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Abstract

We prove the following. If f is a harmonic quasiconformal mapping between the unit badl
in R" and & spatial domain with C'* boundary, then f is Lipschiz continuous in B, This
generalizes some known results forn = 2 and improves some others in higher dimensional
LAse,

Keywords Harmonic mappings - Quasiconformal mappings - Holder continuity -
Lipschitz continuity
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1 Introduction

i
Forn > 1,let R” be the standard Euclidean space with the norm Jx| = (x7 ... + -~
where x = (X1, ..., & ). We denote the unit ball {x € B" : [x| < 1} by B, and its boundary,
the unit sphere {x € R™ : || = 1} by §.
Let U ¢ B" be a domain. Wesay f = (fi, ..., fa) 1 U = B"isa harmonic mapping if
the functions f; are harmonic real mappings, i.e. satisfy the n-dimensional Laplace equation

Eid
Af; = Z Difi =0
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368 A Gjokaj, D. Kalaj

be the Poisson kernel for B, wherex € B, £ € §, and

PLc) = [ Pes Huedo®)
5
the Poisson integral of continuous function u on §, where o denotes the normalized surface-
area measure on §. "Ei"hm P[u]{x}i@ contingous on # and harmonic on B. Since we will
focus on continuous function & on B, that are harmonic on B, then we will usnally express
them using the Poisson integral as

u = Pluls1x)-

A homeomorphism f : U — V, where U, V are domains in ®*, will be called K
quasiconformal (see 27D (K = 1) if f is absolutely continnous on lines (i.e. absolutely
continuous in almost every segment parallel to some of the coordinate axes and there exist
partial derivatives which are locally L" integrable in Uyand

IV f(x)] = KKV f(c)),
for all points x € U/, where
W f(x)) = inf {If (Yl = Jhl =1}
A function @ : I/ ¢ B® — R is said to be p-Halder continuous, & € C*(U) if
Dix) — Py
x!yggiaﬁ)’» %—éﬁ i

Similarly, one defines the class CH#(U) to consist of all functions & € C'(17) such
that V& € CH(U). The above iwo definitions extends in a natural way to the case of
vector-valued mappings.

We say that a domain @ C B" has C'- boundary if there is a C Le diffeomorphism
G:B— Q.

Pavlovié in [26] showed that harmonic quasiconformal mappings of the unit disk in
®2 onto itself are bi-Lipschitz mappings. From then, several important results have been
obtained regarding harmonic quasiconformal mappings in B? and the Lipschitz continuity.
The second author in [8] proved that every quasiconformal harmonic mapping between Jor-
dan domains with G beundariss is Lipschitz continuous on the closure of domain. The
cesult in [8] was extended in [9] for Jordan domains with only Dini’s smooth boundaries.
Lately, in [13] it was proved the Holder continuity (but in general, Lipschitz continuity does
not hold) of a harmonic quasiconformal mapping between two Jordan domains having only
! boundasies. Other important results for n = 2 with different conditions and settings can
be found in [1,4, 6, 11, 12, 15, 16, 18-20, 23, 24] and in their references.

For higher dimensional case there are some important results also (see e.g. [2, 10, 17,
211). In [10] it was proven that a quasiconformal mapping of the unit ball onto a domain
with C2 smooth boundary, satisfying Poisson differential ineguality, is Lipschitz continu-
ous. This implies that harmonic quasiconformal mappings from unit ball B to £ with C?
boundary are Lipschitz continuous. This was also proved by Astala and Manojlovie in [2]
using a slight modification of the following statement also proved there: a harmonic K-
quasiconformal mapping from B to B is Lipschitz with the Lipschitz constant depending
on the value of K, dimension of n and dist(f {0, 5).

Our main result generalizes the result in [8] and improves the mentioned corollaries in
[2] and [10]. It reads as follow.

€ springer



Ouasiconformal Harmonic Mappings Between the Unit Ball..

Theorem 1.1 Let [ : B — R be a quasiconformal harmonic (geh) mapping, f(B)=21,
and 852 € CV®. Then f is Lipschitz continuous in B.

The proof of the corresponding result for 2-dimensional case in [8] uses conformal map-
pings, however conformal mappings in higher-dimensional setting are very rigid, and this
is why we need to find another way to deal with the proof of Theorem 1.1. The initial idea
lies on the following simple approach. Let n € § and f(5) = g € 3%2. We can suppose that
g = 0 and the tangent plane of ¢ at 3Q is x,, = 0. This can be obtained in the following
way: Using a isometry L we can postcompose f such that we get a function f from B w
0, f(n) = 0 and the tangent plane of this point on 40 is x, = 0. Observe that f is also
harmonic and quasiconformal, because it is composed by a isometry. The Lipschitz conti-
nuity for function f would yield the proof of this property for the function f also, because
the isometry preserves the distances.

The proof is given in Section 3. It uses an iteration procedure. Before that, in next section,
we give some basic preparations through Theorems 2.1-2.4.

2 Auxiliary Results

The next theorem is of general interest; on the other side it plays an important role in proving
Theorem 1.1, Some versions of it for n = 2 can be found in [7] and [22].

Theorem 2,1 Lety : B € B* — R, n = 3, be a real harmonic function, n € §. Assyme
that |u(&)—u(n)] < MIE—n|%, V& € 8, for some p € (0, 1). Then we have C = C(M, p, n)
such that

Va1 = '™ < C,

where x = rn, r € [0, 1)

Proof Throught the proof, the constant C can change its value. Using the Poisson integral
formula we have

iel?
wix) = [ : e ul§)do(£).
L+ el — 28, )3

Ohserve that
Vilx) = f Qix, Bul(E)deo(E), 2.1y
5
where
(—2x) (1 + e — 218, ,:c))% —n(l = (1 t]_‘flz 2 g{&x”ﬁ—l £
(14 s = 2(, =)
(=20 (1 + PP — 245, %) = n(1 — e )x — §)

Q(x,5) =

. {2.2)
(1 + |e2 = 208, x)) ¥
(P2 ) —n0 -8 ] _
- (1 + 1< = 2(¢, x3) (1 + 1P - 28, 1))
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370 A Gjokaj, D Kalaj

Leth & R" be an arbitrary vector. Then

(Vulx), h) = f {@Cx, §), RluE)do(§). 2.3)

Since (2.3) is true for every harmonic Fanction u : B =» R, taking the constant function
wim), we get

- f (0, &), Khuln)da &), 2.4
£
which, together with (2.3}, gives us
(Vu(x), ) = f (O, £), B{u(E) — utn)ldo (). @5)
On the other side

=2(x. 1) (1 + 152 = 246, x)) — a1 — | P)x — £, b))
(1+ 2 — 26, ) |
Al i ek 1 L

[ = 2 6)

2Ll lh] + - @
= 2xlihl + Zn'ikE; - ’;; < @+ 2m)lhl.

In the Tast inequality it is used the factthat 1 =[x < |, |x =& |, which is obviously true from

the geometrical point of view, but it is also equivalent to {§, x} < x| (Cauchy-Schwarz
inequality).
From {2.2), (2.5}, {2.6) we get

[(Vu(x), )] < (2n + 2k f : ju(§) — u(m)]
1

+ e =208, )

de (§) 27

As k was taken arbitrary, then
() = uln)|
(1 + =% = 248, )

Vi)l < (2n +2) f —do(E), 28)

which is equivalent to

[Culrn)] < (2n+2) f fu(§) — ulm)|
(1472 =208, )
= (2n +2) f [u(§) = uln)|

(1= +rlg = P)*

cda (&)

de(§), (2.9)

where x = rn, r = |x| € [0, 1).
Using the condition of the theorem we get

& =ng|®
(1 =r)? 4 rlt ~nl )2

Because of the symmetry, it is emugh 1o show the required inequality for
T}! = {ia ﬁ@-*'a 0)~

Vutrn)] < M(2n+2) f —de (). 2.10)
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Quasiconformal Harmonic Mappings Between the Unit Ball.-

1stCase r = |x| = §.
As the integrand function in (2.10) depends only on the first coordinate of §, we use the

following representation ([3], Appendix AS):

(2 = 2x)5 ( i

. — (1- .:2)%1 deraa({)dx,
=4 r2-25))°

: S
IVu(rm| < M(2n + 2)Ch f f
-1 (@

where o, denotes the respective narma’lued surface-area measure on the unit sphere 5,2
in B! The constant C; depends on n and the volumes of the unit balls in R* and o
From this, it follows

2-20%
-1 {(1 =2 4 r(2 = 20))

nu?
Vulrp| = C f day_a(§) f (=-x} dx (2.11}

%2
P {jf @ -20)% 2*"_5‘(1 -5 i
(=N +r@=29) (1 =2 4 r2-20)"F
_62‘:-2“71 E-—x)}"r ............ ‘ I—x )lﬁdx
J 1 ((lmr] +r2=20) \( =P +r(2—2x) ’
Since r > 1, we easily get
1—x 1—-x
r—— =1
A=r2+r2=2x) ~ (U= +(1=x) "~
. ¥
; v
el (1 -x)T . :
'V ) d:w 210
Vulrmi =€ W rier x (2.12)
First, using the substitution 1 — x = 1%, then 5 = =, we have
24 (- [ 2 ,
[Vuirn)| *‘iﬂ'f raz-wl 1= Gzt 1 _{_tal-r)ﬂ's,
S0 _
wuel < ca -t [ s
= Jo 14s* ’

As the last integral converges we finally have
Vutrpl( =r)' ™" = C, (2,13)
forr e [L, 1), where C depends on M, p and n only.

ndCase r=|x| <
Here the proof is qmw straightforward. Since

7] e IR i,
=gl =r) 2 1 - gnt @.14)
Q-2 +riE—nPE ( }
using (2.10) we get
|Vu(rgi(l =) ™" < MQ2n -+ s, (2.15)
We conclude that the inequality is true for all r & [0, 1), with the final C being the larger
of the obtained constants on the RHS of (2.13) and (2.13). O
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372 A.Gjokaj, D. Kalaj

The idea of the proof in Section 3 will be based on obtaining locally the C* condition of
f on the unit sphere for p < 1, by increasing 4. In relation o a fixed point n € § this will,
in one moment, give us & similar inequality as the one from Theorem 2.1, but forp > L
So, on this step, we need a different version of the previuos statement which is given in the
following theorem. However, the proof of it is very similar to the proof of the previous one.

Theorem 2.2 Letu : B ¢ R™ = R, be a harmonic function, n € 5. Assume that ju(§) —

w(m)] = Mg —nl®#, ¥& € 8, for some . > 1. Then we have C = C (M, ., n) such that
Vulrm)| = C,

Joreveryr € [0, 1)

Progf The proof of the theorem for r € [%, 1) is identical to the previous theorem until

(2.12).

1 1 —x) . P

f S S lW {l-x)&’ldx- G

1 (I =r)Y+(1—x) p=1

shows that the ineguality is {rue.
For r € [0, 1), similar to (2.14) we see that
§ = nl*
(1 =2+l =9t

is bounded, so therefore again from (2.10) we have our inequality. O

The next celebrated theorem will also be used. The proof can be found in [5].

Theorem 2.3 (Mori’s theorem) Let g be a K -quasiconformal mapping of B onto B,n > 2,
with g(0) = 0. Then !
lg(x) = g1 = M(n, K)|x = yIF,

forallx, y € B, where p = K™=

We collect now the following useful result. The proof can be found in [25]. We will
formulate it in the form which corresponds to our notation and use.

Theorem 2.4 Let u be a real harmonic finction on B and e € (0, 1) such that
Hu(rn)l = l(ml] = C(1 = r}*,¥r e [0, 1}, 7 € 5, (2.16)
where C is independent of r and 7, then w Is p-Holder continuous in B.ie:
julx) — uly)] < Mix — p|¥,
foraltx,y € B.
Using the previous theorem we can easily prove the following lemma.
Lemmia 2.5 Let u be a real harmonic function on B and i € (0, 1) such that
[Vu(rml < CQ =1, ¥re (0,1}, 7€ 5,
where C does not depend on r and 1, then u is p-Hélder continuous in B.

& Springer



Quasiconformal Harmonic Mappings Between the Unit Ball_

Praof To prove this lemma, from Theorem 2 4, it is sufficient to show the relation (2.16),
We have

uin) — uirn) = f Dyudxy + ... 4 Dyudx,, 21
¥
where yr is the radial segment with endpoints ry and .
Therefore, we have

1
Hatrm)| = | < futrn) — u(m)] < f [(Vaten), n)lde

(1—r)*
T

i
< [ (1= dr=C (2.18)

3 Proof of the Main Result - Theorem 1.1

Proof First, let we prove the Holder continuity of f = (fi,..., Jfu). Indeed, let G be a
quasiconformal diffeomorphism (recall that £ has e boundary) from B® to @ which ig
Lipschitz continuous mapping up to the boundary, such that G(0) = f(0). Then the map-
ping g = G0 f is a K quasiconformal mapping (as a composition of two quasiconformal
mappings) of B onto B, where g(0) = (. According to Mori's Theorem 2.3, there exists a
constant My (n, K') such that

lglx) =gl < My (n, K x — »iF T,
forall x, y € B®,
As f = Gog, then f satisfies a similar inequality, being a composition of Lipschitz and
Hijlder continnons functions:

Lf ) =l < Calx — P, G.1)
for all x, y € B%, where § € (0, 1), and the constant C'y depends on M and the Lipschitz
constant of .

In view of the remark after the formulation of Theorem 1.1, there exists s neighbourhood
@ of the origin in R~ which is the projection of 32N B(0, £} in R*~! and a CH* fanction
¢ : O = R such that 3% 11 B(0, p) can be expressed as the graph of @, i.e, points of
d£2 11 B(0, p) are of the form:
(rsves o o—ts P1s <000 L)) (3.2)
where {(£1. ..., fu—1) € Q.
The function ¢ has the properties &(0,...,0) = QO and D P, ..., 00 = 0, for all
j € {?,2,.,.,” i l}im
V() — VO{w)| < Gl — wl®. 3.3
The constant Cs is the same for all points ¢ € 99, because of the €' condition of 3.
Also,
() = Slw)] = [(V&(e), ¢ - w}] < [VO()IE — o], (34)
where ¢ belongs to the segment [¢, w].
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374 A Gjokaj, 0. Kalaj

Using (3.3) we get
[V&(c)] < Vo) + IV®{c) — V& (2 (3.5)
= CARE +le =41 = G (1617 + 15 ~ 0]%),
IVO{c)] < VO (w)| + VO(c) - Vb (aw)) (3.6}
= Gllol” +le~ o) = 6 (lof* + ¢ - wl*),
which yields

I¥e()l = Camin {{iz1°, |0|7} + 1t = wf}.
Therefore, from (3.4) we have:

1) = ®(@)] < Calt ~ w| (min {jz ]2, ll®} + 1t = w]?), (37
forall £, win &,

Let F = (F, ..., Fa) = fls or PLF] = f. Notice that F is also C* in 5. We will use
the notation F{£) = (F, () Fua(E)). F,as F,also satisfies (3.1). In view of 3.2y we
have that in a small neighbourhood of # in §, Fy is of the form

Fn(s} = “ﬁ{ﬂ {&3: rrey Fﬂ—l{ﬁ}}'

We may also assume that this neighbourhood of 4 is of the form j«“{q} = B(n,8)nNS,
where 8 is small enough positive constant for all g € 392 Indeed, let U{g) = B(g, rg)Nag
be the neighbourhood of g in 382 such that afier the isometry Lg (the one that sends i 1o
0 and which makes the plane x, = 0 the tangent plane of 42 at point ), Lq{ﬁ (g} is
the neighbourhood of 0 which is the graphic of a functiggr as in (3.2}, Furthermore, we can
choose r, small enough, such that for every point p € [/ (g}, the image of U (g) under the
respective isometry L, is a graphic of a fanction,

Observe now U(g) = B{q, %) 1 3%, The collection {U{g)gean is a cover of 352,
As 3Q is compact, there exists a finite subcollection {U{g )}, which covers 99, Let
£ = min { oL, -'Im} Since F is continuous on a compact, there is a § > 0 such that if
161~ 82| = & £1,8 € §, then [F(&) - F£2)] < §. This ensures that the image of every
Vin) = B(xy, 5) 11 § under F is contained in a B{gj. rg;) N 32 = Ulg;), and further, after
the mentioned isometry is done, this image is the graphic of a function as in (3.2).

We get back to our fixed 5, such that f () = 0. Now

1Fa®) = )l = 10 (F©)) - o)) @8
= CIF @) (min {IF @), 0] + 17 ee) - o)
= CalF @I < ClToCylg — p|+o8,

forall § € V(x). The function F, is bounded, because F = f|y is bounded (F (&) < M,
forall§ € §), soif & & 5\V(n) then

; | ~ 20 . -
1Fag) — Fa(mp)l < 2M < saplt — ol P, (39)

Taking M = max {C:M\ﬂ’z, -,%j,l:%;} we get
I[P ) = Fo(m)l < Mg — p|U28, (3.10)

forall & € §.
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Quasiconformal Harmanic Mappings Between the Unit Ball_

Now, from Thearem 2.1, we have
IVLalrml = €1 = ni+f-1 v e g 1),

As f is quasiconformal mapping then
max | (x|
= O ————
min | f"(xjhy| =" el S
fhexl=1
Taking, by = ¢; and hy = ¢, forx = ri we have
IVSitrm] < KV fulrn)] = K - €1 = Uit
forall je{1,...,n~1].
This implies
IV £iGra)l = €(1 = pi+edB-1 (3.11)
where C is a new global constant for all Jeil,....n}, andall F € [0, 1).
We want to prove (3.11) in B. Letn; #£ o bean arbitrary point on § and flm) = q1.

Lﬁeg L4, be the isometry that sends g1 to 0}, with x, = 0 being the tangent plane of L, (#£2)
#L f«q;(‘fﬁ b=}

Letl of = f= (f;, ,ﬁ,) Then f has all the properties of the funetion F with
71 in place of n: at f(n,) = 0 the tangent plane of the sarface L, (3Q)isx, = 0and F
has a neighbourhood in L, (9€2) which can be expressed as a part of a graphic of the form
(3.2). Using the same procedure, we conclude that

IV fitrm)l = €1 = pyUisaip-1,

forall j € {1,...,n}, and all r € [0, 1). Constant C is universal and it does not depend
on ny, because & and M are independent of the choice of n € S As f = L1 f
(L;" is also an zmmezry) we get

Ti8) =b; + 3 Sainfi®),
k=1
Jell,....n}s0
u
VI =) ajV &) (3.12)
[ 5%
where {a; -’7}1*5.:‘ < 18 80 orthogonal matrix. From (3.12) we have:

VHE! < Y laliv i) (.13)

Kol
f n 4
< Ztvﬁ(mz) :
o 1

In the last inequality it is used the Cauchy-Schwarz inequality and the orthogonality of
matrix {@; g b jpcn. Taking £ = ryy we get

IV filrm)] < JC( = pyli+ed—1,

|5
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376 A Gjokaj, D, Kaloj

As the point n; was arbitrary we conclude
VGG = €1 = pyiradi=l

forall x € B.

From Lemma 2.5 it follows that f; € ¢+ (B), for all Jell,... .njandso f
CU+p (B). i

We could have chosen 8 < § (by decreasing it, if necessary) so the numbers (1-+u)kg £
1, forevery k. As 1+« > 1 there exists a unique integer ky such that (1 4+ &)%8 < 1 and
(1+@)*'g = 1. Repeating the procedure, we getthat f e CUTPB(Fy plismop
(B}j Note that such procedure for two-dimensional setting and different purpose has been
used i'n*u g%l} and in [14]. Similar 1o (3.8) it follows that IFa(E) ~ Fo(m)] < Mg -
Al "2 vg ¢ 5. This time, using Theorem 2.2 we obtain

IVInlrg)] = C,¥r € [0,1).

Using the same order of implications, first we get the same inequality for every fi on
points rr. Then, using the isometries, we get the inequality on every point of B fora global
constant 1@5 implies trivially, by mean value inequality, the Lipschitz continuity of
function f in B, [
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