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Motivation 

 Hermite transform domain is interesting for numerous 

applications: 

 Biomedical engineering 

 Protein structure analysis 

 Physics 

 Image proccessing 

Tomography 



Mathematical form 
 Hermite functions can be defined with the following recursion: 
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 Hermite transfrom (expansion) is given with: 

𝑓(𝑡) =  𝑐𝑝𝜓𝑝(𝑡, 𝜎)
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CS problem formulation 
 Let us introduce: 
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then we can write: 

𝐜 = 𝐖𝐻𝐟 



CS problem formulation 
 If we define 

𝚿 =

𝜓0(1) 𝜓0(2) … 𝜓0(𝑁)
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then the matrix form of the inverse Hermite transform can be 
formulated: 

𝐟 = 𝐖𝐻
−1𝐜 = 𝚿𝐜 

 Let assume that the compressive sensing is done using a random 
selection of MA signal values modelled by a random measurement 
matrix : 

𝐲𝐜𝐬 = 𝚽𝐟 = 𝚽𝚿𝐜 = 𝐀𝐜𝐬𝐜 
Finally, the reconstruction problem can be formulated as: 

min‖𝐜‖𝑙1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐲𝑐𝑠 = 𝐀𝑐𝑠𝐜 



Our solutions 

 We have proposed a gradient-based approach to solve the 

problem 

 Example of reconstruction: a noisy signal of length 512 with 

35 components, and SNR=30 dB is considered 



Application in ECG signal analysis 

 Real ECG signal was observed. Hermite domain is suitable 

for analysis, and, as we showed, for Compressive sensing 



Theoretical analysis and development 

of new algorithms 
 Missing samples produce noise in tranform domain 

 Our aim was to determine statistical properties of that noise, and to use it in the development of 
new effective and fast algorithms 

 Based on mean values and variances of this noise on the signal positions and non-signal positions  
the probability of wrong signal component detection was determined: 
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and a treshold which separates signal and noisy components with a high probability was derived: 

𝑇 = 𝜎𝑁 −4 𝜋 − 𝑎𝐿 + 4 𝜋 + 𝑎𝐿 2 − 4𝑎𝐿 𝑎  

with 𝐿 = log 1 − 𝑃𝑁𝑁(𝑇)
2

𝑀−1  and 𝑎 ≈ 0.147 



Illustration of the threshold for one-

component signal case 
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Probability of the detection error in 

multicomponent signal case 
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Multicomponent signal case 

  Illustration of the detection of the strongest signal component, first three strongest signal 

components, first four signal components and the detection of all signal components.  
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