
Cholesky decomposition
In linear algebra, the Cholesky decomposition or Cholesky factorization is a decomposition of a Hermitian, positive-definite matrix
into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g. Monte
Carlo simulations. It was discovered by André-Louis Cholesky for real matrices. When it is applicable, the Cholesky decomposition
is roughly twice as efficient as the LU decomposition for solving systems of linear equations.[1]

Statement

LDL decomposition

Example

Applications
Linear least squares
Non-linear optimization
Monte Carlo simulation
Kalman filters
Matrix inversion

Computation
The Cholesky algorithm
The Cholesky–Banachiewicz and Cholesky–Crout algorithms
Stability of the computation
LDL decomposition
Block variant
Updating the decomposition

Rank-one update
Rank-one downdate
Adding and Removing Rows and Columns

Proof for positive semi-definite matrices

Generalization

Implementations in programming libraries

See also

Notes

References

External links
History of science
Information
Computer code
Use of the matrix in simulation
Online calculators

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposition of the form
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where L is a lower triangular matrix with real and positive diagonal entries, and L* denotes the conjugate transpose of L. Every
Hermitian positive-definite matrix (and thus also every real-valued symmetric positive-definite matrix) has a unique Cholesky
decomposition.[2]

If the matrix A is Hermitian and positive semi-definite, then it still has a decomposition of the form A = LL* if the diagonal entries
of L are allowed to be zero.[3]

When A has real entries, L has real entries as well, and the factorization may be written A = LLT.[4]

The Cholesky decomposition is unique when A is positive definite; there is only one lower triangular matrix L with strictly positive
diagonal entries such that A = LL*. However, the decomposition need not be unique when A is positive semidefinite.

The converse holds trivially: if A can be written as LL* for some invertible L, lower triangular or otherwise, then A is Hermitian and
positive definite.

A closely related variant of the classical Cholesky decomposition is the LDL decomposition,

where L is a lower unit triangular (unitriangular) matrix, and D is a diagonal matrix.

This decomposition is related to the classical Cholesky decomposition of the form LL* as follows:

Or, given the classical Cholesky decomposition , the  form can be found by using the property that the diagonal of L
must be 1 and that both the Cholesky and the  form are lower triangles,[5] if S is a diagonal matrix that contains the main
diagonal of , then

The LDL variant, if efficiently implemented, requires the same space and computational complexity to construct and use but avoids
extracting square roots.[6] Some indefinite matrices for which no Cholesky decomposition exists have an LDL decomposition with
negative entries in D. For these reasons, the LDL decomposition may be preferred. For real matrices, the factorization has the form A
= LDLT and is often referred to as LDLT decomposition (or LDLT decomposition). It is closely related to the eigendecomposition
of real symmetric matrices, A = QΛQT.

Here is the Cholesky decomposition of a symmetric real matrix:

And here is its LDLT decomposition:
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The Cholesky decomposition is mainly used for the numerical solution of linear equations . If A is symmetric and positive
definite, then we can solve  by first computing the Cholesky decomposition , then solving  for y by
forward substitution, and finally solving  for x by back substitution.

An alternative way to eliminate taking square roots in the  decomposition is to compute the Cholesky decomposition 
, then solving  for y, and finally solving .

For linear systems that can be put into symmetric form, the Cholesky decomposition (or its LDL variant) is the method of choice, for
superior efficiency and numerical stability. Compared to the LU decomposition, it is roughly twice as efficient.

Systems of the form Ax = b with A symmetric and positive definite arise quite often in applications. For instance, the normal
equations in linear least squares problems are of this form. It may also happen that matrix A comes from an energy functional, which
must be positive from physical considerations; this happens frequently in the numerical solution of partial differential equations.

Non-linear multi-variate functions may be minimized over their parameters using variants of Newton's method called quasi-Newton
methods. At each iteration, the search takes a step s defined by solving Hs = −g for s, where s is the step, g is the gradient vector of
the function's partial first derivatives with respect to the parameters, and H is an approximation to the Hessian matrix of partial
second derivatives formed by repeated rank-1 updates at each iteration. Two well-known update formulae are called Davidon–
Fletcher–Powell (DFP) and Broyden–Fletcher–Goldfarb–Shanno (BFGS). Loss of the positive-definite condition through round-off
error is avoided if rather than updating an approximation to the inverse of the Hessian, one updates the Cholesky decomposition of an
approximation of the Hessian matrix itself.

The Cholesky decomposition is commonly used in the Monte Carlo method for simulating systems with multiple correlated variables.
The correlation matrix is decomposed, to give the lower-triangular L. Applying this to a vector of uncorrelated samples u produces a
sample vector Lu with the covariance properties of the system being modeled.[7]

For a simplified example that shows the economy one gets from the Cholesky decomposition, say one needs to generate two
correlated normal variables  and  with given correlation coefficient . All one needs to do is to generate two uncorrelated

Gaussian random variables  and . We set  and .

Unscented Kalman filters commonly use the Cholesky decomposition to choose a set of so-called sigma points. The Kalman filter
tracks the average state of a system as a vector x of length N and covariance as an N × N matrix P. The matrix P is always positive
semi-definite and can be decomposed into LLT. The columns of L can be added and subtracted from the mean x to form a set of 2N
vectors called sigma points. These sigma points completely capture the mean and covariance of the system state.
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The explicit inverse of a Hermitian matrix can be computed by Cholesky decomposition, in a manner similar to solving linear
systems, using  operations (  multiplications).[6] The entire inversion can even be efficiently performed in-place.

A non-Hermitian matrix B can also be inverted using the following identity, where BB* will always be Hermitian:

There are various methods for calculating the Cholesky decomposition. The computational complexity of commonly used algorithms
is O(n3) in general. The algorithms described below all involve about n3/3 FLOPs, where n is the size of the matrix A. Hence, they
have half the cost of the LU decomposition, which uses 2n3/3 FLOPs (see Trefethen and Bau 1997).

Which of the algorithms below is faster depends on the details of the implementation. Generally, the first algorithm will be slightly
slower because it accesses the data in a less regular manner.

The Cholesky algorithm, used to calculate the decomposition matrix L, is a modified version of Gaussian elimination.

The recursive algorithm starts with i := 1 and

A(1) := A.

At step i, the matrix A(i) has the following form:

where Ii−1 denotes the identity matrix of dimension i − 1.

If we now define the matrix Li by

then we can write A(i) as

where

Note that bi b*i is an outer product, therefore this algorithm is called the outer-product version in (Golub & Van Loan).

We repeat this for i from 1 to n. After n steps, we get A(n+1) = I. Hence, the lower triangular matrix L we are looking for is calculated
as
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If we write out the equation

we obtain the following formula for the entries of L:

The expression under the square root is always positive if A is real and positive-definite.

For complex Hermitian matrix, the following formula applies:

So we can compute the (i, j) entry if we know the entries to the left and above. The computation is usually arranged in either of the
following orders:

The Cholesky–Banachiewicz algorithm starts from the upper left corner of the matrix L and proceeds to calculate
the matrix row by row.
The Cholesky–Crout algorithm starts from the upper left corner of the matrix L and proceeds to calculate the
matrix column by column.

Either pattern of access allows the entire computation to be performed in-place if desired.

Suppose that we want to solve a well-conditioned system of linear equations. If the LU decomposition is used, then the algorithm is
unstable unless we use some sort of pivoting strategy. In the latter case, the error depends on the so-called growth factor of the
matrix, which is usually (but not always) small.

Now, suppose that the Cholesky decomposition is applicable. As mentioned above, the algorithm will be twice as fast. Furthermore,
no pivoting is necessary, and the error will always be small. Specifically, if we want to solve Ax = b, and y denotes the computed
solution, then y solves the perturbed system (A + E)y = b, where

The Cholesky–Banachiewicz and Cholesky–Crout algorithms

Access pattern
(white) and
writing pattern
(yellow) for the
in-place
Cholesky—
Banachiewicz
algorithm on a
5×5 matrix

Stability of the computation
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Here ||·||2 is the matrix 2-norm, cn is a small constant depending on n, and ε denotes the unit round-off.

One concern with the Cholesky decomposition to be aware of is the use of square roots. If the matrix being factorized is positive
definite as required, the numbers under the square roots are always positive in exact arithmetic. Unfortunately, the numbers can
become negative because of round-off errors, in which case the algorithm cannot continue. However, this can only happen if the
matrix is very ill-conditioned. One way to address this is to add a diagonal correction matrix to the matrix being decomposed in an
attempt to promote the positive-definiteness.[8] While this might lessen the accuracy of the decomposition, it can be very favorable
for other reasons; for example, when performing Newton's method in optimization, adding a diagonal matrix can improve stability
when far from the optimum.

An alternative form, eliminating the need to take square roots, is the symmetric indefinite factorization[9]

If A is real, the following recursive relations apply for the entries of D and L:

For complex Hermitian matrix A, the following formula applies:

Again, the pattern of access allows the entire computation to be performed in-place if desired.

When used on indefinite matrices, the LDL* factorization is known to be unstable without careful pivoting;[10] specifically, the
elements of the factorization can grow arbitrarily. A possible improvement is to perform the factorization on block sub-matrices,
commonly 2 × 2:[11]

LDL decomposition

Block variant
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where every element in the matrices above is a square submatrix. From this, these analogous recursive relations follow:

This involves matrix products and explicit inversion, thus limiting the practical block size.

A task that often arises in practice is that one needs to update a Cholesky decomposition. In more details, one has already computed
the Cholesky decomposition  of some matrix , then one changes the matrix  in some way into another matrix, say ,
and one wants to compute the Cholesky decomposition of the updated matrix: . The question is now whether one can use
the Cholesky decomposition of  that was computed before to compute the Cholesky decomposition of .

The specific case, where the updated matrix  is related to the matrix  by , is known as a rank-one update.

Here is a little function[12] written in Matlab syntax that realizes a rank-one update:

function [L] = cholupdate (L, x) 
    n = length(x); 
    for k = 1:n 
        r = sqrt(L(k, k)^2 + x(k)^2); 
        c = r / L(k, k); 
        s = x(k) / L(k, k); 
        L(k, k) = r; 
        L(k+1:n, k) = (L(k+1:n, k) + s * x(k+1:n)) / c; 
        x(k+1:n) = c * x(k+1:n) - s * L(k+1:n, k); 
    end 
end 

A rank-one downdate is similar to a rank-one update, except that the addition is replaced by subtraction: . This only
works if the new matrix  is still positive definite.

The code for the rank-one update shown above can easily be adapted to do a rank-one downdate: one merely needs to replace the two
additions in the assignment to r and L(k+1:n, k) by subtractions.

If we have a symmetric and positive definite matrix  represented in block form as

Updating the decomposition

Rank-one update

Rank-one downdate

Adding and Removing Rows and Columns
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And it's upper Cholesky factor

Then, for a new matrix  which is the same as  but with the insertion of new rows and columns

we are interested in finding the Cholesky factorisation of , which we call , without directly computing the entire decomposition.

Writing  for the solution of , which can be found easily for triangular matrices, and  for the Cholesky
decomposition of , the following relations can be found;

These formulae may be used to determine the Cholesky factor after the insertion of rows or columns in any position, if we set the row
and column dimensions appropriately (including to zero). The inverse problem, when we have

with known Cholesky decomposition

And we wish to determine the Cholesky factor

of the matrix  with rows and columns removed



yields the following rules

Notice that the equations above that involve finding the Cholesky decomposition of a new matrix are all of the form ,
which allows them to be efficiently calculated using the update and downdate procedures detailed in the previous section.[13]

The above algorithms show that every positive definite matrix  has a Cholesky decomposition. This result can be extended to the
positive semi-definite case by a limiting argument. The argument is not fully constructive, i.e., it gives no explicit numerical
algorithms for computing Cholesky factors.

If  is an  positive semi-definite matrix, then the sequence  consists of positive definite matrices.

(This is an immediate consequence of, for example, the spectral mapping theorem for the polynomial functional calculus.) Also,

in operator norm. From the positive definite case, each  has Cholesky decomposition . By property of the operator
norm,

So  is a bounded set in the Banach space of operators, therefore relatively compact (because the underlying vector space is
finite-dimensional). Consequently, it has a convergent subsequence, also denoted by , with limit . It can be easily checked
that this  has the desired properties, i.e. , and  is lower triangular with non-negative diagonal entries: for all  and ,

Therefore, . Because the underlying vector space is finite-dimensional, all topologies on the space of operators are
equivalent. So  tends to  in norm means  tends to  entrywise. This in turn implies that, since each  is lower
triangular with non-negative diagonal entries,  is also.

The Cholesky factorization can be generalized to (not necessarily finite) matrices with operator entries. Let  be a sequence of
Hilbert spaces. Consider the operator matrix

acting on the direct sum
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where each

is a bounded operator. If A is positive (semidefinite) in the sense that for all finite k and for any

we have , then there exists a lower triangular operator matrix L such that A = LL*. One can also take the diagonal
entries of L to be positive.

C programming language: the GNU Scientific Library provides several implementations of Cholesky decomposition.
Maxima computer algebra system: function cholesky computes Cholesky decomposition.
GNU Octave numerical computations system provides several functions to calculate, update, and apply a Cholesky
decomposition.
The LAPACK library provides a high performance implementation of the Cholesky decomposition that can be
accessed from Fortran, C and most languages.
In Python, the function "cholesky" from the numpy.linalg module performs Cholesky decomposition.
In Matlab Programming, the "chol" command can be used to simply apply this to a matrix.
In R and Julia, the "chol" function gives the Cholesky decomposition.
In Mathematica, the function "CholeskyDecomposition" can be applied to a matrix.
In C++, the command "chol" from the armadillo library performs Cholesky decomposition. The Eigen library supplies
Cholesky factorizations for both sparse and dense matrices.
In the ROOT package, the TDecompChol class is available.
In Analytica, the function Decompose gives the Cholesky decomposition.
The Apache Commons Math library has an implementation which can be used in Java, Scala and any other JVM
language.
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LDL decomposition routines in Matlab.
Armadillo is a C++ linear algebra package

Generating Correlated Random Variables and Stochastic Processes, Martin Haugh, Columbia University

Online Matrix Calculator Performs Cholesky decomposition of matrices online.
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