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Uniqueness for Stochastic Scalar Conservation Laws on Riemannian
Manifolds Revisited

Nikola Konatara

a
Faculty of Natural Sciences and Mathematics, University of Montenegro

Abstract. We revise a uniqueness question for the scalar conservation law with stochastic forcing

du + div1f(x,u)dt = �(x,u)dWt, x 2M, t � 0

on a smooth compact Riemannian manifold (M, 1) where Wt is the Wiener process and x 7! f(x, ⇠) is a vector
field on M for each ⇠ 2 R. We introduce admissibility conditions, derive the kinetic formulation and use it
to prove uniqueness in a more straight-forward way than in the existing literature.

1. Introduction

The aim of the paper is to o↵er a simpler proof of uniqueness of admissible (i.e. kinetic) solution to the
Cauchy problem for a stochastic scalar conservation law of the form

du + div1 f(x,u)dt = �(x,u)dWt, x 2M, t � 0 (1)
u|t=0 = u0(x) 2 L

1(M) (2)

on a smooth, compact, d-dimensional (Hausdor↵) Riemannian manifold (M, 1). The object W is the Wiener
process which can be finite or infinite dimensional which does not a↵ect the essence of the proofs.

The proof of well-posedness has been recently presented in [14]. The authors considered the kinetic
formulation of (1) and prove the uniqueness by finding a relation between the kinetic function and square
of the kinetic function (see [14, (4.13)]). The procedure appeared to be quite complicated and we show here
that it is possible to obtain the proof by considering the product of kinetic solution h and the function (1�h).

More precisely, our idea of proof has the same starting point as in [14] since it is based on the appropriate
kinetic reformulation of the problem (see (35) below). In [14], the authors then prove that the kinetic function
h given by Definition 3.4 satisfies h

2 = h. However, unlike the method from [14] where the authors derive
the equation for h

2 and then compare it with the equation for h in order to draw conclusions, we obtain
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an equation for h(1 � h) and use it to prove the uniqueness. Although the latter sounds the same, the
regularization procedures in our situations are easier to follow (as we essentially closely follow the steps
from the Euclidean case) and thus the method seems simpler than the one proposed in [14].

The basic reason for the simplification lies in the fact that the equations for h and (1 � h) are symmetric
which is why we can fairly easily eliminate the terms appearing on the right hand-side of the latter equations
and thus reach the Kato inequality (see (45)). Moreover, by regularizing the equation via the convolution
with respect to x and ⇠ we obtain a function which is by assumption continuous with respect to time and
we can directly use the Itô formula instead of using its generalized variant (see [14]).

We note that one of the ingredients of the proof is the classical method of the doubling of variables
(see [22]). The method could be avoided since we regularized the equation (which means that we can use
basic calculus for smooth functions). However, the analysis would then require various adaptations of the
Friedrichs lemma (specially in a viewpoint that we have terms with the Wiener measure) and it appears
that the proofs would not be easier.

Let us now introduce precise assumptions on the coe�cients of the equation. First, we shall assume
that we work with one-dimensional Wiener process defined on the stochastic basis (⌦,F , {Ft},P). We will
also assume that

• the flux f 2 C
1(M ⇥ R;Rd) satisfies the geometry compatibility conditions and a decay property as

follows respectively:

div1 f(x, ⇠) = 0 for every ⇠ 2 R (3)
kf(·,�)kL1(M)  C(1 + |�|); (4)

• the function � is continuously di↵erentiable and it decays to zero at infinity i.e. � 2 C
1
0(M ⇥R), and

sup
�2R
|�(·,�)�| 2 L

1(M). (5)

Nowadays, we are witnessing a rapid development of stochastic conservation laws and related equa-
tions. The rising interest to this field of research is motivated by concrete applications in biology, porous
media, finances (see e.g. randomly chosen [1, 4, 32] and references therein) and, in general, any realistic sit-
uation in which we cannot determine parameters precisely (i.e. the coe�cients of the equations governing
the process).

Moreover, such equations have rich mathematical structure and therefore, they are very interesting
and challenging from the mathematical point of view. We have numerous results in di↵erent directions
beginning with the stochastic conservation laws [5, 6, 12, 13, 18, 19, 34], then velocity averaging results for
stochastic transport equations [7, 25], stochastic degenerate parabolic equations [15, 36]. We remark that
latter list of references is far from complete. As for the stochastic PDEs on manifolds, we mention [2] where
the wave equation was considered.

Now we briefly recall the definition of the divergence on a manifold. We suppose that the map
(x, ⇠) 7! f(x, ⇠), M ⇥ R ! TM is C

1 and that, for every ⇠ 2 R, x 7! f(x, ⇠) 2 X(M) (the space of vector fields
on M).

In local coordinates, we write

f(x, ⇠) = ( f
1(x, ⇠), . . . , f

d(x, ⇠)).

The divergence operator appearing in the equation is to be formed with respect to the metric, so in local
coordinates we have (cf. (10) below):

div1 f(x,u) = div1
⇣
x 7! f(x,u(t, x))

⌘
=

@
@xk

( f
k(x,u(t, x)) + � j

k j
(x) f

k(x,u(t, x)) (6)

where the �-terms are the Christo↵el symbols of 1 and the Einstein summation convention is in e↵ect.
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As we can see, the divergence operator on manifolds is more involved than the one in Euclidean setting.
Therefore, in order to prove uniqueness, we need to assume (3). Remark that (3) is the incompressibility
condition from the fluid dynamics point of view, because, due to conservation of mass of an incompressible
fluid, the density in a control volume changes according to the stochastic forcing

D⇢

Dt
= �(x,⇢)

dWt

dt
(7)

where ⇢ is density of the control volume and D⇢
Dt
=

@⇢
@t
+ dx

dt
·r⇢ is the material derivative for the flow velocity

dx
dt
= ( dx1

dt
, . . . , dxd

dt
). If we assume that the function ⇢ is smooth, we can rewrite equation (1) in the form

@⇢

@t
+ @⇠

⇣
f(x, ⇠)

⌘���
⇠=⇢
· r1⇢ + div1 f(x, ⇠)

���
⇠=⇢
= �(x,⇢)

dW

dt
. (8)

Then, taking as usual dx
dt
= @⇠

⇣
f(x, ⇠)

⌘���
⇠=⇢

and comparing (8) and (7), we arrive at

div1 f(x, ⇠)
���
⇠=⇢
= 0,

which immediately gives what is called the geometry compatibility condition.
Since the equation we consider is a nonlinear hyperbolic equation, its solution in general contains

discontinuities and we need to pass to the weak solution concept. However, this induces uniqueness issues
as one can in general construct several weak solutions satisfying the same initial data. Thus, in order to
isolate the physically admissible one, we need to introduce entropy type admissibility conditions [22]. We
will first derive them locally and then, using the geometry compatibility conditions, we shall show that the
conditions hold globally as well.

Having the admissibility conditions, we can derive the kinetic formulation to (1) (see (33)). We will use
it to prove the uniqueness to the considered Cauchy problem. The strategy of proof is adapted from [6].
We have tried to be as precise, self contained and intuitive as possible. We have therefore proven a simple
corollary of the Itô lemma concerning the derivative of the product of two stochastic processes and derive
the uniqueness proof first informally, and then also formally.

The paper is organized as follows. In Section 2 we introduce notions and notations from di↵erential
geometry and stochastic calculus. We then move on to derive the kinetic formulation of (1) and heuristically
show how to get uniqueness to the solution. In Section 5, we formally prove the uniqueness result.

2. Preliminaries from Riemannian geometry and stochastic calculus

We shall split the section into two parts. In the first one, we will provide details from di↵erential
geometry, and in the second one, we recall necessary results from stochastic calculus.

2.1. Riemannian geometry

Our standard references for notions from Riemannian and distributional geometry are [17, 26, 27, 29]. As
before, (M, 1) will be a d-dimensional Riemannian manifold. If v is a distributional vector field on M then its
gradient rv is the vector field metrically equivalent to the exterior derivative dv of v: hrv,Xi = dv(X) = X(v)
for any X 2 X(M). In local coordinates,

rv = 1i j
@v

@xi
@ j, (9)

with 1i j the inverse matrix to 1i j = h@xi , @xji.
As for the Laplace-Beltrami operator �1 on M, for a function f 2 C

2(M) in terms of local coordinates we
have

�1 f = r2
1 f =

1
p
|1|
@i

⇣p
|1|1i j@ j f

⌘
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Finally, the divergence operator on M is locally defined via the Christofel symbols for a C
1 vector field

on X 2 T 1
0 = X(M) with local representation X = X

i @
@xi :

div X =
@X

k

@xk
+ �

j

k j
X

k. (10)

To proceed, we shall need basic notions from the Sobolev spaces on manifolds.
Since M is a compact manifold, we can define for a fixed k 2N (keeping in mind the Poincare inequality)

f 2 H
k(M) , krk

1 f kL2(M) < 1.

As for for the Sobolev spaces with negative indexes, we have

f 2 H
�k(M) if 9F 2 H

k(M) such that �2k
F = f

and we define

k f kH�k(M) = kFkHk(M). (11)

The spaces H
k(M), k 2 Z, are Hilbert spaces and we denote by {ek}k2N the orthogonal basis in L

2(M) which
is given as the set of eigenfunctions corresponding to the Laplace-Beltrami operator:

�1ek(x) = ��kek(x).

At the same time, the set {ek}k2N is the basis in H
s(M), s 2 Z, according to the density arguments. We remark

that it is usual to take the eigenvectors of the operator (1 � �1) but since we are on the compact manifold,
we can safely work with the simplified version.

Notice that if we have a function 1 2 H
k(M) and we rewrite it in the basis {ek/kekkHk(M)}:

1(x) =
1X

k=1

1kek(x)/kekkHk(M) (12)

then

1k =

Z

M

1(x)
ek(x)
kekkHk(M)

dx (13)

which is easily obtained by multiplying (12) by ek/kekkHk(M), integrating the result over M and using the
orthogonality of {ek/kekkHk(M)}. Moreover,

k1kHk(M) =
1X

k=1

12
k
. (14)

It is not di�cult to notice that according to the definition of ek and (11), we have

kekkL2(M) =
p
�kkekkH�1(M). (15)

Let us now recall basic notions from stochastic calculus.

2.2. Stochastic calculus

We start with the notion of predictability for the Hilbert-space valued stochastic processes.
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Definition 2.1. Let (⌦,F ,P) be a probability space and {Ft}t2[0,T], T > 0, be a filtration of the sigma algebra F . Let

V be a fixed Hilbert space with dual V
⇤
.

We say that the stochastic process X : ⌦ ⇥ [0,T] ! V is adapted with respect to the filtration {Ft}t2[0,T] if for

every ' 2 V
⇤

the stochastic process hX(t),'i is measurable with respect to the �–algebra Ft for any t > 0.

We note that in the latter definition we require the weak measurability of the mapping X : ⌦ ⇥ [0,T]! V,
but as we are going to deal with the Sobolev spaces H

k(M), k 2 N [ {0} which are separable, the notions
of weak and strong measurability coincide (see e.g. [23]). To this end, we use the following notations for
H

1(M) and L
2(M)-valued square integrable stochastic processes:

L
2
P(⌦; L

2((0,T); H
1(M)))= {u : (0,T)⇥M⇥⌦!R :

Z

⌦

Z
T

0
ku(t, ·,!)k2

H1(M)dtdP(!) < 1}

L
2
P(⌦; L

2((0,T) ⇥M)))= {u : (0,T)⇥M⇥⌦!R :
Z

⌦

Z
T

0
ku(t, x,!)k2

L2(M)dtdP(!) < 1}

In both cases, the required measurability assumptions are tacitly assumed.
Let us now introduce the Itô lemma and some of its corollaries. To this end, let Xt be a stochastic process

satisfying the following stochastic di↵erential equation:

dXt = µ1dt + �1dWt. (16)

We remark here that the latter equation is actually an informal way of expressing the integral equality

Xt0+s � Xt0 =

Z
t0+s

t0

µ1dt +

Z
t0+s

t0

�1dWt, 8t0, s > 0. (17)

By Itô’s lemma, for each twice di↵erentiable scalar function f = f (t, z) the equation

d f (Xt) =

0
BBBB@
@ f

@t
+ µ1

@ f

@z
+
�2

1

2
@2

f

@z2

1
CCCCA dt + �1

@ f

@z
dWt (18)

holds.
By taking f (t,Xt) = X

2
t
, we get

dX
2
t
= 2µ1Xtdt + �2

1dt + 2�1XtdWt. (19)

Notice that 2µ1Xtdt + 2�1XtdWt = 2Xt(µ1dt + �1dWt) = 2XtdXt, so (19) becomes

dX
2
t
= 2XtdXt + �2

1dt. (20)

Similarly, if Yt is a stochastic process satisfying the stochastic di↵erential equation

dYt = µ2dt + �2dWt (21)

then

dY
2
t
= 2YtdYt + �2

2dt, (22)

d(Xt + Yt)2 = 2(Xt + Yt)d(Xt + Yt) + (�1 + �2)2
dt. (23)

The left-hand side of (23) is

d(Xt + Yt)2 = d(X2
t
+ 2XtYt + Y

2
t
) = dX

2
t
+ 2d(XtYt) + dY

2
t

(24)

= 2XtdXt + �2
1dt + 2d(XtYt) + 2YtdYt + �2

2dt,
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and the right side is

2(Xt + Yt)d(Xt + Yt) + (�1 + �2)2
dt

= 2XtdXt + 2XtdYt + 2YtdXt + 2YtdYt + �2
1dt + 2�1�2dt + �2

2dt. (25)

By annuling the same terms on the left and right side respectively, and dividing the equation by 2, we
get

d(XtYt) = XtdYt + YtdXt + �1�2dt. (26)

Let us finally recall the Itô isometry. The following equality holds

E

2
666664

 Z
T

0
XtdWt

!23777775 = E

"Z
T

0
X

2
t
dt

#
.

3. Entropy admissibility and kinetic formulation

Let us first informally derive the admissibility conditions. As usual, we start with the parabolic approx-
imation to (1)

du" + div1(f(x,u"))dt = �(x,u")dWt + "�1u"dt, x 2M, t 2 (0,T) (27)

where, as before, f = f(x,�) 2 C
1(M ⇥R) and (M, 1) is a d-dimensional Rimannian manifold with the metric

1. We will assume that Wt is a Wiener process and � 2 C
1
0(M ⇥R).

Let us recall the definition of the weak solution to (27), (2).

Definition 3.1. We say that the measurable function ⌦ 3 ! 7! u"(·,!) 2 L
2([0,T]; H

1(M)) adapted with respect to

the filtration {Ft} is the weak solution to (27), (2) if for a test function ' 2 C
2
0([0,T] ⇥M) it holds almost surely

Z
T

0

Z

M

⇣
u"@t' + div1(f(x,u"))r1'

⌘
dxdt =

Z
T

0

Z

M

'�(x,u")dWt � "
Z

T

0

Z

M

u"�1'dxdt.

Existence of the solution to (27), (2) can be concluded from the general arguments given in [23]. One can
also find a proof in [16].

Using the Itô formula, from (27) we get (here and in the sequel, we will set f0(x, ⇠) = @⇠f(x, ⇠)):

d✓(u") =
⇣
� ✓0(u")f0(x,u") · r1u" + ✓0(u") div1 f(x,⇢)

���
⇢=u"

+ "�1✓(u") � "✓00(u")|r1u"|2 +
�2(x,u")

2
✓00(u")

⌘
dt +�(x,u")✓0(u")dWt

(28)

for all twice di↵erentiable scalar functions ✓.
Using the standard approximation procedure and taking into account convexity of the function ✓(u) =

|u � ⇠|+ =
8>><>>:

u � ⇠, u � ⇠
0, else

, we know that we can safely plug it into (28). After letting " ! 0 and assuming

that E(|u"(t, x) � u(t, x)|)! 0 as "! 0, we get the following distributional inequality:

d|u � ⇠|+  �f0(x,u)O1u sign+(u � ⇠)dt + ✓0(u) div1 f(x,⇢)
���
⇢=u

dt

+
�2(x,u)

2
�(u � ⇠)dt +�(x,u) sign+(u � ⇠)dWt.

(29)
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Taking into account the geometry compatibility condition (3), we have

f0(x,u) · (O1u) sign+(u � ⇠) = div1
⇣
sign+(u � ⇠)(f(x,u) � f(x, ⇠))

⌘

+ sign+(u � ⇠) div1 f(x, ⇠) = div1
⇣
sign+(u � ⇠)(f(x,u) � f(x, ⇠))

⌘
,

(30)

and using the Schwartz lemma on non-negative distributions, we conclude that there exists a non-negative
stochastic kinetic measure m (to be precised later) such that the equation (29) can be written as

d|u � ⇠|+ = �div1(sign+(u � ⇠)(f(x,u) � f(x, ⇠)))dt +
�2(x,u)

2
�(u � ⇠)dt

+�(x,u) sign+(u � ⇠)dWt�dm(t, x, ⇠)dt.
(31)

Next, we find the partial derivative of the expression given in (31) with respect to ⇠ to get

d@⇠|u � ⇠|+ = �div1(�f0(x, ⇠) sign+(u � ⇠))dt + @⇠

 
�2(x,u)

2
�(u � ⇠)

!
dt

+@⇠(�(x,u) sign+(u � ⇠)dWt) � @⇠dm.

(32)

Introducing h(t, x, ⇠) = �@⇠|u � ⇠|+ = sign+(u � ⇠) into (32) gives

dh + div1(f0(x, ⇠)h)dt = �@⇠
 
�2(x,u)

2
�(u � ⇠)

!
dt � @⇠(�(x,u)hdWt) + @⇠dm. (33)

Notice that

@⇠(�(x,u)hdWt) = @⇠(�(x,u) sign+(u � ⇠))dWt = ��(x,u)�(u � ⇠)dWt

= ��(x, ⇠)�(u � ⇠)dWt.
(34)

Using �2(x,u)
2 �(u � ⇠) = �

2(x,⇠)
2 �(u � ⇠) and (34), and denoting the measure �@⇠h = �(u � ⇠) by ⌫(t,x)(⇠), we

finally get the weak form of our equation:

dh + div1(f0(x, ⇠)h)dt = �@⇠
 
�2(x, ⇠)

2
⌫(t,x)(⇠)

!
dt +�(x, ⇠)⌫(t,x)(⇠)Wt + @⇠dm . (35)

We shall call the latter equation the kinetic formulation of (1).
It is important to notice that the function h = 1 � h satisfies

dh + div1(f0(x, ⇠)h)dt = @⇠

 
�2(x, ⇠)

2
⌫(t,x)(⇠)

!
dt ��(x, ⇠)⌫(t,x)(⇠)dWt � @⇠dm. (36)

We can now introduce a definition of an admissible solution. Let us first introduce what we meant
under the stochastic measure here.

Definition 3.2. We say that a mapping m from⌦ into the space of Radon measures on [0,T]⇥M⇥R is a stochastic

kinetic measure if:

• for every � 2 C0([0,T] ⇥M ⇥R) the action hm,�i defines a P-measurable function

hm,�i : ⌦! R;
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• m vanishes for large ⇠: if B
c

R
= {⇠ 2 R| | ⇠ |� R}, then

lim
R!1

Em(C0([0,T] ⇥M ⇥ B
c

R
)) = 0

• for every � 2 C0(M ⇥R), the process

t 7!
Z

[0,t]⇥M⇥R
�(x, ⇠)dm(s, x, ⇠)

is predictable.

Definition 3.3. The measurable function u : [0,T] ⇥M ⇥⌦! R almost surely continuous with respect to time in

the sense that u(·, ·,!) 2 C(R+; H
�1(M)) for P-almost every ! 2 ⌦, adapted with respect to the filtration {Ft}, is an

admissible stochastic solution to (1), (2) if

• there exists C2 > 0 such that E(esssup
t2[0,T] ku(t)kL2(M))  C2;

• the kinetic function h = sign+(u � ⇠) adapted with respect to the filtration {Ft} satisfies (31) with the initial

conditions h(0, x, ⇠) = sign+(u0(x)�⇠) in the sense of weak traces and h satisfies (36) with the initial conditions

h(0, x, ⇠) = 1 � sign+(u0(x) � ⇠) in the sense of weak traces.

We shall also need a notion of the generalized stochastic kinetic solution.

Definition 3.4. A measurable function ! 7! h(·, ·, ·,!) 2 L
2([0,T] ⇥ M ⇥ K)) \ CLR([0,T]; H

�k(M ⇥ K)) (with

CLR(X) we denote the set of left and right continuous functions on X), for some k 2 N and any K ⇢⇢ R, adapted

with respect to the filtration {Ft}, bounded between zero and one and non-strictly decreasing with respect to ⇠ 2 R
such that h = �@⇠⌫(t,x) is the generalized stochastic kinetic solution to (1), (2) if there exists a non-negative stochastic

kinetic measure m such that h satisfies (35) and the initial conditions h(0, x, ⇠) = sign+(u0(x) � ⇠) in the sense of

weak traces.

Clearly, if we have the admissible solution to (1), (2) then we have the generalized stochastic kinetic
solution as well. Interestingly, vice versa also holds which follows from the standard uniqueness arguments
(see e.g. [6]). The concept of the generalized solution used here is essentially the same as the one from
[14] except that we do not require boundedness of the p-moments, p 2 [1,1), of the measure ⌫t,x (see [14,
Definition 3.3]). We note that the equation considered here is somewhat simpler than the one in [14] since
we do not have cylindrical Wiener process and we require somewhat stricter conditions on the coe�cients
(compare in particular (4) and (5) here and [14, (2.1), (2.2), (2.3)]). Although insubstantial, the relaxation
of the conditions seems su�cient to avoid additional requirements for the generalized stochastic kinetic
solution from Definition 3.4.

4. Informal uniqueness proof – doubling of variables

In this section, we shall informally show how to get uniqueness. Formal proof does not essentially di↵er
from the procedure given in this section but one needs to introduce several smoothing procedures which
significantly complicates some steps of the proof. Therefore, for readers’ convenience, in this section we
essentially explain the basic ideas of the proof. We also remark that, in order to simplify the notation, we
will denote by dx the measure on the manifold instead of usual d�(x).

Let h
1(t, x, ⇠) and h

2(t,y, ⇣) be two di↵erent generalized kinetic solutions to (1), (2) (see Definition 3.4).
Then

dh
1 + div1(f0(x, ⇠)h1)dt = �@⇠

 
�2(x, ⇠)

2
⌫1

!
dt +�(x, ⇠)⌫1

dWt + @⇠dm1, (37)

dh2 + div1(f0(y, ⇣)h2)dt = @⇣

 
�2(y, ⇣)

2
⌫2

!
dt ��(y, ⇣)⌫2

dWt � @⇣dm2. (38)
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By (26), the following holds:

d(h1
h2) = h

1
dh2 + h2dh

1 ��(x, ⇠)�(y, ⇣)⌫1 ⌦ ⌫2
dt. (39)

Multiplying (37) by h2 = h2(t,y, ⇣), (38) by h
1 = h

1(t, x, ⇠), adding them and using the geometry compat-
ibility conditions (3), yields

h2dh
1 + h

1
dh2 + h2f0(x, ⇠) · O1,xh

1
dt + h

1f0(y, ⇣) · O1,yh2dt

= �h2@⇠

 
�2(x, ⇠)

2
⌫1

!
dt + h

1@⇣

 
�2(y, ⇣)

2
⌫2

!
dt + h2�(x, ⇠)⌫1

dWt � h
1�(y, ⇣)⌫2

dWt

+ h2@⇠dm1(t, x, ⇠) � h
1@⇣dm2(t,y, ⇣)dt. (40)

Inserting (39) into (40), we get

d(h1
h2) +�(x, ⇠)�(y, ⇣)⌫1 ⌦ ⌫2

dt + h2f0(x, ⇠) · O1,xh
1
dt + h

1f0(y, ⇣) · O1,yh2dt

= �h2@⇠

 
�2(x, ⇠)

2
⌫1

!
dt + h

1@⇣

 
�2(y, ⇣)

2
⌫2

!
dt + (h2�(x, ⇠)⌫1 � h

1�(y, ⇣)⌫2)dWt

+ h2@⇠dm1(t, x, ⇠)dt � h
1@⇣dm2(t,y, ⇣)dt. (41)

We now choose the non-negative test function'(t, x,y, ⇠, ⇣) = ⇢(x�y) (⇠�⇣), where ⇢ and are smooth
non-negative functions defined on appropriate Euclidean spaces. Multiplying (41) with ' and integrating
over (0,T) ⇥M

2 ⇥R2 we get

Z

M2

Z

R2

h
1(T, x, ⇠)h2(T,y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydx (42)

�
Z

M2

Z

R2

h
1
0h

2
0⇢(x � y) (⇠ � ⇣)d⇣d⇠dydx

+

TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)�(x, ⇠)�(y, ⇣)d⌫2
(t,y)(⇣)d⌫1

(t,x)(⇠)dydxdt

+

TZ

0

Z

M2

Z

R2

f0(x, ⇠) · r1,xh
1(t, x, ⇠)h2(t,y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydxdt

+

TZ

0

Z

M2

Z

R2

f0(y, ⇣) · r1,yh2(t,y, ⇣)h1(t, x, ⇠)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydxdt

=

TZ

0

Z

M2

Z

R2

�2(x, ⇠)
2

h2(t,y, ⇣)⇢(x � y) 0(⇠ � ⇣)d⌫1
(t,x)(⇠)d⇣dydxdt

+

TZ

0

Z

M2

Z

R2

�2(y, ⇣)
2

h
1(t, x, ⇠)⇢(x � y) 0(⇠ � ⇣)d⌫2

(t,y)(⇣)d⇠dydxdt

+

TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)h2(t,y, ⇣)�(x, ⇠)d⌫1
(t,x)(⇠)d⇣dydxdWt
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�
TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)h1(t, x, ⇠)�(y, ⇣)d⌫2
(t,y)(⇣)d⇠dydxdWt

�
TZ

0

Z

M2

Z

R2

⇢(x � y) 0(⇠ � ⇣)h2(t,y, ⇣)dm1(t, x, ⇠)d⇣dy

�
TZ

0

Z

M2

Z

R2

⇢(x � y) 0(⇠ � ⇣)h1(t, x, ⇠)dm2(t,y, ⇣)d⇠dx.

By using integration by parts with respect to ⇣ and ⇠ in the first and second and in the last two terms on
the right hand side in (42), and using @⇠h1 = �⌫1 and @⇣h2 = ⌫2, we obtain:

Z

M2

Z

R2

h
1(T, x, ⇠)h2(T,y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydx (43)

�
Z

M2

Z

R2

h
1
0(x, ⇠)h2

0(y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydx

+

TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)�(x, ⇠)�(y, ⇣)d⌫2
(t,y)(⇣)d⌫1

(t,x)(⇠)dydxdt

+

TZ

0

Z

M2

Z

R2

f0(x, ⇠) · r1,xh
1(t, x, ⇠)h2(t,y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydxdt

+

TZ

0

Z

M2

Z

R2

f0(y, ⇣) · r1,yh2(t,y, ⇣)h1(t, x, ⇠)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydxdt

=

TZ

0

Z

M2

Z

R2

�2(x, ⇠)
2

⇢(x � y) (⇠ � ⇣)d⌫2
(t,y)(⇣)d⌫1

(t,x)(⇠)dydxdt

+

TZ

0

Z

M2

Z

R2

�2(y, ⇣)
2

⇢(x � y) (⇠ � ⇣)d⌫2
(t,y)(⇣)d⌫1

(t,x)(⇠)dydxdt

+

TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)h2(t,y, ⇣)�(x, ⇠)d⌫1
(t,x)(⇠)d⇣dydxdWt

�
TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)h1(t, x, ⇠)�(y, ⇣)d⌫2
(t,y)(⇣)d⇠dydxdWt

�
TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)⌫2
(t,y)(⇣)dm1(t, x, ⇠)d⇣dy

�
TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)⌫1
(t,x)(⇠)dm2(t,y, ⇣)d⇠dx.
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Finally, moving the third term on the left hand side in (43) to the right hand side and using non-negativity
of the measures m1 and m2 yields

Z

M2

Z

R2

h
1(T, x, ⇠)h2(T,y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydx (44)

�
Z

M2

Z

R2

h
1
0(x, ⇠)h2

0(y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydx

+

TZ

0

Z

M2

Z

R2

f0(x, ⇠) · r1,xh
1(t, x, ⇠)h2(t,y, ⇣)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydxdt

+

TZ

0

Z

M2

Z

R2

f0(y, ⇣) · r1,yh2(t,y, ⇣)h1(t, x, ⇠)⇢(x � y) (⇠ � ⇣)d⇣d⇠dydxdt

 1
2

TZ

0

Z

M2

Z

R2

(�(x, ⇠) ��(y, ⇣))2⇢(x � y) (⇠ � ⇣)d⌫2
(t,y)(⇣)d⌫1

(t,x)(⇠)dydxdt

+

TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)h2(t,y, ⇣)�(x, ⇠)d⌫1
(t,x)(⇠)d⇣dydxdWt

�
TZ

0

Z

M2

Z

R2

⇢(x � y) (⇠ � ⇣)h1(t, x, ⇠)�(y, ⇣)d⌫2
(t,y)(⇣)d⇠dydxdWt.

Setting  (⇠) = �(⇠) and ⇢(x) = �(x) and rearranging it a bit, we obtain
Z

M

Z

R

h
1(T, x, ⇠)h2(T, x, ⇠)d⇠dx


Z

M

Z

R

h
1
0h

2
0d⇠dx �

TZ

0

Z

M

Z

R

f0(x, ⇠) · r1,x(h1(t, x, ⇠)h2(t, x, ⇠))d⇠dxdt

�
TZ

0

Z

M

Z

R

�(x, ⇠)@⇠(h1(t, x, ⇠)h2(t, x, ⇠))d⇠dxdWt. (45)

Another integration by parts provides
Z

M

Z

R

h
1(T, x, ⇠)h2(T, x, ⇠)d⇠dx (46)


Z

M

Z

R

h
1
0h

2
0d⇠dx +

TZ

0

Z

M

Z

R

�0(x, ⇠)h1(t, x, ⇠)h2(t, x, ⇠)d⇠dxdW(t)

where we used the geometry compatibility conditions to eliminate the flux term.
By using non-negativity of h

1 and h2, we have after finding expectation of square of (46) and taking into
account the Itô isometry
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E

2
66666664
⇣ Z

M

Z

R

h
1(T, x, ⇠)h2(T, x, ⇠)d⇠dx

⌘2

3
77777775

(47)

. E

2
66666664
⇣ Z

M

Z

R

h
1
0h

2
0d⇠dx

⌘2

3
77777775
+ k�0k21E

2
66666664

TZ

0

⇣ Z

M

Z

R

h
1(t, x, ⇠)h2(t, x, ⇠)d⇠dx

⌘2
dt

3
77777775
.

From here, using the Gronwall inequality, we get

E

2
66666664
⇣ Z

M

Z

R

h
1(T, x, ⇠)h2(T, x, ⇠)d⇠dx

⌘2

3
77777775
. E

2
66666664
⇣ Z

M

|u10(x) � u20(x)|dx
⌘2

3
77777775
. (48)

From here, if assume that u10 = u20, we get almost surely for almost every (t, x, ⇠) 2 [0,1) ⇥M ⇥R:

h
1(t, x, ⇠) (1 � h

2(t, x, ⇠)) = 0.

This implies that either h
1(t, x, ⇠) = 0 or h

2(t, x, ⇠) = 1. Since we can interchange the roles of h
1 and

h
2, we conclude that 1 and 0 are actually the only values that h

1 or h
2 can attain and that h

1 = h
2 = h.

Since h is also non-increasing with respect to ⇠ on [0,1), we conclude (taking into account the initial data
h0 = sign+(u0(x) � ⇠)) that there exists a function u : [0,1) ⇥M! R such that

h(t, x, ⇠) = sign+(u(t, x) � ⇠). (49)

We thus have the following corollary which is proven in the final section.

Corollary 4.1. The generalized stochastic kinetic solution to (1), (2) has the form (49). If the function u satisfies the

second item from Definition 3.3, then it is an admissible stochastic solution to (1), (2).

5. Uniqueness – rigorous proof

In this section, we shall formalize the arguments from the previous section. To this end, it will be
necessary to express (35) in local coordinates. So, assume we are given a generalized stochastic kinetic
solution h. To prove uniqueness locally we take a chart (U,) for M and assume, without loss of generality,
that (U) = Rd. Define the local expression of h as the map (in order to avoid proliferation of symbols,
we shall keep the same notations for global and local quantities but we shall write x̃ to denote the local
variable)

h : R+ ⇥Rd ⇥R ⇥⌦! R, h(t, x̃, ⇠,!) = h(t,�1(x̃), ⇠,!)G(x̃),

where G(x̃) is the Gramian corresponding to the chart (U,). Similarly, for x̃ 2 Rd we define

�(x̃, ⇠) = �(�1(x̃), ⇠),

f(x̃, ⇠) = f(�1(x̃), ⇠), f0(x̃, ⇠) = f0(�1(x̃), ⇠) = a(x̃, ⇠)
⌫(t,x̃)(�) = ⌫(t,�1(x̃))(�)G(x̃),

(50)

and m(t, x̃, ⇠) will be the pushforward measure of m with respect to the mapping .
With such notations at hand, we now rewrite (35) locally in the chart (U,) into an equation in terms of

h1(t, x̃, ⇠) and h2(t, x̃, ⇠), which are two generalized kinetic solutions to Cauchy problems corresponding to
(1) with the initial data u10 and u20, respectively. Below, we use the Einstein summation convention and we
remind that a = (a1, . . . , ad) = f0 = ( f

0
1 , . . . , f

0
d
). Also, since the equations are to be understood in the weak
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sense, we need to add the Gramian in each of the terms below except in m1 and m2, since the corresponding
part in these terms is implied there by the definition of the pushforward measure. This is why we introduce
the conventions from (50).

dh
1(t, x̃, ⇠) + divx̃(a(x̃, ⇠)h1)dt + h

1�
j

k j
(x̃)ak(t, x̃, ⇠)dt (51)

= �@⇠
 
�2(x̃, ⇠)

2
⌫1

(t,x̃)(⇠)
!

dt +�(x̃, ⇠)⌫1
(t,x̃)(⇠)dWt + @⇠dm1,

dh2(t, ỹ, ⇣) + divỹ(a(ỹ, ⇣)h2)dt + h2�
j

k j
(ỹ)ak(t, ỹ, ⇣)dt (52)

= @⇣

 
�2(ỹ, ⇣)

2
⌫2

(t,ỹ)(⇣)
!

dt ��(ỹ, ⇣)⌫2
(t,ỹ)(⇣)dWt � @⇣dm2

We introduce two mollifying functions !1 2 D(Rd), !2 2 D(R) where d is the dimension of the manifold
M, such that !i � 0, i = 1, 2 and

R
Rd
!1 =

R
R
!2 = 1. Taking !�,r(x̃, ⇠, t) = 1

r�d
!1

⇣
x̃
�

⌘
!2

⇣
⇠
r

⌘
, for some �, r > 0,

and using convolution, (51) and (52) yield (below and in the sequel, subscripts � and r denote convolution
with respect to the corresponding variables):

dh
1
�,r + divx̃(a(x̃, ⇠)h1

�,r)dt + 11
�,rdt +

✓
�

j

k j
(x̃)ak(t, x̃, ⇠)h1

◆

�,r
dt (53)

= �@⇠
 
�2(x̃, ⇠)

2
⌫1

(t,x̃)(⇠)dt

!

�,r

+ (�(x̃, ⇠)⌫1
(t,x̃)(⇠))�,rdWt + @⇠dm1,�,r,

dh
2
�,r + divỹ(a(ỹ, ⇣)h2

�,r)dt + 12
�,rdt +

✓
�

j

k j
(ỹ)ak(t, ỹ, ⇣)h2

◆

�,r
dt (54)

= @⇣

 
�2(ỹ, ⇣)

2
⌫1

(t,ỹ)(⇣)dt

!

�,r

� (�(ỹ, ⇣)⌫1
(t,ỹ)(⇣))�,rdWt � @⇣dm2,�,r

where

11
�,r = divx̃(a(x̃, ⇠)h1)�,r � divx̃(a(x̃, ⇠)h1

�,r)

12
�,r = divỹ(a(ỹ, ⇣)h2)�,r � divỹ(a(ỹ, ⇣)h2

�,r).

These terms converge to zero as �, r! 0 according to the Friedrichs lemma [30].
Now, multiplying (53) and (54) with h

2
�,r = h

2
�,r(t,y, ⇣) and h

1
�,r = h

1
�,r(t, x, ⇠), respectively, and using (26),

we obtain

d(h1
�,rh

2
�,r) + (�(x̃, ⇠)⌫1

(t,x̃)(⇠))�,r(�(ỹ, ⇣)⌫2
(t,y)(⇣))�,rdt (55)

+ h
2
�,r divx̃(a(x̃, ⇠)h1

�,r)dt + h
1
�,r divỹ(a(ỹ, ⇣)h2

�,r)dt

+
✓
�

j

k j
(x̃)ak(t, x̃, ⇠)h1

◆

�,r
h

2
�,rdt +

✓
�

j

k j
(ỹ)ak(t, ỹ, ⇣)h2

◆

�,r
h

1
�,rdt =

� 11
�,rh

2
�,rdt � 12

�,rh
1
�,rdt + h

2
�,r(�(x̃, ⇠)⌫1

(t,x̃)(⇠))�,rdWt � h
1
�,r(�(ỹ, ⇣)⌫2

(t,ỹ)(⇣))�,rdWt

+ h
1
�,r@⇣

 
�2(ỹ, ⇣)

2
⌫2

(t,ỹ)(⇣)
!

�,r

dt � h
2
�,r@⇠

 
�2(x̃, ⇠)

2
⌫1

(t,x̃)(⇠)
!

�,r

dt

+ h
2
�,r@⇠dm1,�,r(t, x̃, ⇠)dt � h

1
�,r@⇣dm2,�,r(t, ỹ, ⇣)dt.

Next, we choose non-negative functions ⇢ 2 D(Rd),  ,' 2 D(R) such that
R
Rd
⇢ =

R
R
 = 1. Using the

test function ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
⇣ x̃+ỹ

2

⌘
, with ⇢"(x̃) = 1

"d
⇢
⇣

x̃
"

⌘
,  "(⇠) = 1

" 
⇣
⇠
"

⌘
, for some " > 0, and integrating
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(55) over (0,T), the equation is rewritten in the variational formulation (recall that h
1 and h

2 are continuous
with respect to t 2 R+):

Z

R2d

Z

R2

h
1
�,r(T, x̃, ⇠)h2

�,r(T, ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹ (56)

�
Z

R2d

Z

R2

h
1
0,�,r(x̃, ⇠)h2

0,�,r(ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹ (57)

+

TZ

0

Z

R2d

Z

R2

⇣
h

2
�,r divx̃(a(x̃, ⇠)h1

�,r) + h
1
�,r divỹ(a(ỹ, ⇣)h2

�,r)
⌘
⇥ (58)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹdWt

+

TZ

0

Z

R2d

Z

R2

⇣ ✓
�

j

k j
(x̃)ak(t, x̃, ⇠)h1

◆

�,r
h

2
�,r +

✓
�

j

k j
(ỹ)ak(t, ỹ, ⇣)h2

◆

�,r
h

1
�,r

⌘
⇥ (59)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹ

= �
TZ

0

Z

R2d

Z

R2

⇣
11
�,rh

2
�,r + 1

2
�,rh

1
�,r � h

2
�,r(�(x̃, ⇠)⌫1

(t,x̃)(⇠))�,r + h
1
�,r(�(ỹ, ⇣)⌫2

(t,ỹ)(⇣))�,r
⌘
⇥ (60)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹdWt

+

TZ

0

Z

R2d

Z

R2

⇣
h

1
�,r@⇣

 
�2(ỹ, ⇣)

2
⌫2

(t,ỹ)(⇣)
!

�,r

� h
2
�,r@⇠

 
�2(x̃, ⇠)

2
⌫1

(t,x̃)(⇠)
!

�,r

(61)

� (�(x̃, ⇠)⌫1
(t,x̃)(⇠))�,r(�(ỹ, ⇣)⌫2

(t,y)(⇣))�,r
⌘
⇢"(x̃ � ỹ) "(⇠ � ⇣)'

✓ x̃ + ỹ
2

◆
d⇠d⇣dx̃dỹdt

+

TZ

0

Z

R2d

Z

R2

⇣
h

2
�,r(t, ỹ, ⇣)@⇠m1,�,r(t, x̃, ⇠) � h

1
�,r(t, ỹ, ⇠)@⇣m2,�,r(t, ỹ, ⇣)

⌘
⇥ (62)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹdt.

We shall analyze this equality term by term. We start with the terms from (56)–(58). We have:

Z

R2d

Z

R2

h
1
�,r(T, x̃, ⇠)h2

�,r(T, ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃ (63)

�
Z

R2d

Z

R2

h
1
�,r(0, x̃, ⇠)h2

�,r(0, ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃

�
TZ

0

Z

R2d

Z

R2

a(x̃, ⇠)h1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) ·

 "(⇠ � ⇣)'

✓ x̃ + ỹ
2

◆
r⇢"(x̃ � ỹ)

+
1
2
⇢"(x̃ � ỹ) "(⇠ � ⇣)r'

✓ x̃ + ỹ
2

◆ �
d⇣d⇠dỹdx̃dt
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+

TZ

0

Z

R2d

Z

R2

a(ỹ, ⇣)h1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) ·

 "(⇠ � ⇣)'

✓ x̃ + ỹ
2

◆
r⇢"(x̃ � ỹ)

� 1
2
⇢"(x̃ � ỹ) "(⇠ � ⇣)r'

✓ x̃ + ỹ
2

◆ �
d⇣d⇠dỹdx̃dt

=

Z

R2d

Z

R2

h
1
�,r(T, x̃, ⇠)h2

�,r(T, ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃�

�
Z

R2d

Z

R2

h
1
�,r(0, x̃, ⇠)h2

�,r(0, ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃

�
TZ

0

Z

R2d

Z

R2

(a(x̃, ⇠) � a(ỹ, ⇣)) · r⇢"(x̃ � ỹ)h1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃dt

� 1
2

TZ

0

Z

R2d

Z

R2

(a(x̃, ⇠) + a(ỹ, ⇣)) · r'
✓ x̃ + ỹ

2

◆
h

1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣)⇢"(x̃ � ỹ) "(⇠ � ⇣)d⇣d⇠dỹdx̃dt

The penultimate term in (63) can be rewritten as (below dV = d⇣d⇠dỹdx̃dt):

TZ

0

Z

R2d

Z

R2

(a(x̃, ⇠) � a(ỹ, ⇣)) · r⇢"(x̃ � ỹ)h1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
dV = (64)

TZ

0

Z

R2d

Z

R2

(a(x̃, ⇠) � a(ỹ, ⇣)) · r
✓ 1
"d
⇢
✓ x̃ � ỹ
"

◆◆
h

1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
dV =

TZ

0

Z

R2d

Z

R2

(a(x̃, ⇠) � a(ỹ, ⇣)) · 1
"d
r⇢(z)

����
z= x̃�ỹ

"

h
1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
dV =

TZ

0

Z

R2d

Z

R2

a(x̃, ⇠) � a(ỹ, ⇣)
"

· 1
"d
r⇢(z)

����
z= x̃�ỹ

"

h
1
�,r(t, x̃, ⇠)h2

�,r(t, ỹ, ⇣) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
dV =

TZ

0

Z

R2d

Z

R2

ak("z + ỹ, ⇠) � ak(ỹ, ⇣)
"zk

zk@zk
⇢(z)h1

�,r(t, ỹ + "z, ⇠)h2
�,r(t, ỹ, ⇣) "(⇠ � ⇣)'

✓
ỹ +

"z
2

◆
dV

where z = x̃�ỹ
" . We notice that, as r, �, "! 0 (in any order), this term becomes

TZ

0

Z

Rd

Z

R

@ỹk
ak(ỹ, ⇠)h1(t, ỹ, ⇠)h2(t, ỹ, ⇠)'(ỹ)

Z

Rd

zk@zk
⇢(z)dz d⇠dỹdt (65)

= �
TZ

0

Z

Rd

Z

R

divỹ a(ỹ, ⇠)h1(t, ỹ, ⇠)h2(t, ỹ, ⇠)'(ỹ)d⇠dỹdt

(3)
=

TZ

0

Z

Rd

Z

R

�
j

k j
(ỹ)ak(t, ỹ, ⇠)h1(t, ỹ, ⇠)h2(t, ỹ, ⇠)d⇠dỹdt. (66)
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due to properties of the mollifier ⇢. Thus, from (65) and (63) we conclude that as r, �, "! 0 in any order

(56) + (57) + (58) �!
r,�,"!0

(67)
Z

Rd

Z

R

(h1
h2)(T, ỹ, ⇠)'(x̃)d⇠dx̃ �

Z

Rd

Z

R

(h1
0h

2
0)(x̃, ⇠)'(x̃)d⇠dx̃

�
TZ

0

Z

Rd

Z

R

a(x̃, ⇠)(h1
h2)(t, x̃, ⇠)r'(x̃)d⇠dx̃dt �

TZ

0

Z

Rd

Z

R

�
j

k j
(x̃)ak(t, x̃, ⇠)h1(t, x̃, ⇠)h2(t, x̃, ⇠)d⇠dx̃dt.

Term (59) is easy to handle. We simply let r, �, "! 0 to conclude

(59) �!
r,�,"!0

TZ

0

Z

Rd

Z

R

2� j

k j
(x̃)ak(t, x̃, ⇠)h1

h2'(x̃)d⇠dx̃dt. (68)

In order to prepare handling (60) and (61), we use regularity of the function� (recall that� 2 C
1
0(Rd⇥R)).

We have

TZ

0

Z

R2d

Z

R2

  
�2(x̃, ⇠)

2
⌫1

(t,x̃)(⇠)
!

�,r

⌫2
(t,ỹ),�,r(⇣) � �

2(x̃, ⇠)
2

⌫1
(t,x̃),�,r(⇠)⌫2

(t,ỹ),�,r(⇣)
�
⇥ (69)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
⇣ x̃ + ỹ

2

⌘
d⇣d⇠dỹdx̃ �!

r,�!0
0,

and similarly

TZ

0

Z

R2d

Z

R2

 ⇣
�(x̃, ⇠)⌫1

(t,x̃)(⇠)
⌘
�,r

⇣
�(ỹ, ⇣)⌫2

(t,ỹ)(⇣)
⌘
�,r
�

⇣
�(x̃, ⇠)⌫1

(t,x̃),�,r(⇠)
⌘ ⇣
�(ỹ, ⇣)⌫2

(t,ỹ),�,r(⇣)
⌘ �
⇥ (70)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
⇣ x̃ + ỹ

2

⌘
d⇣d⇠dỹdx̃dt �!

r,�!0
0.

In a similar fashion, we have

TZ

0

Z

R2d

Z

R2

 ⇣
�(x̃, ⇠)⌫1

(t,x̃)(⇠)
⌘
�,r

h
2
�,r(t, ỹ, ⇣) �

⇣
�(ỹ, ⇣)⌫2

(t,ỹ)(⇣)
⌘
�,r

h
1
�,r(t, x̃, ⇠)

�
⇥

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃dWt

=

TZ

0

Z

R2d

Z

R2


�(x̃, ⇠)⌫1

(t,x̃),�,r(⇠)h2
�,r(t, ỹ, ⇣) ��(ỹ, ⇣)⌫2

(t,ỹ),�,r(⇣)h1
�,r(t, x̃, ⇠)

�
⇥

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃dWt +

TZ

0

13,�,r,"dWt
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where

13,�,r =

Z

R2d

Z

R2

⇣ ⇣
�(x̃, ⇠)⌫1

(t,x̃)(⇠)
⌘
�,r
��(x̃, ⇠)

⇣
⌫1

(t,x̃)(⇠)
⌘
�,r

⌘
h

2
�,r(t, ỹ, ⇣)

�
⇣ ⇣
�(ỹ, ⇣)⌫2

(t,ỹ)(⇣)
⌘
�,r
��(ỹ, ⇣)

⇣
⌫2

(t,ỹ)(⇣)
⌘
�,r

⌘
h

1
�,r(t, x̃, ⇠)

�
⇥

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃

and 13,�,r," ! 0 as �, r ! 0 almost surely. From here, using
dh

1
�,r(t,x̃,⇠)
@⇠ = �⌫1

(t,x̃),�,r(⇠) and
dh

2
�,r(t,ỹ,⇣)
@⇣ = ⌫2

(t,ỹ),�,r(⇣),
integration by parts, we have the following conclusion for (60)

TZ

0

Z

R2d

Z

R2

 ⇣
�(x̃, ⇠)⌫1

(t,x̃)(⇠)
⌘
�,r

h
2
�,r(t, ỹ, ⇣) �

⇣
�(ỹ, ⇣)⌫2

(t,ỹ)(⇣)
⌘
�,r

h
1
�,r(t, x̃, ⇠)

�
⇥ (71)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃dWt

�!
",r,�!0

TZ

0

Z

Rd

Z

R

�0(x̃, ⇠)h1(t, x̃, ⇠)h2(t, x̃, ⇠)' (x̃) d⇠dx̃dWt

where we used the procedure leading to (65).
Having in mind (69), (70), and (71), we conclude that (61) has the following asymptotics:

TZ

0

Z

R2d

Z

R2

 
�2(x̃, ⇠)

2
⌫1

(t,x̃)(⇠)
!

�,r

h
2
�,r(t, ỹ, ⇣)⇢"(x̃ � ỹ) 0"(⇠ � ⇣)'

✓ x̃ + ỹ
2

◆
d⇣d⇠dỹdx̃dt+ (72)

+

TZ

0

Z

R2d

Z

R2

 
�2(ỹ, ⇣)

2
⌫2

(t,ỹ)(⇣)
!

�,r

h
1
�,r(t, x̃, ⇠)⇢"(x̃ � ỹ) 0"(⇠ � ⇣)'

✓ x̃ + ỹ
2

◆
d⇣d⇠dỹdx̃dt�

�
TZ

0

Z

R2d

Z

R2

⇣
�(x̃, ⇠)⌫1

(t,x̃)(⇠)
⌘
�,r

⇣
�(ỹ, ⇣)⌫2

(t,ỹ)(⇣)
⌘
�,r
⇥

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃dt�

�
TZ

0

Z

R2d

Z

R2

✓⇣
�(x̃, ⇠)⌫1

(t,x̃)(⇠)
⌘
�,r

h
2
�,r(t, ỹ, ⇣) �

⇣
�(ỹ, ⇣)⌫2

(t,ỹ)(⇣)
⌘
�,r

h
1
�,r(t, x̃, ⇠)

◆
⇥

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇣d⇠dỹdx̃dWt �!

",r,�!0

lim
"!0

1
2

TZ

0

Z

R2d

Z

R2

(�(x̃, ⇠) ��(ỹ, ⇣))2⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⌫2

(t,y)(⇣)d⌫1
(t,x)(⇠)dydxdt

�
TZ

0

Z

Rd

Z

R

�0(x̃, ⇠)'(x̃)h1(t, x̃, ⇠)h2(t, x̃, ⇠)d⇠dx̃dWt
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= �
TZ

0

Z

Rd

Z

R

�0(x̃, ⇠)'(x̃)h1(t, x̃, ⇠)h2(t, x̃, ⇠)d⇠dx̃dWt. (73)

Finally, we want to get rid of the entropy defect measures from (62). We use the fact that h
1 and h

2 are
decreasing with respect to ⇠ (i.e. ⇣) and that the measures m1 and m2 are non-negative. We have after two
integration by parts (keep in mind that @⇠ (⇠ � ⇣) = �@⇣ (⇠ � ⇣))

TZ

0

Z

R2d

Z

R2

⇣
h

2
�,r(t, ỹ, ⇣)@⇠m1,�,r(t, x̃, ⇠) � h

1
�,r(t, ỹ, ⇠)@⇣m2,�,r(t, ỹ, ⇣)

⌘
⇥ (74)

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹ

= �
TZ

0

Z

R2d

Z

R2

⇣
⌫2

(t,y),",�(⇣)m1,�,r(t, x̃, ⇠) + ⌫1
(t,x),",�(⇠)m2,�,r(t, ỹ, ⇣)

⌘
⇥

⇥ ⇢"(x̃ � ỹ) "(⇠ � ⇣)'
✓ x̃ + ỹ

2

◆
d⇠d⇣dx̃dỹ  0.

Finally, from (67), (68), (71), (72), and (74), we conclude after letting r, �, " ! 0 (first r, � ! 0 and then
"! 0) that (56)–(62) becomes:

Z

Rd

Z

R

h
1(T, x̃, ⇠)h2(T, x̃, ⇠)'(x̃)d⇠dx̃ +

TZ

0

Z

Rd

Z

R

�
j

k j
(x̃)ak(t, x̃, ⇠)h1(t, x̃, ⇠)h2(t, x̃, ⇠)'(x̃)d⇠dx̃dt


Z

Rd

Z

R

h
1
0h

2
0'(x̃)d⇠dx̃ +

TZ

0

Z

Rd

Z

R

a(x̃, ⇠) · r'(x̃)(h1
h2)(t, x̃, ⇠)d⇠dx̃dt

+

TZ

0

Z

Rd

Z

R

�0(x̃, ⇠)h1(t, x̃, ⇠)h2(t, x̃, ⇠)'(x̃)d⇠dx̃dWt.

From here, using the definition of the integral over a manifold and recalling (50), we see that it holds

Z

M

Z

R

h
1(T, x, ⇠)h2(T, x, ⇠)G((x))'(x)d⇠dx (75)


Z

M

Z

R

h
1
0(x, ⇠)h2

0(x, ⇠)G((x))'(x)d⇠dx �
TZ

0

Z

M

Z

R

(h1
h2)(t, x, ⇠)G((x))a(x, ⇠) · r1'(x)d⇠dxdt

+

TZ

0

Z

M

Z

R

�0(x, ⇠)(h1
h2)(t, x, ⇠)G((x))'(x)d⇠dxdWt.

Since we are on the compact manifold, we can take ' ⌘ 1 which yields:
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Z

M

Z

R

h
1(T, x, ⇠)h2(T, x, ⇠)G((x))d⇠dx (76)


Z

M

Z

R

h
1
0(x, ⇠)h2

0(x, ⇠)G((x))d⇠dx �
TZ

0

Z

M

Z

R

(h1
h2)(t, x, ⇠)G((x))a(x, ⇠) · r11 d⇠dxdt

+

TZ

0

Z

M

Z

R

�0(x, ⇠)(h1
h2)(t, x, ⇠)G((x))d⇠dxdWt.

We arrived to (46) plus a term which does not a↵ect using the Gronwall inequality and Itô isometry which
give uniqueness as in (47). Remark that the Gramian has no influence on the procedure since it is a positive
bounded function.
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