
Chapter 3

Finding Similar Items

A fundamental data-mining problem is to examine data for “similar” items. We
shall take up applications in Section 3.1, but an example would be looking at a
collection of Web pages and finding near-duplicate pages. These pages could be
plagiarisms, for example, or they could be mirrors that have almost the same
content but differ in information about the host and about other mirrors.

We begin by phrasing the problem of similarity as one of finding sets with
a relatively large intersection. We show how the problem of finding textually
similar documents can be turned into such a set problem by the technique known
as “shingling.” Then, we introduce a technique called “minhashing,” which
compresses large sets in such a way that we can still deduce the similarity of
the underlying sets from their compressed versions. Other techniques that work
when the required degree of similarity is very high are covered in Section 3.9.

Another important problem that arises when we search for similar items of
any kind is that there may be far too many pairs of items to test each pair for
their degree of similarity, even if computing the similarity of any one pair can be
made very easy. That concern motivates a technique called “locality-sensitive
hashing,” for focusing our search on pairs that are most likely to be similar.

Finally, we explore notions of “similarity” that are not expressible as inter-
section of sets. This study leads us to consider the theory of distance measures
in arbitrary spaces. It also motivates a general framework for locality-sensitive
hashing that applies for other definitions of “similarity.”

3.1 Applications of Near-Neighbor Search

We shall focus initially on a particular notion of “similarity”: the similarity of
sets by looking at the relative size of their intersection. This notion of similarity
is called “Jaccard similarity,” and will be introduced in Section 3.1.1. We then
examine some of the uses of finding similar sets. These include finding textually
similar documents and collaborative filtering by finding similar customers and
similar products. In order to turn the problem of textual similarity of documents

71

72 CHAPTER 3. FINDING SIMILAR ITEMS

into one of set intersection, we use a technique called “shingling,” which is
introduced in Section 3.2.

3.1.1 Jaccard Similarity of Sets

The Jaccard similarity of sets S and T is |S ∩ T |/|S ∪ T |, that is, the ratio
of the size of the intersection of S and T to the size of their union. We shall
denote the Jaccard similarity of S and T by SIM(S, T).

Example 3.1 : In Fig. 3.1 we see two sets S and T . There are three elements
in their intersection and a total of eight elements that appear in S or T or both.
Thus, SIM(S, T) = 3/8. ✷

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

T
S

Figure 3.1: Two sets with Jaccard similarity 3/8

3.1.2 Similarity of Documents

An important class of problems that Jaccard similarity addresses well is that
of finding textually similar documents in a large corpus such as the Web or a
collection of news articles. We should understand that the aspect of similarity
we are looking at here is character-level similarity, not “similar meaning,” which
requires us to examine the words in the documents and their uses. That problem
is also interesting but is addressed by other techniques, which we hinted at in
Section 1.3.1. However, textual similarity also has important uses. Many of
these involve finding duplicates or near duplicates. First, let us observe that
testing whether two documents are exact duplicates is easy; just compare the
two documents character-by-character, and if they ever differ then they are not
the same. However, in many applications, the documents are not identical, yet
they share large portions of their text. Here are some examples:

3.1. APPLICATIONS OF NEAR-NEIGHBOR SEARCH 73

Plagiarism

Finding plagiarized documents tests our ability to find textual similarity. The
plagiarizer may extract only some parts of a document for his own. He may alter
a few words and may alter the order in which sentences of the original appear.
Yet the resulting document may still contain 50% or more of the original. No
simple process of comparing documents character by character will detect a
sophisticated plagiarism.

Mirror Pages

It is common for important or popular Web sites to be duplicated at a number
of hosts, in order to share the load. The pages of these mirror sites will be
quite similar, but are rarely identical. For instance, they might each contain
information associated with their particular host, and they might each have
links to the other mirror sites but not to themselves. A related phenomenon
is the appropriation of pages from one class to another. These pages might
include class notes, assignments, and lecture slides. Similar pages might change
the name of the course, year, and make small changes from year to year. It
is important to be able to detect similar pages of these kinds, because search
engines produce better results if they avoid showing two pages that are nearly
identical within the first page of results.

Articles from the Same Source

It is common for one reporter to write a news article that gets distributed,
say through the Associated Press, to many newspapers, which then publish
the article on their Web sites. Each newspaper changes the article somewhat.
They may cut out paragraphs, or even add material of their own. They most
likely will surround the article by their own logo, ads, and links to other articles
at their site. However, the core of each newspaper’s page will be the original
article. News aggregators, such as Google News, try to find all versions of such
an article, in order to show only one, and that task requires finding when two
Web pages are textually similar, although not identical.1

3.1.3 Collaborative Filtering as a Similar-Sets Problem

Another class of applications where similarity of sets is very important is called
collaborative filtering, a process whereby we recommend to users items that were
liked by other users who have exhibited similar tastes. We shall investigate
collaborative filtering in detail in Section 9.3, but for the moment let us see
some common examples.

1News aggregation also involves finding articles that are about the same topic, even though
not textually similar. This problem too can yield to a similarity search, but it requires
techniques other than Jaccard similarity of sets.

74 CHAPTER 3. FINDING SIMILAR ITEMS

On-Line Purchases

Amazon.com has millions of customers and sells millions of items. Its database
records which items have been bought by which customers. We can say two cus-
tomers are similar if their sets of purchased items have a high Jaccard similarity.
Likewise, two items that have sets of purchasers with high Jaccard similarity
will be deemed similar. Note that, while we might expect mirror sites to have
Jaccard similarity above 90%, it is unlikely that any two customers have Jac-
card similarity that high (unless they have purchased only one item). Even a
Jaccard similarity like 20% might be unusual enough to identify customers with
similar tastes. The same observation holds for items; Jaccard similarities need
not be very high to be significant.

Collaborative filtering requires several tools, in addition to finding similar
customers or items, as we discuss in Chapter 9. For example, two Amazon
customers who like science-fiction might each buy many science-fiction books,
but only a few of these will be in common. However, by combining similarity-
finding with clustering (Chapter 7), we might be able to discover that science-
fiction books are mutually similar and put them in one group. Then, we can
get a more powerful notion of customer-similarity by asking whether they made
purchases within many of the same groups.

Movie Ratings

NetFlix records which movies each of its customers rented, and also the ratings
assigned to those movies by the customers. We can see movies as similar if they
were rented or rated highly by many of the same customers, and see customers
as similar if they rented or rated highly many of the same movies. The same
observations that we made for Amazon above apply in this situation: similarities
need not be high to be significant, and clustering movies by genre will make
things easier.

In addition, the matter of ratings introduces a new element. Some options
are:

1. Ignore low-rated customer/movie pairs; that is, treat these events as if
the customer never rented the movie.

2. When comparing customers, imagine two set elements for each movie,
“liked” and “hated.” If a customer rated a movie highly, put the “liked”
for that movie in the customer’s set. If they gave a low rating to a movie,
put “hated” for that movie in their set. Then, we can look for high Jaccard
similarity among these sets. We can do a similar trick when comparing
movies.

3. If ratings are 1-to-5-stars, put a movie in a customer’s set n times if
they rated the movie n-stars. Then, use Jaccard similarity for bags when
measuring the similarity of customers. The Jaccard similarity for bags
B and C is defined by counting an element n times in the intersection if

3.2. SHINGLING OF DOCUMENTS 75

n is the minimum of the number of times the element appears in B and
C. In the union, we count the element the sum of the number of times it
appears in B and in C.

Example 3.2 : The bag-similarity of bags {a, a, a, b} and {a, a, b, b, c} is 1/3.
The intersection counts a twice and b once, so its size is 3. The size of the union
of two bags is always the sum of the sizes of the two bags, or 9 in this case. ✷

3.1.4 Exercises for Section 3.1

Exercise 3.1.1 : Compute the Jaccard similarities of each pair of the following
three sets: {1, 2, 3, 4}, {2, 3, 5, 7}, and {2, 4, 6}.

Exercise 3.1.2 : Compute the Jaccard bag similarity of each pair of the fol-
lowing three bags: {1, 1, 1, 2}, {1, 1, 2, 2, 3}, and {1, 2, 3, 4}.

!! Exercise 3.1.3 : Suppose we have a universal set U of n elements, and we
choose two subsets S and T at random, each with m of the n elements. What
is the expected value of the Jaccard similarity of S and T ?

3.2 Shingling of Documents

The most effective way to represent documents as sets, for the purpose of iden-
tifying lexically similar documents is to construct from the document the set
of short strings that appear within it. If we do so, then documents that share
pieces as short as sentences or even phrases will have many common elements
in their sets, even if those sentences appear in different orders in the two docu-
ments. In this section, we introduce the simplest and most common approach,
shingling, as well as an interesting variation.

3.2.1 k-Shingles

A document is a string of characters. Define a k-shingle for a document to be
any substring of length k found within the document. Then, we may associate
with each document the set of k-shingles that appear one or more times within
that document.

Example 3.3 : Suppose our document D is the string abcdabd, and we pick
k = 2. Then the set of 2-shingles for D is {ab, bc, cd, da, bd}.

Note that the substring ab appears twice within D, but appears only once
as a shingle. A variation of shingling produces a bag, rather than a set, so each
shingle would appear in the result as many times as it appears in the document.
However, we shall not use bags of shingles here. ✷

There are several options regarding how white space (blank, tab, newline,
etc.) is treated. It probably makes sense to replace any sequence of one or more

76 CHAPTER 3. FINDING SIMILAR ITEMS

white-space characters by a single blank. That way, we distinguish shingles that
cover two or more words from those that do not.

Example 3.4 : If we use k = 9, but eliminate whitespace altogether, then we
would see some lexical similarity in the sentences “The plane was ready for

touch down”. and “The quarterback scored a touchdown”. However, if we
retain the blanks, then the first has shingles touch dow and ouch down, while
the second has touchdown. If we eliminated the blanks, then both would have
touchdown. ✷

3.2.2 Choosing the Shingle Size

We can pick k to be any constant we like. However, if we pick k too small, then
we would expect most sequences of k characters to appear in most documents.
If so, then we could have documents whose shingle-sets had high Jaccard simi-
larity, yet the documents had none of the same sentences or even phrases. As
an extreme example, if we use k = 1, most Web pages will have most of the
common characters and few other characters, so almost all Web pages will have
high similarity.

How large k should be depends on how long typical documents are and how
large the set of typical characters is. The important thing to remember is:

• k should be picked large enough that the probability of any given shingle
appearing in any given document is low.

Thus, if our corpus of documents is emails, picking k = 5 should be fine.
To see why, suppose that only letters and a general white-space character ap-
pear in emails (although in practice, most of the printable ASCII characters
can be expected to appear occasionally). If so, then there would be 275 =
14,348,907 possible shingles. Since the typical email is much smaller than 14
million characters long, we would expect k = 5 to work well, and indeed it does.

However, the calculation is a bit more subtle. Surely, more than 27 charac-
ters appear in emails, However, all characters do not appear with equal proba-
bility. Common letters and blanks dominate, while ”z” and other letters that
have high point-value in Scrabble are rare. Thus, even short emails will have
many 5-shingles consisting of common letters, and the chances of unrelated
emails sharing these common shingles is greater than would be implied by the
calculation in the paragraph above. A good rule of thumb is to imagine that
there are only 20 characters and estimate the number of k-shingles as 20k. For
large documents, such as research articles, choice k = 9 is considered safe.

3.2.3 Hashing Shingles

Instead of using substrings directly as shingles, we can pick a hash function
that maps strings of length k to some number of buckets and treat the resulting
bucket number as the shingle. The set representing a document is then the

3.2. SHINGLING OF DOCUMENTS 77

set of integers that are bucket numbers of one or more k-shingles that appear
in the document. For instance, we could construct the set of 9-shingles for a
document and then map each of those 9-shingles to a bucket number in the
range 0 to 232 − 1. Thus, each shingle is represented by four bytes instead
of nine. Not only has the data been compacted, but we can now manipulate
(hashed) shingles by single-word machine operations.

Notice that we can differentiate documents better if we use 9-shingles and
hash them down to four bytes than to use 4-shingles, even though the space used
to represent a shingle is the same. The reason was touched upon in Section 3.2.2.
If we use 4-shingles, most sequences of four bytes are unlikely or impossible to
find in typical documents. Thus, the effective number of different shingles is
much less than 232− 1. If, as in Section 3.2.2, we assume only 20 characters are
frequent in English text, then the number of different 4-shingles that are likely
to occur is only (20)4 = 160,000. However, if we use 9-shingles, there are many
more than 232 likely shingles. When we hash them down to four bytes, we can
expect almost any sequence of four bytes to be possible, as was discussed in
Section 1.3.2.

3.2.4 Shingles Built from Words

An alternative form of shingle has proved effective for the problem of identifying
similar news articles, mentioned in Section 3.1.2. The exploitable distinction for
this problem is that the news articles are written in a rather different style than
are other elements that typically appear on the page with the article. News
articles, and most prose, have a lot of stop words (see Section 1.3.1), the most
common words such as “and,” “you,” “to,” and so on. In many applications,
we want to ignore stop words, since they don’t tell us anything useful about
the article, such as its topic.

However, for the problem of finding similar news articles, it was found that
defining a shingle to be a stop word followed by the next two words, regardless
of whether or not they were stop words, formed a useful set of shingles. The
advantage of this approach is that the news article would then contribute more
shingles to the set representing the Web page than would the surrounding ele-
ments. Recall that the goal of the exercise is to find pages that had the same
articles, regardless of the surrounding elements. By biasing the set of shingles
in favor of the article, pages with the same article and different surrounding
material have higher Jaccard similarity than pages with the same surrounding
material but with a different article.

Example 3.5 : An ad might have the simple text “Buy Sudzo.” However, a
news article with the same idea might read something like “A spokesperson

for the Sudzo Corporation revealed today that studies have shown it is

good for people to buy Sudzo products.” Here, we have italicized all the
likely stop words, although there is no set number of the most frequent words
that should be considered stop words. The first three shingles made from a
stop word and the next two following are:

78 CHAPTER 3. FINDING SIMILAR ITEMS

A spokesperson for

for the Sudzo

the Sudzo Corporation

There are nine shingles from the sentence, but none from the “ad.” ✷

3.2.5 Exercises for Section 3.2

Exercise 3.2.1 : What are the first ten 3-shingles in the first sentence of Sec-
tion 3.2?

Exercise 3.2.2 : If we use the stop-word-based shingles of Section 3.2.4, and
we take the stop words to be all the words of three or fewer letters, then what
are the shingles in the first sentence of Section 3.2?

Exercise 3.2.3 : What is the largest number of k-shingles a document of n
bytes can have? You may assume that the size of the alphabet is large enough
that the number of possible strings of length k is at least as n.

3.3 Similarity-Preserving Summaries of Sets

Sets of shingles are large. Even if we hash them to four bytes each, the space
needed to store a set is still roughly four times the space taken by the document.
If we have millions of documents, it may well not be possible to store all the
shingle-sets in main memory.2

Our goal in this section is to replace large sets by much smaller represen-
tations called “signatures.” The important property we need for signatures is
that we can compare the signatures of two sets and estimate the Jaccard sim-
ilarity of the underlying sets from the signatures alone. It is not possible that
the signatures give the exact similarity of the sets they represent, but the esti-
mates they provide are close, and the larger the signatures the more accurate
the estimates. For example, if we replace the 200,000-byte hashed-shingle sets
that derive from 50,000-byte documents by signatures of 1000 bytes, we can
usually get within a few percent.

3.3.1 Matrix Representation of Sets

Before explaining how it is possible to construct small signatures from large
sets, it is helpful to visualize a collection of sets as their characteristic matrix.
The columns of the matrix correspond to the sets, and the rows correspond to
elements of the universal set from which elements of the sets are drawn. There
is a 1 in row r and column c if the element for row r is a member of the set for
column c. Otherwise the value in position (r, c) is 0.

2There is another serious concern: even if the sets fit in main memory, the number of pairs
may be too great for us to evaluate the similarity of each pair. We take up the solution to
this problem in Section 3.4.

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 79

Element S1 S2 S3 S4

a 1 0 0 1

b 0 0 1 0

c 0 1 0 1

d 1 0 1 1

e 0 0 1 0

Figure 3.2: A matrix representing four sets

Example 3.6 : In Fig. 3.2 is an example of a matrix representing sets chosen
from the universal set {a, b, c, d, e}. Here, S1 = {a, d}, S2 = {c}, S3 = {b, d, e},
and S4 = {a, c, d}. The top row and leftmost columns are not part of the matrix,
but are present only to remind us what the rows and columns represent. ✷

It is important to remember that the characteristic matrix is unlikely to be
the way the data is stored, but it is useful as a way to visualize the data. For one
reason not to store data as a matrix, these matrices are almost always sparse
(they have many more 0’s than 1’s) in practice. It saves space to represent a
sparse matrix of 0’s and 1’s by the positions in which the 1’s appear. For another
reason, the data is usually stored in some other format for other purposes.

As an example, if rows are products, and columns are customers, represented
by the set of products they bought, then this data would really appear in a
database table of purchases. A tuple in this table would list the item, the
purchaser, and probably other details about the purchase, such as the date and
the credit card used.

3.3.2 Minhashing

The signatures we desire to construct for sets are composed of the results of a
large number of calculations, say several hundred, each of which is a “minhash”
of the characteristic matrix. In this section, we shall learn how a minhash is
computed in principle, and in later sections we shall see how a good approxi-
mation to the minhash is computed in practice.

To minhash a set represented by a column of the characteristic matrix, pick
a permutation of the rows. The minhash value of any column is the number of
the first row, in the permuted order, in which the column has a 1.

Example 3.7 : Let us suppose we pick the order of rows beadc for the matrix
of Fig. 3.2. This permutation defines a minhash function h that maps sets to
rows. Let us compute the minhash value of set S1 according to h. The first
column, which is the column for set S1, has 0 in row b, so we proceed to row e,
the second in the permuted order. There is again a 0 in the column for S1, so
we proceed to row a, where we find a 1. Thus. h(S1) = a.

Although it is not physically possible to permute very large characteristic
matrices, the minhash function h implicitly reorders the rows of the matrix of

80 CHAPTER 3. FINDING SIMILAR ITEMS

Element S1 S2 S3 S4

b 0 0 1 0

e 0 0 1 0

a 1 0 0 1

d 1 0 1 1

c 0 1 0 1

Figure 3.3: A permutation of the rows of Fig. 3.2

Fig. 3.2 so it becomes the matrix of Fig. 3.3. In this matrix, we can read off
the values of h by scanning from the top until we come to a 1. Thus, we see
that h(S2) = c, h(S3) = b, and h(S4) = a. ✷

3.3.3 Minhashing and Jaccard Similarity

There is a remarkable connection between minhashing and Jaccard similarity
of the sets that are minhashed.

• The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard similarity
of those sets.

To see why, we need to picture the columns for those two sets. If we restrict
ourselves to the columns for sets S1 and S2, then rows can be divided into three
classes:

1. Type X rows have 1 in both columns.

2. Type Y rows have 1 in one of the columns and 0 in the other.

3. Type Z rows have 0 in both columns.

Since the matrix is sparse, most rows are of type Z. However, it is the ratio
of the numbers of type X and type Y rows that determine both SIM(S1, S2)
and the probability that h(S1) = h(S2). Let there be x rows of type X and y
rows of type Y . Then SIM(S1, S2) = x/(x+ y). The reason is that x is the size
of S1 ∩ S2 and x+ y is the size of S1 ∪ S2.

Now, consider the probability that h(S1) = h(S2). If we imagine the rows
permuted randomly, and we proceed from the top, the probability that we shall
meet a type X row before we meet a type Y row is x/(x + y). But if the
first row from the top other than type Z rows is a type X row, then surely
h(S1) = h(S2). On the other hand, if the first row other than a type Z row
that we meet is a type Y row, then the set with a 1 gets that row as its minhash
value. However the set with a 0 in that row surely gets some row further down
the permuted list. Thus, we know h(S1) �= h(S2) if we first meet a type Y row.
We conclude the probability that h(S1) = h(S2) is x/(x+ y), which is also the
Jaccard similarity of S1 and S2.

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 81

3.3.4 Minhash Signatures

Again think of a collection of sets represented by their characteristic matrix M .
To represent sets, we pick at random some number n of permutations of the
rows of M . Perhaps 100 permutations or several hundred permutations will do.
Call the minhash functions determined by these permutations h1, h2, . . . , hn.
From the column representing set S, construct the minhash signature for S, the
vector [h1(S), h2(S), . . . , hn(S)]. We normally represent this list of hash-values
as a column. Thus, we can form from matrix M a signature matrix, in which
the ith column of M is replaced by the minhash signature for (the set of) the
ith column.

Note that the signature matrix has the same number of columns as M but
only n rows. Even if M is not represented explicitly, but in some compressed
form suitable for a sparse matrix (e.g., by the locations of its 1’s), it is normal
for the signature matrix to be much smaller than M .

3.3.5 Computing Minhash Signatures

It is not feasible to permute a large characteristic matrix explicitly. Even picking
a random permutation of millions or billions of rows is time-consuming, and
the necessary sorting of the rows would take even more time. Thus, permuted
matrices like that suggested by Fig. 3.3, while conceptually appealing, are not
implementable.

Fortunately, it is possible to simulate the effect of a random permutation by
a random hash function that maps row numbers to as many buckets as there
are rows. A hash function that maps integers 0, 1, . . . , k− 1 to bucket numbers
0 through k−1 typically will map some pairs of integers to the same bucket and
leave other buckets unfilled. However, the difference is unimportant as long as
k is large and there are not too many collisions. We can maintain the fiction
that our hash function h “permutes” row r to position h(r) in the permuted
order.

Thus, instead of picking n random permutations of rows, we pick n randomly
chosen hash functions h1, h2, . . . , hn on the rows. We construct the signature
matrix by considering each row in their given order. Let SIG(i, c) be the element
of the signature matrix for the ith hash function and column c. Initially, set
SIG(i, c) to ∞ for all i and c. We handle row r by doing the following:

1. Compute h1(r), h2(r), . . . , hn(r).

2. For each column c do the following:

(a) If c has 0 in row r, do nothing.

(b) However, if c has 1 in row r, then for each i = 1, 2, . . . , n set SIG(i, c)
to the smaller of the current value of SIG(i, c) and hi(r).

82 CHAPTER 3. FINDING SIMILAR ITEMS

Row S1 S2 S3 S4 x+ 1 mod 5 3x+ 1 mod 5
0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Figure 3.4: Hash functions computed for the matrix of Fig. 3.2

Example 3.8 : Let us reconsider the characteristic matrix of Fig. 3.2, which
we reproduce with some additional data as Fig. 3.4. We have replaced the
letters naming the rows by integers 0 through 4. We have also chosen two hash
functions: h1(x) = x+1 mod 5 and h2(x) = 3x+1 mod 5. The values of these
two functions applied to the row numbers are given in the last two columns of
Fig. 3.4. Notice that these simple hash functions are true permutations of the
rows, but a true permutation is only possible because the number of rows, 5, is
a prime. In general, there will be collisions, where two rows get the same hash
value.

Now, let us simulate the algorithm for computing the signature matrix.
Initially, this matrix consists of all ∞’s:

S1 S2 S3 S4

h1 ∞ ∞ ∞ ∞
h2 ∞ ∞ ∞ ∞

First, we consider row 0 of Fig. 3.4. We see that the values of h1(0) and
h2(0) are both 1. The row numbered 0 has 1’s in the columns for sets S1 and
S4, so only these columns of the signature matrix can change. As 1 is less than
∞, we do in fact change both values in the columns for S1 and S4. The current
estimate of the signature matrix is thus:

S1 S2 S3 S4

h1 1 ∞ ∞ 1
h2 1 ∞ ∞ 1

Now, we move to the row numbered 1 in Fig. 3.4. This row has 1 only in
S3, and its hash values are h1(1) = 2 and h2(1) = 4. Thus, we set SIG(1, 3) to 2
and SIG(2, 3) to 4. All other signature entries remain as they are because their
columns have 0 in the row numbered 1. The new signature matrix:

S1 S2 S3 S4

h1 1 ∞ 2 1
h2 1 ∞ 4 1

The row of Fig. 3.4 numbered 2 has 1’s in the columns for S2 and S4, and
its hash values are h1(2) = 3 and h2(2) = 2. We could change the values in the

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 83

signature for S4, but the values in this column of the signature matrix, [1, 1], are
each less than the corresponding hash values [3, 2]. However, since the column
for S2 still has ∞’s, we replace it by [3, 2], resulting in:

S1 S2 S3 S4

h1 1 3 2 1
h2 1 2 4 1

Next comes the row numbered 3 in Fig. 3.4. Here, all columns but S2 have
1, and the hash values are h1(3) = 4 and h2(3) = 0. The value 4 for h1 exceeds
what is already in the signature matrix for all the columns, so we shall not
change any values in the first row of the signature matrix. However, the value
0 for h2 is less than what is already present, so we lower SIG(2, 1), SIG(2, 3) and
SIG(2, 4) to 0. Note that we cannot lower SIG(2, 2) because the column for S2 in
Fig. 3.4 has 0 in the row we are currently considering. The resulting signature
matrix:

S1 S2 S3 S4

h1 1 3 2 1
h2 0 2 0 0

Finally, consider the row of Fig. 3.4 numbered 4. h1(4) = 0 and h2(4) = 3.
Since row 4 has 1 only in the column for S3, we only compare the current
signature column for that set, [2, 0] with the hash values [0, 3]. Since 0 < 2, we
change SIG(1, 3) to 0, but since 3 > 0 we do not change SIG(2, 3). The final
signature matrix is:

S1 S2 S3 S4

h1 1 3 0 1
h2 0 2 0 0

We can estimate the Jaccard similarities of the underlying sets from this
signature matrix. Notice that columns 1 and 4 are identical, so we guess that
SIM(S1, S4) = 1.0. If we look at Fig. 3.4, we see that the true Jaccard similarity
of S1 and S4 is 2/3. Remember that the fraction of rows that agree in the
signature matrix is only an estimate of the true Jaccard similarity, and this
example is much too small for the law of large numbers to assure that the
estimates are close. For additional examples, the signature columns for S1 and
S3 agree in half the rows (true similarity 1/4), while the signatures of S1 and
S2 estimate 0 as their Jaccard similarity (the correct value). ✷

3.3.6 Exercises for Section 3.3

Exercise 3.3.1 : Verify the theorem from Section 3.3.3, which relates the Jac-
card similarity to the probability of minhashing to equal values, for the partic-
ular case of Fig. 3.2.

84 CHAPTER 3. FINDING SIMILAR ITEMS

(a) Compute the Jaccard similarity of each of the pairs of columns in Fig. 3.2.

! (b) Compute, for each pair of columns of that figure, the fraction of the 120
permutations of the rows that make the two columns hash to the same
value.

Exercise 3.3.2 : Using the data from Fig. 3.4, add to the signatures of the
columns the values of the following hash functions:

(a) h3(x) = 2x+ 4.

(b) h4(x) = 3x− 1.

Element S1 S2 S3 S4

0 0 1 0 1

1 0 1 0 0

2 1 0 0 1

3 0 0 1 0

4 0 0 1 1

5 1 0 0 0

Figure 3.5: Matrix for Exercise 3.3.3

Exercise 3.3.3 : In Fig. 3.5 is a matrix with six rows.

(a) Compute the minhash signature for each column if we use the following
three hash functions: h1(x) = 2x + 1 mod 6; h2(x) = 3x + 2 mod 6;
h3(x) = 5x+ 2 mod 6.

(b) Which of these hash functions are true permutations?

(c) How close are the estimated Jaccard similarities for the six pairs of columns
to the true Jaccard similarities?

! Exercise 3.3.4 : Now that we know Jaccard similarity is related to the proba-
bility that two sets minhash to the same value, reconsider Exercise 3.1.3. Can
you use this relationship to simplify the problem of computing the expected
Jaccard similarity of randomly chosen sets?

! Exercise 3.3.5 : Prove that if the Jaccard similarity of two columns is 0, then
then minhashing always gives a correct estimate of the Jaccard similarity.

!! Exercise 3.3.6 : One might expect that we could estimate the Jaccard simi-
larity of columns without using all possible permutations of rows. For example,
we could only allow cyclic permutations; i.e., start at a randomly chosen row
r, which becomes the first in the order, followed by rows r + 1, r + 2, and so

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 85

on, down to the last row, and then continuing with the first row, second row,
and so on, down to row r − 1. There are only n such permutations if there are
n rows. However, these permutations are not sufficient to estimate the Jaccard
similarity correctly. Give an example of a two-column matrix where averaging
over all the cyclic permutations does not give the Jaccard similarity.

! Exercise 3.3.7 : Suppose we want to use a map-reduce framework to compute
minhash signatures. If the matrix is stored in chunks that correspond to some
columns, then it is quite easy to exploit parallelism. Each Map task gets some
of the columns and all the hash functions, and computes the minhash signatures
of its given columns. However, suppose the matrix were chunked by rows, so
that a Map task is given the hash functions and a set of rows to work on. Design
Map and Reduce functions to exploit map-reduce with data in this form.

3.4 Locality-Sensitive Hashing for Documents

Even though we can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of documents, it
still may be impossible to find the pairs with greatest similarity efficiently. The
reason is that the number of pairs of documents may be too large, even if there
are not too many documents.

Example 3.9 : Suppose we have a million documents, and we use signatures
of length 250. Then we use 1000 bytes per document for the signatures, and
the entire data fits in a gigabyte – less than a typical main memory of a laptop.
However, there are

�

1,000,000
2

�

or half a trillion pairs of documents. If it takes a
microsecond to compute the similarity of two signatures, then it takes almost
six days to compute all the similarities on that laptop. ✷

If our goal is to compute the similarity of every pair, there is nothing we
can do to reduce the work, although parallelism can reduce the elapsed time.
However, often we want only the most similar pairs or all pairs that are above
some lower bound in similarity. If so, then we need to focus our attention only
on pairs that are likely to be similar, without investigating every pair. There is
a general theory of how to provide such focus, called locality-sensitive hashing
(LSH) or near-neighbor search. In this section we shall consider a specific form
of LSH, designed for the particular problem we have been studying: documents,
represented by shingle-sets, then minhashed to short signatures. In Section 3.6
we present the general theory of locality-sensitive hashing and a number of
applications and related techniques.

3.4.1 LSH for Minhash Signatures

One general approach to LSH is to “hash” items several times, in such a way that
similar items are more likely to be hashed to the same bucket than dissimilar

86 CHAPTER 3. FINDING SIMILAR ITEMS

items are. We then consider any pair that hashed to the same bucket for any
of the hashings to be a candidate pair. We check only the candidate pairs for
similarity. The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked. Those dissimilar pairs that
do hash to the same bucket are false positives ; we hope these will be only a
small fraction of all pairs.. We also hope that most of the truly similar pairs
will hash to the same bucket under at least one of the hash functions. Those
that do not are false negatives; we hope these will be only a small fraction of
the truly similar pairs.

If we have minhash signatures for the items, an effective way to choose the
hashings is to divide the signature matrix into b bands consisting of r rows
each. For each band, there is a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to some large
number of buckets. We can use the same hash function for all the bands, but
we use a separate bucket array for each band, so columns with the same vector
in different bands will not hash to the same bucket.

1 0 0 0 2
3 2 1 2 2
0 1 3 1 1

.band 1

band 2

band 3

band 4

Figure 3.6: Dividing a signature matrix into four bands of three rows per band

Example 3.10 : Figure 3.6 shows part of a signature matrix of 12 rows divided
into four bands of three rows each. The second and fourth of the explicitly
shown columns each have the column vector [0, 2, 1] in the first band, so they
will definitely hash to the same bucket in the hashing for the first band. Thus,
regardless of what those columns look like in the other three bands, this pair
of columns will be a candidate pair. It is possible that other columns, such as
the first two shown explicitly, will also hash to the same bucket according to
the hashing of the first band. However, since their column vectors are different,
[1, 3, 0] and [0, 2, 1], and there are many buckets for each hashing, we expect the
chances of an accidental collision to be very small. We shall normally assume
that two vectors hash to the same bucket if and only if they are identical.

Two columns that do not agree in band 1 have three other chances to become
a candidate pair; they might be identical in any one of these other bands.

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 87

However, observe that the more similar two columns are, the more likely it is
that they will be identical in some band. Thus, intuitively the banding strategy
makes similar columns much more likely to be candidate pairs than dissimilar
pairs. ✷

3.4.2 Analysis of the Banding Technique

Suppose we use b bands of r rows each, and suppose that a particular pair of
documents have Jaccard similarity s. Recall from Section 3.3.3 that the prob-
ability the minhash signatures for these documents agree in any one particular
row of the signature matrix is s. We can calculate the probability that these
documents (or rather their signatures) become a candidate pair as follows:

1. The probability that the signatures agree in all rows of one particular
band is sr.

2. The probability that the signatures do not agree in at least one row of a
particular band is 1− sr.

3. The probability that the signatures do not agree in all rows of any of the
bands is (1 − sr)b.

4. The probability that the signatures agree in all the rows of at least one
band, and therefore become a candidate pair, is 1− (1− sr)b.

It may not be obvious, but regardless of the chosen constants b and r, this
function has the form of an S-curve, as suggested in Fig. 3.7. The threshold, that
is, the value of similarity s at which the rise becomes steepest, is a function of
b and r. An approximation to the threshold is (1/b)1/r. For example, if b = 16
and r = 4, then the threshold is approximately 1/2, since the 4th root of 16 is
2.

Example 3.11 : Let us consider the case b = 20 and r = 5. That is, we suppose
we have signatures of length 100, divided into twenty bands of five rows each.
Figure 3.8 tabulates some of the values of the function 1 − (1 − s5)20. Notice
that the threshold, the value of s at which the curve has risen halfway, is just
slightly more than 0.5. Also notice that the curve is not exactly the ideal step
function that jumps from 0 to 1 at the threshold, but the slope of the curve
in the middle is significant. For example, it rises by more than 0.6 going from
s = 0.4 to s = 0.6, so the slope in the middle is greater than 3.

For example, at s = 0.8, 1− (0.8)5 is about 0.672. If you raise this number
to the 20th power, you get about 0.00035. Subtracting this fraction from 1
yields 0.99965. That is, if we consider two documents with 80% similarity, then
in any one band, they have only about a 33% chance of agreeing in all five rows
and thus becoming a candidate pair. However, there are 20 bands and thus 20
chances to become a candidate. Only roughly one in 3000 pairs that are as high
as 80% similar will fail to become a candidate pair and thus be a false negative.
✷

88 CHAPTER 3. FINDING SIMILAR ITEMS

0 1
 of documents
Jaccard similarity

Probability
of becoming
a candidate

Figure 3.7: The S-curve

s 1− (1 − sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

Figure 3.8: Values of the S-curve for b = 20 and r = 5

3.4.3 Combining the Techniques

We can now give an approach to finding the set of candidate pairs for similar
documents and then discovering the truly similar documents among them. It
must be emphasized that this approach can produce false negatives – pairs of
similar documents that are not identified as such because they never become
a candidate pair. There will also be false positives – candidate pairs that are
evaluated, but are found not to be sufficiently similar.

1. Pick a value of k and construct from each document the set of k-shingles.
Optionally, hash the k-shingles to shorter bucket numbers.

2. Sort the document-shingle pairs to order them by shingle.

3. Pick a length n for the minhash signatures. Feed the sorted list to the
algorithm of Section 3.3.5 to compute the minhash signatures for all the

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 89

documents.

4. Choose a threshold t that defines how similar documents have to be in
order for them to be regarded as a desired “similar pair.” Pick a number
of bands b and a number of rows r such that br = n, and the threshold
t is approximately (1/b)1/r. If avoidance of false negatives is important,
you may wish to select b and r to produce a threshold lower than t; if
speed is important and you wish to limit false positives, select b and r to
produce a higher threshold.

5. Construct candidate pairs by applying the LSH technique of Section 3.4.1.

6. Examine each candidate pair’s signatures and determine whether the frac-
tion of components in which they agree is at least t.

7. Optionally, if the signatures are sufficiently similar, go to the documents
themselves and check that they are truly similar, rather than documents
that, by luck, had similar signatures.

3.4.4 Exercises for Section 3.4

Exercise 3.4.1 : Evaluate the S-curve 1− (1− sr)b for s = 0.1, 0.2, . . . , 0.9, for
the following values of r and b:

• r = 3 and b = 10.

• r = 6 and b = 20.

• r = 5 and b = 50.

! Exercise 3.4.2 : For each of the (r, b) pairs in Exercise 3.4.1, compute the
threshold, that is, the value of s for which the value of 1−(1−sr)b is exactly 1/2.
How does this value compare with the estimate of (1/b)1/r that was suggested
in Section 3.4.2?

! Exercise 3.4.3 : Use the techniques explained in Section 1.3.5 to approximate
the S-curve 1− (1 − sr)b when sr is very small.

! Exercise 3.4.4 : Suppose we wish to implement LSH by map-reduce. Specifi-
cally, assume chunks of the signature matrix consist of columns, and elements
are key-value pairs where the key is the column number and the value is the
signature itself (i.e., a vector of values).

(a) Show how to produce the buckets for all the bands as output of a single
map-reduce process. Hint : Remember that a Map function can produce
several key-value pairs from a single element.

(b) Show how another map-reduce process can convert the output of (a) to
a list of pairs that need to be compared. Specifically, for each column i,
there should be a list of those columns j > i with which i needs to be
compared.

90 CHAPTER 3. FINDING SIMILAR ITEMS

3.5 Distance Measures

We now take a short detour to study the general notion of distance measures.
The Jaccard similarity is a measure of how close sets are, although it is not
really a distance measure. That is, the closer sets are, the higher the Jaccard
similarity. Rather, 1 minus the Jaccard similarity is a distance measure, as we
shall see; it is called the Jaccard distance.

However, Jaccard distance is not the only measure of closeness that makes
sense. We shall examine in this section some other distance measures that have
applications. Then, in Section 3.6 we see how some of these distance measures
also have an LSH technique that allows us to focus on nearby points without
comparing all points. Other applications of distance measures will appear when
we study clustering in Chapter 7.

3.5.1 Definition of a Distance Measure

Suppose we have a set of points, called a space. A distance measure on this
space is a function d(x, y) that takes two points in the space as arguments and
produces a real number, and satisfies the following axioms:

1. d(x, y) ≥ 0 (no negative distances).

2. d(x, y) = 0 if and only if x = y (distances are positive, except for the
distance from a point to itself).

3. d(x, y) = d(y, x) (distance is symmetric).

4. d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality).

The triangle inequality is the most complex condition. It says, intuitively, that
to travel from x to y, we cannot obtain any benefit if we are forced to travel via
some particular third point z. The triangle-inequality axiom is what makes all
distance measures behave as if distance describes the length of a shortest path
from one point to another.

3.5.2 Euclidean Distances

The most familiar distance measure is the one we normally think of as “dis-
tance.” An n-dimensional Euclidean space is one where points are vectors of n
real numbers. The conventional distance measure in this space, which we shall
refer to as the L2-norm, is defined:

d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) =

�

�

�

�

n
�

i=1

(xi − yi)2

That is, we square the distance in each dimension, sum the squares, and take
the positive square root.

3.5. DISTANCE MEASURES 91

It is easy to verify the first three requirements for a distance measure are
satisfied. The Euclidean distance between two points cannot be negative, be-
cause the positive square root is intended. Since all squares of real numbers are
nonnegative, any i such that xi �= yi forces the distance to be strictly positive.
On the other hand, if xi = yi for all i, then the distance is clearly 0. Symmetry
follows because (xi − yi)

2 = (yi − xi)
2. The triangle inequality requires a good

deal of algebra to verify. However, it is well understood to be a property of
Euclidean space: the sum of the lengths of any two sides of a triangle is no less
than the length of the third side.

There are other distance measures that have been used for Euclidean spaces.
For any constant r, we can define the Lr-norm to be the distance measure d
defined by:

d([x1, x2, . . . , xn], [y1, y2, . . . , yn]) = (

n
�

i=1

|xi − yi|r)1/r

The case r = 2 is the usual L2-norm just mentioned. Another common distance
measure is the L1-norm, or Manhattan distance. There, the distance between
two points is the sum of the magnitudes of the differences in each dimension.
It is called “Manhattan distance” because it is the distance one would have to
travel between points if one were constrained to travel along grid lines, as on
the streets of a city such as Manhattan.

Another interesting distance measure is the L∞-norm, which is the limit
as r approaches infinity of the Lr-norm. As r gets larger, only the dimension
with the largest difference matters, so formally, the L∞-norm is defined as the
maximum of |xi − yi| over all dimensions i.

Example 3.12 : Consider the two-dimensional Euclidean space (the custom-
ary plane) and the points (2, 7) and (6, 4). The L2-norm gives a distance
of

�

(2− 6)2 + (7− 4)2 =
√
42 + 32 = 5. The L1-norm gives a distance of

|2− 6|+ |7− 4| = 4 + 3 = 7. The L∞-norm gives a distance of

max(|2− 6|, |7− 4|) = max(4, 3) = 4

✷

3.5.3 Jaccard Distance

As mentioned at the beginning of the section, we define the Jaccard distance
of sets by d(x, y) = 1− SIM(x, y). That is, the Jaccard distance is 1 minus the
ratio of the sizes of the intersection and union of sets x and y. We must verify
that this function is a distance measure.

1. d(x, y) is nonnegative because the size of the intersection cannot exceed
the size of the union.

92 CHAPTER 3. FINDING SIMILAR ITEMS

2. d(x, y) = 0 if x = y, because x ∪ x = x ∩ x = x. However, if x �= y, then
the size of x ∩ y is strictly less than the size of x ∪ y, so d(x, y) is strictly
positive.

3. d(x, y) = d(y, x) because both union and intersection are symmetric; i.e.,
x ∪ y = y ∪ x and x ∩ y = y ∩ x.

4. For the triangle inequality, recall from Section 3.3.3 that SIM(x, y) is the
probability a random minhash function maps x and y to the same value.
Thus, the Jaccard distance d(x, y) is the probability that a random min-
hash function does not send x and y to the same value. We can therefore
translate the condition d(x, y) ≤ d(x, z) + d(z, y) to the statement that if
h is a random minhash function, then the probability that h(x) �= h(y)
is no greater than the sum of the probability that h(x) �= h(z) and the
probability that h(z) �= h(y). However, this statement is true because
whenever h(x) �= h(y), at least one of h(x) and h(y) must be different
from h(z). They could not both be h(z), because then h(x) and h(y)
would be the same.

.

3.5.4 Cosine Distance

The cosine distance makes sense in spaces that have dimensions, including Eu-
clidean spaces and discrete versions of Euclidean spaces, such as spaces where
points are vectors with integer components or boolean (0 or 1) components. In
such a space, points may be thought of as directions. We do not distinguish be-
tween a vector and a multiple of that vector. Then the cosine distance between
two points is the angle that the vectors to those points make. This angle will
be in the range 0 to 180 degrees, regardless of how many dimensions the space
has.

We can calculate the cosine distance by first computing the cosine of the
angle, and then applying the arc-cosine function to translate to an angle in the
0-180 degree range. Given two vectors x and y, the cosine of the angle between
them is the dot product x.y divided by the L2-norms of x and y (i.e., their
Euclidean distances from the origin). Recall that the dot product of vectors
[x1, x2, . . . , xn].[y1, y2, . . . , yn] is

�n
i=1

xiyi.

Example 3.13 : Let our two vectors be x = [1, 2,−1] and = [2, 1, 1]. The dot
product x.y is 1 × 2 + 2 × 1 + (−1) × 1 = 3. The L2-norm of both vectors is√
6. For example, x has L2-norm

�

12 + 22 + (−1)2 =
√
6. Thus, the cosine of

the angle between x and y is 3/(
√
6
√
6) or 1/2. The angle whose cosine is 1/2

is 60 degrees, so that is the cosine distance between x and y. ✷

We must show that the cosine distance is indeed a distance measure. We
have defined it so the values are in the range 0 to 180, so no negative distances

3.5. DISTANCE MEASURES 93

are possible. Two vectors have angle 0 if and only if they are the same direction.3

Symmetry is obvious: the angle between x and y is the same as the angle
between y and x. The triangle inequality is best argued by physical reasoning.
One way to rotate from x to y is to rotate to z and thence to y. The sum of
those two rotations cannot be less than the rotation directly from x to y.

3.5.5 Edit Distance

This distance makes sense when points are strings. The distance between two
strings x = x1x2 · · ·xn and y = y1y2 · · · ym is the smallest number of insertions
and deletions of single characters that will convert x to y.

Example 3.14 : The edit distance between the strings x = abcde and y =
acfdeg is 3. To convert x to y:

1. Delete b.

2. Insert f after c.

3. Insert g after e.

No sequence of fewer than three insertions and/or deletions will convert x to y.
Thus, d(x, y) = 3. ✷

Another way to define and calculate the edit distance d(x, y) is to compute
a longest common subsequence (LCS) of x and y. An LCS of x and y is a
string that is constructed by deleting positions from x and y, and that is as
long as any string that can be constructed that way. The edit distance d(x, y)
can be calculated as the length of x plus the length of y minus twice the length
of their LCS.

Example 3.15 : The strings x = abcde and y = acfdeg from Example 3.14
have a unique LCS, which is acde. We can be sure it is the longest possible,
because it contains every symbol appearing in both x and y. Fortunately, these
common symbols appear in the same order in both strings, so we are able to
use them all in an LCS. Note that the length of x is 5, the length of y is 6, and
the length of their LCS is 4. The edit distance is thus 5 + 6− 2× 4 = 3, which
agrees with the direct calculation in Example 3.14.

For another example, consider x = aba and y = bab. Their edit distance is
2. For example, we can convert x to y by deleting the first a and then inserting
b at the end. There are two LCS’s: ab and ba. Each can be obtained by
deleting one symbol from each string. As must be the case for multiple LCS’s
of the same pair of strings, both LCS’s have the same length. Therefore, we
may compute the edit distance as 3 + 3− 2× 2 = 2. ✷

3Notice that to satisfy the second axiom, we have to treat vectors that are multiples of
one another, e.g. [1, 2] and [3, 6], as the same direction, which they are. If we regarded these
as different vectors, we would give them distance 0 and thus violate the condition that only
d(x, x) is 0.

94 CHAPTER 3. FINDING SIMILAR ITEMS

Non-Euclidean Spaces

Notice that several of the distance measures introduced in this section are
not Euclidean spaces. A property of Euclidean spaces that we shall find
important when we take up clustering in Chapter 7 is that the average
of points in a Euclidean space always exists and is a point in the space.
However, consider the space of sets for which we defined the Jaccard dis-
tance. The notion of the “average” of two sets makes no sense. Likewise,
the space of strings, where we can use the edit distance, does not let us
take the “average” of strings.

Vector spaces, for which we suggested the cosine distance, may or may
not be Euclidean. If the components of the vectors can be any real num-
bers, then the space is Euclidean. However, if we restrict components to
be integers, then the space is not Euclidean. Notice that, for instance, we
cannot find an average of the vectors [1, 2] and [3, 1] in the space of vectors
with two integer components, although if we treated them as members of
the two-dimensional Euclidean space, then we could say that their average
was [2.0, 1.5].

Edit distance is a distance measure. Surely no edit distance can be negative,
and only two identical strings have an edit distance of 0. To see that edit
distance is symmetric, note that a sequence of insertions and deletions can be
reversed, with each insertion becoming a deletion, and vice-versa. The triangle
inequality is also straightforward. One way to turn a string s into a string t
is to turn s into some string u and then turn u into t. Thus, the number of
edits made going from s to u, plus the number of edits made going from u to t
cannot be less than the smallest number of edits that will turn s into t.

3.5.6 Hamming Distance

Given a space of vectors, we define the Hamming distance between two vectors
to be the number of components in which they differ. It should be obvious that
Hamming distance is a distance measure. Clearly the Hamming distance cannot
be negative, and if it is zero, then the vectors are identical. The distance does
not depend on which of two vectors we consider first. The triangle inequality
should also be evident. If x and z differ in m components, and z and y differ in
n components, then x and y cannot differ in more thanm+n components. Most
commonly, Hamming distance is used when the vectors are boolean; they consist
of 0’s and 1’s only. However, in principle, the vectors can have components from
any set.

Example 3.16 : The Hamming distance between the vectors 10101 and 11110
is 3. That is, these vectors differ in the second, fourth, and fifth components,

3.5. DISTANCE MEASURES 95

while they agree in the first and third components. ✷

3.5.7 Exercises for Section 3.5

! Exercise 3.5.1 : On the space of nonnegative integers, which of the following
functions are distance measures? If so, prove it; if not, prove that it fails to
satisfy one or more of the axioms.

(a) max(x, y) = the larger of x and y.

(b) diff(x, y) = |x − y| (the absolute magnitude of the difference between x
and y).

(c) sum(x, y) = x+ y.

Exercise 3.5.2 : Find the L1 and L2 distances between the points (5, 6, 7) and
(8, 2, 4).

!! Exercise 3.5.3 : Prove that if i and j are any positive integers, and i < j,
then the Li norm between any two points is greater than the Lj norm between
those same two points.

Exercise 3.5.4 : Find the Jaccard distances between the following pairs of
sets:

(a) {1, 2, 3, 4} and {2, 3, 4, 5}.

(b) {1, 2, 3} and {4, 5, 6}.

Exercise 3.5.5 : Compute the cosines of the angles between each of the fol-
lowing pairs of vectors.4

(a) (3,−1, 2) and (−2, 3, 1).

(b) (1, 2, 3) and (2, 4, 6).

(c) (5, 0,−4) and (−1,−6, 2).

(d) (0, 1, 1, 0, 1, 1) and (0, 0, 1, 0, 0, 0).

! Exercise 3.5.6 : Prove that the cosine distance between any two vectors of 0’s
and 1’s, of the same length, is at most 90 degrees.

Exercise 3.5.7 : Find the edit distances (using only insertions and deletions)
between the following pairs of strings.

4Note that what we are asking for is not precisely the cosine distance, but from the cosine
of an angle, you can compute the angle itself, perhaps with the aid of a table or library
function.

96 CHAPTER 3. FINDING SIMILAR ITEMS

(a) abcdef and bdaefc.

(b) abccdabc and acbdcab.

(c) abcdef and baedfc.

! Exercise 3.5.8 : There are a number of other notions of edit distance available.
For instance, we can allow, in addition to insertions and deletions, the following
operations:

i. Mutation, where one symbol is replaced by another symbol. Note that a
mutation can always be performed by an insertion followed by a deletion,
but if we allow mutations, then this change counts for only 1, not 2, when
computing the edit distance.

ii. Transposition, where two adjacent symbols have their positions swapped.
Like a mutation, we can simulate a transposition by one insertion followed
by one deletion, but here we count only 1 for these two steps.

Repeat Exercise 3.5.7 if edit distance is defined to be the number of insertions,
deletions, mutations, and transpositions needed to transform one string into
another.

! Exercise 3.5.9 : Prove that the edit distance discussed in Exercise 3.5.8 is
indeed a distance measure.

Exercise 3.5.10 : Find the Hamming distances between each pair of the fol-
lowing vectors: 000000, 110011, 010101, and 011100.

3.6 The Theory of Locality-Sensitive Functions

The LSH technique developed in Section 3.4 is one example of a family of func-
tions (the minhash functions) that can be combined (by the banding technique)
to distinguish strongly between pairs at a low distance from pairs at a high dis-
tance. The steepness of the S-curve in Fig. 3.7 reflects how effectively we can
avoid false positives and false negatives among the candidate pairs.

Now, we shall explore other families of functions, besides the minhash func-
tions, that can serve to produce candidate pairs efficiently. These functions can
apply to the space of sets and the Jaccard distance, or to another space and/or
another distance measure. There are three conditions that we need for a family
of functions:

1. They must be more likely to make close pairs be candidate pairs than
distant pairs. We make this notion precise in Section 3.6.1.

2. They must be statistically independent, in the sense that it is possible to
estimate the probability that two or more functions will all give a certain
response by the product rule for independent events.

