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Introduction

« Reconstruction of missing/omitted samples of
complex-valued signal is considered

 Itis assumed that signals are sparse in the DFT
domain with sparsity K, meaning that only K values
of the signal’'s DFT are non-zero.

« The proposed algorithm is based on gradient
steepest descent method.
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Problem formulation

Reconstruction of the missing samples can be formulated
as constrained minimization problem:

Minimize M(DFT(y(n)))

under constraints y(n) = x(n) for n € N,

Where:
M Is concentration (sparsity) measure (L1 norm)

X(n) are available signal samples
y(n) is reconstructed signal

N, is set of available samples positions
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Algorithm

Algorithm start with missing samples set to 0. For each
missing sample n, four signals are formed by varying
missing sample real and imaginary part:

U(k)(n) — ; y®(n) + A for n = n;
: L Y () (”-) for n 75 1
( (k) _ S

By, v _ }J Y (n) —A for n = n;
()= i 'U{k}(?’?-) for n £ n;

a Uf)(_”) _ ;U(k)(n-) +7A for n = n;
S y*) (n) for n # n;

(k)(_ ) — yF(n) — jA for n = n;
Jo W)= y ) (n) for n # n;
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Real and imaginary parts of the measure gradient vector
are calculated

gr(ni)

gi(n)

Algorithm - continued
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G'(k)(n.z-) = gr(ni) + J gi(ny)

Values of the reconstructed signal are updated
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Algorithm stopping criterion

Angle between successive gradient vectors (complex
valued) is calculated.

%[<G(k—1j' G(;‘)N
|GE=D] - ]|GHR

F = arccos

Angle close to 180° means that iterative procedure
reached oscillatory state around true sample values.

Since reconstruction error is of A order iterative procedure
should stop or reduction of A should be performed.
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Reconstruction example
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Statistical analysis

Reconstruction error
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K — signal sparsity
Average over 100 realizations

Percentage of available samples is
varied from 0% to 80%
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Conclusion

An algorithm for signal reconstruction is presented.

It is assumed that the analyzed signal is sparse In
lex valued.

the DFT domain, and that signal is comp
L1 norm is used as sparisty measure.

Reconstruction performances are presented on
example signal and statistical analysis of the

proposed algorithm is performed.

Reconstruction error and percentage of t
reconstruction events (reconstruction wit
close to the desired precision) are consic

ne full
N error
ered.
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Thanks for your attention.

Questions?
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