

UNIVERZITET CRNE GORE METALURŠKO-TEHNOLOŠKI FAKULTET HEMIJSKA TEHNOLOGIJA

KRISTINA LALATOVIĆ

KOMINA MASLINE KAO RESURS ZA ODRŽIVU PROIZVODNJU ELEKTRODNIH MATERIJALA ZA SUPERKONDENZATORE

MASTER RAD

Podgorica, 2024.

UNIVERZITET CRNE GORE METALURŠKO-TEHNOLOŠKI FAKULTET HEMIJSKA TEHNOLOGIJA

KRISTINA LALATOVIĆ

KOMINA MASLINE KAO RESURS ZA ODRŽIVU PROIZVODNJU ELEKTRODNIH MATERIJALA ZA SUPERKONDENZATORE

MASTER RAD

Mentor: prof. dr Veselinka Grudić Komentor: dr Jana Mišurović

Podgorica, 2024.

KOMINA MASLINE KAO RESURS ZA ODRŽIVU PROIZVODNJU ELEKTRODNIH MATERIJALA ZA SUPERKONDENZATORE Ovaj rad posvećujem svojim roditeljima, čija bezuslovna podrška i ljubav prate svaki moj korak. Vi ste moja snaga i inspiracija.

"Nauka nije samo skup činjenica. Nauka je način razmišljanja"

Richarda Feynman

SAŽETAK:

U ovom radu je ispitan potencijal komine masline kao održivog resursa za proizvodnju elektrodnih materijala superkondenzatora. Glavni cilj istraživanja je zaštita životne sredine kroz korišćenje alternativnih izvora energije i razvoj efikasnog postupka za iskorišćavanje otpada kao vrijedne sirovine za proizvode visoke vrijednosti. Fokus istraživanja je na optimizaciji procesa sinteze aktiviranog ugljenika polazeći od komine masline kao prekursora, kako bi se dobili elektrodni materijali s optimalnim karakteristikama za skladištenje naelektrisanja. Hidrotermalnom karbonizacijom prekursora je dobijen ugljenični materijal koji je zatim hemijski aktiviran sa dva različita aktivatora (eutektičkom smješom soli ZnCl₂, NaCl i KCl i 40% H₃PO₄), 2 h na 700 °C u atmosferi argona. Aktivacija je značajno doprinijela razvoju poroznosti ugljenične površine, kao značajnog parametra za adsorpciju velike količine jona elektrolita, što je detektovano dobrim kapacitivnim odgovorom tokom elektrohemijskih mjerenja. Rad pruža detaljan uvid u elektrohemijsko ponašanje sintetisanih ugljeničnih materijala u vodenim elektrolitikim rastvorima, kako bi se utvrdio mehanizam skladištenja naelektrisanja i njihov potencijal kao elektroda za superkondenzatore. Rezultati su pokazali da je aktivacija sa fosfornom kiselinom doprinijela boljim elektrohemijskim performansama materijala u vodenim elektrolitima u odnosu na materijal koji je aktiviran eutektičkom smješom soli. HTC_{OMW}H₃PO₄ pokazao je specifične kapacitete od oko 168 F/g u 6 M KOH, 128 F/g u 1 M Na₂SO₄ i 165 F/g u 1 M H₂SO₄, dok materijal HTC_{OMW}ZnNaK pokazuje oko 106 F/g u 6 M KOH, 38 F/g u 1 M Na₂SO₄ i 62 F/g u 1M H₂SO₄, pri brzini polarizacije 20 mV/s. Istraživanje potvrđuje da komina masline predstavlja obećavajući resurs za održivu proizvodnju elektrodnih materijala za superkondenzatore, nudeći ekološki prihvatljivu alternativu konvencionalnim resursima.

Ključne riječi: komina masline, aktivirani ugljenik, superkondenzatori, elektrodni materijali, održivost, karakterizacija, aktivacija, struktura.

ABSTRACT:

This work examines the potential of olive mill waste as a sustainable resource for the production of supercapacitor electrode materials. The main goal of the research is the protection of the environment through the use of alternative energy sources and the development of an efficient procedure for using waste as a valuable raw material for high-value products. The focus of the research is on the optimization of the synthesis process of activated carbon starting from olive pomace as a precursor, in order to obtain electrode materials with optimal characteristics for charge storage. Carbon material was obtained by hydrothermal carbonization of the precursor, which was then chemically activated with two different activators (a eutectic mixture of salts ZnCl2, NaCl and KCl and 40% H3PO4) for 2 h at 700 °C in an argon atmosphere. The activation significantly contributed to the development of the porosity of the carbon surface, as an important parameter for the adsorption of a large amount of electrolytic ions, which was detected by a good capacitive response during electrochemical measurements. The work provides detailed insight into the electrochemical behavior of synthesized carbon materials in aqueous electrolytic solutions, in order to determine the charge storage mechanism and their potential as electrodes for supercapacitors. The results showed that the activation with phosphoric acid contributed to a better electrochemical performance of the material in aqueous electrolytes compared to the material activated with a eutectic salt mixture. HTC_{OMW}H₃PO₄ showed specific capacities of about 168 F/g in 6 M KOH, 128 F/g in 1 M Na₂SO₄ and 165 F/g in 1 M H₂SO₄, while the HTC_{OMW}ZnNaK material shows about 106 F/g in 6 M KOH, 38 F/g in 1 M Na₂SO₄ and 62 F/g in 1 M H₂SO₄, at the rate polarization 20 mV/s. This research confirms that olive mill waste represents a promising resource for the sustainable production of electrode materials for supercapacitors, offering an environmentally friendly alternative to conventional resources.

Keywords: olive mill waste, activated carbon, supercapacitors, electrode materials, sustainability, characterization, activation, structure.

PODACI I INFORMACIJE O MAGISTRANDU:

Ime i prezime: Kristina Lalatović Datum i mjesto rođenja: 27.04.1999.godine, Nikšić, Crna Gora

Osnovne studije: Metalurško-tehnološki fakultet, Univerzitet Crne Gore, Hemijska tehnologija, 180 ECTS, 2022.

Dodatna usavršavanja:

- EHEDG-Advanced Course on Hygienic engineering and design II (2024)
- Project "Water" Katowice, Poland Erasmus + project (2023)
- Edukativni program "ZeTraCG-3D štampa hrane i kuhinjskog mobilijara koristeći biorazgradive filamente" (2023)

Coursera course "Learning for a Sustainable Future: Live at COP28" (2023)
MAIA Intezivna obuka AL4Healthcare- podsticanje medicinske izvrsnosti kroz vještačku inteligenciju (2023)

- EHEDG-Advanced Course on Hygienic engineering and design(2023)
- Seminar " Core Leadership" CRU Montenegro (2023)
- Crescento Summer School on Circular Economy (2023)
- Vebinar- Digitalni mostovi kroz Canvu i Erasmus+ (2023)
- Kurs "Transformiši dileme u dobre odluke: 5 efikasnih alata i tehnika" (2023)
- •Ljetnja škola- Fizičkohemijske metode karakterizacije materijala za skladištenje energije (2022)
- Kurs Time management (2021)
- Kampster kurs "Socijalno preduzetništvo"(2021)
- Duke university-online course- Introduction to Chemistry: Reaction and Ratios (2020)
- Georgia Institute of Technology- Mechanics of Materials: Fundamentals of Stress and Axial Loading (2020)
- Alison Certificate- Microsoft Power Point 2010- Revised 2018 (2020)
- Kampster kurs "Rezilijentnost-ključ uspjeha u teškim situacijama" (2020)
- Duke university- Introduction to Chemistry: Structures and Solutions (2020)
- CNRS course "How to write and publish a scientific paper" (2020)
- Centre of Excellence Improve your memory (2020)
- Kurs "Rezilijentnost-ključ uspjeha u teškim situacijama (2020)
- University of Michigan The Science of success: What Researchers know that you should know (2020)
- University of Wollongong Australia- The power of podcasting for storytelling (2020)
- Johns Hopkins University- Psychological First Aid (2020)
- University of London Managing the Company of the Future (2020)
- Murdoch University- Global biosecurity for one health (2020)
- University of Virginia- New models of business in Society (2020)
- Monash University- The Science of medicines (2020)
- HubSpot Academy Inbound Certified (2020-2022)

NAGRADE:

• Nagrada za postignut uspijeh na prvoj godini dvogodišnjih master studija na MTF-u (2023)

 Crescento Summer School on Circular Economy - osvojeno drugo mjesto sa idejom o EKO gradjevinskim materijalima (2023)

• Fizičkohemijske metode karakterizacije materijala za skladištenje energije - nagrada za treće osvojeno mjesto na kvizu znanja (2022)

INFORMACIJE O MASTER RADU

Naziv studija: Hemijska tehnologija Naziv rada: Komina masline kao resurs za održivu proizvodnju elektrodnih materijala za superkondenzatore Fakultet: Metalurško-tehnološki fakultet

UDK, OCJENA I ODBRANA MASTER RADA

UDK: Datum prijave rada: 14. 03. 2024. godine Datum prihvatanja teme: 23. 05. 2024. godine Mentor: Prof. dr Veselinka Grudić, redovni profesor Komentor: dr Jana Mišurović, stručni saradnik

Komisija za ocjenu rada:

Prof. dr Ivana Bošković MTF, predsjednik Prof. dr Veselinka Grudić, MTF, mentor dr Jana Mišurović, MTF, komentor Doc. dr Milica Kosović Perutović, MTF, član Prof. dr Milica Vujković, Univerzitet u Beogradu-Fakultet za fizičku hemiju, član

Komisija za odbranu rada:

Prof. dr Ivana Bošković MTF, predsjednik Prof. dr Veselinka Grudić, MTF, mentor dr Jana Mišurović, MTF, komentor Doc. dr Milica Kosović Perutović, MTF, član Prof. dr Milica Vujković, Univerzitet u Beogradu-Fakultet za fizičku hemiju, član

Lektor: Autolektura

Datum odbrane: _____2024. godine

Univerzitet Crne Gore

Metalurško-tehnološki fakultet

IZJAVA O AUTORSTVU

Kandidatkinja: Kristina Lalatović

Na osnovu člana 22 Zakona o akademskom integritetu, ja, dolje potpisana

IZJAVLJUJEM

pod punom krivičnom i materijalnom odgovornošću da je master rad pod nazivom

"Komina masline kao resurs za održivu proizvodnju elektrodnih materijala za superkondenzatore" je rezultat sopstvenog istraživačkog rada, da nijesam kršila autorska prava i koristila intelektualnu svojinu drugih lica i da je navedeni rad moje originalno djelo.

Podgorica, 2024. godine

Potpis kandidatkinje

SADRŽAJ:

U١	/OD	11
1.	PREGLED LITERATURE	12
	1.1 Superkondenzatori – koncept i princip rada	12
	1.1.1 Podjela superkondenzatora prema mehanizmu skladištenja energije	13
	1.1.1.1 Elektrohemijski kondenzatori sa dvojnim električnim slojem (EDLC)	14
	1.1.1.2 Pseudokondenzatori	15
	1.1.1.3 Hibridni kondenzatori	15
	1.2. Ugljenični materijali kao elektrode u uređajima za skladištenje energije	16
	1.3. Agro-otpad kao sirovina za dobijanje aktiviranog ugljenika	19
	1.3.1 Konverzija biomase u ugljenične materijale	21
	1.3.1.1 Karbonizacija	21
	1.4 Pregled dosadašnjih istraživanja	25
2.	CILJ RADA	35
3.	EKSPERIMENTALNI DIO	36
	3.1. Sinteza ugljeničnog materijala	36
	3.2. Aktivacija ugljeničnih materijala	38
	3.2.1 Uzorak HTC _{OMW} H ₃ PO ₄	38
	3.2.2 Uzorak HTC _{OMW} ZnNaK	39
	3.3. METODE KARAKTERIZACIJE	40
	3.3.1 Strukturna karakterizacija	40
	3.3.1.1 Infracrvena spektroskopija sa Furijevom transformacijom (FTIR)	40
	3.3.2 Mjerenje električne provodljivosti prahova	42
	3.3.3 Elektrohemijska karakterizacija	43
	3.3.3.1.1 Priprema elektroda	45
4.	REZULTATI I DISKUSIJA	46
	4.1 Strukturna karakterizacija aktivnog ugljenika	46
	4.1.1 Infracrvena spektroskopija sa Furijevom transformacijom	46
	4.1.2 Rendgenostrukturna analiza (XRD)	48
	4.2. Električna provodljivost aktiviranih ugljeničnih materijala	49
	4.3 Elektrohemijska mjerenja	50
	4.3.1 Ciklična voltametrija u različitim vodenim elektrolitima	50

4.3.1.1 Elektrohemijsko ponašanje aktiviranih ugljeničnih materijala u 6 M		
M H ₂ SO ₄	51	
4.3.1.2 Elektrohemijsko ponašanje aktiviranih ugljeničnih materijala u	1 M Na ₂ SO ₄	
	55	
ZAKLJUČAK	61	
LITERATURA	63	
PRILOG	72	

UVOD

Imajući u vidu globalne izazove u pogledu smanjenja nivoa emisije štetnih gasova i potrebu za alternativnim izvorima energije, istraživanje elektrodnih materijala dobijenih iz obnovljivih resursa kao što je biomasa predstavlja ključan korak u neophodnoj zelenoj tranziciji. Karbonizacija biomase je efikasan način valorizacije sa ekološkog i energetskog aspekta.

Poslednjih decenija istraživanja su pokazala da elektrodni materijali na bazi aktiviranog ugljenika, dobijeni iz različitih vrsta biomase, posjeduju izuzetne strukturne i elektrohemijske karakteristike.

U tom kontekstu, pronalaženje i primjena alternativa za konvencionalne elektrodne materijale u superkondenzatorima, predstavlja značajan korak ka primjeni modela cirkularne ekonomije. Jedan od perspektivnih prekursora za dobijanje elektrodnih materijala je komina masline, nusprodukt maslinarske industrije, koji se često zanemaruje i nepravilno odlaže.

Komina masline je bogata organskim materijama, mineralnim komponentama, ugljenikom, lako dostupna i ekološki prihvatljiva. Adekvatnim metodama sinteze prevodi se u visokofunkcionalni elektrodni materijal na bazi aktiviranog ugljenika, koji se može koristiti u superkondenzatorima. Superkondenzatori su sistemi koji mogu brzo da skladište i oslobode velike količine energije, s toga su ključna tehnologija za unapređenje energetske efikasnosti, uključujući električna vozila, pametne mreže i prenos energije.

U ovom master radu biće ispitan potencijal komine masline kao sirovine za održivu proizvodnju elektrodnih materijala, sinteza i način aktivacije, sa fokusom na njihovu primjenu u superkondenzatorima.

Analiza elektrohemijskih i strukturnih karakteristika materijala dobijenih iz komine masline daje poseban doprinos u oblasti održivog razvoja u energetskim tehnologijama.

1. PREGLED LITERATURE

1.1 Superkondenzatori – koncept i princip rada

Hemijski izvori struje, su uređaji koji hemijsku energiju pretvaraju u električnu energiju. Funkcionišu na principu redoks reakcija (oksidaciono-redukcioni procesi) između različitih materijala koji omogućavaju protok elektrona kroz spoljašnje kolo, stvarajući struju. Sastoje se od dvije elektrode, elektrolita i separatora.

Superkondenzatori su elektrohemijski sistemi za skladištenje i konverziju energije koje karakteriše brzo punjenje i pražnjenje, dug životni vijek, velika gustina snage i širok raspon radnih temperatura u odnosu na druge elektrohemijske sisteme. Jedan od glavnih izazova za njihov razvoj je pronalaženje ekološki prihvatljivih elektrodnih materijala. Elektrode superkondenzatora su napravljene od visokoprovodnog materijala velike specifične površine. Najčešće korišćeni materijali za elektrode superkondenzatora su metalni oksidi, polimeri i razne vrste aktiviranog ugljenika. Aktivirani ugljenik je materijal koji se često ističe zbog mogućnosti postizanja visokih specifičnih kapaciteta [1-3].

Princip rada superkondenzatora leži u sposobnosti akumuliranja i oslobađanja električne energije putem elektrostatičkog polja između dvije elektrode. Kada se superkondenzator puni, pozitivno naelektrisani joni se akumuliraju na negativnoj elektrodi, dok se negativno naelektrisani joni akumuliraju na pozitivnoj elektrodi. Princip rada superkondenzatora je prikazan na slici 1. Elektrolit, provodni medijum, omogućava transport pomenutih jona između elektroda. Separator ima ulogu da fizički razdvaja elektrode. Ova izolacija je ključna za sprečavanje kratkih spojeva i održavanje stabilnosti sistema [4].

Kada se superkondenzator prazni, akumulirana električna energija se oslobađa. Električno polje između elektroda omogućava brzo oslobađanje energije, što rezultuje visokom brzinom pražnjenja i omogućava superkondenzatorima da pruže veliku snagu u kratkom vremenskom periodu. Kada je superkondenzator prazan javlja se slučajna raspodjela jona [5-7].

Slika 1. Princip rada superkondenzatora

Povezivanjem više superkondenzatora rednim i paralelnim vezama u jedan sistem postiže se veći napon. Primjena superkondenzatora, uključuje: integrisane memorijske ili mikroprocesorske uređaje, regulaciju opterećenja u električnim i hibridnim vozilima, solarnim elektranama i vjetroelektranama, kao i u industriji za skladištenje električne energije. Očekuje se da će imati sve širu primjenu u kontroli stabilnosti elektroenergetskih mreža [7,8].

1.1.1 Podjela superkondenzatora prema mehanizmu skladištenja energije

Prema mehanizmu skladištenja naelektrisanja, superkondenzatori se mogu kategorisati u tri osnovne grupe: elektrohemijske kondezatore sa dvojnim električnim slojem (EDLC – Electric Double-Layer Capacitor), pseudokondenzatore i hibridne kondenzatore. EDLC kondezatori se baziraju na formiranju elektrohemijskog dvojnog sloja, na površini elektroda, gdje se energija skladišti bez promjene hemijske strukture elektroda, omogućavajući brzu isporuku energije i dug vijek trajanja. Pseudokondenzatori, nasuprot tome, skladište energiju putem brzih i reverzibilnih redoks reakcija koje se dešavaju na površini elektroda, što rezultuje većim specifičnim kapacitetom. Hibridni kondenzatori kombinuju karakteristike EDLC i pseudokondezatora, pružajući uravnoteženi odnos između energetske gustine i snage [8-12].

U tabeli 1. prikazana je podjela elektrohemijskih superkondenzatora zasnovana na mehanizmu skladištenja energije.

SUPERKONDENZATORI							
TIP	EDLC	Pseudokondenzatori	Hibridni kondenzatori				
	Elektrostatička	Reverzibilna faradejska	Adsorpcija/desorpcija				
	adsorpcija/desorpcija	redoks reakcija između	jona i reverzibilna				
MEHANIZAM	jonska na granici	jona elektrolita i	faradejska reakcija				
	elektrode i elektrolita.	elektroaktivnih					
		materijala.					
IZGLED	Arrent Galector Separator	Na ⁺	Current Collector				

Tabela 1. Tipovi elektrohemijskih superkondenzatora prema mehanizmu skladištenja energije

1.1.1.1 Elektrohemijski kondenzatori sa dvojnim električnim slojem (EDLC)

Ovi superkondenzatori skladište energiju elektrostatički, stvaranjem dvojnog električnog sloja na granici između elektrode i elektrolita. Naelektrisanje se skuplja na površini elektroda, dok joni iz elektrolita difunduju kroz separator i raspoređuju se u porama elektroda. Energija se skladišti bez hemijskih reakcija, pa EDLC kondenzatori imaju visoku brzinu punjenja i pražnjenja, te izuzetno dug životni vijek. Međutim, njihova gustina energije je niža u poređenju s drugim tipovima superkondenzatora. EDLC se koriste u aplikacijama gdje je potrebna velika snaga i brz odziv

energije, kao što su sistemi za skladištenje energije u vozilima, UPS sistemi i za brz start motora [12,13].

1.1.1.2 Pseudokondenzatori

Za razliku od EDLC kondenzatora, pseudokondenzatori skladište energiju putem faradejskih reakcija, koje uključuju prenos naelektrisanja na površini ili blizu površine elektrodnog materijala. Prva dva procesa su površinski mehanizmi, pa su u velikoj mjeri zavisni od specifične površine elektrodnog materijala. Treći proces vezan je za ukupnu masu materijala, ali je ograničen prisustvom mikropora koje su potrebne za prenos jona [14].

Navedena dva mehanizma skladištenja električne energije prisutna su u većini superkondenzatorskih sistema, gdje je, uglavnom, jedan od mehanizama dominantan, dok je drugi manje zastupljen u opsegu 2-5 % [15].

Zbog učešća hemijskih reakcija, pseudokondenzatori postižu veću gustinu energije od EDLC kondenzatora, ali im je životni vijek nešto kraći zbog mogućnosti degradacije materijala tokom više ciklusa punjenja i pražnjenja. Pseudokondenzatori se koriste u situacijama gdje je potrebna veća gustina energije, ali s nešto manjim zahtjevima za duži živorni vijek, kao što su energetski sistemi za prenos podataka, medicinski uređaji i specijalizovane električne komponente [15].

1.1.1.3 Hibridni kondenzatori

Hibridni kondenzatori kombinuju mehanizme skladištenja energije EDLC-a i pseudokondenzatora. Jedna elektroda se elektrostatički puni, dok se na drugoj odvijaju faradejski procesi. Ovaj hibridni pristup omogućava postizanje bolje kombinacije visoke gustine energije, brzog odziva i dugotrajne stabilnosti, čineći ih pogodnim za širok spektar primjena u kojima je važno balansirati između performansi i dugovječnosti. Hibridni kondenzatori se koriste u aplikacijama kod električnih vozila, hibridnih sistema i naprednih prijenosnih uređaja [3,13].

Na slici broj 2, prikazani su različiti tipovi i oblici superkondenzatora.

Slika 2. Superkondenzatori

1.2. Ugljenični materijali kao elektrode u uređajima za skladištenje energije

Elektrode u superkondenzatorima omogućavaju akumulaciju i oslobađanje suprotno naelektrisanih jona iz elektrolita tokom punjenja i pražnjenja uređaja. Materijali koji se koriste za elektrode moraju zadovoljiti kriterijum u vidu visoke specifične površine, dobre električne provodljivosti, otpornosti na koroziju, hemijske stabilnosti i dužeg životnog vijeka, što doprinosi efikasnosti skladištenja energije. Elektrode treba da omoguće brz transport jona, kako bi se osigurala visoka efikasnost i stabilnost uređaja. Najvažniji zadatak u izradi superkondenzatora je pronaći jeftin i stabilan materijal za elektrode, koji ima visok specifični kapacitet i gustinu [8, 16].

Elektrode superkondenzatora se prave od materijala kao što su: metalni oksidi, provodni polimeri, razne vrste ugljeničnih materijala (aktivirani ugljenik (AC), ugljenične nanocijevi (CNT), karbonizovani aerogelovi (CA), karbonizovana vlakna, grafen, biougalj), kompoziti sačinjeni od polimera i oksida (MnO₂, TiO₂, SnO₂, CuS, SnS₂, NiCo₂S₄), polianilina (PANI) i polipirola [17 - 20].

Aktivirani ugljenik (AC) koristi se u formama praha, vlakana, pletiva, cijevi, paste i tankih filmova. Poznat je po visokoj specifičnoj površini, dobroj električnoj provodljivosti i hemijskoj stabilnosti. Međutim, kada se nanosi u obliku paste na metalnu podlogu, može doći do povećanja kontaktnog otpora, koji se može smanjiti dodavanjem konduktivnih aditiva. Aktivirani ugljenik često se koristi u kombinaciji s vezivima kao što su teflon ili celuloza, koji čine do 20% sastava kako bi se poboljšala kompaktnost elektroda. Debljina sloja može varirati od 10 mikrometara kod tankih filmova do 100 mikrometara kod debljih filmova. Kod tankih filmova, unutrašnji otpor zavisi od otpora elektrolita, dok kod debljih filmova zavisi od poroznosti sloja [21,22].

Grafen je dvodimenzionalni materijal sa izuzetnim električnim, mehaničkim i hemijskim svojstvima, dostupan u obliku tankih filmova ili praha. Njegova visoka specifična površina i provodljivost omogućavaju efikasno skladištenje energije i poboljšanje performansi superkondenzatora [22].

Ugljenične nanocijevi (CNT), koje dolaze u obliku praha, vlakana ili pletiva, nude izuzetnu provodljivost i mehaničku čvrstoću. Njihova nano-struktura omogućava efikasan transport elektrona i doprinosti poboljšanim performansama superkondenzatora [23].

Ugljenični aerogelovi (CA) su materijali ekstremno niske gustine sa visokom poroznošću i specifičnom površinom. Ovi materijali omogućavaju efikasan transport jona i elektrona, što rezultira visokim kapacitetom i dobrim performansama [24].

Karbonizovana vlakna i karbonizovani polimeri (poput polipirola i polianilina) se dobijaju karbonizacijom organskih materijala i nude dobru mehaničku čvrstoću i elektrohemijsku stabilnost, što ih čini pogodnim za primJenu u superkondenzatorima [25,26].

Biougalj, je proizvod zagrijavanja različitih vrsta biomase bez prisustva kiseonika. Biougalj ima veliku specifičnu površinu. Dobija se relativno jeftinom sintezom i ekološki je prihvatljiv, što ga čini pogodnim za komercijalnu upotrebu u elektrohemijskoj i hemijskoj industriji [27].

OLDs (ugljenične nanostrukture u obliku luka) i *CDC* (ugljenični derivati karbida) su nova generacija ugljeničnih materijala koji se koriste kao elektrode zbog visoke električne provodljivosti i hemijske stabilnosti. Kod CDC-a metalna komponenta iz karbida se najčešće eliminiše zagrijavanjem u vakuumskom okruženju [28].

Ugljenični materijali koji se koriste za elektrode superkondenzatora su prikazani na slici broj 3.

Slika 3. Ugljenični materijali za elektrode superkondenzatora

Iako su ugljenični materijali veoma efikasni u primjeni kod superkondenzatora, njihova gustina energije je i dalje niža u poređenju s pseudokapacitivnim materijalima kao što su provodni polimeri i oksidi prelaznih metala, koji mogu obezbijediti veću gustinu energije. Kao odgovor na ove izazove, nastoje se optimizovati uslovi sinteze ugljeničnih materijala kako bi se poboljšale elektrohemijske osobine i razvili hibridni superkondenzatori visokih performansi [29].

Uvođenje pseudokapacitivnih materijala na površinu ili unutar ugljenične matrice može poboljšati performanse superkondenzatora zbog dodatnog Faradejevog skladištenja naelektrisanja zajedno sa brzim i potpuno reverzibilnim elektronskim prenosom [30].

Osnovni izazov u oblasti istraživanja superkondenzatora jeste povećanje gustine energije, kao i obezbeđivanje radnih uslova koji garantuju dugoročnu stabilnost i efikasnost elektrohemijskih sistema. Ovaj korak dopinosi razvoju novih elektrodnih materijala na bazi ugljenika, sa karakteristikama potrebnim za industrijske aplikacije u superkondenzatorima.

1.3. Agro-otpad kao sirovina za dobijanje aktiviranog ugljenika

Aktivirani ugljenik (AC-Activated carbon) može se proizvesti od organskih materijala sa visokim sadržajem ugljenika. Poznat je kao visoko porozan materijal sa izuzetnim sorpcionim i elektrohemijskim svojstvima, što ga čini korisnim za širok spektar primjena u industriji. Proizvodi se procesom karbonizacije i aktivacije.

U medicinskoj i farmaceutskoj industriji aktivirani ugljenik se koristi za tretman predoziranja i trovanja ljekovima. U industriji za prečišćavanje vode i vazduha, koristi se za uklanjanje nečistoća iz vode za piće i filtera za vazduh. U prehrambenoj industriji služi kao aditiv i sredstvo za bojenje hrane. U hemijskoj industriji koristi se za proizvodnju različitih hemikalija i rastvarača. Poseban segment primjene aktiviranog ugljenika predstavlja njegova upotreba u sistemima za konverziju i skladištenje energije [31].

Odabir polazne sirovine za dobijanje aktiviranog ugljenika predstavlja ključan korak jer utiče na kvalitet i performanse konačnog proizvoda. Faktori koji utiču na izbor polazne sirovine su: cijena, namjena, dostupnost, željena svojstva i uticaj na životnu sredinu. Željena svojstva sirovina za proizvodnju AC uključuju visok sadržaj ugljenika (najmanje 70%), nizak sadržaj pepela, konzistentna i homogena raspodjela veličine čestica [31,32].

Tradicionalni izvori uključuju ugalj, lignit, kokosove ljuske i drveni treset, ali visoki troškovi i negativan uticaj na životnu sredinu ovih sirovina podstiče interes za alternativnim izvorima.

Agro-otpad (biomasa) kao što su ljuske oraha, koštice voća, sjemena, stabljike i slamke biljaka, bagasa šećerne trske, komina masline i vinove loze, imaju veliki potencijal zbog njihovog visokog sadržaja ugljenika. Navedene sirovine su često lako dostupne, jeftine, sa manjim sadržajem pepela, čime se smanjuju troškovi proizvodnje aktiviranog ugljenika. Valorizacija različitih vrsta biomase doprinosi smanjenju otpada i održivom razvoju [32, 33].

Sirovine za dobijanje aktivnog ugljenika su prikazane u tabeli 2.

Tabela 2. Sirovine za dobijanje aktiviranog ugljenika

SIROVINE ZA DOBIJANJE AC				
KONVENCIONALNE	ALTERNATIVN	NE SIROVINE		
DRVO	LJUSKE KIKIRIKIJA	KOMINA VINOVE		
		LOZE		
KOKOSOVE LJUSKE	KOMINA MASLINE	BAGASA		
UGALJ	BAMBUS	OKLASAK KUKURUZA		

Na Univerzitetu u Dar es Salamu, tokom proteklih dvadeset godina, sprovedena su istraživanja o proizvodnji aktiviranog ugljenika iz lokalnog agro-otpada. Rezultati su pokazali da aktivirani ugljenik, proizveden iz agro otpada, kao što su ljuske oraha, koštice, ljuske, sejmena, stabljike biljaka, bagasa šećerne trske i piljevina i komina vinove loze, ima svojstva uporediva sa komercijalnim proizvodima, nakon adekvatnog tretiranja i aktivacije [34].

Nedavna istraživanja su takođe pokazala da vlažan otpad masline može biti efikasna sirovina za proizvodnju visokokvalitetnog aktiviranog ugljenika, što je popularizovalo istraživanje valorizacije ovog nusprodukta u aktivirani ugljenik za primjene u elektrohemijskim sistemima za skladištenje i konverziju energije [35].

1.3.1 Konverzija biomase u ugljenične materijale

Konverzija biomase u ugljenične materijale uključuje pretvaranje organskog otpada u visoko porozne ugljenične materijale putem karbonizacije i aktivacije. Ovi procesi transformišu biomasu u materijal sa velikom specifičnom površinom, što ih čini pogodnim za potrebe skladištenje energije u superkondenzatorima.

1.3.1.1 Karbonizacija

Karbonizacija je proces koji se vrši na visokim temperaturama u inertnoj atmosferi kako bi se proizveo ugljenični materijal. U ovom procesu, termičkom degradacijom se uklanjaju isparljive materije, čime se povećava sadržaj ugljenika [35,36].

Ključni parametri u ovoj fazi su temperatura, brzina zagrijavanja, protok intertnog gasa i trajanje procesa. Karbonizacijom se razvija početna porozna struktura materijala, ali njegova sposobnost adsorpcije i vrijednost specifičnog kapaciteta ostaje niska, što zahtjeva dodatnu aktivaciju kako bi se optimizovala strukturna i elektrohemijska svojstva za željene primjene [37].

Tabela 3. je ključna za razumijevanje procesa karbonizacije jer detaljno opisuje četiri faze kroz koje polazne sirovine prolaze tokom termičke razgradnje u inertnoj atmosferi. Svaka faza ima specifične temperaturne uslove i tipove reakcija koje se odvijaju, što je od suštinskog značaja za postizanje optimalnih svojstava konačnog proizvoda. Početno sušenje (faza 1) uklanja vlagu iz sirovina, dok pre-karbonizacija (faza 2) proizvodi pirolitčke tečnosti i gasove. Egzotermna reakcija

u trećoj fazi omogućava masovno uklanjanje ovih tečnosti i katrana, što dovodi do formiranja biouglja. Završna faza (faza 4) fokusira se na povećanje sadržaja fiksnog ugljenika uklanjanjem preostalih isparljivih supstanci [37].

FAZA	Temperatura [°C]	Tip reakcije	PROCES
1	200	Endotermna	Početno sušenje sirovina za uklanjanje vlage
2	170-300	Endotermna	Faza pre-karbonizacije: Proizvodnja piroligneoznih tečnosti (sircetna kiselina i metanol) i lakih katrana i nekondenzovanih gasova (CO i CO ₂)
3	250-300	Egzotermna	Masovno uklanjanje piroligneoznih tečnosti i lakih katrana proizvedenih u fazi 2 – proizvodnja biouglja.
4	> 300	-	Uklanjanje isparljivih i ne-ugljenikovih supstanci radi povećanja sadržaja fiksnog ugljenika u biouglju.

Tabela 3. Faze karbonizacije

Razumijevanje ovih faza omogućava preciznu kontrolu procesa, što je ključno za proizvodnju visokokvalitetnog aktiviranog ugljenika sa željenim poroznim strukturama i adsorpcionim kapacitetima. Povećanje temperature dovodi do većeg oslobađanja isparljivih materija i povećanja sadržaja fiksnog ugljenika i pepela. Optimalni uslovi za karbonizaciju zavise od vrste sirovine i namjene. Na primjer, ljuske kokosa se obično karbonizuju na temperaturama između 500-700 °C tokom 3-4 h, dok drvo može biti karbonizovano na višim temperaturama i duže vrijeme [31].

Hidrotermalna karbonizacija (HTC) je metoda sinteze koja se pokazala veoma korisnom za tretiranje biomase sa ciljem dobijanja ugljeničnog materijala, a razvio ju je njemački hemičar Bergius 1913. godine. U odnosu na druge konvencionalne metode sinteze ugljeničnih materijala istakla se kao posebno efikasna za tretiranje biomase sa velikim sadržajem vlage. Intenzivnija primjena ove metode za dobijanje ugljeničnih materijala počela je sredinom 20. vijeka. Valorizacija biomase u ugljenične materijale pomoću HTC metode ujedno demonstrira model cirkularne ekonomije [38, 39].

1.3.1.2 Fizička i hemijska aktivacija

Aktivacija je proces koji optimizuje svojstva ugljeničnih materijala, povećanjem zapremine pora, prečnika pora i površine, čineći ga pogodnim za aplikacije u industriji. Primarni cilj aktivacije je da stvori novu ili razvije postojeću poroznost u ugljeničnom materijalu i tako poveća aktivnost same površine za elektrohemijske aplikacije.

Proces uključuje:

- Eliminaciju katranskih supstanci koje blokiraju pore.

- Izlaganje lignina aktivirajućim agensima koji razvijaju mikroporoznu strukturu.

- Proširivanje postojećih pora sagorijevanjem zidova između pora, čime se povećavaju srednje i makropore, ali smanjuje zapremina mikropora.

 Aktivacija može biti izvedena prije ili nakon karbonizacije, ključna je za poboljšanje poroznosti i površine aktiviranog ugljenika [37].

Aktivacija može biti hemijska i fizička [40].

Fizička aktivacija je proces koji se odvija u dva koraka. U prvom koraku, dolazi do karbonizacije polaznih sirovina pri umjerenim temperaturama (obično između 400 °C i 800 °C) u inertnoj atmosferi gasa (azot ili argon). Tokom ove faze isparljive materije se uklanjaju, a osnovna porozna struktura počinje da se formira. Međutim, pore koje nastaju u ovoj fazi nisu dovoljno razvijene, pa je neophodna dodatna aktivacija kako bi se optimizovale performanse.

U drugom koraku aktivacija se izvodi na višim temperaturama, u rasponu od 800 °C do 1100 °C, uz prisustvo oksidacionih gasova kao što su: ugljenik (IV)-oksid (CO₂), para, vazduh ili njihove smješe. Ovi gasovi reaguju sa ugljeničnim materijalom, proširujući i međusobno povezujući pore, čime se poboljšava poroznost materijala. Ugljenik (IV)-oksid je često preferiran zbog jednostavnosti upotrebe i efikasne kontrole procesa, omogućavajući optimizaciju porozne strukture. Kada se oba koraka — karbonizacija i aktivacija — odvijaju istovremeno, proces se naziva direktna aktivacija, i u tom slučaju aktivacioni gas istovremeno uklanja isparljive materije i razvija poroznost materijala [41].

Hemijska aktivacija je proces koji se obično izvodi u jednom koraku, na temperaturama između 400 °C i 900 °C. U ovom postupku, polazni materijal (prekursor) se miješa sa hemijskim supstancama koje se nazivaju aktivatori, a zatim se smješa podvrgava žarenju u inertnoj atmosferi. Hemijski reagensi koji se najčešće koriste kao aktivatori su: H₃PO₄ [42], ZnCl₂ [43], KCl [44], KOH [45], i dr.

Jedna od prednosti hemijske aktivacije je da se izvodi na nižim temperaturama u poređenju sa fizičkom aktivacijom, čime se smanjuje energetska potrošnja. Fizička aktivacija obično proizvodi mezoporozne materijale, dok hemijska aktivacija daje aktivirani ugljenik sa vrlo visokom specifičnom površinom i dominantnom prisutnošću mikropora. Međutim, jedan od glavnih nedostataka hemijske aktivacije je potreba za ispiranjem aktiviranog ugljeničnog materijala kako bi se uklonili ostaci aktivatora, što zahtjeva dodatne korake u obradi i može povećati troškove proizvodnje [42, 46, 47].

U tabeli 4. je prikazan postupak dobijanja aktivnog ugljenika (AC) polazeći od biomase kao polazne sirovine.

Tabela 4. Dobijanje aktiviranog ugljenika polazeći od prekursora (biomase)

1.4 Pregled dosadašnjih istraživanja

Komina masline (OMW, *eng. olive mill waste*) je nusproizvod procesa ekstrakcije maslinovog ulja, karakterističan po visokom sadržaju vode, masti, organskih materija, fenola i toksina. Može koristiti za proizvodnju biogoriva, organskog đubriva, proizvodnju bioaktivnih supstanci, kompostiranje, bioremedijaciju, za proizvodnju enzima za industrijske svrhe, kao i za proizvodnju aktiviranog ugljenika za različite primjene. Primjena aktiviranog ugljenika dobijenog od OMW (slika 4), kao elektrodnog materijala u elektrohemijskim sistemima za skladištenje i konverziju energije je posebno interesantna sa aspekta održive energetske tranzicije [48].

Slika 4. Vlažan otpad (OMW) sa područja Bara iz industrije maslinovog ulja

Komina masline sa 39 mas% pulpe masline, 5 mas% košpica i 56 mas% otpadne vode, u istraživanju se pokazala kao dobar polazni materijal za dobijanje ugljeničnih materijala. Rezultati istraživanja hidrotermalne karbonizacije ove mješavine na temperaturama od 180 °C, 220 °C i 250 °C tokom 3 sata su pokazali da porast temperature do 250 °C dovodi do povećanja stepena karbonizacije i energetske gustine dobijene hidročađi (do 142 %) [49, 50].

Hidročađ, dobijena iz komine masline HTC metodom, može se hemijskom i fizičkom aktivacijom dodatno poboljšati za elektohemijske primjene. Za hemijsku aktivaciju kao aktivatori su korišćeni KOH i H₃PO₄, a za fizičku CO₂ na 840 °C u različitim vremenskim periodima. Dobijeni rezultati pokazuju da je hemijska aktivacija sa KOH na 800°C, u inertnoj atmosferi, daje aktivirani ugljenik sa velikom specifičnom površinom, nižim sadržajem pepela i pretežno mikroporoznom strukturom [51, 52].

Hidrotermalnom karbonizacijom vlažnog otpada iz industrije maslinovog ulja i aktivacijom u struji azota 2 sata na 700 °C, pomoću H₃PO₄, u masenom odnosu 1:4 respektivno, dobijen je materijal AP. Aktivacijom vlažnog otpada masline sa koncentrovanim KOH u masenom odnosu 1:2 respektivno pri različitim temperaturama, dobijeni su uzorci AK1 (300 °C) i AK2 (840 °C). Aktivacija je vršena u inertnoj atmosferi 2h u horizontalnoj cjevastoj peći (od Heraeus) pod protokom azota od 300 cm³/min. Uzorci CK1 i CK2 su pripremljeni u dva koraka. Prvi korak uključivao je karbonizaciju uzorka na 300 °C tokom 2 sata, uz konstantan protok azota od 300 cm³/min. U drugom koraku sprovedena je hemijska aktivacija, gdje je prethodno karbonizovani materijal pomiješan s čvrstim kalijum-hidroksidom (KOH) u masenim odnosima 1:1 i 1:2. Ove smješe su zatim tretirane u struji azota na 840 °C tokom 2 sata. Finalni uzorci su označeni kao CK1 (za maseni odnos 1:1) i CK2 (za maseni odnos 1:2), u zavisnosti od količine upotrijebljenog KOH. Na kraju su svi pripremljeni aktivirani ugljenični materijali isprani sa 1 M rastvorom HCl, a zatim destilovanom vodom do negativne reakcije na hloride. Vrijednosti specifičnih kapaciteta su prikazane na slici (5a i 5b), kao i stabilnost specifičnog kapaciteta u zavisnosti od broja ciklusa [53].

Slika 5. Aktiviranih ugljenični materijali: $AP(\Theta)$, $AK1(\bullet)$, $AK2(\bullet)$, $CK1(\triangle)$, $CK2(\bullet)$ u 1M H_2SO_4

a) zavisnost specifičnog kapaciteta C_{CV}(F/g) od potencijama E (V)
b) zavisnost specifičnog kapaciteta G_{GD} (F/g) od gustine struje I (A/g)
c) stabilnost specifičnog kapaciteta G_{GD} (F/g) u zavisnosti od broja ciklusa [53]

Nakon aktivacije sa KOH kod materijala CK2 dobijena je specifična površina od 1626 m²/g. Materijal AP je imao veću vrijednost specifičnog kapaciteta u odnosu na uzorke koji su aktivirani sa KOH, što je objašnjeno prisustvom i prirodom površinskih grupa fosfora, nakon strukturne

karakterizacije. Vlažni otpad masline se pokazao kao dobar prekursor jer nakon aktivacije dao porozan aktivirani ugljenik sa veoma dobro razvijenom mrežom pora.

Elektrohemijske karakteristike aktiviranih ugljenika su pokazale da je najveći dobijeni specifični kapacitet bio 224 F/g pri 250 mA/g (slika 5b) sa kapacitetom zadržavanja od 91% u 1M H₂SO₄ (slika 5c). AP je pokazao visok specifični kapacitet od 176 F/g i najbolju stabilnost zadržavanja istog, zbog prisustva fosfornih površinskih grupa i adekvatnih mikro-mezopornih mreža. Istraživanje je dalo doprinos sa aspekta primjene elektrodnih materijala, na bazi vlažnog otpada masline, sa visokim specifičnim kapacitetom za potrebe superkondenzatora [53].

Naučnici sa Firat Univerzita, u Turskoj su kominu masline nakon usitnjavanja karbonizovali 2h u struji azota na temperaturi 450 °C. Nakon procesa karbonizacije ugljenični materijal, je impregniran sa KOH u različitim masenim odnosima 1:1, 1:2 i 1:4 kako bi se ispitao uticaj količine aktivatora na svojstva aktiviranih materijala. Uzorci su impregnirani na 60 °C tokom 12 h. Posle sušenja na 103 °C tokom 24 h, uzorci su aktivirani u struji azota na temperaturama 560, 700 i 840 °C. Aktivirani ugljenični materijali su miješani sa rastvorom 1M HCl a zatim isprani destilovanom vodom do negativne reakcije na hloride. Nakon procesa aktivacije uzorci su sušeni 24h na temperaturi 103 °C. Proces sinteze i aktivacije uzoraka prikazan je na slici broj 6 [54].

Slika 6. Šema primjenjenog postupka za pripremu aktiviranog ugljenika iz komine masline [54]

Nakon ispitivanja svojstava dobijenih aktiviranih ugljenika pri različitim odnosima impregnacije ugljeničnog materijala sa KOH i temperatura aktivacije, zaključeno je da uzorci imaju veliku specifičnu površinu, veliku zapreminu pora, dobro razvijenu poroznost sa mikro- i mezoporoznim strukturama. BET površine aktivnih ugljenika rasle su od 385.481 do 2451.77 m²/g sa porastom temperature aktivacije i masenog odnosa ugljeničnog materijala i KOH. Na osnovu dobijenih rezultata, zaključeno je da temperatura aktivacije od 840 °C i maseni odnos prekursora komine masline i KOH 1:4 daje najbolje rezultate. Velika specifična površina dobijenih uzoraka ukazala je da komina masline predstavlja dobar polazni prekursor uz adekvatan tretman sinteze [54].

Mješavina košpica masline i otpadne vode iz mlina maslina (OMVV) kroz sukcesivnu hidrotermalnu karbonizaciju (HTC) i aktivaciju kalijum hidroksidom (KOH) dala je aktivne ugljenike sa visokom poroznošću. Ispitane su strukturne, morfološke i hemijske karakteristike hidročađi (HC) i izvedenih aktiviranih ugljeničnih materijala, proizvedenih korišćenjem dva odnosa KOH/HC (1:2 i 1:4). Aktivacija KOH poboljšala je poroznu strukturu HC i njenu površinsku funkcionalnost. Najbolja svojstva su dobijena za HC aktiviran sa KOH u odnosu 1: 2, pokazujući obećavajuću površinu (≈1000 m²/g) i visoka svojstva adsorpcije prema metilen plavom i jodu (617 i 1203 mg/g, respektivno). Ovo istraživanje je ukazalo da aktivirani ugljenični materijali iz prekursora mješavina košpica masline i otpadne vode iz mlina maslina mogu imati primjenu i u procesima adsorpcije [55].

Elektrode od aktiviranog ugljenika, proizvedene hemijskom aktivacijom košpica maslina sa koncentrovanim KOH, dale su izuzetne performanse za superkondenzatore. Optimizacija uslova aktivacije sa KOH pokazala je da prosječna veličina pora raste proporcionalno, sa porastom masenog odnosa KOH/ugljeničnog materijala. Ovako optimizovani uslovi sinteze omogućili su dobijanje mikroporoznih elektroda sa visokim specifičnim kapacitetom od 260 F g⁻¹ pri 0,5 A g⁻¹. Istraživanja elektrodnih materijala na bazi biomase pokazuju da primjena materijala zavisi od strukturnih i elektrohemijskih svojstava. Na sposobnost materijala da efikasno skladišti veće količine naelektrisanja utiče vrijednost specifičnog kapaciteta, stabilnost materijala nakon više ponovljenih ciklusa, specifična povšina, strukturne karakteristike, poroznost materijala, provodljivost i veličina pora [56-59].

Materijal sa odličnim elektrohemijskim performansama za superkondenzatore (SC), dobijen je hidrotermalnom karbonizacijom ljuske masline i aktivacionog tretmana sa aktivatorima KOH i NaOH, u masenom odnosu 1:2. Smješa je žarena na 700 °C u atmosferi N₂. Tiourea je korišćena kao izvor N i S. Sintezom pri navedenim radnim uslovima, dobijena je porozna struktura aktiviranog materijala. Detaljno je istražen uticaj aktivacionih agenasa i dopinga heteroatoma (N, S) na strukturu i elektrohemijske karakteristike dobijenih materijala. Aktivirani ugljenik dobijen od ljuske masline sa KOH/NaOH (OACKNa) ima specifičnu površinu od 2900 m²·g⁻¹ i pokazuje izvanredan specifični kapacitet od 549 F·g⁻¹ na 1 A·g⁻¹ sa visokim zadržavanjem kapacitivnosti od 79,5% kada gustina struje dostigne 30 A·g⁻¹. Superkondenzator zasnovan na OACKNa pokazuje izvanrednu cikličnu stabilnost sa zadržavanjem kapaciteta od 93,2 % nakon 10.000 ciklusa pri 10 A·g⁻¹. Zanimljivo je da superkondenzator na bazi OACKNa isporučuje visoku specifičnu energiju od 38,8 Wh·kg⁻¹ čak i pri ultravisokoj specifičnoj snazi od 650 W·kg⁻¹ pri 1 A·g⁻¹. Stoga je OACKN dobijen jeftinom sintezom u kombinaciji sa perspektivnim elektrohemijskim performansama obećavajući elektrodni materijal za superkondenzatore [58].

Solvotermalna obrada poljoprivrednog otpada iz industrije maslinovog ulja se pokazala kao efikasan tretman za poboljšanje elektrohemijskih svojstava elektroda, omogućavajući uvođenje značajnog udjela sumpora i kiseonika, koncentrisanih uglavnom na površini uzorka. Ovaj tretman doprinosi boljoj reaktivnosti elektroda, što može rezultirati povećanom kapacitivnošću i dugotrajnijom stabilnošću u elektrohemijskim procesima. Kao sirovina za uzorke korišćen je čvrsti ostatak iz otpadnih voda maslina (OMW), koji je karbonizovan na 450 °C u inertnoj atmosferom. Aktivacija ugljeničnog materijala sa KOH u odnosu 1:2, vršena je na 840 °C, nakon čega je uzorak neutralisan HCl, ispran i osušen, i označen kao AOW. Uzorci AOW5 i AOW9 dobijeni su sumpornim dopiranjem. AOW uzorka, sa različitim količinama tioglikolne kiseline (5 mL i 9 mL) u solvotermalnim uslovima na 120 °C, dok je nedopirani uzorak tretiran sa etanolom pod istim uslovima. Ciklični voltamogrami aktiviranih ugljeničnih materijala u kiseloj i baznoj sredini prikazani su na slici 7d i 7e. Modifikacija dopiranjem je dovela do funkcionalizovanih materijala sa ne samo većim kapacitetom (325 F g⁻¹ naspram 158 F g⁻¹ na 0,125 A g⁻¹ u 1 M H₂SO₄), već i sa većim zadržavanjem kapaciteta pri većim gustinama struje (slika 7-a), zbog njihovog manjeg električnog otpora. U baznoj sredini 6M KOH specifični kapacitet je značajno niži u odnosu na kiselu sredinu (slika 7-b). U velikoj mjeri je povećana količina električne energije uskladištene ovim materijalima (sa 21.8 Wh kg⁻¹na 37.0 Wh kg⁻¹ u 1 M H₂SO₄), i smanjena gustina snage (sa 7393 W kg⁻¹ na 34360 W kg⁻¹ u 1 M H₂SO₄). Urađeno je više ciklusa punjenja/pražnjenja kako bi se testirala stabilnost ovih materijala, što nije pokazalo značajno smanjenje njihove elektrohemijske efikasnosti nakon 12.500 ciklusa [56].

- (a) zavisnosi specificnog kapačileta CGD(F/g) ba gustine struje T(A/g) a $114111_{2}SO_{4}$
- b) zavisnost specifičnog kapaciteta $C_{GD}(F/g)$ od gustine struje I(A/g) u 6M KOH
- c) uporedni ciklični voltamogrami pri brzini polarizacije 20 mV/s u 1M H_2SO_4
- d) uporedni ciklični voltamogrami pri brzini polarizacije 20 mV/s u 6M KOH

Metoda oblaganja silicijumom poroznog aktiviranog ugljenika (AC) dobijenog od košpica masline dalaje kao rezultat veću mikroporoznost materijala što je prikazano na slici 8. Fizičko-hemijska karakterizacija je pokazala da proučavani prah ugljenik-silicijum sadrži veće količine kiseoničnih funkcionalnih grupa nego čisti aktivirani ugljenik. Pripremljeni ugljenik-silicijum prah je istražen kao elektrodni materijal za simetrične EDLC i upoređen sa čistim aktiviranim ugljenikom. Prevlaka od silicijum dioksida uzrokovala je povećanje napona radne ćelije sa 0,6 na 1,25 V. Na isti način, kapacitivno ponašanje i specifični kapacitet su poboljšani za simetričnu AC-Si//AC-Si ćeliju, koja je postigla visok specifični kapacitet od 141 F/g pri gustinii struje od 0,5 A/g. Zbog većeg radnog napona ćelije AC-Si//AC-Si, njegova specifična energija je veća od one kod AC//AC. Postignuta specifična energija uređaja iznosila je 30,6 Wh kg⁻¹, dok je specifična snaga iznosila 1661 W kg⁻¹ pri gustini struje od 0,5 A/g. U poređenju sa drugim aktiviranim ugljenicima dobijenim iz košpica maslina, ova studija potvrđuje da materijal obložen silicijumom pokazuje obećavajuće elektrohemijske performanse za skladištenje energije u EDLC-ovima [60].

Slika 8. Elektronski mikroskopski (SEM) snimci strukture površine materijala [60] porozne strukture aktivnog uglja (AC)-c, e i aktiviranog ugljenika dopiranog silicijumom (AC-Si)-d,f

U cilju ispitivanja uticaja aktivatora na svojstva materijala, polukoks iz ulinih škriljaca (OSS) je korišćen kao prekursor za pripremu aktiviranog ugljenika mikrotalasnom separacijom i hemijskom aktivacijom sa FeCl₃-ZnCl₂. Raman spektroskopija, rendgenska difrakcija (XRD), infracrvena spektroskopija sa Furijeovom transformacijom (FTIR), transmisiona elektronska mikroskopija (TEM) i adsorpcija-desorpcija azota su korišćeni za karakterizaciju aktiviranog ugljenika ACF. Rezultati su pokazali da uzorak aktiviran sa FeCl3-ZnCl2 ima veću specifičnu površinu, odgovarajuću veličinu pora i veći stepen grafitizacije u poređenju sa materijalima pripremljenim drugim metodama aktivacije. Elektrohemijska svojstva materijala su procijenjena cikličnom 9), galvanostatskim punjenjem/pražnjenjem i elektrohemijskom voltametrijom (slika impedansnom spektroskopijom. Ciklični voltamogrami ACF ukazuju na kapacitivno ponašanje materijala. U testovima galvanostatskog punjenja i pražnjenja pri gustinama struje 1 A/g, 2 A/g, 4 A/g i 8 A/g, dobijeni su specifični kapaciteti ACF elektrode je 185 F/g, 169 F/g, 156 F/g i 144 F/g, respektivno, što ukazuje na dobre elektrohemijske performanse. Dobijena je prilično velika specifična površina ACF od 1478 m² g⁻¹ [61].

Slika 9. Ciklični voltamogram materijala ACF pri brzinama polarizacije 5-60 mV/s [61]

Elektrohemijsko ponašanje ACF je ispitano u vodenom elektrolitu 6M KOH. Slika 10a prikazuje krive kulonske efikasnosti materijala ACF elektrode nakon 5000 ciklusa punjenja/pražnjenja pri gustini struje od 10 mA/cm². Nakon 5000 ciklusa punjenja/pražnjenja konstantnom strujom, specifični kapacitet elektrode ne opada značajno, a njegova efikasnost ostaje na 99,5%, što ukazuje da ACF elektroda zadržava dobre performanse nakon višestrukog punjenja/pražnjenja. Na slici 10b se pri brzini skeniranja od 10 mV/s prije i nakon cikliranja ne uočava značajna promjena

izgleda cikličnog voltamograma. Rezultati istraživanja su pokazali da konverzija OSS u ACF, koristeći smješu hlorida kao aktivatora, pruža jeftin i efikasan način za proizvodnju elektrodnih materijala za aplikacije u superkondenzatorima [61].

Slika 10. (a) Krive kulonske efikasnosti ACF elektrodnog materijala s brojem ciklusa (b) CV krive prije i posle ciklusa [61]

Ugljenični materijali dobijeni iz koštica maslina, otpadnog lignoceluloznog materijala sa sadržajem od 25% α -celuloze, 35% hemiceluloze i 40% lignina, pokazali su veliki potencijal za primjenu u proizvodnji hibridnih Na- i Li-jonskih superkondenzatora sa visokom gustinom energije i snage. Pirolizom prekursora uklonili su se nekarbonski elementi, dajući ugljenični materijl (HC) sa slojevima grafena, dok hemijska aktivacija KOH dodatno uticala na razvoj mikropora, ključnih za adsorpciju jona. Aktivirani ugljenik (AC) sa visokom specifičnom površinom (~2225 m²/g) i mikroporoznom strukturom, je pogodan za elektrohemijsku primjenu, dok HC, zbog niske specifične površine (~5 m²/g), ima ograničenu elektrohemijsku efikasnost [62].

Elektrohemijske performanse AC materijala ispitane su metodom ciklične voltametrije. Oblik cikličnih voltamograma ukazuje na reverzibilnost reakcija, smanjenje specifičnog kapaciteta sa porastom gustine struje zbog većih otpora. Strukturne analize (SEM/TEM) ukazuju na mikropukotine na površini AC (slika 11), dok Raman spektri i XPS potvrđuju visok stepen neuređenosti i prisustvo kiseoničnih heteroatoma na površini HC [62].

Slika 11. SEM HC i AC - a) i c) respektivno; TEM HC i AC - b) i d) respektivno [62]

Rezultati istraživanja ukazuju da dalji razvoj i optimizacija ugljeničnih materijala dobijenih iz otpadih sirovina maslinarske industrije, sa adekvatnim metodama obrade i radnim uslovima, može imati značajan doprinos na polju elekrohemijske primjene.

2. CILJ RADA

Svrha ovog istraživanja je razvoj efikasnog postupka za iskorišćavanje komine masline kao vrijedne sirovine i njena transformacija u elektrodni materijal na bazi aktiviranog ugljenika sa visokim specifičnim kapacitetom za skladištenje energije.

Rad pruža uvid u strukturu i elektrohemijsku aktivnost sintetisanih aktiviranih ugljeničnih materijala, kako bi se uspostavila korelacija između parametara sinteze, strukture, svojstava i primjene. Posebna pažnja je posvećena razumijevanju uticaja procesa aktivacije na elektrohemijsko ponašanje materijala u različitim vodenim elektrolitima s ciljem optimizacije performansi uređaja za skladištenje energije.

Fokus istraživanja je na ispitivanju elektrohemijskih svojstava sintetisanih materijala, uključujući analizu mehanizma skladištenja naelektrisanja i određivanje specifičnog kapaciteta kako bi se razvili elektrodni materijali pogodni za održivu proizvodnju.

Istraživanje je realizovano kroz nekoliko ključnih faza:

- Prva faza: Optimizacija procesa hidrotermalne karbonizacije u poređenju sa postojećim istraživanjima, uz analizu uticaja temperature, trajanja sinteze, odnosa prekursora i aktivatora na svojstva aktiviranog ugljenika.
- Druga faza: Strukturna karakterizacija aktiviranih ugljeničnih materijala radi poređenja uticaja različitih aktivatora na svojstva materijala.
- Treća faza: Ispitivanje elektrohemijskih performansi i potencijalne primjene sintetisanih elektrodnih materijala u superkondenzatorima.
3. EKSPERIMENTALNI DIO

3.1. Sinteza ugljeničnog materijala

U okviru ovog master rada vršena je sinteza ugljenika, hidrotermalnom karbonizacijom (HTC) komine masline iz maslinarske industrije, sa područja Bara (Crna Gora), slika 4. U Crnoj Gori komina masline predstavlja nusprizvod iz maslinarske industrije sa područja Bara, čijim istraživanjem bi se mogao dati novi značaj ovom resursu, za primjene u superkondenzatorima. Komina masline (vlažan otpad masline) je bogata organskim materijama i polifenolima.

Vlažan otpad masline, kao sirovina je sa dodatkom destilovane vode hidrotermalno karbonizovan u HTC reaktoru (slika 12) i tretiran 4 h na 200 °C pri autogenom pritisku koji je iznosio 137.9 kPa.

Slika 12. HTC reaktor i proizvodi HTC karbonizacije

Kao proizvodi izdvojili su se: hidročađ (HTC_{OMW}), procesna voda i gas CO₂.

Hidročađ je čvrsti proizvod hidrotermalne karbonizacije koji je dalje aktiviran sa ciljem optimizacije strukturnih i elektrohemijskih karakteristika.

Ukupna količina hidročađi korištena u eksperimentima je pripremljena u tri hidrotermalna tretmana pri istim uslovima, čije polazne i proizvodne mase su prikazane u tabeli broj 5.

	Masa I [g]	Masa II [g]	Masa III [g]
komina masline (vlažan otpad masline)	115,396	115,319	115,287
destilovana voda	386,181	385,057	385,145
proizvodi			
hidročađ	27,528	28,818	28,969
procesna voda	401,177	384,193	380,360

Tabela 5. Mase polaznih reaktanata i proizvoda hidrotermalne karbonizacije

Čvrsti proizvodi sva tri tretmana su pomiješani nakon hidrotermalne karbonizacije. Nakon toga tretman je uključivao usitnjavanje uz pomoć tučka i avana, a zatim prosijavanje na finom situ granulacije 180 mm, čime su uklonjene košpice masline.

Ovakav tretman (slika 13) je omogućio kontrolu veličine čestica.

Slika 13. Usitnjavanje i prosijavanje HTC_{OMW}

3.2. Aktivacija ugljeničnih materijala

Nakon tretmana usitnjavanja i prosijavanja, u cilju unapređenja svojstava ugljeničnih materijala, primjenjena je hemijska aktivacija. Da bi se ispitao uticaj aktivatora na elektrohemijska svojstva ugljeničnih materijala, pripremljena su dva uzorka sa različitim aktivatorima, u prvom slučaju aktivator je 40 % rastvor H₃PO₄, a u drugom eutektička smješa soli (ZnCl₂, NaCl, KCl).

3.2.1 Uzorak HTComwH3PO4

Prosijani materijal HTC_{OMW} maslina (4 h, 200 °C) je impregniran sa 40% rastvorom kiseline H_3PO_4 u masenom odnosu, HTC_{OMW}: aktivator = 1 : 2,5.

Smješa je miješana u cilju homogenizacije, na magnetnoj miješalici u periodu od 3h pri radnim uslovima: tempetarura (T = 50 °C) i brzina miješanja 300 RPM (obrtaja po minuti). Nakon miješanja, smješa je na temperaturi od 105 °C sušena do suva. U peći za žarenje (slika broj 14), osušeni impregnirani materijal je u keramičkoj lađici postavljen na sredini horizontalne staklene cijevi i karbonizovan na T = 700 °C, u trajanju od 2 h u inertnoj struji argona (Ar) pri brzini zagrijavanja peći 10 °C/min. Od 4,795 g impregniranog HTC_{OMW} materijala nakon žarenja dobijeno je 0,649 g aktiviranog materijala. Homogenizovani aktivirani ugljenični materijal, HTC_{OMW}H₃PO₄ je pomiješan sa 100 ml 1 M HCl i smješa je miješana na miješalici, 30 min. Smješa je potom profiltrirana. Ispiranje se nakon filtracije vršilo toplom, a potom hladnom destilovanom vodom, kako bi se uklonili eventualni ostaci aktivatora. Ispiranje je trajalo sve do negativne reakcije na hloride. Potom materijal je sušen na 105 °C u peći, do suva

Slika 14. Peć za žarenje (model Vims FLPŽ-300)

3.2.2 Uzorak HTComwZnNaK

Prosijani materijal HTC_{OMW} (4 h, 200 °C) pomiješan je sa eutektičkom smješom soli hlorida (maseni odnos soli ZnCl₂: NaCl : KCl = 1 : 1 : 1), u masenom odnosu HTC_{OMW} : smješa soli = 1 : 3. U peći za žarenje (slika br.14), smješa je u keramičkoj lađici postavljena na sredini horizontalne staklene cijevi i karbonizovan 2 h na T = 700 °C u struji argona, kako bi se materijal ravnomjerno žario. Od 4,428 g smješe (HTC_{OMW} i aktivatora), nakon žarenja dobijeno je 3,238 g aktiviranog ugljeničnog materijala. Primijenjeni su isti radni uslovi kao pri aktivaciji uzorka HTC_{OMW}H₃PO₄, kako bi se ispitao uticaj aktivatora na strukturna i elektrohemijska svojstva aktiviranih ugljeničnih materijala.

Nakon žarenja, materijal je sprašen uz pomoć tučka i avana. Homogenizovani aktivirani ugljenični materijal HTC_{OMW}ZnNaK je pomiješan sa 100 ml 1 M HCl i miješan na mješalici 30 min. Potom je smješa profiltrirana.

Ispiranje se nakon filtracije vršilo toplom, a potom hladnom destilovanom vodom, kako bi se uklonili eventualni ostaci aktivatora. Prisustvo hlorida tokom ispiranja se pratilo sa 0,1 M AgNO₃, sve do negativne reakcije na hloride. Potom je aktivirani materijal sušen do suva na 105 °C u sušnici. Masa materijala nakon ispiranja i sušenja je iznosila 1,434 g.

Nakon sušenja, materijali su spakovani u staklene bočice sa zaptivačem i čuvani u eksikatoru do strukturnih i elektrohemijskih ispitivanja sa ciljem zaštite od vlage.

3.3. METODE KARAKTERIZACIJE

3.3.1 Strukturna karakterizacija

Strukturne osobine materijala su ispitane infracrvenom spektroskopijom sa Furijevom transformacijom (FTIR) i rendgenostrukturnom analizom (XRD).

3.3.1.1 Infracrvena spektroskopija sa Furijevom transformacijom (FTIR)

Strukturna karaterizacija sa ciljem određivanja funkcionalnih grupa u materijalu dobijenom nakon hidrotermalnog tretmana i aktiviranom ugljeniku, vršena je primjenom infracrvene spektroskopije sa Furijeovom transformacijom (FTIR). FTIR metoda se zasniva na mjerenju apsorpcije, odnosno transmisije infracrvenog zračenja kroz uzorak, koristeći matematički proces Furijeove transformacije kako bi se dobijeni podaci pretvorili u stvarni spektar. Prednosti ove metode su jednostavanost za rad, interna kalibracija, zahtijeva manje vremena za analizu i daje kvalitativno-kvantitativne informacije o komponentama i njihovom ponašanju [63, 64].

FTIR spektri uzoraka snimljeni su PerkinElmer Spectrum Two FT-IR spektrometrom (slika broj 15). Snimanje je vršeno tehnikom KBr pastille, u oblasti talasnih brojeva 4000-400 cm⁻¹ sa 64 skena po spektru i pri rezoluciji 2 cm⁻¹. Za pripremu pastila homogenizovano je 1 mg uzorka i 150 mg KBr u avanu, a zatim je dobijena smješa presovana u kalupu.

Slika 15. PerkinElmer Spectrum Two FT-IR spektrometar

3.3.1.2 Rendgenostrukturna analiza (XRD)

XRD je fizičkohemijska metoda koja se koristi za određivanje kristalne strukture materijala. Osnovni princip XRD metode zasniva se na interakciji rendgenskih zraka s kristalnom rešetkom materijala. Kada rendgenski zraci prođu kroz uzorak, oni se raspršuju na atomskoj ravni kristala, što rezultira formiranjem difraktograma. Na osnovu specifičnih uglova i intenziteta difrakcionih pikova se dobijaju informacije o kristalnoj strukturi, kao što su veličina, oblik i orijentacija kristalnih zrna. Pozicije i intenziteti difrakcionih pikova omogućavaju identifikaciju faza u polikristalnim uzorcima kroz poređenje sa referentnim difrakcionim podacima iz baze podataka [65, 66].

Difraktogrami uzoraka HTC_{OMW}ZnNaK i HTC_{OMW}H₃PO₄ snimljeni su korišćenjem difraktometra Rigaku MiniFlex600 (slika 16) koji funkcioniše u Brag-Brentano geometriji sa parafokusom. Izvor zračenja bio je Cu-K α rendgenski izvor sa talasnom dužinom od 1,5406 A, a detekcija je vršena uz pomoć D/teX Ultra2 MF detektora poluprovodničkog trakastog tipa sa direktnom detekcijom. Instrument je radio pod uslovima napona od 40 kV i struje od 15 mA. Uzorak je bio postavljen na nosač od silicijuma, a difraktogram je zabilježen u uglovnom opsegu od 10° do 80° 2 θ , sa korakom od 0,01° i brzinom prikupljanja podataka od 10,00°/min.

Slika 16. Rendgenski difraktometar Rigaku MiniFlex600

3.3.2 Mjerenje električne provodljivosti prahova

Električna provodljivost (σ) je svojstvo koje karakteriše sposobnost materijala da provodi električnu struju. Vrsta materijala, stepen dopiranja, nečistoće i temperatura određuju električnu provodljivost termoelektričnih materijala. Tipične vrijednosti električne provodljivosti za dobar termoelektrični materijal su reda veličine 10⁵ S/cm [67].

Električna provodljivost prahova aktivnog ugljenika predstavlja važan parametar u procjeni njihove efikasnosti kao elektrodnog materijala, posebno u primjenama kod superkondenzatora i baterija. Veća električna provodljivost ukazuje na bolju sposobnost prenosa elektrona kroz materijal, što je od suštinske važnosti za postizanje visokih specifičnih kapaciteta i efikasnosti u elektrohemijskim primjenama [68].

Električna provodljivost aktiviranog ugljenika može direktno uticati na performanse uređaja u kojima se koristi, određujući tako njihovu komercijalnu vrijednost i održivost u različitim tehnološkim rješenjima [69-72].

Električna provodljivost (σ) uzoraka HTC_{OMW}ZnNaK i HTC_{OMW}H₃PO₄ određena je na presovanim pastilama napravljenim od homogenizovanog praha uzoraka. Pastile su presovane u kalupu između dva klipa od nerđajućeg čelika pod konstantnim pritiskom od 2 tone tokom mjerenja. Za pravljenje pastila je korišćena Specac 15 ton ručna hidraulična presa. Otpor pastile je mjeren na sobnoj temperaturi i konstantnoj frekvenciji od 1,0 kHz pomoću LCR metra (model LCR-6100 (GW Instek, Tajvan)). Prilikom mjerenja električne provoljivosti, površina poprečnog presjeka kalupa i pastile iznosila je 0.709 cm². Količina aktiviranog ugljenika za pravljenje pastile bila je 100 mg.

Električne provodljivosti materijala su nakon mjerenja računate pomoću jednačine:

$$\sigma = \frac{L}{R \times S}$$

gdje je: σ – električna provodljivost, L – debljina pastile, R – izmjereni otpor, S – površina poprečnog presjeka otvora kalupa u koji se nalazi uzorak.

3.3.3 Elektrohemijska karakterizacija

3.3.3.1 Ciklična voltametrija (CV)

Fundamentalna elektrohemijska metoda koje omogućava proučavanje elektrohemijskog ponašanja elektrodnih materijala je ciklična voltametrija (CV). Ovom tehnikom moguće je procijeniti vrijednost specifičnog kapaciteta materijala, kinetiku elektrodnih reakcija i stabilnost u različitim vodenim elektrolitima. Ovom metodom je moguće procijeniti optimalan opseg napona za rad superkondenzatora, koji je određen karakteristikama elektrolita [73].

Princip metode podrazumijeva primjenu linearne promjene potencijala sa vremenom na radnu elektrodu, pri čemu se potencijal mijenja ciklično između dvije unaprijed određene vrijednosti. Tokom ovog ciklusa, potencijal se povećava do gornje granice, zatim obrnuto smanjuje ka donjoj granici, stvarajući profil promjene potencijala. Rezultujuća struja koja se mjeri na radnoj elektrodi odgovara redoks reakcijama koje se dešavaju na različitim potencijalima, a dobijena kriva zavisnosti struja-napon naziva se ciklični voltamogram. Ovaj proces se sprovodi pomoću potenciostata (slika 17), koji precizno kontroliše potencijal i mjeri struju.

Na osnovu cikličnih voltamograma omogućava se analiza elektrohemijskih procesa na elektrodi, pružajući detalje o redoks reakcijama i njihovoj kinetici, specifičnom kapacitetu i stabilnosti materijala. CV karakteriše preciznost, brzina i selektivnost [73].

Slika 17. Aparatura za snimanje ciklickih voltamograma

Na osnovu snimljenih ciklovoltamograma specifični kapacitet se izračunava primjenom jednačine:

$$Csp = \frac{\int IdV}{2mv\Delta V}$$

gdje je: Csp - specifični kapacitet (F g⁻¹), I - jačina struje (A), $\int IdV$ je područje integracije CV krive, v je brzina polarizacije (V s⁻¹), m je masa aktiviranog materijala (g), a ΔV je oblast potencijala CV krive [73].

Mjerenja ciklične voltametrije izvršena su korišćenjem uređaja Gamry 1010E potenciostat/galvanostata (slika 18). Elektrohemijska mjerenja su vršena u troelektrodnoj ćeliji koja je uključivala zasićenu kalomelovu elektrodu (ZKE) kao referentnu, platinsku elektrodu (Pt) kao pomoćnu i ugljeničnu elektrodu kao radnu elektroda. Cikličnom voltametrijom ispitano je elektrohemijsko ponašanje dobijenih aktiviranih ugljeničnih materijala, u vođenim elektrolitičkim rastvorima (1 M H₂SO₄, 1 M Na₂SO₄, i 6 M KOH). Na osnovu snimljenih voltamograma izračunate su vrijednosti specifičnih kapaciteta ugljeničnih materijala.

Eksperimenti su sprovedeni pod identičnim radnim uslovima za oba materijala kako bi se omogućila vjerodostojna komparacija njihovih elektrohemijskih svojstava. Voltamogrami su snimani pri brzinama polarizacije: 5 mV/s, 10 mV/s, 20 mV/s, 30 mV/s, 50 mV/s, 100 mV/s, 200 mV/s, 300 mV/s i 400 mV/s.

Slika 18. Gamry 1010E potenciostat/galvanostat i troelektrodna ćelija

3.3.3.1.1 Priprema elektroda

Na štapić od staklastog ugljenika nanošena je homogenizovana pasta koja je napravljena od aktiviranog ugljeničnog materijala, veziva i rastvarača kako bi se ispitale elektrohemijske osobine materijala. Carbon black kao elektroprovodni aditiv se dodavao kako bi poboljšao električnu provodljivost paste, omogućavajući bolji protok elektrona unutar sloja paste i poboljšavajući ukupne performanse elektrode. PVDF (poliviniliden-fluorid) kao vezivo obezbjeđuje mehaničku stabilnost paste. PVDF vezuje čestice aktiviranog ugljeničnog materijala i carbon black-a, stvarajući čvrstu i stabilnu strukturu paste koja se može ravnomjerno nanijeti na površinu elektrode. Ovo vezivo omogućava da se sloj paste zadrži na elektrodi tokom eksperimenta, bez odvajanja ili razlaganja. NMP (N-metil-2-pirolidon) kao rastvarač je omogućio stvaranje paste odgovarajuće viskoznosti. Njegovo postepeno dodavanje tokom procesa miješanja osigurava da pasta dobije homogenu strukturu i odgovarajuću konzistenciju, čime se omogućava lakše i ravnomjernije nanošenje paste na površinu staklastog ugljenika.

Pasta od aktiviranih ugljeničnih materijala *HTC_{OMW}ZnNaK* i *HTC_{OMW}H₃PO₄* je napravljena u mlinu, u teglici od nerdjajućeg čelika (12 ml). Pasta je pravljena od 90 mas% aktiviranog ugljeničnog materijala koji je miješan sa 5 mas% carbon black-a i 5 mas% PVDF-a. Dodavanje rastvarača NMP-a, je išlo postepeno kako bi se dobila pasta pogodne viskoznosti za nanošenje na pločici od staklastog ugljenika. Smješa je miješana 40 minuta pri brzini 40 RPM (obrtaja po minuti). Nakon miješanja dobijene su homogene paste odgovarajućeg viskoziteta. Paste su ravnomjerno nanešene na elektrode od staklastog ugljenika i ostavljene da se suše preko noći na temperaturi od 120 °C.

4. REZULTATI I DISKUSIJA

4.1 Strukturna karakterizacija aktivnog ugljenika

Prema literaturnim podacima komina masline (koštice, kore i pulpa), sadrži celulozu, hemicelulozu, lignin, pektin, lipide, vodu, minerale i bioaktivne komponente kao što su antioksidanti i polifenoli [74].

U okviru ovog poglavljaja, prikazana je strukturna karakterizacijia dva uzorka aktivnog ugljenika: *HTC_{OMW}ZnNaK* i *HTC_{OMW}H₃PO₄* pomoću FTIR i XRD metoda sa ciljem ispitivanja uticaja vrste aktivatora na strukturu sintetisanih ugljeničnih materijala.

4.1.1 Infracrvena spektroskopija sa Furijevom transformacijom

Na slici broj 19 su prikazani uporedni FTIR spektri hidrotermalno tretiranog prekursora (HTC_{OMW}) i aktiviranih ugljeničnih materijala ($HTC_{omw}ZnKNa$ i $HTC_{omw}H_3PO_4$) tokom 2 h na 700 °C u struji argona.

Slika 19. Uporedni FTIR spektri HTC, HTComwZnKNa i HTComwH₃PO₄

FTIR spektar *HTC*_{OMW} prekursora je složeniji u odnosu na aktivirane materijale *HTC*_{omw}ZnKNa i *HTC*_{omw}H₃PO₄, čemu svjedoči veći broj traka kod tog uzorka.

Analizom FTIR spektra HTC_{OMW} prekursora uočava se široka traka oko 3404 cm⁻¹ koja se pripisuje O-H ištežućoj vibraciji hidroksilnih grupa u glukopiranoznim strukturama celuloze i fenolnim strukturama lignina. Ove grupe su tipični proizvodi oksidacije organskih materijala tokom hidrotermalne karbonizacije [75, 76].

Trake na oko 2924 cm⁻¹ i 2851 cm⁻¹ mogu se pripisati asimetričnim i simetričnim C–H istezanjima u CH₂ i CH₃ grupama prisutnim u strukturama celuloze, hemiceluloze i lignina [77]. Dublet koji se javlja na 1735 cm⁻¹ i 1711 cm⁻¹ odražava C=O-vibraciju istezanja karboksilnih i acetilnih grupa u hemicelulozi [78-80].

Slabe trake koje se javljaju na 1608 i 1513 cm⁻¹ mogu se pripisati aromatičnim C=C istežućim vibracijama u molekulima celuloze i lignina. CH₃ asimetrične ugaone vibracije i CH₂ savijajuće vibracije koje potiču iz celuloze i hemiceluloze prisutne su na oko 1462 cm⁻¹ [81, 82].

U oblasti talasnih brojeva od 1300 cm⁻¹ do 1000 cm⁻¹ dolazi do preklapanja više traka što vjerovatno potiče od niza C–O veza koje sadrže organske materije, kao što su karboksilne kiseline, alkoholi, anhidridi i estri. Prisustvo C–C istežućih vibracijaa takođe može dovesti do ovakvog izgleda spektra. Slaba traka na 1113 cm⁻¹ ukazuje na povezane OH⁻ grupe iz celuloze i hemiceluloze. Traka koje se javlja na 1032 cm⁻¹ ukazuju na C–O rasteznu vibraciju celuloze i hemiceluloze [83, 84].

FTIR spektar *HTC_{OMW}* uzorka, dobijenog hidrotermalnom karbonizacijom otpada vlažne masline, otkriva prisustvo različitih funkcionalnih grupa kao što su hidroksilne (-OH), karbonilne (C=O) i aromatične (C=C) grupe. Na osnovu toga zaključuje se da primijenjeni hidrotermalni tretman nije bio dovoljan da se u potpunosti razgrade sve organske komponente, a dobijeni material je složenog sastava uz prisustvo oksidovanih i aromatičnih struktura [85,86].

Analizom FTIR spektara uzoraka $HTC_{omw}ZnKNa$ i $HTC_{omw}H_3PO_4$, uočava se gubitak traka na 3420 cm⁻¹ (hidroksilne grupe), 2924 cm⁻¹ i 2851 cm⁻¹ (alifatski ugljovodonici), 1735 cm⁻¹ i 1711 cm⁻¹ (karbonilne grupe), kao i trake na 1462 cm⁻¹ (metilenske grupe) što svjedoči eliminaciji ovih funkcionalnih grupa. Trake su nestale kao rezultat razgradnje organskih komponenti tokom visoke temperature i efikasne hemijske obrade. Nakon hemijske aktivacije, u spektrima aktiviranih uzoraka ($HTC_{omw}ZnKNa$ i $HTC_{omw}H_3PO_4$) karbonizovanih na 700°C, jasno se ističu samo dvije

karakteristične slabe trake koje se pripisuju aromatinim vibracijama: C=C (1572 cm⁻¹) i C–O (1144 cm⁻¹) [87,88].

4.1.2 Rendgenostrukturna analiza (XRD)

Kristalna struktura sintetisanih materijala ispitana je difrakcijom X-zraka na prahu. Na slici broj 20, prikazani su uporedni difraktogrami aktiviranih ugljeničnih materijala *HTC*_{omw}ZnKNa i *HTC*_{omw}H₃PO₄.

Slika 20. Uporedni difraktogrami aktiviranih ugljeničnih materijala HTC_{omw}ZnKNa i HTC_{omw}H₃PO₄

Difraktogram aktiviranog ugljenika $HTC_{OMW}H_3PO_4$ karakteriše njegovu amorfnu prirodu, jer umjesto oštrih refleksija, posjeduje široke, slabe pikove koji ukazuju na nedostatak jasno definisane kristalne strukture. Uočljivi široki difrakcioni pikovi se detektuju na pozicijama 24° i 43,8° vrijednosti 20. Odsustvo više oštrih difrakcionih pikova ukazuje na visok stepen čistoće materijala aktiviranog sa H₃PO₄ [89-91]. XRD difratogram aktiviranog ugljenika *HTC*_{OMW}ZnKNa</sub> prikazuje više oštrih refleksija što ukazuje na postojanje više kristalnih struktura tj. na prisustvo nečistoća, koje mogu uticati na njegova svojstva. Prisustvo refleksija jakog intenziteta u opsegu od 10–70°/2θ sugeriše na postojanje neorganskih neistoća u uzorku, koje nijesu uklonjene tretmanom ispiranja. Njihov izvor može biti slabiji uticaj aktivatora (eutektičke smješe soli) u poređenju sa H₃PO₄. Ove nečistoće najvjerovatnije potiču od soli i oksida metala prisutnih u biomasi. Prethodna istraživanja su pokazala da komina masline (OMW) može sadržati metale: Na, K, Fe, Mg, Cr, Pb, Cu, Ni, Cd, Zn i Mn. Ovi elementi su tokom aktivacije mogli formirati stabilne neorganske strukture, koje ispiranje nije uspjelo potpuno ukloniti [93].

Uzorak $HTC_{omw}H_3PO_4$ posjeduje viši stepen čistoće u odnosu na $HTC_{OMW}ZnKNa$ u kome su i nakon ispiranja zaostale nečistoće.

4.2. Električna provodljivost aktiviranih ugljeničnih materijala

Dobijene vrijednosti električne provodljivosti uzoraka $HTC_{omw}H_3PO_4$ i $HTC_{OMW}ZnKNa$ prikazane su u tabeli broj 6.

Uzorak	Otpor R [Ω]	L debljina pastile cm	σ [S/cm]	σ [S/m]
HTCOMWH ₃ PO ₄	0,095	0,15	2,227	222,7
HTC _{OMW} ZnKNa	0,062	0,13	3,175	317,5

Tabela 6. Električna provodljivost materijala

Uzorak HTC_{omw}H₃PO₄ pokazao je otpor od 0,095 Ω pri debljini pastile od 0,15 cm, sa provodljivošću od 222,7 S/m. Suprotno tome, uzorak HTC_{OMW}ZnKNa pokazao je niži otpor od 0,062 Ω pri debljini od 0,13 cm, uz značajno veću električnu provodljivost od 317,5 S/m. Ova povećana električna provodljivost uglavnom se može objasniti prisustvom neorganskih nečistoća u materijalu koje su potvrđene XRD-om (Slika 20). Nečistoće u ovom materijalu djeluju kao dopanti koji poboljšavaju mobilnost elektrona u strukturi materijala što dovodi do povećane električne provodljivosti.

Razlika u električnoj provodljivosti ukazuje na to da hemijski sastav, uključujući prisustvo nečistoća, značajno utiče na električna svojstva aktivnog ugljenika, čineći HTC_{OMW}ZnKNa pogodnijim za aplikacije gdje je potrebna veća električna provodljivost, dok aktivni ugljenik HTC_{omw}H₃PO₄ može imati prednost u aplikacijama gdje je potreban veći stepen čistoće.

4.3 Elektrohemijska mjerenja

4.3.1 Ciklična voltametrija u različitim vodenim elektrolitima

Cikličnom voltametrijom ispitano je elektrohemijsko ponašanje aktiviranih ugljeničnih materijala u elektrolitima: 1 M H₂SO₄, 1 M Na₂SO₄ i 6 M KOH, za primjene u superkondenzatorima. Na slici broj 21. prikazani su uporedni ciklični voltamogrami *HTC*_{omw}H₃PO₄ i *HTC*_{omw}ZnKNa u vodenim elektrolitima: 6 M KOH, 1 M Na₂SO₄ i 1 M H₂SO₄ pri brzini skeniranja 20 mV/s.

Slika 21. Ciklični voltamogrami uzoraka HTC_{OMW}ZnNaK i HTC_{OMW}H₃PO₄ u vodenom elektrolitima 1 M H₂SO₄, 1 M Na₂SO₄ i 6 M KOH pri brzini polarizacije 20 mV/s.

Ciklični voltamogrami pokazuju da material *HTC*_{OMW}H₃PO₄ ima bolji elektrohemijski odziv od *HTC*_{OMW}ZnNaK u sva tri elektrolitička rastvora (posebno u neutralnom i kiselom) i visoku sposobnost skladištenja naelektrisanja. Dok CV *HTC*_{OMW}H₃PO₄ u 1 M Na₂SO₄ odgovara pravougaonom profilu formiranja elektrohemijskog dvojnog sloja (redoks pik na 0,25 V vs. ZKE je posledica oksidacije vodonika adsorbovanog na materijalu u prethodnom katodnom smjeru), tipični pseudokapacitivni profil (redoks pikovi superponirani na pravougaoni CV) se može uočiti u 6 M KOH i 1 M H₂SO₄. Blago izraženi redoks pikovi na potencijalima oko -0,6 V vs. ZKE u 6 M KOH i bolje izraženi na oko 0,28 V vs. ZKE u 1 M H₂SO₄ su posledica faradejskog procesa

kiseoničnih grupa na površini ugljenika. Anodni pik na oko -0.6 V vs. ZKE u KOH nije dobro uočljiv usled dodatnog "brežuljka" na negativnijim potencijalima koji potiče od oksidacije skladištenog vodonika. Može se zaključiti da materijal pored visoke sposobnosti skladištenja naelektrisanja u formi dvojnog električnog sloja, pokazuje sposobnost skladištenja vodonika. Sličan oblik CV u KOH posmatran je i za *HTC_{OMW}ZnNaK* sa nešto nižim strujnim odgovorom, dok je znatno slabiji strujni odgovor i lošiji oblik CV registrovan u H₂SO₄ i posebno u Na₂SO₄. Najmanja kapacitivnost u neutralnom rastvoru je posljedica najniže molarne provodljivosti ovog elektrolita u odnosu na kiseli ili alkalni elektrolit. Slabiji strujni odgovor *HTC_{OMW}ZnNaK* u svim elektrolitima je vjerovatno posljedica manje specifične površine materijala, što znači manje prostora za adsorpciju jona i samim tim skladištenje manje količine naelektrisanja [94, 95].

Razlike u elektrohemijskom ponašanju između dva materijala mogu se objasniti vrstom aktivatora korišćenih u procesu aktivacije. Aktivacija pomoću fosforne kiseline (H₃PO₄) daje bolje elektrohemijske performanse, što može ukazivati da ativirani material posjeduje porozniju strukturu i povećanu specifičnu površinu, čime se obezbjeđuje više reaktivnih mjesta za redoks reakcije [95]. Fosforna kiselina često doprinosi stvaranju mezo- i mikropora u ugljeničnim materijalima što poboljšava sposobnost skladištenja naelektrisanja i omogućava brzu razmjenu jona tokom mjerenja ciklične voltametrije. Nasuprot tome kombinacija hlorida cinka, natrijuma i kalijuma kao aktivatora je dala materijal sa manjim brojem pora ili sa većim porama koje su manje efikasne u smislu elektrohemijskog odziva što dovodi do smanjenog specifičnog kapaciteta. Kako bi se detaljnije mogle korelisati teksturalne karakteristike oba materijala sa njihovim elektrohemijskim ponašanjem bilo bi neophodno uraditi fizisorpciju N₂ i precizno odrediti specifičnu površinu i zapreminu mikro- i mezopora što zbog nedostupnosti metode nije urađeno u okviru ovog master rada.

4.3.1.1 Elektrohemijsko ponašanje aktiviranih ugljeničnih materijala u 6 M KOH i 1 M H₂SO₄

Elektrohemijsko ponašanje sintetisanih materijala u 6 M KOH i 1 M H₂SO₄, pri različitim brzinama polarizacije: 5, 10, 20, 30, 50 i 100 mV s⁻¹, prikazano je na slikama 22 i 23. *HTC_{oMw}H₃PO₄ i HTC_{oMw}ZnNaK u alkalnom vodenom elektrolitu*

Kao što je već opisano, ciklični voltamogrami materijala *HTC_{OMW}H₃PO₄* u alkalnom elektrolitu (slika 22.a) pokazuju oblik karakterističan za pseudokapacitivno ponašanje ugljenika. S obzirom

da u alkalnim rastvorima reaguju kisele funkcionalne grupe, redoks pikovi uočeni na voltamogramima se mogu pripisati njihovim redoks reakcijama.

a

Slika 22. Ciklični voltamogrami uzoraka HTC_{OMW}H₃PO₄(a) i HTC_{OMW}ZnNaK (b) u 6 M KOH pri brzinama polarizacije od 5 do 100 mV/s.

Oblik cikličnih voltamograma $HTC_{OMW}H_3PO_4$ se zadržava čak i pri većim brzinama polarizacije, do 100 mV/s, što ukazuje na visoku stabilnost materijala i brzu difuziju jona. Jasno se uočava izdvajanje vodonika koje počinje na negativnijim potencijalima u toku katodnog pravca (od -0.7 do -1.1 V vs. ZKE). U alkalnom medijumu visoka koncentracija hidroksilnih jona omogućava brzu protonaciju i deprotonaciju funkcionalnih grupa na površini materijala što rezultira visokim strujnim odzivom na cikličnom voltamogramu.

Sa druge strane oblik cikličnog voltamograma *HTC_{OMW}ZnNaK* u 6 M KOH (slika 22.b) sugeriše slabiju pseudokapacitivnu prirodu ovog materijala u poređenju sa *HTC_{OMW}H₃PO₄*. Može se reći da kod ovog materijala uskladišteno naelektrisanje potiče od kombinacije dvojnog električnog sloja i pseudofaradejskih reakcija odgovornih za nagib katodne grane. Otpor pseudofaradejskim procesima je veći na većim brzinama polarizacije pa je i pomenuti nagib, kao i asimetričnost cikličnog voltamograma izraženija.

HTC_{OMW}H₃PO₄ i HTC_{OMW}ZnNaK u kiselom vodenom elektrolitu

Ciklični voltamogrami *HTC_{OMW}H₃PO₄* (slika 23 a) sa porastom brzine polarizacije od 5 do 100 mV/s zadržavaju prilično pravilan pravougani oblik koji ukazuje na dobro pseudokapacitivno ponašanje i brzu difuziju jona. Simetričnost anodnih i katodnih krivih upućuje na reverzibilnost elektrohemijskih procesa i na većim brzinama polarizacije. Sulfatna kiselina, kao snažan protonski donor, omogućava efikasnu protonaciju funkcionalnih grupa na površini ugljenika, čime se poboljšava elektrohemijska reaktivnost. Oksidacioni/redukcioni pikovi na oko 0,28 V vs. ZKE ukazuju na dominaciju pseudofaradejskih reakcija koje potiču od redoks procesa hinonskih i hidroksilnih grupa [95, 96].

Ciklični voltamogrami materijala $HTC_{OMW}ZnNaK$ (slika 23 b) imaju drugačiji oblik u odnosu na $HTC_{OMW}H_3PO_4$. Uprkos boljoj provodljivosti materijala $HTC_{OMW}ZnNaK$ njegov strujni odgovor je slabiji i ne daje jasno definisane pikove kao kod materijala $HTC_{OMW}H_3PO_4$. U oblasti pozitivnijih potencijala strujni odgovor je sužen što rezultuje asimetričnim cikličnim voltamogramom. Pretpostavlja se da je ovakvo elektrohemijsko ponašanje u direktnoj korelaciji sa poroznošću materijala. Može se procijeniti da materijal $HTC_{OMW}ZnNaK$ ima slabije razvijenu poroznost u odnosu na materijal $HTC_{OMW}H_3PO_4$. Manja zapremina mikro- i mezopora u materijalu dovodi do otežane adsorpcije jona i samim tim do slabijeg strujnog odgovora [96, 97-102]. Asimetrija cikličnih voltamograma $HTC_{OMW}ZnNaK$ postaje sve više naglašena kako se povećava brzina polarizacije.

Slika 23. Ciklični voltamogrami uzoraka HTC_{OMW}H₃PO₄ (a) i HTC_{OMW}ZnNaK (b) u 1 M H₂SO₄ pri brzinama polarizacije od 5 do 100 mV/s.

4.3.1.2 Elektrohemijsko ponašanje aktiviranih ugljeničnih materijala u 1 M Na₂SO₄

Usled termodinamičke stabilnosti vode maksimalni teorijski napon elektrohemijskih kondenzatora u vodenom elektrolitu je 1,23 V. Baziran na eksperimentalna istraživanjima, tipičan napon vodenog kondenzatora koji koristi 6 M KOH ili 1 M H₂SO₄ iznosi 1 V. Korišćenjem neutralnog elektrolita (1 M Na₂SO₄) omogućeno je cikliranje u širem opsegu potencijala.

Slika 24 a prikazuje ciklične voltamograme HTC_{OMW}H₃PO₄ u 1 M Na₂SO₄ snimane sa postepenim smanjenjem granične vrijednosti negativnog potencijala. Voltamogrami pravougaonog oblika, dobijeni u oblasti potencijala od -0,6 do 0,65 V vs. ZKE, su tipični za skladištenje naelektrisanja koje potiče samo od formiranja elektrohemijskog dvojnog sloja. Na negativnijim vrijednostima od -0,6 V u odnosu na ZKE, dolazi do redukcije vode, a pseudokapacitivni doprinos vezan za reverzibilnu sorpciju nastalog vodonika odvija se zajedno sa formiranjem dvojnog sloja. U anodnom dijelu tada počinje da se registruje jako naglašen pik na oko 0,2 V u odnosu na ZKE kao posljedica oksidacije adsorbovanog vodonika. Nagli rast negativne struje nakon širenja voltamograma ispod -0,6 V u odnosu na ZKE, ukazuje na reakciju izdvajanja gasa H₂ [104]. Kod materijala HTC_{OMW}ZnNaK se u 1 M Na₂SO₄ takođe primjećuje izdvajanje vodonika na negativnijim potencijalima ali nema izraženog osidacionog pika na pozitivnim potencijalima, kao kod HTCOMWH3PO4 (slika 24.b). Oksidacija adsorbovanog vodonika kod HTCOMWZnNaK se javlja mnogo ranije (na negativnijim potencijalima), što se uočava na osnovu 'brežuljka' koji se širi preko opsega potencijala od -0.7 do -0.2 V u odnosu na ZKE, što ukazuje na slabiju vezanost adsorbovanog vodonika u slučaju ovoga materijala. Ciklični votamogrami sugerišu da je kod oba materijala mehanizam skladištenja energije u neutralnom Na₂SO₄ vodenom elektrolitu primarno zasnovan na formiranju elektrohemijskog dvojnog sloja, pri čemu se detektuje i paralelan proces izdavanjanja/oksidacije vodonika u slučaju šireg opsega.

Ciklični voltamogrami $HTC_{OMW}H_3PO_4$ snimani u optimalnom opsegu potencijala od -1,1 do 0,65 V vs. ZKE, pri brzinama polarizacije od 5 do 100 mV/s, prikazani su na slici 25.a. Sa porastom jačine struje voltamogrami zadržavaju prvobitni oblik. Slično kao u kiselini, u oblasti pozitivnijih potencijala voltamogrami imaju pravilan oblik i širok raspon anodne i katodne struje. Generalno se može primijetiti dobra simetričnost voltamograma pri svim brzinama polarizacije. Elektrohemijsko ponašanje $HTC_{OMW}ZnNaK$ pri različitim brzinama polarizacije praćeno je u oblasti potencijala od -1 do 0,74 V vs. ZKE i prikazano na slici 25 b. I ovdje se može primijetiti

otežana adsorpcija i difuzija jona pri pozitivnijim potencijalima (suženje voltamograma u oblasti od 0 do 0,75 V vs. ZKE) što se dovodi u vezu sa pretpostavljenom slabije razvijenom poroznošću ovog materijala u odnosu na ugljenik aktiviran sa H₃PO₄. Sa porastom brzine polarizacije javlja se veća asimetričnost anodne i katodne krive.

4 HTC_{OMW}H₃PO₄ 2 0 -6 **A** / 1 20 mV s⁻¹ H₂ -6 1 M Na₂SO₄ -8 -1.2 -0.8 -0.4 0.0 0.4 0.8 E vs ZKE / V

b

a

Slika 24. Ciklični voltamogrami uzorka HTC_{OMW}H₃PO₄ (a) i HTC_{OMW}ZnNaK (b) u 1 M Na₂SO₄ vodenom elektrolitu

a

b

Slika 25. Ciklični voltamogrami uzorka HTC_{OMW}H₃PO₄ (a) i HTC_{OMW}ZnNaK (b) u 1 M Na₂SO₄ vodenom elektrolitu pri brzinama polarizacije od 5 do 100 mV/s.

4.3.2 Procjena specifičnih kapaciteta

U tabelama broj 7. i 8. su prikazani specifični kapaciteti (F/g) u zavisnosti od brzine polarizacije (mV/s) za materijale $HTC_{OMW}H_3PO_4$ i $HTC_{OMW}ZnNaK$ respektivno, u tri različita vodena elektrolita (1 M H₂SO₄, 6 M KOH, i 1 M Na₂SO₄).

Tabela 7. Specifični kapaciteti za materijal HTC_{OMW}H₃PO₄. u 1 M Na₂SO₄, 1 M H₂SO₄ i 6 M KOH

Brzina polarizacije mV/s	Specifični kapacitet F/g u 1 M Na2SO4.	Specifični kapacitet F/g u 1 M H2SO4,	Specifični kapacitet F/g u 6 M KOH
5	124,7	132,8	140,2
10	132,4	153,6	158,4
20	128,2	164,7	167,8
30	126,1	167,1	169,5
50	122,3	167,5	169,5
100	115,1	164,1	165,6
200	104,2	155,7	157,1
300	95,5	147,5	149,6
400	87,9	139,3	142,7

Tabela 8. Specifični kapaciteti za materijal HTC_{OMW}ZnNaK u 1M Na₂SO₄, 1M H₂SO₄ i 6M KOH

Brzina polarizacije mV/s	Specifični kapacitet F/g u 1 M Na2SO4.	Specifični kapacitet F/g u 1 M H2SO4,	Specifični kapacitet F/g u 6 M KOH
5	56,2	77,3	135,4
10	45,2	70,3	121,6
20	37,9	61,5	106,0
30	33,3	55,5	94,9
50	28,2	48,0	79,2
100	22,5	38,0	56,7
200	17,9	28,5	36,5
300	15,5	22,9	27,0
400	13,9	18,9	21,3

Specifični kapaciteti aktiviranih ugljeničnih materijala u tri različita elektrolita (1M Na₂SO₄, 1M H₂SO₄ i 6 M KOH) se mijenjaju sa brzinom polarizacije na drugačiji način što reflektuje različite mehanizme jonske difuzije i interakcije materijala s elektrolitima.

Pri manjim brzinama polarizacije joni elektrolita mogu lako da difunduju u pore aktiviranog ugljenika, obezbjeđujući njihovu bolju adsorpciju na poroznom ugljeniku, što kao rezultat daje veće vrijednosti specifičnog kapaciteta. Sa porastom brzine polarizacije, specifični kapacitet opada zbog ograničenog vremena u kojem joni mogu doprijeti duboko u pore materijala, pa proces transporta jona postaje ograničen difuzijom [103-107].

Zavisnost specifičnih kapaciteta od brzine polarizacije za aktivirane ugljenične materijale *HTC*_{OMW}*ZnNaK* i *HTC*_{OMW}*H*₃*PO*₄ je prikazana na slici 26. Može se vidjeti da materijal HTC_{OMW}*H*₃*PO*₄ ima značajno veće specifične kapacitete u svim ispitivanim elektrolitima, u odnosu na HTC_{OMW}ZnNaK.

Slika 26. Zavisnost specifičnih kapaciteta uzoraka HTC_{OMW}ZnNaK i HTC_{OMW}H₃PO₄ od brzine polarizacije u 1 M Na₂SO₄, 1 M H₂SO₄, i 6 M KOH.

Uzorak $HTC_{OMW}H_3PO_4$ pokazuje najveći specifični kapacitet skladištenja naelektrisanja u opsegu od 5 do 400 mV/s, slika 26. Ovaj materijal pokazuje netipičnu zavisnost specifičnog kapaciteta od brzine polarizacije pri manjim brzinama polarizacije – kapacitet raste sa povećanjem brzine

polarizacije od 5 do 20 mV/s za kiseli i bazni elektrolit, a 5-10 mV/s za neutralni elektrolit. Razlog ovakvom ponašanju je već spomenuto odigravanje dva procesa na elektrodi – pseudokapacitivni i reakcija izdvajanja vodonika. Odstupanje od očekivane zavisnosti primećuje se kada je proces izdvajanja vodonika posebno izražen (što je slučaj na manjim brzinama polarizacije od 5 i 10 mV/s). U tom slučaju tokom katodnog procesa dolazi do redukcije reaktanata koji daju vodonik, što smanjuje broj aktivnih mjesta dostupan katjonima elektrolita i sprečava ih da učestvuju u pseudofaradejskom procesu i daju njihov doprinos anodnom strujnom odgovoru. Daljim povećanjem brzine polarizacije dolazi do tipičnog ponašanja i opadanja specifičnog kapaciteta. Kapacitet ostaje veoma visok pri ekstremno visokoj brzini polarizacije od 400 mV/s, u svim elektrolitičkim rastvorima. Zadržavanje kapaciteta sa porastom brzine polarizacije od 10 do 400 mV/s za $HTC_{OMW}H_3PO_4$ je približno: 90 % u KOH, 90 % u H₂SO₄ i 66 % u Na₂SO₄. Ovako visoke vrijednosti, pogotovo u kiselini i bazi, najvjerovatnije su posljedica velike specifične površine materijala i razvijene mikro- i mezoporoznosti.

Sa druge strane, kod materijala *HTC_{OMW}ZnNaK* može se primijetiti da specifični kapacitet naglo pada sa porastom brzine polarizacije od 5 do 400 mV/s u svim elektrolitima, uz zadržavanje kapaciteta od približno: 16 % u KOH, 25 % u H₂SO₄ i 25 % u Na₂SO₄. Značajno lošije vrijednosti u odnosu na *HTC_{OMW}ZnNaK* su najvjerovatnije usled slabije razvijene poroznosti ovog materijala u odnosu na *HTC_{OMW}H₃PO₄*, pri čemu joni na većim brzinama polarizacije nemaju dovoljno energije da ispune prostor koji im je na raspolaganju.

U odnosu na vrijednosti specifičnog kapaciteta i stabilnosti pri cikliranju na različitim brzinama u vodenim elektrolitima širokog raspona pH vrijednosti, veću perspektivu za primjenu u superkondenzatorima pokazuje materijal $HTC_{OMW}H_3PO_4$.

ZAKLJUČAK

U okviru ovog master rada ispitan je potencijal upotrebe komine masline kao resursa za održivu proizvodnju elektrodnih materijala za primjene u superkondenzatorima. Hidrotermalnom karbonizacijom komine masline iz maslinarske industrije, sa područja Bara (Crna Gora) sintetisana su dva tipa ugljeničnih materijala različite poroznosti. Komina masline je sa dodatkom destilovane vode hidrotermalno karbonizovana u HTC reaktoru, a zatim je dobijena hidročađ aktivirana sa H₃PO₄ i smješom soli ZnCl, NaCl i KCl i karbonizovana na 700 °C u inertnoj atmosferi. U radu su ispitane strukturne karakteristike i elektrohemijsko ponašanje donijenih ugljeničnih materijala HTC_{OMW}H₃PO₄ i HTC_{OMW}ZnNaK.

Strukturna karakterizacijia dva uzorka HTCOMWZnNaK i HTCOMWH3PO4, pomoću FTIR i XRD metoda vršena je sa ciljem ispitivanja uticaja vrste aktivatora na strukturu sintetisanih ugljeničnih materijala. FTIR spektar HTC uzorka, dobijenog hidrotermalnom karbonizacijom otpada vlažne masline, otkriva prisustvo različitih funkcionalnih grupa kao što su hidroksilne (-OH), karbonilne (C=O) i aromatične (C=C) grupe. Na osnovu toga zaključuje se da primijenjeni hidrotermalni tretman nije bio dovoljan da se u potpunosti razgrade sve organske komponente. Analizom FTIR spektara uzoraka HTComwZnKNa i HTComwH3PO4, uočava se gubitak većeg broja traka kao rezultat razgradnje organskih komponenti tokom visoke temperature (700 °C) i efikasne hemijske obrade (uticaj aktivatora). U spektrima aktiviranih uzoraka (HTC_{OMW}ZnKNa i HTC_{OMW}H₃PO₄), jasno se ističu samo dvije karakteristične slabe trake, koje se pripisuju aromatinim vibracijama: C=C (1572 cm⁻¹) i C-O (1144 cm⁻¹). XRD metodom dobijeni difraktogram aktiviranog ugljenika HTC_{OMW}H₃PO₄ karakteriše njegovu amorfnu prirodu i visok stepen čistoće, jer umjesto oštrih refleksija posjeduje široke, slabe pikove koji ukazuju na nedostatak jasno definisane kristalne strukture. XRD difratogram za HTC_{OMW}ZnKNa prikazuje više oštrih refleksija što ukazuje na prisustvo nečistoća koje mogu uticati na njegova svojstva. Prisustvo refleksija jakog intenziteta u opsegu od 10–70 °/2θ sugeriše na postojanje neorganskih nečistoća u uzorku. Zaključeno je nakon strukturne analize da uzorak HTC_{OMW}H₃PO₄ posjeduje viši stepen čistoće u odnosu na HTC_{OMW}ZnKNa.

Električna provodljivost, za uzorak *HTC*_{OMW}*H*₃*PO*₄ je 222,7 S/m, dok je kod uzorka HTC_{OMW}ZnKNa iznosi 317,5 S/m. Ova povećana električna provodljivost kod HTC_{OMW}ZnKNa uglavnom se može objasniti prisustvom neorganskih nečistoća u materijalu koje su potvrđene XRD-om. Nečistoće u ovom materijlu djeluju kao dopanti koji poboljšavaju mobilnost elektrona u strukturi materijala što dovodi do povećane električne provodljivosti.

Elektrohemijska karakterizacija je vršena cikličnom voltametrijom u vodenim elektrolitičkim rastvorima (1 M H₂SO₄, 1 M Na₂SO₄ i 6 M KOH). Mjerenja su pokazala da materijal HTC_{OMW}H₃PO₄ ima bolji elektrohemijski odgovor od HTC_{OMW}ZnNaK u sva tri elektrolitička rastvora (posebno u neutralnom i kiselom) i visoku sposobnost skladištenja naelektrisanja. Materijal HTC_{OMW}H₃PO₄ pored visoke sposobnosti skladištenja naelektrisanja u formi dvojnog električnog sloja pokazuje i sposobnost skladištenja vodonika. HTC_{OMW}ZnNaK pokazuje sličan oblik cikličnog voltamograma u KOH, ali sa nešto nižim strujnim odgovorom, dok je znatno slabiji strujni odgovor i drugačiji oblik voltamograma registrovan u H₂SO₄ i posebno u Na₂SO₄. Slabiji strujni odgovor HTC_{OMW}ZnNaK u svim elektrolitima je vjerovatno posljedica manje specifične površine ovog materijala. Aktivacija pomoću fosforne kiseline (H₃PO₄) je rezultovala materijalom boljih elektrohemijskih performansi na osnovu čega je zaključeno da je ona doprinijela stvaranju razvijene poroznosti HTC_{OMW}H₃PO₄, dok kombinacija soli ZnCl₂, NaCl i KCl u primijenjenom odnosu najvjerovatnije nije imala sličan efekat. Na razlike u poroznosti dva materijala posebno ukazuju njihova ponašanja u kiselom i neutralnom elektrolitu gdje se javlja jasna razlika između voltamograma na pozitivnijim potencijalima. U oblasti pozitivnijih potencijala strujni odgovor $HTC_{OMW}ZnNaK$ je drastično sužen u odnosu na $HTC_{OMW}H_3PO_4$, što se može dovesti u direktnu korelaciju sa poroznošću materijala.

Uzorak $HTC_{OMW}H_3PO_4$ pokazuje najveći specifični kapacitet skladištenja naelektrisanja, a specifični kapacitet materijala ostaje veoma visok u svim elektrolitičkim rastvorima čak i pri ekstremnim brzinama polarizacije od 400 mV/s. Zadržavanje kapaciteta sa porastom brzine polarizacije od 10 do 400 mV/s za $HTC_{OMW}H_3PO_4$ je približno: 90 % u KOH, 90 % u H₂SO₄ i 66 % u Na₂SO₄. Značajno lošije ponašanje je zabilježeno za $HTC_{OMW}ZnNaK$, gdje je primijećen nagli pad specifičnog kapaciteta sa porastom brzine polarizacije, uz zadržavanje kapaciteta od samo 16 % u KOH, 25 % u H₂SO₄ i 25 % u Na₂SO₄.

 $HTC_{OMW}H_3PO_4$ pokazuje bolje elektrohemijska i strukturna svojstva u poređenju sa $HTC_{OMW}ZnNaK$, pa se zaključuje da impregnacija sa 40 % H₃PO₄ daje bolje performanse elektrodnih materijala za primjene u superkondenzatorima.

Ovo istraživanje doprinosi razvoju novih strategija za korišćenje agro-otpada iz maslinarske industrije u proizvodnji visoko efikasnih i ekološki prihvatljivih elektrodnih materijala. Dalji razvoj i optimizacija HTC_{OMW}H₃PO₄ materijala može doprinijeti unapređenju tehnologije superkondenzatora čime se istovremeno smanjuje negativan uticaj na životnu sredinu.

LITERATURA

[1] M. Bjelobradić, P. Vukić (2015): Upotreba grafena i vodljivog polimera za pripravu aktivnih elektrodnih materijala kod superkondenzatora, Zagreb, 2-7, 27-29.

[2] J.R.Miller, P. Simon (2008): Electrochemical capacitors for energy management, Science 321 651-652

[3] Gavrilov N. (2013): Primena karbonizovanih nanostrukturnih polianilina u elektrokatalizi i skladištenju električne energije, Fakultet za fizičku hemiju, Univerzitet u Beogradu, Beograd, 30-36.

[4] X. Zhao, H. Tian, M.Y. Zhu, K. Tian, J.J. Wang, F.Y. Kang, R.A. (2009): Outlaw, Carbon nanosheets as the electrode material in supercapacitors, J. Power Sources 194 1208-1212

[5] A. Martín, A. Escarpa, Graphene (2014): The cutting–edge interaction between chemistry and Electrochemistry, Trends in Analytical Chemistry 56 3.

[6] C. Kiang Chua, M. Pumera (2013): Chemical reduction of graphene oxide: a synthetic chemistry viewpoint, Chem. Soc. Rev. 43 236.

[7] X. Du, P. Guo, H. Song, X. Chen (2010): Graphene nanosheets as electrode materials for electric double-layer capacitors, Electrochimica Acta 55, 4812-4819.

[8] Deepak Pandey, Kowsik Sambath Kumar, Jayan Thomas (2024): Supercapacitor electrode energetics and mechanism of operation: Uncovering the voltage window, Progress in Materials Science, Volume 141, ISSN 0079-6425

[9] P.Simon, Y. Gogotsi (2008): Materials for electrochemical capacitors, Nat. Mater. 7 846-854
[10] Liu S., Wei L., Wang H. (2020): Review on reliability of supercapacitors in energy storage applications. Applied Energy, 278: p. 115436.

[11] González A. (2016): Review on supercapacitors: Technologies and materials.Renewable and Sustainable Energy Reviews, 58(C): p. 1189-1206.

[12] Halper M., Ellenbogen J. (2006): Supercapatitors: A Brief Overview The MITRE Corporation, McLean, Virginia, USA, 2-19.

[13] Burke A. (2000): Ultracapacitors: why, how, and where is the technology. Journal of Power Sources 91(1): p. 37-50.

[14] Dodevski V. (2017): Sinteza, karakterizacija i primena aktivnih ugljeničnih materijala dobijenih od ploda platana, Tehnološko-metalurški fakultet, Univerzitet u Beogradu, Beograd, 22-76.

[15] Xie L.(2016): Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications Journal of Materials Chemistry A, 4(5): p. 1637-1646.

[16] Shaikh S., Rabinal M.K. (2020): Rapid ambient growth of copper sulfide microstructures:Binder free electrodes for supercapacitor, Journal of Energy Storage, 28: p. 101288.

[17] Deyab M.A., Mele G. (2019): PANI@Co-Porphyrins composite for the construction of supercapacitors. Journal of Energy Storage, 26: p. 101013.

[18] Tang X. (2019): Ni-Mn bimetallic oxide nanosheets as high-performance electrode materials for asymmetric supercapacitors. Journal of Energy Storage, 25: p. 100897

[19] N. Šešelj, (2013): Priprava i karakterizacija kompozita MnO2/ugljikove nanocijevi za primjenu u superkondenzatorima, Diplomski rad, Zagreb, , 4-8., 66.

[20] Zhang, G.C.; Feng, M.; Li, Q.; Wang, Z.; Fang, Z.; Niu, Z.; Qu, N.; Fan, X.; Li, S.;

Gu, (2022): J. High energy density in combination with high cycling stability in hybrid supercapacitors. ACS Appl. Mater. Interfaces, 14, 2674–2682.

[21] Reenu, Sonia, Lakshita Phor, Ashok Kumar, Surjeet Chahal (2024): Electrode materials for supercapacitors: A comprehensive review of advancements and performance, Journal of Energy Storage, Volume 84, Part B, 110698,

ISSN 2352-152X

[22] Forouzandeh, P.; Kumaravel, V.; Pillai, S.C. (2020): Electrode materials for supercapacitors: A review of recent advances. Catalysts, 10, 969.

[23] Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J.(2021): Transition metil oxide electrode materials for supercapacitors: A review of recent developments. Nanomaterials, 11, 1248.

[24] Ma, Dongge & Li, Jundan & Liu, Anan & Chen, Chuncheng. (2020): Carbon Gels-ModifiedTiO2:Promising Materials for Photocatalysis Applications. Materials. 13. 1734.10.3390/ma13071734.

[25] Kumar, S.; Saeed, G.; Zhu, L.; Hui, K.N.; Kim, N.H.; Lee, J.H. (2021): 0 D to 3 D carbonbased networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 403, 126352.

[26] Salele Iro, Zaharaddeen. (2016): A Brief Review on Electrode Materials for Supercapacitor. International Journal of Electrochemical Science. 11. 10628-10643. 10.20964/2016.12.50.

[27] Halina Pawlak-Kruczek, Amit Arora, Ashish Gupta, Muhammad Azam Saeed, Lukasz Niedzwiecki, Gordon Andrews, Herodotos Phylaktou, Bernard Gibbs, Anna Newlaczyl, Penelope M. Livesey, (2020): Biocoal - Quality control and assurance, Biomass and Bioenergy, Volume 135, 105509, ISSN 0961-9534 [28] Kai-Yuan Cheng, Divya Bijukumar, Maria Runa, Michael McNallan, Mathew Mathew (2021): Chapter 5 - Tribocorrosion aspects of implant coatings: Hip replacements, Pages 93-126, ISBN 9780128189160

[29] Forouzandeh, P.; Kumaravel,(2020): Pillai, S.C. Electrode materials for supercapacitors: A review of recent advances. Catalysts , 10, 969.

[30] Qu, G.; Wang, Z.; Zhang, X.; Zhao, S.; Wang, C.; Zhao, G.; Hou, P.; Xu, X. (2022): Designing flexible asymmetric supercapacitor with high energy density by electrode engineering and charge matching mechanism. Chem. Eng. J. 429, 132406.

[31] Agico Cement- (2023): What are the best Techiques fir Activated Charcoal Preparation

[32] Kumar Ratan, Manjeet Kaur, Bharadwaj Adiraju (2018): Synthesis of activated carbon from agricultural waste using a simple method: Characterization, parametric and isotherms study, Materials Today: Proceedings, Volume 5, Issue 2, Part 1, Pages 3334-3345,

[33] James E.G.Mdoe (2015): Agricultural Waste as Raw Materials for the Production of Activated Carbon, African Journals Online

[34] Chemani, Bachir ,Benrachedi, (2013): The preparation of activated carbons from olive mill waste water by chemical and physical activation- International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management

[35] Morni, N.A.H., Radenahmad, N., Abu Bakar, M.S., Sukri, R.S., Phusunti, N., & Azad, A.K. (2018): Potential of sewage sludge as energy recovery via gasification process. Paper presented at the 7th Brunei International Conference on Engineering and Technology (BICET 2018). Institution of Engineering and Technology

[36] Ukanwa, P., Sakrabani, A. & Mandavgane, (2019): A review of chemicals to produce activated carbon from agricultural waste biomass. Sustainability, 11, 6204.

[37] Marinković S., Laušević Z., Polovina M. (1999): Savremeni karbonski materijali Institut za nuklearne nauke "Vinča", Beograd

[38] Sunil Kumar, Snehalata Ankaram, (2019): Waste-to-Energy Model/Tool Presentation, Current Developments in Biotechnology and Bioengineering, Waste Treatment Processes for Energy Generation 239-258.

[39] Suman Thodhal Yoganandham, Gayathri Sathyamoorthy, Remya Rajan Renuka, (2020):Emerging extraction techniques: Hydrothermal processing, Sustainable Seaweed Technologies,Cultivation, Biorefinery, and Applications Advances in Green and Sustainable Chemistry

[40] Wang, J., Wu, F.-A., Wang, M., Qiu, N., Liang, Y., Fang, S.-Q., & Jiang, X. (2010):Preparation of activated carbon from a renewable agricultural residue of pruning mulberry shoot.African J. Biotechnol, 9, 2762–2767.

[41] Gao Z., Zhang Y., Song N., Li X. Biomass-derived renewable carbon materials for electrochemical energy storage, (2016): Materials Research Letters, 5:2, 69-88

[42] Gehrke V. (2021): Facile preparation of a novel biomass-derived H3PO4 and Mn(NO3)2 activated carbon from citrus bergamia peels for high-performance supercapacitors. Materials Today Communications, 2021. 26: p. 101779

[43] Taer E., (2021): The synthesis of activated carbon made from banana stem fibers as the supercapacitor electrodes. Materials Today: Proceedings, 44: p. 3346-3349

[44] Jingjiang Liu, Yuanfu Deng, Xuehui Li, and Lefu Wang (2016): Promising Nitrogen-Rich Porous Carbons Derived from One-Step Calcium Chloride Activation of Biomass-Based Waste for High Performance Supercapacitors, ACS Sustainable Chemistry & Engineering

[45] Borghei S.A., et al. (2021): Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode-Arabian Journal of Chemistry,(2021). 14(2): p. 102958

[46] Qin L., et al. (2020): Supercapacitive charge storage properties of porous carbons derived from pine nut shells. Journal of Electroanalytical Chemistry, 866: p. 114140

[47] Avelar F.F., et al. (2010): The use of piassava fibers (Attalea funifera) in the preparation of activated carbon. Bioresource Technology, 101(12): p. 4639-4645.

[48] Patricia Gullón, Beatriz Gullón, Gonzalo Astray, María Carpena, María Fraga-Corral, Miguel A. Prieto, Jesus Simal Gandara, (2020):Valorization of by-products from olive oil industry and added-value applications for innovative functional foods, Food Research International, 137 109683.

[49] Doula, Maria, Moreno-Ortego, Jose, Tinivella, Federico, Inglezakis, Vassilis,

Sarris, Apostolos, Komnitsas, (2017): Olivemill waste: Recent advances for the sustainable development of olive oil industry, Recent Advances for Sustainable Management 29-56.

[50] Marianela Gimenez, Manuel Rodríguez, Laura Montoro, Fabiana Sardella, Guillermo Rodríguez-Gutierrez, Pablo Monetta, Cristina Deiana, (2020): Two phase olive mill waste valorization. Hydrochar production and phenols extraction by hydrothermal carbonization, Biomass and Bioenergy, 143 105875.

[51] Gizem Balmuk, Hakan Cay, Gozde Duman, Ismail Cem Kantarli, Jale Yanik, (2023): Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance, Energy, 278 127803.

[52] Carlos Moreno-Castilla, Francisco Carrasco-Marın, M.Victoria López-Ramón,

Miguel A. Alvarez-Merino, (2001): Chemical and physical activation of olive-mill waste water to produce activated carbons, Carbon, 39(9) 1415-1420.

[53] Abdelhakim Elmouwahidi, Esther Bailón-García, Agustín F. Pérez-Cadenas, Francisco

J. Maldonado-Hódar, Francisco Carrasco-Marín, (2017): Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes, Electrochimica Acta, 229 219-228.

[54] Meltem Şirazi, Sibel Aslan,(2021): Comprehensive characterization of high surface area activated carbon prepared from olive pomace by KOH activation, Chemical Engineering Communications, 208:10 1479-1493.

[55] Ghizlane Enaime, Widad El Bouaidi, Mehdi Louarrat, Abdelaziz Baçaoui, Abdelrani Y aacoubi, Mohammed Loudiki, Marc Wichern, Manfred Lübken,(2024): Activated hydrochar derived from olive mill wastes for the removal of phenolic compounds from olive mill wastewater, Biomass Conversion and Biorefinery

[56] Edurne Redondo, Javier Carretero-González, Eider Goikolea, Julie Ségalini, Roman Mysyk, (2015): Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits, Electrochimica Acta, 160 178-184.

[57] Katia Ait Kaci Azzou, Achour Terbouche, Chafia Ait Ramdane-Terbouche,

Hakim Belkhalfa, Khaldoun Bachari, Didier Hauchard, Djillali Mezaoui (2022):

Electrochemical performance of new hybrid activated carbon materials from binary and ternary Date-Olive pits for supercapacitor electrodes, Journal of Energy Storage, 47103559.

[58] Ramzi Nasser, Jian Tiantian, Ji-Ming Song, (2022): Hierarchical porous activated carbon derived from olives: Preparation, (N, S) co-doping, and its application in supercapacitors, Journal of Energy Storage, 51 104348.

[59] Abdelhakim Elmouwahidi, Jesica Castelo-Quibén, Jose F. Vivo-Vilches, Agustín F. Pérez-Cadenas, Francisco J. Maldonado-Hódar, Francisco Carrasco-Marín, (2018): Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors, Chemical Engineering Journal, 334 1835-1841.

[60] Mouna Jaouadi, Moomen Marzouki, Ahmed Hichem Hamzaoui, Ouassim Ghodbane,(2021): Enhanced electrochemical performance of olive stones-derived activated carbon by silica coating for supercapacitor applications, Journal of Applied Electrochemistry, 52 125–137

[61] Chu'an Xiong, Nan Wang, Mai Feng (2023): Activated Carbon Derived from Waste Oil Shale Semi-Coke for Supercapacitor Application, Molecules 16;28(12):4804.

[62] Jon Ajuria, Edurne Redondo, Maria Arnaiz, Roman Mysyk, Teófilo Rojo, Eider Goikolea (2017): Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits, Journal of Power Sources, 359 17-26.

[63] M. Joyce Nirmala, R. Nagarajan (2022): Green nanoemulsions: Components, formulation, techniques of characterization, and applicationsin Bio-Based Nanoemulsions for Agri-Food Applications

[64] Prabhat Kumar Mandal, Ashim Kumar Biswas (2020):,Modern techniques for rapid detection of meatborne pathogens Meat Quality Analysis, Academic Press,Pages 287-303

[65] M. Mardani, I. Fartushna, A. Khvan, V. Cheverikin, D. Ivanov, A. Kondratiev, A. Dinsdale,(2018): Phase equilibria in the Fe-Ce-C system at 1100 °C, Journal of Alloys and Compounds, Volume 730 Pages 352-359,ISSN 0925-8388

[66] Khadija El Bourakadi, Rachid Bouhfid, Abou el Kacem Qaiss, (2021): Chapter 2 -Characterization techniques for hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles, In Woodhead Publishing Series in Composites Science and Engineering, Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites, Woodhead Publishing, Pages 27-64, ISBN 9780128229064

[67] Ranjan Kumar and Ranber Singh (2021): Thermoelectricity and Advanced Thermoelectric Materials, A volume in Woodhead Publishing Series in Electronic and Optical Materials

[68] Sevilla, M., & Fuertes, A. B. (2009): The production of carbon materials by

hydrothermal carbonization of cellulose. Carbon, 47(9), 2281-2289.

[69] Arbizzani, C.; Mastragostino, M.; Soavi, F. (2001): New trends in electrochemical supercapacitors. J. Power Sources , 100, 164–170.

[70] Elsevier Pub. Co. Stahlfeld, K.; Belmont, (2023): E.-BET and Kelvin Analyses by Thermogravimetric Desorption-Langmuir. 39 (25): 8814–8823.

[71] Metikoš-Huković (2000): Elektrokemija, Sveučilište u Zagrebu, Fakultet kemijskog inženjerstva i tehnologije – Zavod za elektrokemiju, Zagreb, 315.

[72] Laušević P.-(2021): Sinteza, karakterizacija i modelovanje fleksibilnih superkondenzatora, doktorska disertacija, Elektrotehnički fakultet, Univerzitet u Beogradu, Beograd.

[73] Luo Q.P., Huang L., Gao X., Cheng Y., Yao B., Hu Z., Wan J., Xiao X., Zhou J. (2015): Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors, Nanotechnology, 26, 304004

[74] H. El Hajjouji, J.R. Bailly, P. Winterton, G. Merlina, J.C. Revel, M. Hafidi, (2008): Chemical and spectroscopic analysis of olive mill waste water during a biological treatment, Bioresource Technology, Volume 99, Issue 11, Pages 4958-4965, ISSN 0960-8524

[75] Stanković M., Krstić N., Slipper I., Mitrović J., Radović M., Bojić D., Bojić A. (2013): Chemically modified Lagenaria vulgaris as a biosorbent for the removal of Cu(II) from water, Aust. J. Chem. 66, 227-236.

[76] Silverstein R.M., Bressler G.C., Morril T.C. (2005): Spectrometric identification of organic compounds, 5th ed., John Wiley & Sons, New Jersey.

[77] Aruwajoye G.S., Faloye F.D., Kana E.G., (2020): Process Optimisation of Enzymatic Saccharification of Soaking Assisted and Thermal Pretreated Cassava Peels Waste for Bioethanol Production, Waste and Biomass Valorization. 11. 2409–2420.

[78] Fang JM, Sun RC, Tomkinson J, Fowler P. (2000): Acetylation of wheat straw hemi- cellulose B in a new non-aqueous swelling system. Carbohydr Polym. 41(4):379–87.

[79] Sun XF, Sun RC, Sun JX. (2004): Oleoylation of sugarcane bagasse hemicel- luloses using N-bromosuccinimide as a catalyst. J Sci Food Agric.84(8):800–10.

[80] Tjeerdsma BF, Militz H. (2005): Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Als Roh-und Werkst. 63(2):102–11

[81] X. Li, Y. Wei, J. Xu, N. Xu, Y. He, (2018): Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on ftir macro- and micro-spectroscopy coupled with chemometrics, Biotechnol. Biofuels.11 1–16.

[82] Suhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, (2007): Lignin - from natural adsorbent to activated carbon: A review, Bioresour. Technol. 98 2301–2312.

[83] Bowen Lin, Jingsong Zhou, Qianwen Qin, Xin Song, Zhongyang Luo (2019): Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation, Journal of Analytical and Applied Pyrolysis, Volume 144 ISSN 0165-2370

[84] Li, M.F., Fan, Y.-M., Xu, F., Sun, R.-C., Zhang, X.-L. (2010): Cold sodium hydroxide/urea based pretreatment of bamboo for bioetha- nol production: characterization of the cellulose rich fraction. Ind. Crops Prod. 32(3), 551–559

[85] Kim D., Lee K., Park K.Y. (2014): Hydrothermal carbonization of anaerobicallydigested sludge for solid fuel production and energy recovery. Fuel, 130, 120-125

[86] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts, John Wiley & Sons, Ltd, 2007.

[87] Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A.(2008): Introduction to Spectroscopy; Brooks/Cole: Belmont,CA, USA

[88] Seyed-Abolfazl, Asasian, Neda, Reza, Soleimani, Mansooreh (2018): Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol Turkish Journal of Chemistry

[89] Jiaxin Li, Beata Michalkiewicz, Jiakang Min, Changde Ma, Xuecheng Chen, Jiang Gong, Ewa Mijowska, Tao Tang (2019):

Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture,

Chemical Engineering Journal, Volume 360, Pages 250-259, ISSN 1385-8947

[90] Farnane, Meryem & Machrouhi, Aicha & Abdennouri, Mohamed & Tounsadi, Hanane & Rais, Zakia & Qourzal, Samir & Barka, Noureddine. (2021): Optimization of Carob Shells Biomass Activation by Nitric Acid for Heavy Metals Sequestration from Contaminated Water. Biointerface Research in Applied Chemistry. 12. 10.33263/BRIAC125.59415952.

[91] Seyed-Abolfazl, Asasian, Neda, Reza, Soleimani, Mansooreh (2018): -Optimization of sugarcane bagasse activation to achieve adsorbent with high affinity towards phenol Turkish Journal of Chemistry

[92] Justino, C.I.L., Pereira, R., Freitas, A.C. et al. (2012): Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicology 21, 615–629

[93] Zhigang Xie, Wei Guan, Fangying Ji, Zhongrong Song, Yanling Zhao (2014): Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology, Journal of Chemistry

[94] Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J.& Ruoff, R. S. (2011): Carbon-based supercapacitors produced by activation of graphene. Science, 332(6037), 1537-1541.

[95] V. Khomenko, E. Raymundo–Piñero, F. Béguin, A new type of high energy capacitor with nanoporous carbon electrodes in aqueous electrolyte, J. Power Sources 195 (13) (2010) 4234.

[96] M.A. Montes–Morán, D. Suárez, J.A. Menéndez, E. Fuente, (2004): On the nature of basic sites on carbon surfaces: An overview, Carbon 42 (7) 1219.

[97] Chen C.M., Zhang Q., Zhao X.C., Zhang B., Kong Q.Q., Yang M.G., Yang Q.H., Wang M.Z., Yang Y.G., Schlögl R., Su D.S. (2012): Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage, Journal of Materials Chemistry 22, 14076.

[98] Montes-Morán M.A: Suárez D., Menendez J.A., Fuente E. (2004): On the nature of basic sites on carbon surfaces: An overview, Carbon 42, 1219

[99] Fang Y., Luo B., Jia Y., Li X., Wang B., Song Q., Kang F., Zhi L. (2012): Renewing functionalized graphene as electrodes for high-performance supercapacitors, Advanced Materials 24, 6348

[100] Andreas H.A., Conway B.E. (2006): Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochimica Acta; 51:6510–20.

[101] Shrestha L.K., Shrestha R.G., Maji S., Pokharel B., Rajbhandari R., Shrestha R.L., Pradhananga R.R., Hill J., Ariga K. (2020): High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance, Nanomaterials 10, 728. [102] Zhu Y., Murali S., Soller M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., et al. (2011): Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537–1541

[103] Gao Q, Demarconnay L, Raymundo-Pinero E, B'eguin F. (2012): Energy Environ Sci, 5: 9611].

[104] Li, M., et al. (2019): Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustainable Chemistry & Engineering

[105] Sesuk T., Tammawat P., Jivaganont, Somton K., Limthongkul W., Kobsiriphat (2019): Activated Carbon Derived from Coconut Coir Pith as High Performance Supecapacitors Electrode Material Journal of Energy Stronge 25 100910-100919

[106] Cui H., Zhu G., Liu X., Liu F., Xie Y., Yang C., Lin T., Gu H., Huang F. (2015): Niobium Nitride Nb4 N5 as a New High-Performance Electrode Material for Supercapacitors, Adv. Sci., 2, 1500126

[107] Licht, M.A. Davis, H.A. Andreas (2020): Charge redistribution and electrode history impact galvanostatic charging/discharging and associated figures of merit, Journal of Power Sources, Volume 446, 227354, ISSN 0378-7753
PRILOG

Dio rezultata ovog rada prezentovan je na međunarodnoj konferenciji "25th Jubilee Annual Conference on Material Science" (YUCOMAT 2024) kao poster prezentacija.

Prilog 1. Izvod publikovan u knjizi apstrakata sa međunarodne konferencije "Twenty-fifth Jubilee Annual Conference on Material Science YUCOMAT 2024 & Thirteenth World Round Table Conference on Sintering XIII WRTCS 2024"ISBN 978-86-919111-9-5.

	25 th YUCOMAT 2024 & XIII WRTCS Herceg Novi, September 2 - 6, 2024
P.S.I.B.3	

Exploring the potential of olive mill waste for the production of energy storage materials

 <u>Kristina Lalatović</u>¹, Minea Kapidžić¹, Sonja Kastratović¹, Veselinka Grudić¹, Milica Vujković^{2,3}, Jana Mišurović¹
¹University of Montenegro, Faculty of Metallurgy and Technology, Cetinjski put 2, Podgorica, Montenegro
²University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia ³Center for Interdisciplinary and Multidisciplinary Studies, University of Montenegro, Podgorica, Montenegro

The conversion of moist olive waste into high-performance electrodes for supercapacitors represents a significant step in sustainable technology. This promotes circular economy by valorizing materials into valuable resources, reducing waste, and supporting ecological innovation. To obtain activated carbon materials, we took olive mill waste, highly suitable for wet hydrothermal processing, and in the first step treated it hydrothermally at 200 °C. The second step was activation of the obtained hydrochar at 700 °C in an argon stream with two different activators (H₃PO₄ and a mixture of Zn, Na, and K chloride salts). The synthesized materials were characterized structurally using FTIR and XRD methods, and their electrochemical behavior was tested by means of Cyclic Voltammetry in various aqueous electrolytes. Characterization showed that the material synthesized in the presence of H₃PO₄ was pure carbon, while the one activated with chloride salts mixture contained impurities likely originating from metals present in the biomass. This was correlated with better charge storage performance of the H₃PO₄–activated carbon which delivered highest specific capacitance of 168 F g⁻¹ in 6 M KOH at a scan rate of 20 mV s⁻¹. This research opens new possibilities of using an abundant industrial waste for high technology applications.

Acknowledgement: This research was supported by NATO Science for Peace and Security (SPS) Programme under grant G5836-SUPERCAR. Authors gratefully acknowledge the financial support from the bilateral project Montenegro-Slovenia "Biomass-derived carbons as anodes in sodium-ion batteries."