
QR algorithm
In numerical linear algebra, the QR algorithm is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and
eigenvectors of a matrix. The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya,
working independently.[1][2][3] The basic idea is to perform a QR decomposition, writing the matrix as a product of an orthogonal
matrix and an upper triangular matrix, multiply the factors in the reverse order, and iterate.
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Formally, let A be a real matrix of which we want to compute the eigenvalues, and let A0:=A. At the k-th step (starting with k = 0), we
compute the QR decomposition Ak=QkRk where Qk is an orthogonal matrix (i.e., QT = Q−1) and Rk is an upper triangular matrix. We
then form Ak+1 = RkQk. Note that

so all the Ak are similar and hence they have the same eigenvalues. The algorithm is numerically stable because it proceeds by
orthogonal similarity transforms.

Under certain conditions,[4] the matrices Ak converge to a triangular matrix, the Schur form of A. The eigenvalues of a triangular
matrix are listed on the diagonal, and the eigenvalue problem is solved. In testing for convergence it is impractical to require exact
zeros, but the Gershgorin circle theorem provides a bound on the error.

In this crude form the iterations are relatively expensive. This can be mitigated by first bringing the matrix A to upper Hessenberg
form (which costs  arithmetic operations using a technique based on Householder reduction), with a finite sequence
of orthogonal similarity transforms, somewhat like a two-sided QR decomposition.[5][6] (For QR decomposition, the Householder
reflectors are multiplied only on the left, but for the Hessenberg case they are multiplied on both left and right.) Determining the QR
decomposition of an upper Hessenberg matrix costs  arithmetic operations. Moreover, because the Hessenberg form is
already nearly upper-triangular (it has just one nonzero entry below each diagonal), using it as a starting point reduces the number of
steps required for convergence of the QR algorithm.

If the original matrix is symmetric, then the upper Hessenberg matrix is also symmetric and thus tridiagonal, and so are all the Ak.
This procedure costs  arithmetic operations using a technique based on Householder reduction.[5][6] Determining the
QR decomposition of a symmetric tridiagonal matrix costs  operations.[7]
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The rate of convergence depends on the separation between eigenvalues, so a practical algorithm will use shifts, either explicit or
implicit, to increase separation and accelerate convergence. A typical symmetric QR algorithm isolates each eigenvalue (then reduces
the size of the matrix) with only one or two iterations, making it efficient as well as robust.

In modern computational practice, the QR algorithm is performed in an implicit version which makes the use of multiple shifts easier
to introduce.[4] The matrix is first brought to upper Hessenberg form  as in the explicit version; then, at each step, the
first column of  is transformed via a small-size Householder similarity transformation to the first column of  (or ),
where , of degree , is the polynomial that defines the shifting strategy (often , where  and  are the
two eigenvalues of the trailing  principal submatrix of , the so-called implicit double-shift). Then successive Householder
transformations of size  are performed in order to return the working matrix  to upper Hessenberg form. This operation is
known as bulge chasing, due to the peculiar shape of the non-zero entries of the matrix along the steps of the algorithm. As in the
first version, deflation is performed as soon as one of the sub-diagonal entries of  is sufficiently small.

Since in the modern implicit version of the procedure no QR decompositions are explicitly performed, some authors, for instance
Watkins,[8] suggested changing its name to Francis algorithm. Golub and Van Loan use the term Francis QR step.

The QR algorithm can be seen as a more sophisticated variation of the basic "power" eigenvalue algorithm. Recall that the power
algorithm repeatedly multiplies A times a single vector, normalizing after each iteration. The vector converges to an eigenvector of
the largest eigenvalue. Instead, the QR algorithm works with a complete basis of vectors, using QR decomposition to renormalize
(and orthogonalize). For a symmetric matrix A, upon convergence, AQ = QΛ, where Λ is the diagonal matrix of eigenvalues to which
A converged, and where Q is a composite of all the orthogonal similarity transforms required to get there. Thus the columns of Q are
the eigenvectors.

The QR algorithm was preceded by the LR algorithm, which uses the LU decomposition instead of the QR decomposition. The QR
algorithm is more stable, so the LR algorithm is rarely used nowadays. However, it represents an important step in the development
of the QR algorithm.

The LR algorithm was developed in the early 1950s by Heinz Rutishauser, who worked at that time as a research assistant of Eduard
Stiefel at ETH Zurich. Stiefel suggested that Rutishauer use the sequence of moments y0

T Ak x0, k = 0, 1, … (where x0 and y0 are
arbitrary vectors) to find the eigenvalues of A. Rutishauer took an algorithm of Alexander Aitken for this task and developed it into
the quotient–difference algorithm or qd algorithm. After arranging the computation in a suitable shape, he discovered that the qd
algorithm is in fact the iteration Ak = LkUk (LU decomposition), Ak+1 = UkLk, applied on a tridiagonal matrix, from which the LR
algorithm follows.[9]

One variant of the QR algorithm, the Golub-Kahan-Reinsch algorithm starts with reducing a general matrix into a bidiagonal one.[10]

This variant of the QR algorithm for the computation of singular values was first described by Golub & Kahan (1965). The LAPACK
subroutine DBDSQR implements this iterative method, with some modifications to cover the case where the singular values are very
small (Demmel & Kahan 1990). Together with a first step using Householder reflections and, if appropriate, QR decomposition, this
forms the DGESVD routine for the computation of the singular value decomposition.
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