# **Python for Engineers**

## **Course Objective**

In Python for Engineers, we will learn how to use the programming language python to effectively analyze and assess data. This course will give users hands-on experience in learning python. In addition, we will explore the pythonic way to perform solve and model common numerical methods in thermofluidic motion. There will also be an introduction to machine learning. Ideally, users will use python to solve a new problem of their choosing or an old problem previously written in another language.

# **I:** Introduction to python

## Toolbox setup and background

- Begin setup and installation of python tools
- Install and configure python platform Anaconda and explore
  - o Spyder
  - Jupyter notebook
- Create a new environment to install and use different versions of python
- Pip install commonly used python packages
- Python pros and cons
- Use the python profiler to understand Spyder backend processes
- Write code to visualize results in the python console

## Variables, expressions, and statements

- Topics include:
  - $\circ$  values and types
  - $\circ$  variables
  - o keywords
  - o statements
  - operations, expressions, string operations
- Exercises

## **Conditional execution**

- Topics include:
  - Boolean expressions
  - logical operators
  - o conditional execution
  - chained and nested conditionals
  - $\circ$  exception catching

## Functions

- Topics include
  - Function calls
  - Built in functions
  - Math functions
- Exercises

## Iteration

- Topics include:
  - o Updating variables
  - While statements
  - Infinite loops
  - Using continue, for, and break in loops

## • Exercises

# Strings

- Topics include:
  - o About strings and accessing properties
  - o Operators
  - o comparison
  - Parsing strings
- Exercises

# Files

- Topics include:
  - Opening files
  - Reading files
  - Using try, except, and open
  - Debugging
- Exercises

## Lists

- Topics include:
  - o About lists
  - operations
  - o slices
  - $\circ$  methods
  - o aliasing
- Exercises

# **Tuples and dictionaries**

- Topics include:
  - About each
  - o Assigning
  - o Accessing
  - o Looping
- Exercises

# **Regular Expressions**

- Topics include:
  - Character matching
  - Extracting data
  - Searching and combining with extracting
  - o Looping
- Exercises

# Web scraping and natural language

- Topics include:
  - Parsing and scraping web

- Parsing using regular expression
- Parsing using BeautifulSoup
- Analyze unstructured text data using common python packages
- Google geocoding
- Exercises

## Visualizing data

- Topics include:
  - Building a google map from geocoded data
  - Visualizing networks
- Exercises

## Flask tutorial

- creating a basic blog application
- Users will be able to register, log in, create posts, and edit or delete their own posts

# **II: Using Python as an Engineer**

### Automating common tasks

- Topics include:
  - File names and paths
  - Command line arguments
  - pipes
- Exercises

## **Data cleansing**

- organizing, cleaning, and managing data
- Methods include: subset, sort, reshape, and merge.

## **Parallel programming**

- How to run parallel processes in python
- Examples
- Work on translating your parallel code

# Numpy and Matplotlib

- Using numpy
  - o np.linspace, np.pi, np.meshrid np.exp, np.sin/cos np.array np.zeroes
- Plotting data with matplotlib
  - o Contour plots
  - $\circ$  3d plots
  - o matplotlib.animation

## Solutions of systems of linear algebraic equations

- o Conjugated gradient
- SIP strongly implicit procedure by Stone

### **Interpolation of grid data**

• Algorithms / functions to interpolate data between numerical grids

### **Conjugate Gradient Descent in Python**

- Steepest descent
- Conjugate directions
- Gram-Schemidt conjugatio
- Conjugate gradients

# **Additional Materials**

### Modeling and Simulation in python

- Iterative modeling
- Sweeping parameters
- Modeling growth
- Quadratic growth
- Optimization
- o Mixing
- Pharmacokinetics
- o Numerical methods
- Projectiles in 2d
- The Manny Ramirez problem
- o Rotation
- o Torque
- Pressure drop modeling
- Second-order linear diffusion

# **Introduction to Machine Learning**

- General liner models
  - logistic regression
  - binary outcomes
  - Poisson Regression
- Decision trees
  - bagging and boosting
  - dimensional reduction

#### Neural networks

- artificial neural networks
- fuzzy models
- genetic algorithms
- swarm intelligence.

#### In class project work

- Students outline a project that they want to solve
- Use class time to

- work through difficulties
- $\circ$  share ideas with peers
- o develop more sophisticated methods
- o prepare client ready presentation

### **Prerequisites**

There are no formal prerequisites required for Programming in python. While this course spans a large range of complex data science concepts, the curriculum has been designed to accommodate all ranges of data science skills. The expectations are that students attend class regularly, actively participate, and complete assignments.

### Grading

Students will likely have different levels of experience coding as well as different uses for python. Grading will not be based on a test, but rather based on each individual's ability to use python for what they want to use it for. This could include but is not limited to:

- Solving math problems with python https://projecteuler.net/archives
- Making a game with python http://inventwithpython.com/chapters/
- Rewriting an old script in python
- Making something brand new in python