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Motivation 

 Hermite transform domain is interesting for numerous 

applications: 

 Biomedical engineering 

 Protein structure analysis 

 Physics 

 Image proccessing 

Tomography 



Mathematical form 
 Hermite functions can be defined with the following recursion: 
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 Hermite transfrom (expansion) is given with: 

𝑓(𝑡) =  𝑐𝑝𝜓𝑝(𝑡, 𝜎)
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CS problem formulation 
 Let us introduce: 
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then we can write: 

𝐜 = 𝐖𝐻𝐟 



CS problem formulation 
 If we define 

𝚿 =
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then the matrix form of the inverse Hermite transform can be 
formulated: 

𝐟 = 𝐖𝐻
−1𝐜 = 𝚿𝐜 

 Let assume that the compressive sensing is done using a random 
selection of MA signal values modelled by a random measurement 
matrix : 

𝐲𝐜𝐬 = 𝚽𝐟 = 𝚽𝚿𝐜 = 𝐀𝐜𝐬𝐜 
Finally, the reconstruction problem can be formulated as: 

min‖𝐜‖𝑙1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐲𝑐𝑠 = 𝐀𝑐𝑠𝐜 



Our solutions 

 We have proposed a gradient-based approach to solve the 

problem 

 Example of reconstruction: a noisy signal of length 512 with 

35 components, and SNR=30 dB is considered 



Application in ECG signal analysis 

 Real ECG signal was observed. Hermite domain is suitable 

for analysis, and, as we showed, for Compressive sensing 



Theoretical analysis and development 

of new algorithms 
 Missing samples produce noise in tranform domain 

 Our aim was to determine statistical properties of that noise, and to use it in the development of 
new effective and fast algorithms 

 Based on mean values and variances of this noise on the signal positions and non-signal positions  
the probability of wrong signal component detection was determined: 
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and a treshold which separates signal and noisy components with a high probability was derived: 

𝑇 = 𝜎𝑁 −4 𝜋 − 𝑎𝐿 + 4 𝜋 + 𝑎𝐿 2 − 4𝑎𝐿 𝑎  

with 𝐿 = log 1 − 𝑃𝑁𝑁(𝑇)
2

𝑀−1  and 𝑎 ≈ 0.147 



Illustration of the threshold for one-

component signal case 
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Probability of the detection error in 

multicomponent signal case 
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Multicomponent signal case 

  Illustration of the detection of the strongest signal component, first three strongest signal 

components, first four signal components and the detection of all signal components.  
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