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Abstract

The electromagnetic calorimeter (ECAL) of the CMS detector has played an important role in the physics program
of the experiment, delivering outstanding performance throughout data taking. The high-luminosity LHC will pose
new challenges. The four to five-fold increase of the number of interactions per bunch crossing will require
superior time resolution and noise rejection capabilities. For these reasons the electronics readout has been
completely redesigned. A dual gain trans-impedance amplifier and an ASIC providing two 160 MHz ADC
channels, gain selection, and data compression will be used in the new readout electronics. The trigger decision will
be moved off-detector and will be performed by powerful and flexible FPGA processors, allowing for more
sophisticated trigger algorithms to be applied. The upgraded ECAL will be capable of high-precision energy
measurements throughout HL-LHC and will greatly improve the time resolution for photons and electrons above 10

GeV.
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ABsTRACT: The electromagnetic calorimeter (ECAL) of the CMS detector has played an important
role in the physics program of the experiment, delivering outstanding performance throughout data
taking. The high-luminosity LHC will pose new challenges. The four to five-fold increase of the
number of interactions per bunch crossing will require superior time resolution and noise rejection
capabilities. For these reasons the electronics readout has been completely redesigned. A dual gain
trans-impedance amplifier and an ASIC providing two 160 MHz ADC channels, gain selection,
and data compression will be used in the new readout electronics. The trigger decision will be
moved off-detector and will be performed by powerful and flexible FPGA processors, allowing
for more sophisticated trigger algorithms to be applied. The upgraded ECAL will be capable
of high-precision energy measurements throughout HL-LHC and will greatly improve the time
resolution for photons and electrons above 10 GeV.
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1 Introduction

The Compact Muon Solenoid (CMS) is an experiment located at CERN at the Large Hadron
Collider (LHC). The central part of the CMS detector is a superconducting magnet which provides
a magnetic field of 3.8T. Inside the solenoid are placed the tracker, closest to the beam pipe,
followed by the electromagnetic calorimeter (ECAL) and the hadronic calorimeter (HCAL). Muon
chambers are placed outside of the solenoid and are embedded in the steel return yoke. The
sketch of the CMS detector is shown in figure 1. A detailed description of CMS detector can be
found in ref. [1]. During the run 1 and run 2 periods of data taking, an integrated luminosity of
300 fb~! was accumulated. Excellent performance was obtained for these data taking periods with
constant monitoring and calibration. The energy resolution during run 2 (2016, 2017 and 2018)
for electrons from Z-boson decays was at the level of 1.7% in the low pseudorapidity region. In
order to compare the run 2 and run 1 resolution, the samples are reweighted to match the pileup
distribution from 2017. The performance from run 2 is very close to the one from run 1 despite
much larger pileup and ageing of the detector (figure 2).

In order to extend the reach of new physics searches and the precision Higgs boson coupling
measurements, the LHC will be upgraded to increase its luminosity by a factor of five to seven to
reach 103 cm=2 57! [2]. The center-of-mass energy for proton-proton collisions will be also raised
from 13 TeV to 14 TeV. The average number of interaction will be 250—300 and the radiation levels
will be much higher than in the previous data taking periods. To meet the challenges of HL-LHC,
all LHC experiments, including CMS, will be upgraded.

In section 2 the ECAL barrel readout architecture used so far will be described. In section 3,
the upgraded electronics for HL-LHC will be presented, including descriptions of the new very
front-end (VFE) and front-end (FE) cards and the upgraded off-detector electronics.
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Figure 2. Energy resolution with the refined calibration as a function of the pseudorapidity comparing the
2016, 2017, and 2018 run 2 data-taking periods (left) and run 2 with 2012 run 1 data-taking period in the
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Figure 1. Schematic view of CMS detector.
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2 The CMS ECAL readout

ECAL is a high granularity lead tungstate crystal calorimeter, designed to achieve excellent energy
resolution for electrons and photons. It is composed of a central, barrel region, which consists
of 61200 crystals and covers the pseudorapidity region |n| < 1.48, and two endcaps with 14648
crystals covering the range 1.48 < |n| < 3.

The CMS ECAL barrel is divided into 36 supermodules and 2448 readout units (figure 3).
The photodetectors used are avalanche photodiodes (APDs) in the barrel and vacuum phototriodes

(VPTs) in the endcaps. A sketch of the current ECAL readout system is shown in figure 4.
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Figure 3. Structure of the ECAL.

VFE card LVRB FE card

Strip FENIX ASICs

TPG FENIX ASIC
DAQ FENIX ASIC

GOL mezzanines
TP link

DAQ link

APDs MGPA ADC Slow / fast control

Figure 4. The CMS ECAL readout system.

In the barrel, two APDs are glued on one end of each crystal and connected through a Kapton
cable to a VFE card. Each VFE card includes five readout channels consisting of a multi-gain pre-
amplifiers (MGPA) and analog-to-digital converters (ADC). The MGPAs provide three different
output gains (X1, X6, x12) for each APD, and the outputs are converted by a 12-bit, 40 MS/s ADC
chip. The signals from five VFE cards are passed to a single FE card. On the FE card the trigger
generator circuit based on an ASIC and an optical transceiver is placed. The output is sent to the
DAQ and trigger system through the optical transceiver called FENIX.

3 The ECAL barrel readout chain upgrade for HL-LHC

In order to cope with the larger trigger decision latency (12.5 ps instead of current 4 ps) and larger
L1 trigger rate (750 kHz compared to current 100 kHz) at HL-LHC, the ECAL barrel electronics



need to be modified. In addition, the new electronics have been designed to adapt to the new
conditions and to maintain performance [3].

In the VFE card, the MGPA will be replaced by a Trans Impedance Amplifier (TIA) named
CATIA which will improve discrimination between the electromagnetic signals and the ones
coming from direct ionization in the APDs (spikes). The multi-channel ADC will be replaced by
the LiITE-DTU ASIC (Lisbon-Torino ECAL Data Transmission Unit) that samples the signal at
160 MS/s with 12-bit resolution. For the upgraded FE card, the trigger primitive generation will be
moved from on-detector electronics to the off-detector system. Moreover, for the data transmission
the FE card will use Low Power Gigabit Transceiver (IpGBT) optical transceiver [4] and Versatile
Link plus [5]. The upgraded off-detector electronics, based on the Barrel Calorimeter Processor
(BCP) card [9], will use powerful FPGAs for detector read-out and to generate trigger primitives.
The schematic view of the ECAL barrel electronics upgrade is shown in figure 5.
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Figure 5. Schematic view of the new ECAL barrel electronics for HL-LHC.

3.1 CATIA ASIC

The CATIA (CAlorimeter TransImpedance Amplifier) is a fully analog ASIC designed in 130
nm CMOS technology. It features two output channels where one is for low energy signals (10
MeV-200 GeV) and the other is for high energy signals (10 MeV-2 TeV). The processing of
signals from the APDs is done in three stages. The first stage converts the input current to a voltage
using the high speed TIA. Following this step, the output is split into two channels with gains that
differ by a factor of 10. The signals are routed to the LiTE DTU (described in the next section) by
differential links.

The performance of the CATIA prototype has been tested in test beam campaigns at the H4/H2
beamline of the CERN SPS [6]. The test beam results have shown excellent performance of CATIA
in terms of noise, linearity, and time resolution. The energy resolution matches with the resolution
which has been obtained in beam tests with the legacy electronics [10], while a timing resolution
of better than 30 ps is obtained for electrons with an energy greater than 50 GeV (figure 6) and
complies with specifications.
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Figure 6. Energy resolution (left) and time resolution (right) obtained in the test beam campaign with the
CATIA ASIC connected to a commercial ADC.

3.2 LiTE-DTU ASIC

The LiTE-DTU converts the analog output of CATIA to digital (ADC), selects one of the two
gains for each time sample, compresses the data and transmits them to the FE card. This ASIC
is built in 65 nm CMOS technology [7]. In order to convert, in parallel, the two outputs of the
CATIA, the LiTE-DTU have two ADC IP blocks. The ADC, design by an external company,
has 12-bit of resolution and a sampling frequency of 160 MHz. LiTE-DTU also includes a phase
locked loop (PLL) for clock generation based on a design developed for the IpGBT chip. After
conversion of the signal, the data transmission unit (DTU) selects between the two streams with
different gains by looking for the highest non-saturated gain channel. In order to reduce the
required bandwidth for the data transmission, the data are then compressed. Using a loss-less data
compression mechanism, the reduction of the bandwidth is from 2.08 Gb/s to 1.08 Gb/s. Data
packets from the LiTE-DTU are serialized to the FE board through differential electrical links at
1.28 Gb/s. LiTE-DTU is designed to sustain a total irradiation dose up to 20 kGy and it implements
single-event upset (SEU) protection. The first prototype of the LiTE-DTU ASIC is tested was the
late 2019.

3.3 Front-end board and back-end electronics upgrade

The FE card is designed for streaming the digitized data generated on the VFE to the back-end
electronics system. The FE card contains four ]pGBT ASICs. The new FE card will manage
system initialization and control signals of the VFEs. In addition, it will provide the clock for the
VFEs. The upgraded FE will no longer compute the trigger primitives as the data will now be
streamed to the off-detector electronics at the full collision rate [8].

The off-detector system will be upgraded in order to handle the change in architecture and to
deal with the higher transfer rates. On the BCP, implemented as an Advanced Telecommunications
Computing Architecture (ATCA) blade, the FPGAs will be used to form the L1 trigger decision and



read out the detector. The BCP will be common between ECAL and the CMS hadronic calorimeter.
It will provide the clock distribution and control to the FE card. BCP will also interface with the
CMS data acquisition.

4 Conclusion

During LHC run 2, the CMS ECAL detector showed good performance despite increased pileup
and radiation. Good energy resolution and good stability over time were maintained with constant
calibration and monitoring. Nevertheless, for the pileup and radiation conditions that will be
reached at HL-LHC, the replacement of the ECAL endcap with a new technology and an upgrade
of the readout electronics of the barrel are needed. Replacing the readout electronics will ensure
that ECAL complies with the new trigger requirements, has improved L1 capabilities, withstands
the increased radiation, and mitigates pileup effects and APD noise. In addition, the upgrade will
allow ECAL to maintain excellent energy resolution and have improved timing resolution. For the
upgrade of the VFE two custom ASICs, CATIA and LiTE-DTU, have been designed. New FE
and off-detector electronics have been developed. Prototypes have been tested and further tests are
under way.
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