations it'is easy to check that;

1.d ..
Re (™YY = P +iars E(d— f‘ + —..:.'__;“_)
Ld . 2 { .
E=RRT RS Ang ¥ :_——-1 =10
sa Tt =50
Hence; extracting the'real part of the quaterhion-valued ODE (16) yields real-valued ODE
(15}. 8]
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Remark 7 As Lemma 2 requires the uniform initial d:smbunon on 83, the initial condition for
(15} is.(0) = 0. For conscnsus algorithm & > 0 and hencé r = O.is unstable equilibrium of
{15). Hence, the swarm (11) with & > 0-will converge towards synchronization (ie.r— 1)

4 Anti-consensus and balancing on §3

In‘this section we discuss the anti-consensus problcrn over the cnmplelc graph. This problem:
can be: stated as minimization of the function — Vy defined by (12) The - gradient descent,
system is then {11) witha < 0. :

Definition 3 The configaration of agents is called balanced, if their centroid i§ zero quatér-
nion,

We-de not impose any assumptmns on the nuriber of agents. Theswarm can consist of the

finite:nusiber N of agents, #s well as of continuum of agents. In the later casc, the distributicn

of'agents at any mement? is given by the density function 7 (g, 1), where g € 53 The aoiibn
of balanced configuration naturally extends to the Iater case as well.

.As explairied in the previcus section, consensus algorithm over complete graph converges.
globally towards synchronization. In analogy, one might expect that-anti-consensus algorithm
converges towards a certain balanced configuration. The si tuation turns out to be more difficult
for this problen. Still, the followmg theorem claims that al} balanced: confi gurations are anti-
consensus.configurations over cornpl_ete_ graph.

Proposition3 (13,21] All balanced configurations are local minimi of -

The opposite statemenit is not proven,. Below; we will state 2 néw result claiming that the
-gradient system (1 D converges to abalanced configuration under certain mild donditions.

We assume that the initial dzbtr[bunons of agents is given by the set of points n =
(g1 (0}, ..., gn (0} C % orby-density function (g, 0) where g € $7.

‘Remark 8 We assign a probability measure to any given distrbution on §? (regardless if this
distiibution is discrete:or absolutely continnous), In this way we will talk about conformal
barycenter of the distribution of agents on 8°.

Definition 4 We say that the distribmiion on 5¥ contains a majority cluster, if the corre-
sponding probability. measure contains an dtom of the weight >'1/2. Forthe ¢asé when the
distributigi 77 is concentrated at the finite number N 6f points.on $3, tlie existence of majority
cluster means that there are. > N./2 coinciding poinits in 7.

Congider the anti-consensus algonthm{ll Ywitha < 0. DuetoCorollary 1, the distribution
of agents will evolve on an. invariant: submamfo!d M;; of redl dimension 10; This invariant
submaaifold is-determined by the initial distribution 1.

Lemma 3 Suppose that the initial distribution 1(0) -of agents does not contain. ¢ majority
cluster. Then there is g unigue (ap 1o rotation- on S3) balanéed confi tguration in invariant
submanifold M.

Proof Manifold My cousists of all distributions.on §° that can be obtained as Mabius
Lransformdnons of 7(0). Theaw (1) € an) is thé distribotion of agents at the moment 7.
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Due to Theorem 2,:the swarm converges by thic. action of the group of Mbbius transfor-
mations, meaning that there exists an one-paramictric family of:Mébius transformations- 8t
such that (1) = g, (0},

Then, conformal barycenter B(n{1)) also evolves by the action .of & Bl " =
g,(B(n(O)}] see Remark 6,

Further, notice that forba]anced configuration-both conformal barycenter and centroid are
at zero, (i.e. at the center of S3) In order to-extract our'conclusion, it remains to recall that
there exists exactly ong (Uup to a rotation on S3) Mébius transformation. that maps the point
Bm(O)) into zero, T

Theorem 3 Suppose that the initial distribution 3 of agents does not contain a majority
cluster: Ther the balanced configuraiion lying in "My, i3 globally stuble for the system (11).
with & <0,

Proof First, notice that the system (11) can be written in the following form {see [15]):
G = &(Q;fﬂfﬂé‘-j' —RIN. F=1...,N, (7

where 4 () = gHt) = qu € B* is a centroid of the. swarm.

The form (17) unveils the mean-field character of (11): it acts like agents are not connceted.
to cach other, but at each instant of time coupled toa common dire¢tion on 3. This:common
direction represents the mean field and, of course, it dcpcnds Gn configuration of dgents and
evolves in-time:

The. function p= 1 — #% > 0 can betaken as Lyapuncv function for the system (17).
The minimum of p is achieved at the value.r = 1 that corresponds- to’ sytichronizaiion,
Differentiation of p yiclds [15]:

d . Z 2
. 5. o - . L
p= E}'F#'i = —2{flp -+ pp) = Y ZQka TN quf!-j

2
=T NE Eq; (qeiige — Y — —5 Z(qmm 1)q;
’ RS ok
2o o, L m e v
Y Z [‘Ln“ + #‘h) N2 Z (!?ifﬂé;&t?k + Qkﬂ'q_kf_}j)
2 - - -
=. ; (gie+ th vy Z {grit+ 1egr) + — Z (G0 1o+ q; %5 41)
N 7
2{2 ' - - - ¥ . s
= (G in +qifigi) = -7\7 Z (1 —cos®(;)) > 0
i i

where ¥; is anangle between the point ¢; and the mean field direction {g). The last inequality
follows from o < 0.and implies that. p is non-decreasing. Accordingly, the order parameter
r-is monotonically non-increasing,.

Furthet, it is'casy to observe that any configuration with 1 > r > 0 can not be stable:
for the systern (17). Indeed, suppose that certain-configuration with r > 0 is an equilibrivm
for (17). Obviously, any perturbation of this conﬁguratlon that decreases * corresponds to'a.
unstable direction of the system (17), Hence, such equilibria can not be stable.

Finilly, due to Lemma 2, the system converges fowards-a unique balanced configutration
that lies in an invariant submanifold Af, 4+ This balapced configuration is determined by the:

‘mitial distribution of agents: 5 = (¢ (03, Lgn (O} (]

@ Springer



Jotirnal of Glabal Optimization

‘5 Conclusion

Thenatural setting for geomelric consensus theory is the class of hoemogeneous spaces: In the
previous studies a universal conceptual approach to conseasus problems on hqﬁmgcnceus
spaces has been developed. However, convergence propertics of algorithms depend greatly
on geomiiry of the underlying spaces, as we have cxplained here for examples of §1, §3
and 5§ G(3). Hence, there are few universal results regarding convergence of (anti-)consensus
algorithms, Sarlette and Sepulchre have proven convergenice of conisensus and'anti-consensus
algorithms on the wide class of manifolds for the cases when the communication graph is
complete or undirected tree. Notice that both topologies can be problematic in applications,
since complete graph is often too expensive, while the tree topology is not robust, Proposi-
tions 1 and 3 from the present paper arc.partial cases of their resuits, Recently, Markdah] ct
al. have cstablished almost global convergence of consensus algorithms on spheres §” for
n = 2 over arbitrary connected and widirected graph (Theorem [ in‘the present paper).

Ir- this paper we pointed out the fact that gradient conisensus al gorithms are egsentially
non-Abclian Kuramoto model with zero hitrinsic frequencices. This observation offers g new
insight into consensus algorithms..Seetions 1 and 2 contain existing results from a slightly
differcnt point of view. Some novel results are presented in sections 3and 4,

Throughout tht: paper we have investigated the particular case of the sphere %, Notice
however that analogous results ‘can also be statéd for the swarin on St with the complete .
-communication graph. The reason beliind this is that these aré the only spheres ihat are Lie
“grougs,

In Section 4 we have proven Theorem 3, stating that the swarmi-on §3 under anti-consensus
protocol will converge towards a ba_]_am_:ed'c‘onﬁgurat'i(')n. Moreover, this balanced configu-
ration is uniguely (up to rotation-on 83} -determined by the initial distribution of agents. The
crucial assumplion is the absence of d majority cluster in the initial distribution.of agents,

In order to-illustrate this; mention that Sepuichie et al. in '[23] have characterized zll
anti-consensus configurations. oy the ci¢le for the complete graph. The.only anti-consensus
configuration that is not balariced appears for N odd and consists of {N + ]'j_,/2 ‘agents at
one point on the circle and (N — 1}/2 agents at the antipodal point. Qur Theorem 3 provides
an explanation: this is possible since such configuration conit#ing a majority cluster, This
unveils an unexpected relation with the ¢onstruction of Dovady and Earle [3] that is widely.
investigated and useéd ig the present paper;
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Abstract

Dilferent medels and goncepts [romn Statistical Mechanics are increas-
Angly exploited to study the structure and topology of complex: net-
works. For instance, famous Kuramoto model of coupled oseillators
‘has been successfilly applied to analyze-complex networks. Tt has been
shown that the gradual process of synchronization reveals esséntial in-
formation about network topology. Here, we pioposze the miethod of
exploring ‘complex netiworks by ‘detecting the collective behavior of cer-
tain groups of -oscillators. Thee information on collective. bighavior is
‘éxtracted from the statistics of Mobius transformations that FOver.os-
cillators dynarmics on fixed time intervals. Due to rich geomietric and
algebraic structure of the group PSL(2;C) of Mébius transformations,
we can employ simple concepts from projective geometry {(sucl: as-cross
ratio of four poeints on the iinit circle S?) in order te study collective
dynamics.

1 Introduction

In many cases large amount of empirical data can be represented by the complex network of items and interactions
helween them. This requires efficient algorithms lor investigation of large netwoirks. 1n study of large complex
nelworks there exist a class of algorithms that are based on concepts and objects from Statistical Méchanics.

For instance, a classical problem in Graph Theory is community detection. Gommunity in the complex networks
is. defined in different ways and the definitions used in various literature usually -deperids on the mothod of
investigation of the network (for detailed survey see [Fortunato, 2010]). In any case, by commnunity one means
the group of the nodes that are densely interconnected, while their connections to the rémaining nodes in the
network are relatively sparse,

For the problem of community detettion several algorithms based on ideas.of Statistical Mechanics have
been proposed in 2000°s.. The first method employs the model of coupled ‘phase oscillators (Kuramoto os-
cillators, [I&uramoto, 197a]) and well-known - phenomena of synchronization. Indeed, since XVI century and
famous Huyghens letters ([[luygeiis, 1665]), it is kriown that oscillators that are wealkly cotipled tend to syn-
chronize, this is an universal phencmena obseived.in many variations in nature and technology. Atenas et al.

Copym’ghf & by the paper Yy authors. C‘opy'ing per‘mit:'.ed 'fo'r private and deademic purposes.

In: Yu. @, Evtushenke, M “Yu, Khachay, . V. Khamisoi, Yu. A. Kochetov; V.U. Malkova, M.A. Posypkin {eds.); Proceedings of
‘the QP TINA-2017 Cuufel ence, Petrovac, Monténegro, 02-Cet-3617, published at http: S fceur-ws.org
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([Arenas et al, 2006]} proposed the algorithm of :comtnunity detection that relies on chservation thai the process.
of gradual synchronization in the network of conpled oscillators unveils the network topology. Consequently,
one might expect that the oscillators belonging to the same: communlty will synchronize their oscillations he-
fore the synchronization in the whole network takes place. This is the basic idea standing behind this method:
observation of the process of gradual synchronization makes it possnble to dlbt‘ingl.ll.‘:h densely interconnected.
conmunities in the network. Notice, that this is only the rough idea, Arenas et al.. introduced mathenratical
instruments to’'study. this process.

Another idea for the same problem relies on.phenomena of ferromagnetism and collective spin dynamics, These
methods employ the Potts model ([Reichardt & Bornholdt, 2004, Reichardt & Bornholdt, 2006]) or Ising model
([Son et al., 2008]) of ferromagnetism for community detection, Thls method is based on the choice of suitable
Hamilt onian for- ‘the network. In this way, the prohlem of community detection is approached by minimization
of the Hamiltonian.

In the past decade various modifications and extensions of the above mentmned methods have bHeen propdsed.
Algorithms based on Statistical Meéchanics. have several advantages. For instance, they are typically well-suited.
for the networks with various kinds of interactions (nmludmg weighted graphs, repulsive interactions, delfayed or-
noisy interactions, etc.). The second advantage is that they allow to detect fuzzy or overlapping cormmiunities.

Thiis paper is intended to piopose niéw method for investigation of complex networks, that can be based on the
models studied in [Arenas.et al, 2006}, as well as inx [Reichardt &-Bornheldt, 2004, Remhmdt & Bornholdt, 2006}.
‘The dilference is that : our méthod is based on detection of collective behavior of nodes in comiplex networks. This
approach is inspired by the result of [Marvel et 4l., 2009] for the globally céupléd pepulasion of oscillators. This
result enablesus to use ¢lessical concepts of Projective Geometry and Complex Analysis. In the next section
we briefly explain the main result of [Marvel et al., 2009] and some exteénsions necessary to.apply the whole
concept to the investigation of complex networks. In Section 3 we explain in detail the application fo twa typical
problems related to complex networks: community detection and identification of influential nodes. In Section 4
we brigfly Hlustrate the method by depieting results [or some random networks. Finally, the paper is conclucled.
by the short outlook for the Fiature research and some applications.

2  Coupled Oscillators

In this paper we consider the model of phase oscillators that are cou_p'led through the tomplex netwotk of pairwise
interactions :as a paradigm for cellective behaviot in lazge systems. This model is written as the following
dynamical system:

@i =i+ = ZI{?Jsm{rp} i)y j=1... N (1)

i=l

Here, ;{t) ig the pliase of the j-th oscillator and w is the frequency common for all oscillators. The coupling
network s given by the matrix K. Total number of oscillators N is assumed to be sufficiently large: (say,
N > 500).

Itis known that if the network is connected (le. there exists the path in the network between two-arbitrary
nodes 7 and 7) and all interactions are atiractive (te. fi3; 20 for Vi, j) then in certain momernt: synchronization
of all oscillators in the nefwork will occur.

Underline that the model (1} differs from the one that was considered in the seminal paper {Kuramoto, 1975}
of Kuramoto: In [Kuramoto, 1975}, the global coupling is assumed, that is Ky ;= K 3 0 for Vi, j. On the other
liand, intringic requencies wy are dilferent lor different oscillators.

Introduce the new variable z;(#) = ¢'¥i{*). Then we can sLudy dynamics on the unit civcle since z;(t) € .51 for
all t > 0. We call the variable #;{¢) the state of oscillator 7 -at the moment ¢.

Further, recall that the set of all Mébius trmmformations in the complex plane form a group. We will work
with. the subgroup consisting of all Mobius transformations that preserve the unit disc. The general Mé&bius
transformation tival preserves the unit.disc can be written in the following form:

. s
Yzt o
1 detvy’

Mzy= @

for some angle b € [0.7) and @ £ C, ja| < 1. _
The main result of {Marvel et al., 2009} caii be briefly formulated as follows:
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Pr oposition 1 The staie of each oscillator evolves by the action of Mébius group., Mare precisely, the: sta&e
2z (t) at each moment t-is given by a certain. Mébius transformation M} of the initial state z 2;{0), that is 2;{t) =

M (z(0)).

In addition, the evolution of parameters of the Mobius transformation acting on the oscillator j is given by
the following system of ODE’s for parameters of (2):

{ ag“ﬁ(fj( )0—2"‘{‘-’0{; +f;r( )): (3)
lb;.» = (Jra( )QJ + 205 + fJ_U‘- )ﬂ,{). ’

for some coupling function f{t,-)-that depeiids-on time and states of all oscillaters z5,... ., za. at each moment 1.

Remark 1 Since. the function f depends on large number of variables, it is m*mzaliy impossible 1o specify the
exacl Mbius transformalion .M:I acling on ihe oscillator § on time interval (0, L) apriori.

Remark. 2 The geometric meaning of the variable oy s quite transparent: i turng out thal i {t) is the image
of the zero (center of the disc) under the aclion. of corresponding Mobius tronsformation. This can be simply
written a&: '

a;{t) = M),

Remark 3 Notice that in [Marvel et al., 2009] only the case of global coupling has been considered, i.e. Kyj = K

for Vi, j. In this case the Mobius. transformation acting on ecach oscillutor is the same, i.c. the whole population

evolves by the action of the seme Mobius trensformation ot the fized time intérval (0,1).

3 Algorithm

Consider the system (1). We kriow that #;(t) = M3 (2;{0)), for some unknown disc-preserving Mébius transfor-

mation M. ' | | )
However, one can identify the exact Mobius transformation acting on the j-th escillator. using the classical

concept from Projective Geometry: cross-ratio. Fov that, it is not énough to measure only the state of oscillator

4, but at least three more suitably chosen oscillators. Thl% is hased on the fact that Mhius transformation
preserves cross ratio of four points, see [Needham, 1999].

Definition 1 [Jucimovié & Craki¢, 2017]

1. We. say that four escillators 1,3, k. I agree, if for el >0 there exists Mobius iransformation My such that
28} = My (2(0)). 2{8) = My (2;{0)), 2 (2} = M (22(0)), 2:(8) = M (=:{0}).

2. Coherence of the network is. the probability that four randomly chosen oscillotors. agree.

In other words, four oscillators agree if they evolve by the action of the same one-parametric family of Mabius.
trarisformations, Qur algorithmi is based on ihe above delinition. it can he roughly explained id (he following
sleps:

1. Assunie that the network with- N nodes (oscillatcrs_} is given. Pick randomly foir oscillators 4,7, &, I from
the population 1, doty, N.

2. Check if¢. 4, k.1 (_appi"oximately) agree. If they do not agree, go'to the step 1.

3. If'i, 7, k.1 agree, finid the corresponding M&bius transformation, i.€. find parameters o and .« in (2).
4, Parametér « is represented by the point in the unit disc:

5. Repeal the steps 1-4 .unti.l. M points in the unit d_is;;.is found.

6. th,ain-:tﬂhe "cloud” of points in the unit disc. Using some of existing algorit_lims.--divide this ”cloud® into
clusters.

=1

Each point corresponds to _q_uadruple. of nbdes (oscillators). Find which nodes appear dominantly in which
cluster. In whole, this yields clusterization of the network.
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Figure 1: Random graph with two communities.

We also briefly introduce one more coneept -charactefizing the position of the single 'p‘qﬂ_e_ in'the network. Fix
the node £ in the network and pick randomly -3 nodes j, k, different from i, Denote by » the coherenice of the-
network, Denote by p; the:probability that four escillators i, 5, ki f (approximately) preserves cross ratié al time
interval (G,¥).

Definition 2 [Jacimovic & Crakic, 2017] Correspondence level of the miode i in the network is &

é_fot’ice_- that the:-(:c'mcept,'of. correspondence level is statistical and can be approximately ‘computed using Monte
-Carlo method. From the above definition it is clear that the-average correspondence level in the network equals
1.

In'particular, the concept of cornespondence level can be used to identify important ('i_r'xﬂuent._i_a?l_) nodes in the
‘network: Indéed, one miglt expect that influentia) nodes do not participate in collective hehavior and therefore
have lower correspondence level thent average in the network.,

Proposition 2 In the typical network influential nodes fuve significantly lower correspondénce level then averuge
in the network. '

On the other hand, marginal nodes have the same property, ‘which means that nodes with low correspondence
level sre not necessarily infliiential ones, this requires additional verification. This will be illustrated in the next
section,

.

ve
Ra

Figure 2: Poinls in thie anit dise obtained by applying our algorithm to the random graph.depicted in Fig. 1.
Bach puint corresponds to 4 nodes. T'wo clusters of points corresponding to two communities.are clearly visible.
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Figure 3: Random graph with three conmumnunities, The central community is smaller and mediates between the
remaining two.

4 Examples

For the sake of brevity in this section we only consider two illustrative e:;a;11p_l_es:pf.-ti_le_'- random networks. These.
examples are chosen in such way to demon_strate usé of our method to- two classical problenis in study of contplex
nebworks: ‘community détection and identification of influential (important, vital} nodes in the network.

As the firsl example, consider the random network consisting of two eommunities: each community is Erdds-

Renyi graph-where each pajr of ‘nodes is connected with the probability 0.9, while the nades belonging to different
comiunities are connected with the probability. of only 0.1, see Figure 1.

Figure 4: Nodes in the network with three communities are: represerited by eircles. The area of each citele is
invetse proportional to the correspondence level of the node. It is visible that nodes from the central community
have sinaller corresporiderice levels.

In the Figure 2 we depict. the points. that correspond to Mobius-transforinations that are found using the steps
1-3 algorithm explaited in the previous section. ’I’_he presence of two communities is clearly visible. Notice that
each point corresponds to the quadruple of nodes. For the reihaining steps 6 and 7 it suffices to use one'of known
algorithms. _

We also consider one more example to illiistrate our method of identification of influential nodes. Consider
the network consisting of three communities, see Figure 3. Inside each community nodes are densely connected
with the ‘probability 0.9, However, nodes belonging to communities A and ¢ ‘are divectly connected ‘only with
‘the tiodes froni the middle community B with the probability 0.1. In addition, communities' A and C contain
250 nodes each and are significantly larger then B, which contains 50 nodes only. Ol'e_arly_, one might say that
nodes belonging: to- commuuity 13 ave influential in the network as they are essentially smiall gronp of medialors
in the network.

Table 1: Correspondence le'vel_s_ of randomily chosen nodes in the network consisting of three communities. Tt is
clear that nodes belonging to central community {community B} have smaller correspouidence levels,

INE 2 3 A [5 6 [7 8 K [0 [ Mean |
A |l 14825 | 12707 [0.0177 | 14116 [1.1205 | 0.7765 | 11205 | L4110 [ 13013 ] T 0550 15005
B || 1.5039 1 0.5013 | 0-2507 { 0.7519 | 0.9507 | 1.2533 | 1.0097 | 150391 © 0.7519 || 0.777
C I L1295 [ 10589 | 1.553 | 0.9883 | 1.0589 | 1.0001 | 1.3413 | 1.1205 | 12007 | 1411 1 10078
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In Table 1 we list cotréspondence levels of ten randomly chosen. oscillators from each community. It 35 clear-
that nodes from B have significantly lower correspondence level. This jg depicted in Figure 4, where the nodes
are represented by the circles; The area of the circles is inverse proportional to the correspondence levels of
corresponding nodes. - In othei words; nodes with lower correspondénce level arerepresented by larger circles.

5 QOutlook

We have presenged the method of investigation of complex networks based on detecting collective dynamics. Our
exposition is baged on paradigmatic model of coupled oscillators (K_uramoto oscillators), however it could be
reinterpreted in terms of magnétic fields and $pin dynamics as well. In whols, our method relies on objécts and
ideas of-Statistical Mechanics, but the approach presented herc differs essentially fiom the previous ones fsee.
Introdietion). The base for our tethod is the result of [Marvel et al., 2009] that explains dynamies of coupled
oscillators in algebraic and geomettic terms, _

Futthermore, our method is essentially statistical and works well for large networks, consisting at. léast of
several hundieds nodes. For the real-life data it can be used in combination with other methods.

One advantage of this method is that it is applicable. to different kinds of networks. For instance, one night

use it to study the network with noisy or delayed interactions.
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Datum i mjesto rodenja: 16. 06. 1974, u Niksi¢u, Crna Gora.

Zaposlenje: Redovni profesor na Prirodno-matematitkom falultetu Uni-
verziteta Crne Gore,

Obrazovanje

e Jul 1993: Maturirao u Gimnaziji "Slobodan Skerovié" u Podgorici sa
diplomoin *Luga"

e Jul 1998: Diplomiras na Fakuitet_ﬂi ratunarske matematike i kiber-
netike, Moskovsld drzavni univerzitet "M.V.Lomonosov" sa. "Crvenoin
diplomom".

' Septembar 2001: ‘odbranio doktorskr tezu iz fizitko-matematickih nauka

na Moskovskom driavnom univerzitety "M.V.Lomonosov".

Nastava
* Linearna algebra za studente prve godine Matematike;
» Matemuaticko modeliranje za studente fetvrte godine Ragunarskih nauka.

Mentorski rad: Mentor sam jednom studentu dokterskih studija na
UCG, koji ée zvanitno predati predati tezu u decembru 2018.

IstraZivatki prioriteti

e Primarne oblasti IstraZivanja: matematika fiznika, samo-organizacija u
kompleksnim sisterima.

® Sckundarnc oblasti IstraZivanja: primjene na maginsko ufenje i vjes-
tacku inbeligenciju.

» Ostale oblasti istraZivanja: bifurkacije, dinamicki sistemi, teorija up-
ravljanja.



Iskustvo u .med-unarod'nim--akad'erns_ki_m ‘projektima

. Upr'a;vljanje i koordinacija nekoliko TEMPUS projekata, ukljudujudi:
145180+'TEMPUS—2UOS.—AT~SM’H‘ES_ ("Rescarchi and development: ca-
pacities") i JP-00199-2008 ("SEE, doctoral studies i mathematies").

* Lider tima u bilateralnini projektima CG-Kina i CG‘.»Mazkedonija_.
. élan_ Upravnog odbora u dvije COST akeije: CA15140 ("mproving

Appl’icahilit_-y of Nature-Inspired Optil’n.i_zatibn by Joining Theory and
Practice™) i CA16228 ("European Network for Game Theory").

Iskustvo u komercijalnim projektima

¢ Upravljanje u nckoliko projokata automatske regulacije tokom rada u
kompaniji Jawel Ltd. u Moskyi, 2003 - 2006.

e Koordinacija tima programera iz OG za Sugar CRM, 2012.

Naugni €lanci: Autorstvo 30 nauéno-istrazivagkih ¢lanaka u oblastima,
kompleksnih sistema, matematitke fizike, teorije upravijanja i teorijé bi-
furkacija. Vidjeti spisak odabranih publikacija.

Konferencije: Predavanja na brojnim .medunar"_c)dnim_ l__confereneija.ma,_.
Plenarno Ppredavanje po pozivu na medunarodnoj konfetenciji AAA-2018
(Ohrid, Makedonija), Clan Organizacionog odbora medunarodne konferen-

cije OPTIMA od njenog osnivanja, 2009.
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Predrag Miranovi¢
-biografija-

Roden sam 12 decembra 1966: godine u Podgorici, Crna Gora, gdje sam zavr§io osnoviu Skolu i gimnaziju.
Nakon odsluZenja vojnog roka u JNA upisao sam 1986. godine studije fizike na Prirodno-matematickom
fakultetu Univerziteta Crne Gore. Studije sam zavrsio u redovnom roku oktobra 1990. godine sa prosjenom
‘ocjenom 9,63. Proglaen sam za najboljeg diplomiranog studenta Univerziteta Croe Gore za gkolsku 1989/90 i
dobio Plaketu Univerziteta Crne Gore. '

‘Odmah nakon zavrietka studija sam anga¥ovan kao asistent-pripravnik na Univerzitetu Crae Gore. Upisao sam
postdiplomske magistarske studije na Fizi€¢kom fakultetu u Beogradu, i paralelno. izvodio vjezbe na Odsjeku za
fiziku u Podgorici. Magistarski rad pod nazivom “NMR linije u visokotemperaturskim superprovaodnicinia” sam
odbranio u okobru 1993, godine. Kako bih se potpuno posvetio izradi doktorske disertacije u periodu 1993-1995
godine sam bio radno angazovan na Institutu za Fiziku u Zemunu. Doktorsku disertaciju “Magneto-elastitni
efekti u anizotropnim superprovodnicima” pod mentorstvom Ljiljane Dobrosavljevié-Grujié sam: odbranio u
‘martu 1996. godine na Fizi¢kom: fakultetu u Beogradu. Rezultati iz doktorske disertacije su objavljeni u dva rada
u asopisu. Americkog fizitkog drustva, Physical Review B. Na osnovu toga sam nagraden od stranie Crnogorske
akademije riauka | umjetnosti nagradom iz fonda Petra. Vukdeviéa za uspjeh u -istraZivatkom radu u periodu
1993-1995. Nakon odbrane doktorske disertacije; u junu 1996. godine sam izabran u zvanje docent za predmet
Kvantna Mehanika na Univerzitetu Crne Gore.

Tokom jeta 1996. godine sam zapoceo saradnju sa Vladimirorn G. Koganom na problemu raspodjele magnetnog
polja unutar borokarbidnih superprovodnika, a rad sam dovidio za vrijeme studijskih boravika u Ames National
Laboratory;, lowa, USA, t_ok'o_m decembra 1996. I aprila 1997. godine. Dva rada, koja su proiziagla tokm
boravaka u Ajovi, su naidli na veoma dobar prijem kod medunarodne naucne javnosti i citirani-su preko 100
puta. Na poziv profesora Kenza Mije 1 periodu jun 1997 — jun 1998 godine sam boravio na Univerzitetu u
Tokijis, u zvanju lecturer. Nakon -povratka iz Japana, boravio sam dva mjeseca na Oak Ridge National
Laboratory, Tennessee, USA kod profesora D. K. Christena. Tamo sam dovrdio rad na temu ,Flux lattice
symmetry in V3Si: Nonlocal effects in'a high-kappa superconductor” koji je po ocjeni Editora zavrijedio da se
predstavi u Physical Review Focus (izdanje od 24. juna 1999. godine). Nakon povratka iz USA. radio sam na
Institutu za Fiziku u Zemunu u zvanju nauéni saradnik. Na Univerzitet Crne Gore sam se vratio u ljeto 1999,
godine. U zvanje vanredni profesor za predmet Kvantna fizika sam izabran 2001. godine. Na konkursu.
Japanskog drudtva za promociju nauke sam dobio postdoktorsku stipendiju koja mi je omogucila boravak na
Univerzitetu u Okajami kod profesora Kazusige Magide u periodu 2001-2003. Za vrijeme specijalizacije sam
uspio da razvijem posebnu metodu za numetitko rjeSavanje mikroskepskih jednagina superprovodnosti koja je
omoguéila mnogo lak&u analizu velikog broja problema koji se titu termodinamickih i transportnih osobina
superprovodnika. Plodnu saradnju sa Univerzitetom it Okajami sam hastavio i nakon povratka na Univerzitet
Criie Gore, tako da svake godine boravim mjesec dana.na pomenutom Univerzitetu.

Nakon povratka iz Japana sam se, pored nauke i nastave, posvetio i drugim aktivnostima, U periodu 2004-2006
godine sam bio predsjednik Drustva fizi¢ara Srbije i Cre Gore. U oktobru 2006, godine sam izabran u zvanje.
redovni profesor. Vijeée Prirodno-matematickog fakulteta me je izabralo za ¢lana Nastavno-nauénog vijeda,
odnosno Senata Univerziteta 2003 godine. Clan sim Nacionalnog savjeta za nauéno-istrazivacku djelatnost. Od
marta 2007. godine obavijam funkeiju prorektora za nastavu na Univerzitetu Crne Gore.

Skolovanje:.



BSc Fizika, Univerzitet Crne Gore, Prirodno-matemati¢ki fakultet
1990-1993 MSc Fizika, Univerzitet u Beogradu, Fizitki fakultet

1993-1996 PhD Fizika, Univerzitet u Beogradu, Fizicki fakultet
Doktorska disertacija Magneto-elastiéni efekti u anizotropnim, superprovodnicima
Mentor: LJ11]ana—Dob_rosavljev1c~Gr1_1]10

Profesionalne pozicije:

19962001 Docent na Univerzitetu Crne Gore

1997-1998 Lecturer na Univerzitetu u Tokiju, Japan

1997-1999 Naugni saradnik, Institut za Fiziku, Zemun, Srbija
2001-2003 Stipendista Japanskog drustva za promociju nauke na Univerzitetu u Okayaml Japan
2006- Redovni profesor na Univerzitetu: Crne Gore:

2004-2006 Predsjednik Drustva fizi¢ara Srbije i Crne Gore

2003- 2014 Clan Senata Univerziteta Crne Gore

2007- 2008 Prorektor za nastavu Univerziteta Cene Gore

2007- 2010 Clan Nacionalnog savjeta za naudno-istrazivaéku djelatnost.
2008-2014 Rektor Univerziteta Crne Gore

2008~ Vanredni ¢lari CANU

Nagrade i stipendije:

Plaketa Univerziteta Crne Gore kao najbolji diplomirani student Univerziteta za Skolsku 1989/90.
Nagrada CANU iz fonda Petra Vukéevica za uspjehiu istra¥ivatkom radu u periodu 1993-1995.
Postdoktorska stipendija stipendija Japanskog drustva za promociju-nauke za period 2001 2003

Studijski boravci:

1996 (Decembar) Ames National Laboratory, Ames, lowa; USA (prof. V. G. Kogan)

1997 (Aprily Ames National Laboratory, Ames; Towa, USA (prof. V. G. Kogan)

1997-1998 Faculty of engineering, University of Tokio, Japan (prof. K. Miya)

1998 (Avgust) Oak Ridge National Laboratory, Tennessee, USA (prof. D. K. Christen)
2001-2003. Department of Physics, Okayama University, Japan, (prof. K. Machida)
12004 (Januar) Department of Physics, Okayama University, Japan, (prof. K. Machida)
2006 (Januar)  Department of Physics, Okayama University, Japan, (prof. K. Machida)
2007 (Januar) Departinent of Physics, Okayama University, Japan, (prof. K. Machida)
2008 (Januar)  Department of Physics, Okayama University, Japan, (prof. K. Machida)

Publikacije:
Koautor sam u 38 radova objavijenih u renomiranim nauénim casop151ma (koji su na SCI listi) kao. §to su

Casopisi Ameritkog fizickog drugtva (Physical Review Letters, Physical Review B) i Japanskog fizickog drustva
(Journal of Physical Society of J_apan)
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1. Title: Field-angle-dependent specific heat measurements and gap determination of a heavy fermion
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Author(s): Yano, K.; Sakakibara, T.; ‘Tayama, T.; Yokoyama, M.; Amitsuka, H.; Homma, Y ; Miranovié. P.;.
Ichioka, M.: Tsutsumi, Y.; Machida, K. _ '
Source: PHYSICAL REVIEW LETTERS Volume: 1. Issue: 1 Article Number: 017004 Published: 2008

2. Title: Low energy excitations in the mixed state of the anisotropie s-wave superconductor CeRU2

Author(sy:  Yamada, Atsushi; Sakakibard, Toshiro; Custers, Jeroen; Hedo, Masato; Onuki, Yoshichika;
Miranovié; Predrag; Machida, Kazushige R

Source: JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Volume: 76 Issue: 12 Article Number:
123704 Published: 2007

3, Title: Electronic thermal conductivity in a superconducting vortex state

Author(s); Adachi; H.; Miranovic, P.; Ichioka, M.; Machida, K.

Source: PHYSICA  C-SUPERCONDUCTIVITY AND ITS APPLICATIONS Volumer 463  Pages: 36-39
Published: 2007

4, Title: Quasiclassical calculation of the quasiparticle thermal conduciivity in.a mixed state
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OF THE PHYSICAL SOCIETY OF JAPAN Volure: 76 Issue: 6 Article Number: 064708 Published: 2007

6. Title: Effect of field-dependent core size on reversible magnetization of high-kappa superconductors

Author(s): Kogan, V. G.; Prozorov, R.;; BudKe,S.L.; Canfield, P.C.; Thompson,J.R;; Karpinski, J.;
Zhigadlo, N. D.; Miranovié, P. ' _

Source: PHYSICAL REVIEW B Volume: 74 Issue: 18 Article Number: 184521 Published: 2006

7. Title; Ubiquitous V-shape density of states in a mixed state of clean limit type II superconductors
Author(s): Nakai, N.; Miranovi¢, P.; Ichioka, M.;. Hess, H. F.; Uchiyama, K.; Nishimori, H.; Kaneko, 5.;
Nishida, N.; Machida, K. _ _
Source: PHYSICAL REVIEW LETTERS Volume: 97 Issue: 14 Article Number: 147001 Published: 2006
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approach
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Source: JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN  Volume: 75 Issue: 8 Article Number:
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9. Title: Specific heat and low-lying excitations in the mixed state for a type-II superconductor
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Source: PHYSICAL REVIEW B Volume: 73 Issue: 17 Article Number: 172501 Published: 2006
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Author(s): Miranovic, P.; Ichioka, M.; Machida, K.; Nakai, N.
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Published: 2005
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Source: JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS Volume: 66 Issue: 8-9 Pages 1362-
1364 Published: 2005
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Source: PHYSICAB CONDENSED MATTER Volume: 359 Pages: 410-412 Publlshed 2005
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16. Title: Effects of nonmagnetic scatterers on the local density of states around a vortex in s-wave
superconductors
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Source: PHYSICAL REVIEW B Volume: 70 Issue: 10 Article Number: 104510 Published: 2004
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Source: JOURNAL OF PHYSICS- C_ONDENSED MATTER Volume: 16 lssue 3 Pages: L13-L19
Published: 2004

18. Title: Low temperature specific heat in anisotropic superconductors

Author(s): DOb{'OSB,V]jeVIC—GI‘U_]lC L.; Miranovié, P,

Source: PHYSICA C- SUPERCONDUCTIVITY AND ITS APPLICATIONS  Volume: 397  Issue: 3-4
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19. Title: -Orientational field dependence of low-lying excitations in the mixed state of unconventional
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Source; PHYSICAL REVIEW B Volume: 68 [ssue: 5 Article Number: 052501 Published: 2003
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Source: PHYSICA B-CONDENSED MATTER Volume: 329 Pages: 1382-1383 Part: Part 2 Published:
2003

21. Title: Theoretical study-on vortex lattices in tetragonal superconductors
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Source: PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS Volume: 388 Pages: 677-678
Published: 2003

22, Title: Thermodynamics and magnetic field profiles in.low-kappa type-11 superconductors
Author(s): Miranovi¢, P.; Machida, K.
Source: PHYSICAL REVIEW B Volume: 67 Issue: 9 Article Number: 092506 Published: 2003

23. Title: Theoret_icz»il studies .on vortices in unconventional and conventional superconductors
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THAMS Meesing, Courant Institute New York, Apri 12.13, 1o

i, i- ¥ Pavlovic: Boundary correspondénce under hars
fthie hafplane, The book of abstruct of X1 ¢ ST .z
anx page 32, Petrovac.O¢télar 3004, '
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B Kalsj: On thie univaleat solutian af PDE Y R
The ook of abstracty of Harmanic Analysisand p‘lrtm! leferemmi 'EqL
June 27-July 1, 2003, Keil, Geritany.

- b Kalaj: Harmonic. and guasiconformal maps, Extremal Probiems in Compley

quu Real An: 1iysis, Pwpl-.s Friendship bmnmtv of Russia Maoseow. Russiz AMas

22-26, 2007, The book-6f abstracts,

D Kalajr Quasiconformal karmonic maps, Seminar: Mathemutical Colloguim. =
Beagrad 11. 05. 2007, http:#www.misanu.ac, yu;colloqu:umsz’mafhcuil prig

tams/niatheoll.may2007.kim, Predavanje po pozivy

D. Kaiaf: Oi the univalent solution of PDE Delta u =f hetween.spherical annulis
Seminar: Differential Equatiens in Theary and Applications 06.06. 2007
wyaw, i thpinues/seminarer/difta , Predavinfe pe pozivu

Th Kaulaj; On quasicenformal harmonic: mappings, Congress in memaory of
Adrien Dt‘madx Pariy, France Maj, 2608, Poster.

D. Kaln}: Boundary eorrespondgnce uader g.c. harmonic mappings betweea

-Jordan domains, Minf conferenge.on quasiconformal harmonic mappings,

Beagrad, Srbijs, 2000 l.scp[emi}:n‘, ?rcdav_m_g_c PO pozivu.

D, Kalaj: On.qubsteentormal mappings and cttiptie PDEIn the plané, Helsinki
seriner n: Analysis, Qctober, 2038, prredavanie po pozive.

0. Kabud: Qo gumsiconformal muppiigs and elliplic PDE i in the plane, Turku
wilvsls, Outaber, 2010, predavanje po pozivu.

B Ka Diefermgtian % undar smallost mean distortion on Riemann
surfaces. Warkshop od Quasizonformal mappivgs and: qupmo, of finite
distortien, Pragua, Seprember 2011, Predavanje od 30-minuta.

I3, Kalaj: Daformiatidn of anaul under smallést mearr distortion on Riemann surfaces
and generalization of J. €. C. Mitsche Gohjecture Warkshiop on Complex Analysis,
Bcinmce ¥ ubl‘u"lj 2, Predavanje po pozivu.

DK Ealaj: Deformatons of Annulion Riemann surfaces and the gennrallﬂtmn of
Nitsche conjecture and - Quasiconformal harmonic- mappings, Fredavanje po
pozivy, tnternational Conlerence on Complex Analysis.and Related Topics,
Romanin, l’lpies‘t_i__l(]l2."hnp:;'.»‘i'mn|'.rﬁ»“lluFinSc‘mEﬁﬁ'?./conf._php,.Romnnien'I'i__nish-
seminay.

0. Kalaj: Deformations of Anauli on Riemann 'surfa'r_.:es_.und the generalization of
Nitsche conjecture, The 61l European Congress of Mathematics, 2012. Poster,

‘David Kalaj: Cauchy transform sud Puis:étm'equ:liiun._- Turku analysis seminar,
Finska .10, 204 2) httpi/fusers.slufifripeklsemina vindex, himl

5. David Kalaj, Energy-minimil diffeomorplisms between doubly connected

Riemiunn surfuces, “Cunference on Rienrann surfaces and’Kleinian-groups", held
i Chsuka University, Jupan, foom January 12 6 January 14, 2013,

. Pavid ‘n'-:a'!:ij,_( uasiednio el harmonic miappings hetwveen suilcss, Conferense

of Geometric Tunction theorv, Cotober 2013, Beograd.
David Kalaj, Muckenhoupt weights und Lindeldf thegrens for harmanic

'mﬂpping March 2014, Helsiaki semivar of analysis, Helsinki 2014,

‘Bavid Kalaj, Quasiconformal harmanie mappings hetween surfnces. darch
2014, Helsinki seminar of analysts, Helsiuki 2014,

(4 Ralaf, Muckeahoupt seights and LindelslMlhearem for kars
mapgings. HON Agdust 2014, Seoul, Rere a,bl:o.r'@mmu'nm:u.m
and generalizddy
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ppings berw'_een surfacey
mvErsity, P.R.China, deinuury 28, 2015,
TNorm of the Bergman prajection”,
Sehuol oF Mathematical Seicnce Huaqiage University, B.R.Chinas, January 25; 2015
16, Dasvid KatajSchwary lemma for harmeoic Tunctions, School of
Haagian Unis ersity, P.R:China, Janwary ?.'!-,_2{}]'5;_
HOE. Bavid Kalaj, “The J. C. C. Nitsche conjecture and
Aathematical Scicnee flusdqiao University, p

. -
Mathematical Stivnce

generalization” School of
-R.Chipa, Jan uiary 15 21015,

Kxner

LoD Kadai Zbirka zadataky iz Kompleksne ahalize, Univerziiet Crae.Guore, 2006,
219 sir T '

2. M. Jadimovic, I, Kalaj.
2009, 347 str,

PREVODT

tvod u kompleksnu andlizu, Univerzite! Crne Gore,

Prevod § adaptacija sliedeéih udzbenika iz matematike sa srpskog.
{ermogorskog) na.slbanski sl +izdaniu izdavadke kuce “Zavod za uzbenike i nastavna
sredstva” u periodu 2008-2510, '

1) Matematika IV {&erveti razred osnovne 3kole}
23 Matemarika V {feti razred osnoviie:dkole)
33 Matematika Vi) (osma razred osnovne Skoale)
4t Matematika IX idevesi razred osnovne Skole)
3 Matematika 1 (drugi cazred srednje Skole)
6% Maermatika [} (trect razred srednic Skote),
7y Algoriomi i programitanie (treéi i ¢etyrti razred sredije skole).

Citati: 53

{ citata (htlp:Zschatargdogle. can).
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_ MEBHCTAPCTBO IIPOCBETE, v ERG: {1 fh- 2018
HAYVKE M TEXHOJIOUIKOYF PABBOJA | ooricir T 5 55T T For sibipn | 1ot

Komuesija 3a eruuaibe Rayunux 3pamsa T . '

Bpoj: 660-01-60006/460 QFP/ e ,/}'
27.04.2018. roguite
Leorpang

Ha ocvony unama 22. cras 2, umana 70. craB 5. 3akoua o HAYYHOHCTPANABAMKO)
Aenartocrk {"CaynOenn raacauk PenyGnuke Cpbuje’; 6poj 110/05, 50/06 ~ ucnpaska, 18710 u
112/15), ynana 3. ct. 1. v 3. u wiaua 40. TlpaurHAKE O MOCTYNKY, HRUMMY BPEAHOBAILA U
KBAHTHTATHBHOM HCKA3NBAILY HAYUHONCTPAKUBAYKAX De3YATATA HCTpaXUBaua {"Cnyx6enu
raackuk Penybunxe Cpouje”, 6poj 24716, 21/17 n 38/17) v saxréba Koju je noxHeo.

Huciuniiyii 3a gusury y Beozpady
Komucnja 3a cThname Hay4Hnx 35ama Ha CCIHIUK OapKAn0] 26.04.2018. FOAWHE, fOHEa je

| OJUIYKY
O CTUIIATSY HAYYHOT 3BATHA

Ap Mapuja Muiaposuk Hankyaoe
CTHUYE HRYMHO 383ILE
Buune nayanu capaonux

y-0621aCTH IPUPOAHO-MATEMATUYKIK HAYKd - (DUIUKE
QO F P A3ZHOXEHBE
Hncithudyiu za husuxy y Beozpady

yTEpauo je ripesinor 6poj 986/1 oi 18.07.2017, romune Ba cenpmum Hayunor seha Wneraryra i
noAreo 3axTel Komuckjn 3a cruname nayumux ssaiba 6poj 1003/1 ox 20.07:2017. roause 3a
ROHOIIEHE OAIYKE O HCITYHEHOCTY YCIIOBA 38 CTHLUAE HAYQHOT 3Batha Buni HAYYSH CApaoHUK.

Kowvncuja 32 eruiame sayuHux 28aiba je MO OpeTXoaHo TIPHOABIEEHOM [O3UTHBHOM:
MHlRey Matuuser Hayunor onfopa 3a QU3MKY Ha CoaHMLM oapxanoj 26.04.2018. roaune
pasMarpana 3axTeB H YTBPANNA .2 UMEHOBAHA HCTyibaBa yoAose B3 yaana 70. ©ras 5. 3axoHa o
HaY4HOKCTpaxuBauko] aenarHoct ("CnysxGenn.rnacuuk Penybimxe Cp6uje”, 6poj 110/05, 50/06
— vcnpaska, 18/10 u 112/15), unana 3. c1. 1. u 3. .1 unana 40, IMpasnanuka o nOCTYnKy, Hauuny
BPEHOBARA W KBAHTHTATUBHOM HCKA3WBAWY BRYNHOMCTP@XKHBAYKMX DE3Y/TATA MCTPAXMBAYA
("Crym6enn rmacimk Perry6uuke Cpbuje”, 6poj 24/16, 21/17 u 38/17) 3a cruiarse HAYYHOr 36at6a
Buwi nay«nu capadnux, na je opnyuuia Ka0'y u3peln OBe-o,LU_!_y;(e.

JoHoweeM 0Be 0AllyKe HMEHOBaHA CTHYE CBa MpaBa Koja joj HA OCHOBY e no 3aKORY:
npunagajy.

;mexy AOCTABKTH TNOAHOCHOLY 3axXTesa, HMeHoBa'_I-toj H  apXKBH Mﬁuacrrapc_ma
NPOCBETE, BAYKE U TEXHONQUIKOT -paaﬁoja y bearpany.
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Igor Purovié je roden 29, 08. 1971. u Cetinju. Ospovau i srednju gkolu ptitodna-
‘materatickog smjera zavriio. je u Herceg Novom. Dobitnik je vi¥e prizranjd na repyblickim
takmidenjima udenika srednjih $kola iz matematike: Diplomirao je na smjeru Elektronika na
Elektrotehriitkoni fakultetu u Podgorici, 1994. godine. Na istom fakultetu je magistrirao
(.Funkcija jezgra u vremensko-frekvencijskoj anmalizi i softverski paket za realizaciju
dlStI‘lbLlCi}El”) i doktorirao (,,Vremensko-frekvencijske: reprezentacije u estimaciji parametara
signala sa primjenom u digitalnom watermarking-u™), 1996. i 2000. respektivno, U zvanja
docenta, vanrednog profesora i redovnog profesora biran je 2001,. 2006. i 2011. godine na
Elektrotehnikom fakultetu. Bio je Sef Katedre za radunare, rukovodilac postdiplomskih studija,
rukovoditac doktorskih studija na Fakulietu, ¢lan Senata Univerziteta Crne Gore (2011-2014) {
&lan Strukovnog vijeéa za prirodie i tehnicke _nauke Univerziteta. Predavao je na vife drugih
jedinica Univerziteta Cme Gore a bio je i gostujuéi nastavnik na Fakultetu za proizvodnju i
menad#ment, Trebinje, Univerziteta u Istoénom Sarajevu, BiH.

Autor i koautor vife univerzitetskih udZbenika kao i vide skiipata, praktikuma itd. Bio je
mentor na vise doktorskih disertacijai magistarskih radova.

Autor je oko 200 radova, od toga preko 100 u vodeéim medunarodnim tasopisima iz obrade
signala i srodnih oblasti. Editor je jedne monografije publikovane u nasoj zemlji i autor radova u
dvije monogiafije. Autor je 6 poglavlja u naucnim monografijama izdatim od renomiranit
niedunarodnih izdavada i koautor jedne knjige publikovane u Njematkoj. Radovi su vezani za
vie tema iz obrade signala sa primjenama: eéstimacija parameiara signala; vremensko-
frekvencijska analiza sa primjenamsa; multimedijalni signali i sistemi; obrada signala u
telekomunikacijama; primjena u elekiriénim kolima i elekiri¢nim mj erenjima itd.

Do sada su ovi radovi citirani vige od 2200 puta u okviru ISI Web of Knowledge, od kojih
samo radovi iz oblasti digitalnog watermarking-a oko 300 puta, Rad dr Igora Durovi¢a je ostao
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recenzent i lan programskih komiteta nekoliko medunarodnih i regionalnih konferencija. Pored
toga, vedi broj radova je proglasavan najboljim v sekeijama na domaéim konferencijama. Senior
Member IEEE (vodece svietsko udruZenje inZenjera elektrotehnike i elekironike) je od 2006.
godine.
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bilaterainih i medunarodnih projekata finansiranih od strane Volkswagen stuftung, FP 7,

T etnpus, CNRS, JSPS, DoD Canada, WUS Austria, Ministarstva nauke Crne Gore itd. Osmislio
fe i bio prvi direkior prvog domaceg Centra izvrsnosti BIO-ICT u periodu 2014--2015.



U periodu od novembra 2001. do novembra 2002. boravio je kao stipendista- Japanskog
drudtva za unapredenje nauke (JSPS) na Kyoto Institute of Technology. Bio je na kra¢im
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vedi broj univerziteta u SAD u okviru Internaticnal Visitors Program, Ruthr UniVe1:sity"Bochum,_
Signal Theory Group; Njemadka u okvirn Volkswagen stiftung projekts, ENSIETA, Brest,
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Dobitnik je Nagrade Crnogorske akademije nauka i umjetnosti iz Fonda Petra Vukdeviéa
2002. godine i Trinaestojulske nagrade za 2016. godinu. Clan je i prvi predsjednik Centra mladih
nauénika CANU. Organizovao je vie skupova u okviru CANU: ,Mobilne i beZidne
komunikacije: stanje i perspektive™ 2009. godine, ,,Visoko obrazovanje u Crnoj Gori: stanje. i
perspektive”, u .org_an'izaciji'- Centra mladih naudnika CANU, sa izlaganjem ,.Nauka u Crnoj
Gort” 1 skup ,,VaZnost GEO inicijativa i crnogorski kapaciteti u ovim oblastima™ 2011, godine.
Trenutno rukovodi Komisijom CANU za navéne i umjetni¢ke djelatnosti i Odborom CANU za
informaciono-komunikacione tehnologije. Organizator je skupa o trendovima u savremenim
mobilnim komunikacionim sistemima, koji je odrZan u CANU 2014, godine,

Za vantednog &lana CANU izabran je.29. novembra 201 1. godine.
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