

University of Montenegro Faculty of Electrical Engineering

0

Compressive sensing: Theory, Algorithms and Applications

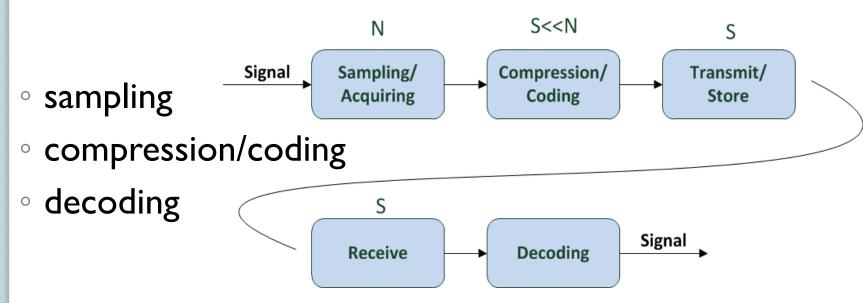
Prof. dr Srdjan Stanković

About CS group

- Project CS-ICT supported by the Ministry of Science of Montenegro
- I2 Researchers
 - 2 Full Professors
 - 3 Associate Professors
 - I Assistant Professor
 - 6 PhD students
- Partners:
 - INP Grenoble, FEE Ljubljana, University of Pittsburgh, Nanyang Technological University, Technical faculty Split, Zhejiang University, Zhejiang University of Technology, Hangzhou Normal University

Shannon-Nyquist sampling Standard acquisition approach

- Sampling frequency at least twice higher than the maximal signal frequency (2f_{max})
- Standard digital data acquisition approach



Audio, Image, Video Examples

Audio signal:	Uncompressed:	MPEG I – compression ratio 4:
 sampling frequency 44,1 KHz 	Oncompressed.	
- 16 bits/sample	86.133 KB/s	21.53 KB/s
Color image:	Uncompressed:	JPEG – quality 30% :
-256x256 dimension		
– 24 bits/pixel	576 KB	7.72 KB
- 3 color channels		
• Video:	Uncompressed:	MPEG I- common
- CIF format (352x288)		bitrate 1.5 Kb/s
-NTSC standard (25 frame/s)	60.8 Mb/s	MPEG 4
-4:4:4 sampling scheme (24 bits/pixel)		28-1024 Kb/s

Compressive Sensing / Sampling

- Is it always necessary to sample the signals according to the Shannon-Nyquist criterion?
- Is it possible to apply the compression during the acquisition process?

Compressive Sensing:

- overcomes constraints of the traditional sampling theory
- applies a concept of **compression during the sensing** procedure

CS Applications

Biomedical Appl. MRI

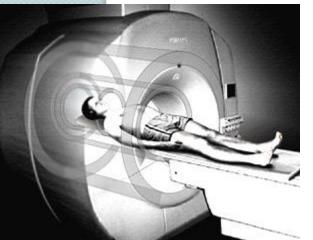
Standard sampling

CS reconstruction using 1/6 samples

Reconstruction from undersampled data Standard (left) CS (right)

Make entire "puzzle" having just a few pieces:

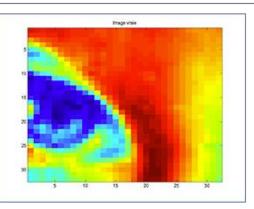
Reconstruct entire information from just few measurements/pixels/data



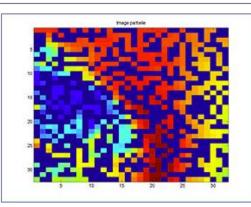
CS promises SMART acquisition and processing and SMART ENERGY consumption

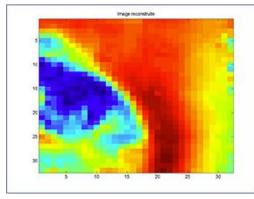
Compressive sensing is useful in the applications where people used to make a large number of measurements

Reconstruction of Lenna's eye



Starting Image



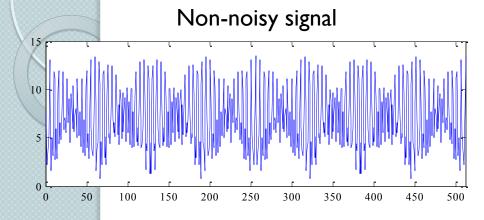


Partial Image

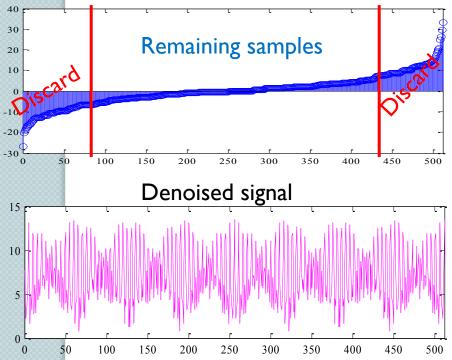
Reconstructed Image

L-statistics based Signal Denoising

 \mathbf{n}



Sorted samples - Removing the extreme values

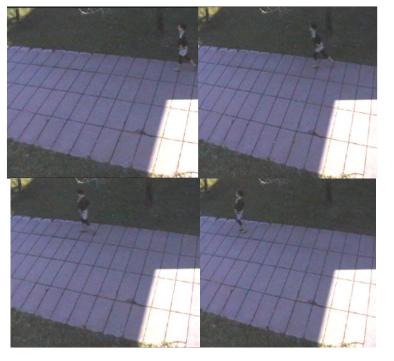


Discarded samples are declared as "missing samples" on the corresponding original positions in non-sorted sequence This corresponds to CS formulation

O Noisy samples

After reconstructing "missing samples" the denoised version of signal is obtained

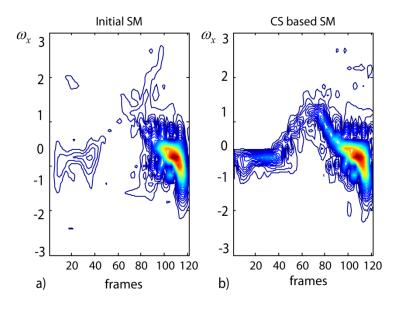
Video sequences



*Video Object Tracking

*Velocity Estimation

*Video Surveillance



CS Applications

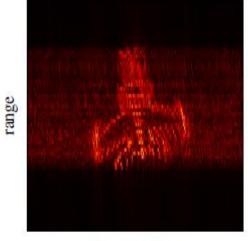
50% available pulses

reconstructed image

Reconstruction of the radar images Mig 25 example

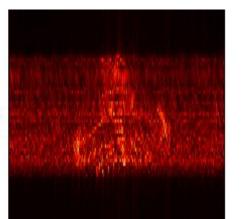
ISAR image with full data set

cross-range

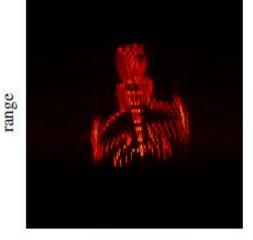


cross-range

30% available pulses

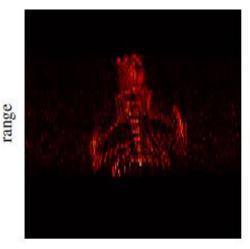


cross-range



cross-range

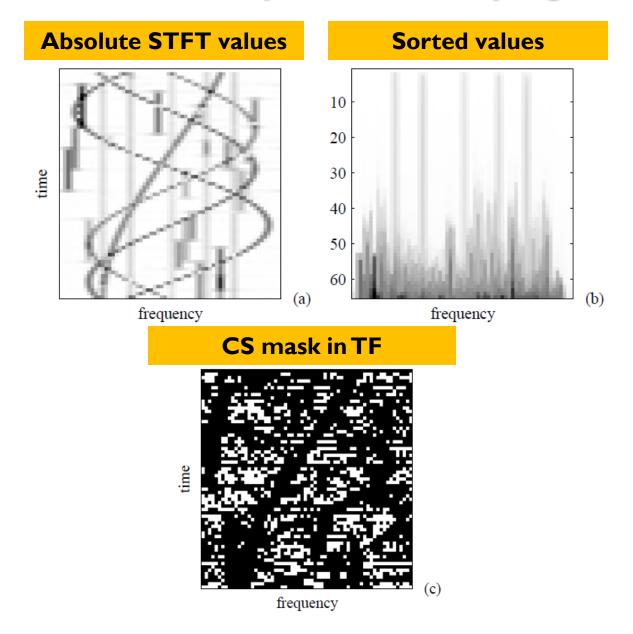
reconstructed image

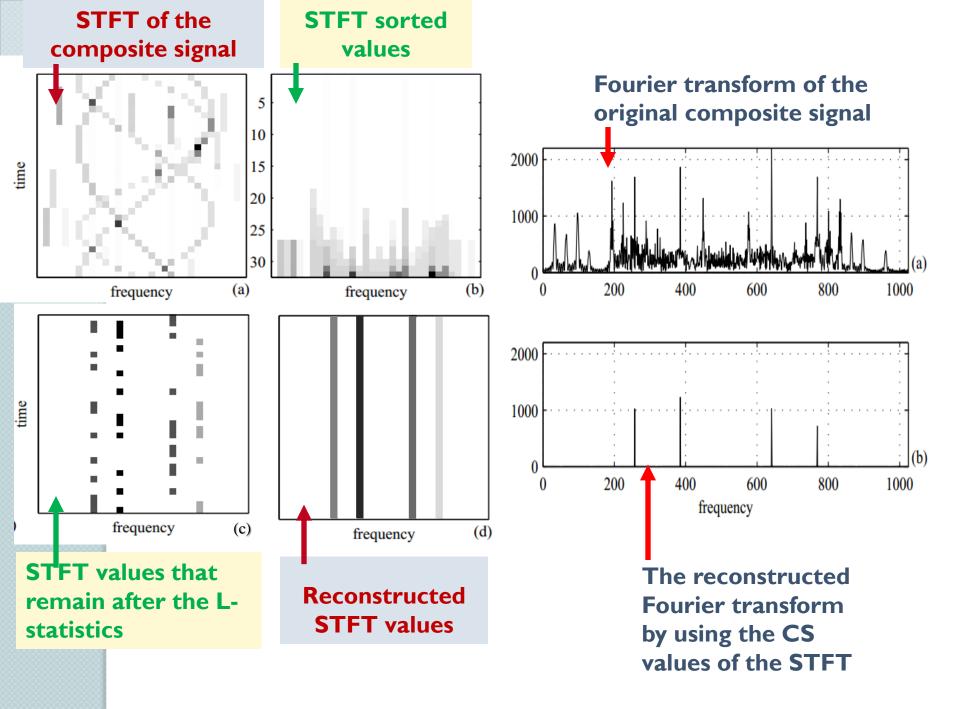


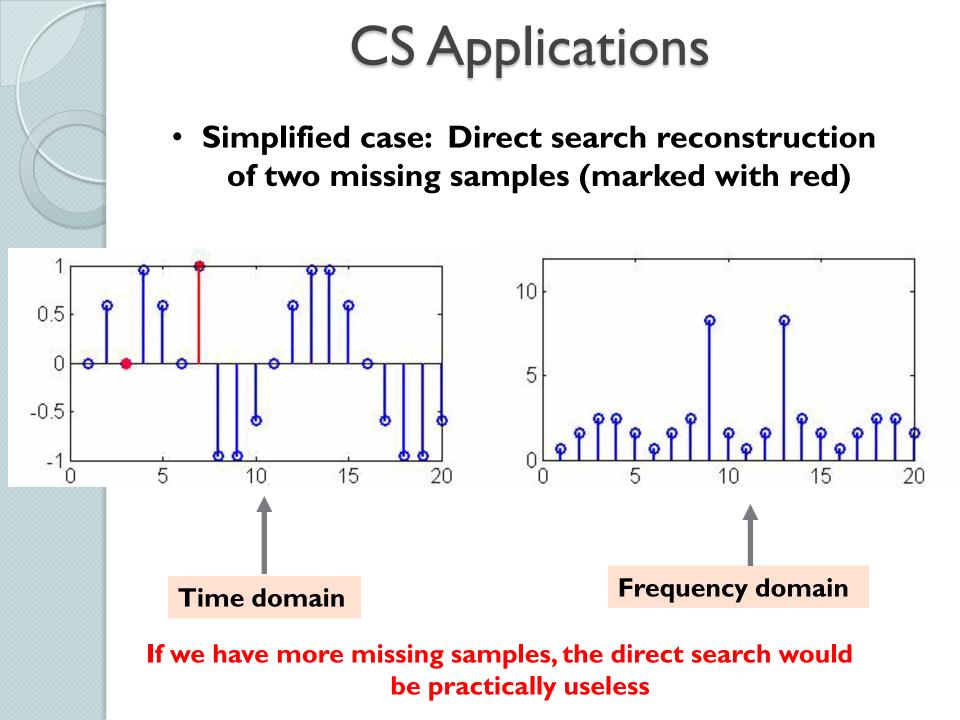
cross-range

range

Compressive Sensing Based Separation of Non-stationary and Stationary Signals

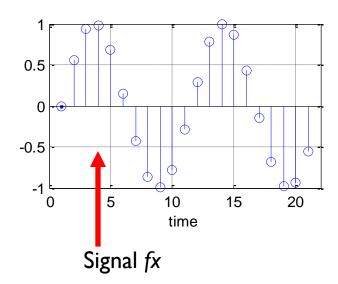


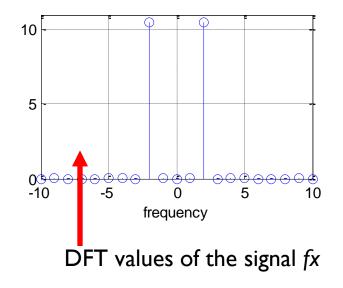




CS Applications-Example

- Let us consider a signal: $f_x(n) = \sin(2 \cdot \pi \cdot (2/N) \cdot n)$ for n=0,..,20
- The signal is sparse in DFT, and vector of DFT values is:





CS reconstruction using small set of samples:

I. Consider the elements of inverse and direct Fourier transform matrices, denoted by Ψ and Ψ^{-1} respectively (relation $\mathbf{f}_x = \Psi \mathbf{F}_x$ holds)

 $\Psi = \frac{1}{21} \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & e^{j\frac{2\pi}{21}} & e^{2j\frac{2\pi}{21}} & e^{3j\frac{2\pi}{21}} & \dots & e^{20j\frac{2\pi}{21}} \\ 1 & e^{j\frac{2\pi}{21}} & e^{4j\frac{2\pi}{21}} & e^{6j\frac{2\pi}{21}} & \dots & e^{40j\frac{2\pi}{21}} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & e^{19j\frac{2\pi}{21}} & e^{38j\frac{2\pi}{21}} & e^{57j\frac{2\pi}{21}} & \dots & e^{380j\frac{2\pi}{21}} \\ 1 & e^{20j\frac{2\pi}{21}} & e^{40j\frac{2\pi}{21}} & e^{60j\frac{2\pi}{21}} & \dots & e^{400j\frac{2\pi}{21}} \\ 1 & e^{-2j\frac{2\pi}{21}} & e^{-3kj\frac{2\pi}{21}} & e^{-6j\frac{2\pi}{21}} & \dots & e^{-40j\frac{2\pi}{21}} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & e^{10j\frac{2\pi}{21}} & e^{40j\frac{2\pi}{21}} & e^{60j\frac{2\pi}{21}} & \dots & e^{400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-40j\frac{2\pi}{21}} & e^{-57j\frac{2\pi}{21}} & \dots & e^{-380j\frac{2\pi}{21}} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-40j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-40j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 & e^{-20j\frac{2\pi}{21}} & e^{-60j\frac{2\pi}{21}} & \dots & e^{-400j\frac{2\pi}{21}} \\ 1 &$

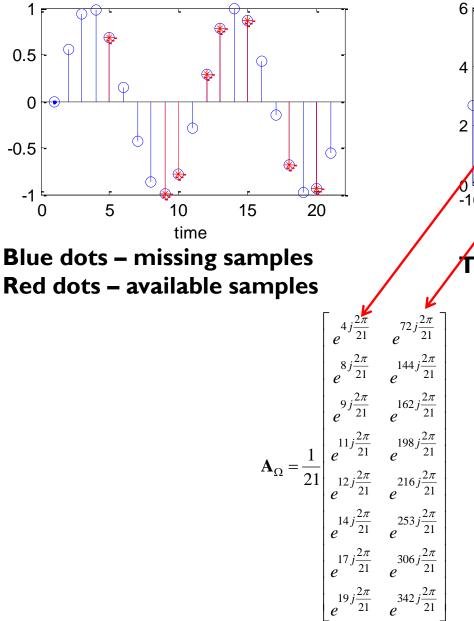
2. Take *M* random samples/measurements in the time domain It can be modeled by using matrix Φ : $\mathbf{y} = \Phi \mathbf{f}_{\mathbf{y}}$

- Φ is defined as a **random permutation matrix**
- **y** is obtained by **taking** *M* random elements of f_x

• Taking 8 random samples (out of 21) on the positions:

5 9 10 12 13 15 18 20 $\mathbf{A}_{MxN} = \mathbf{\Phi} \mathbf{\Psi} = \frac{1}{21} \begin{bmatrix} 1 & e^{4j\frac{2\pi}{21}} & e^{8j\frac{2\pi}{21}} & \dots & e^{80j\frac{2\pi}{21}} \\ 1 & e^{8j\frac{2\pi}{21}} & e^{16j\frac{2\pi}{21}} & \dots & e^{160j\frac{2\pi}{21}} \\ 1 & e^{9j\frac{2\pi}{21}} & e^{18j\frac{2\pi}{21}} & \dots & e^{180j\frac{2\pi}{21}} \\ 1 & e^{11j\frac{2\pi}{21}} & e^{22j\frac{2\pi}{21}} & \dots & e^{220j\frac{2\pi}{21}} \\ 1 & e^{12j\frac{2\pi}{21}} & e^{24j\frac{2\pi}{21}} & \dots & e^{240j\frac{2\pi}{21}} \\ 1 & e^{14j\frac{2\pi}{21}} & e^{28j\frac{2\pi}{21}} & \dots & e^{280j\frac{2\pi}{21}} \\ 1 & e^{17j\frac{2\pi}{21}} & e^{34j\frac{2\pi}{21}} & \dots & e^{340j\frac{2\pi}{21}} \\ 1 & e^{19j\frac{2\pi}{21}} & e^{38j\frac{2\pi}{21}} & \dots & e^{380j\frac{2\pi}{21}} \\ 1 & e^{19j\frac{2\pi}{21}} & e^{38j\frac{2\pi}{21}} & \dots & e^{380j\frac{2\pi}{21}} \end{bmatrix}$ $y = \Phi \Psi F_x = AF_x$ $A = \Phi \Psi$ obtained by using the 8 randomly chosen rows in Ψ

The system with 8 equations and 21 unknowns is obtained



 \mathbf{A}_{Ω}

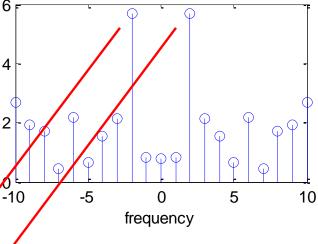
1

0.5

0

-0.5

-1

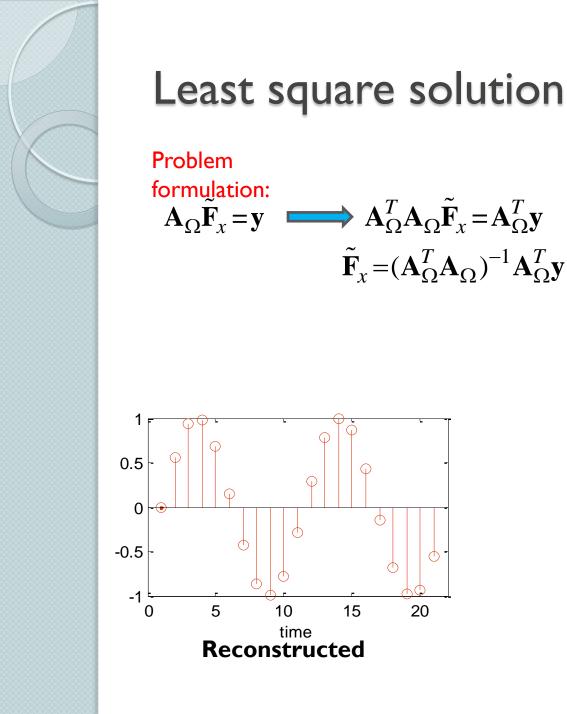


The initial Fourier transform

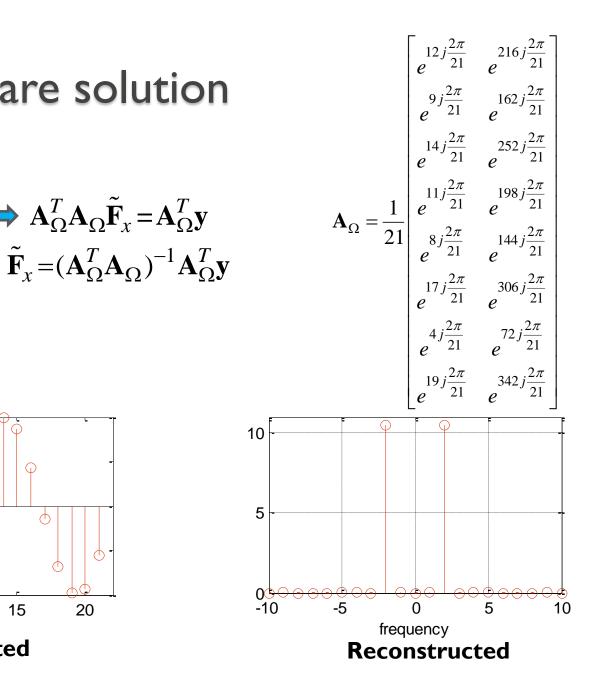
Components are on the positions -2 and 2 (centershifted spectrum), which corresponds to 19 and 2 in nonshifted spectrum

 A_{Ω} is obtained by taking the 2^{nd} and the 19^{th} column of A

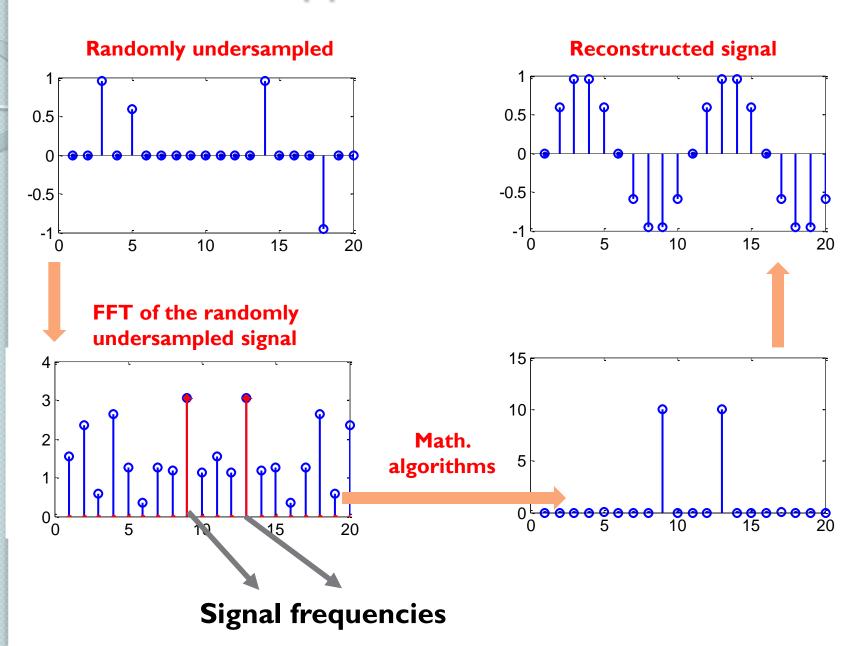
 $\Omega = \{2, 19\}$



time



CS Applications



CS problem formulation

 The method of solving the undetermined system of equations , by searching for the sparsest solution can be described as:

$$\min \|\mathbf{x}\|_0$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

 $\|\mathbf{x}\|_0$ *l*₀ - norm

• We need to search over all possible sparse vectors **x** with *K* entries, where the subset of *K*-positions of entries are from the set {1,...,*N*}. The total number of possible *K*-position subsets is $\binom{N}{K}$

CS problem formulation

 A more efficient approach uses the near optimal solution based on the II-norm, defined as:

$$\min \|\mathbf{x}\|_1 \text{ subject to } \mathbf{y} = \mathbf{A}\mathbf{x}$$

- In real applications, we deal with noisy signals.
- Thus, the previous relation should be modified to include the influence of noise:

$$\min \|\mathbf{x}\|_{1} \quad subject \ to \ \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \varepsilon$$
$$\|\mathbf{e}\|_{2} = \varepsilon$$

L2-norm cannot be used because the minimization problem solution in this case is reduced to minimum energy solution, which means that all missing samples are zeros

• CS relies on the following conditions:

Sparsity – related to the signal nature;

Signal needs to have concise representation when expressed in a proper basis (K<<N)

Incoherence – related to the sensing modality; It should provide a linearly independent measurements (matrix rows) Random undersampling is crucial

Restriced Isometry Property – is important for preserving signal isometry by selecting an appropriate transformation

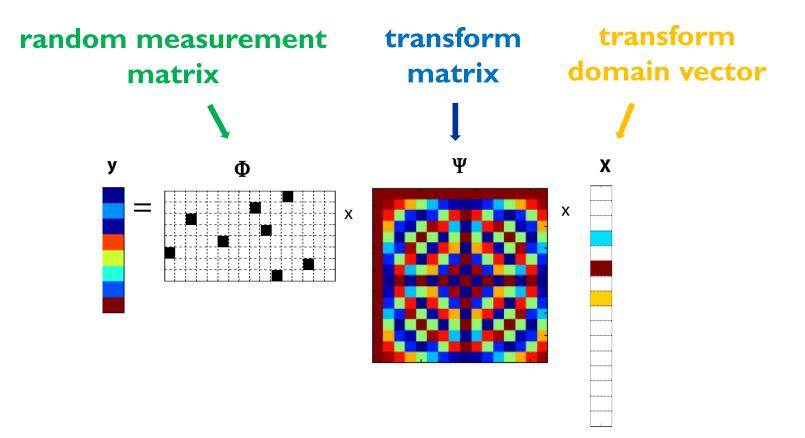
Summary of CS problem formulation

Signal **f** linear combination of the orthonormal basis vectors

Set of random measurements:

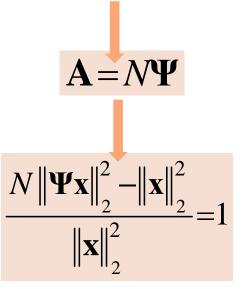
$$f(t) = \sum_{i=1}^{N} x_i \psi_i(t), \quad or: \quad \mathbf{f} = \Psi \mathbf{x}.$$

 $y = \Phi f$



• Restricted isometry property

- Successful reconstruction for a wider range of sparsity level
- Matrix **A** satisfies **Isometry Property** if it preserves the vector intensity in the *N*-dimensional space: $\|\mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{x}\|_{2}^{2}$
- If **A** is a full Fourier transform matrix, i.e.:



• RIP

• For each integer number K the isometry constant $\delta_{\rm K}$ of the matrix ${\bf A}$ is the smallest number for which the relation holds:

$$(1 - \delta_{K}) \|\mathbf{x}\|_{2}^{2} \leq \|\mathbf{A}\mathbf{x}\|_{2}^{2} \leq (1 + \delta_{K}) \|\mathbf{x}\|_{2}^{2}$$
$$\frac{\|\mathbf{A}\mathbf{x}\|_{2}^{2} - \|\mathbf{x}\|_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}} \leq \delta_{K}$$

 $0 < \delta_K < 1$ - restricted isometry constant



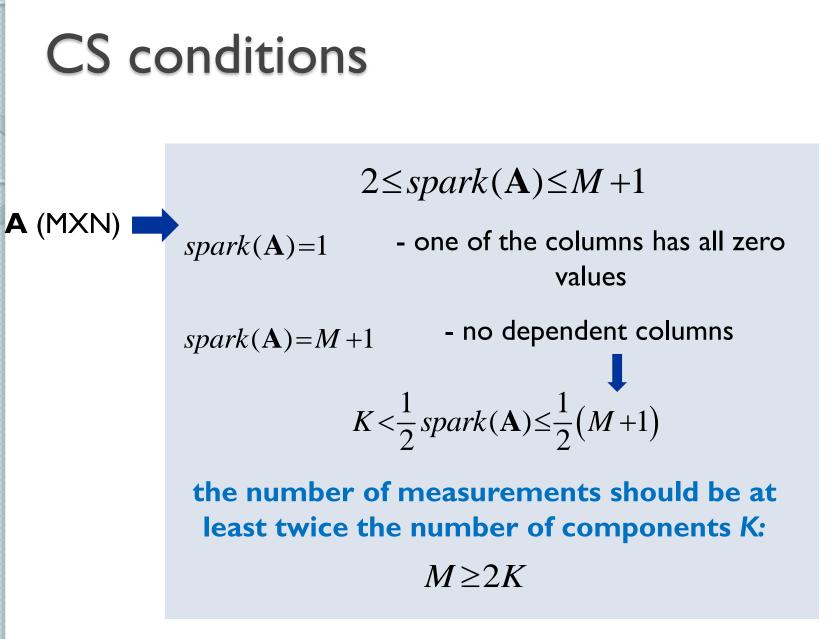
Matrix A satisfies RIP

the Euclidian length of sparse vectors is preserved

• For the RIP matrix **A** with $(2K, \delta_K)$ and $\delta_K < I$, all subsets of 2K columns are linearly independent

 $spark(\mathbf{A}) > 2K$

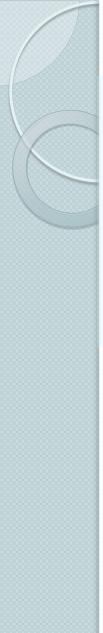
spark - the smallest number of dependent columns



Incoherence

- Signals sparse in the transform domain Ψ , should be dense in the domain where the acquisition is performed
- Number of nonzero samples in the transform domain Ψ and the number of measurements (required to reconstruct the signal) depends on the **coherence** between the matrices Ψ and Φ .
- Ψ and Φ are maximally coherent all coefficients would be required for signal reconstruction

Mutual coherence: the maximal absolute value of \square correlation between two elements from Ψ and Φ



Incoherence

Mutual coherence: $\mu(\mathbf{A}) = \max_{i \neq j, 1 \le i, j \le M} \left| \frac{\langle A_i, A_j \rangle}{\|A_i\|^2 \|A_j\|^2} \right|, \quad \mathbf{A} = \mathbf{\Phi} \mathbf{\Psi}$ maximum absolute value of normalized inner pro-

maximum absolute value of normalized inner product between all columns in A

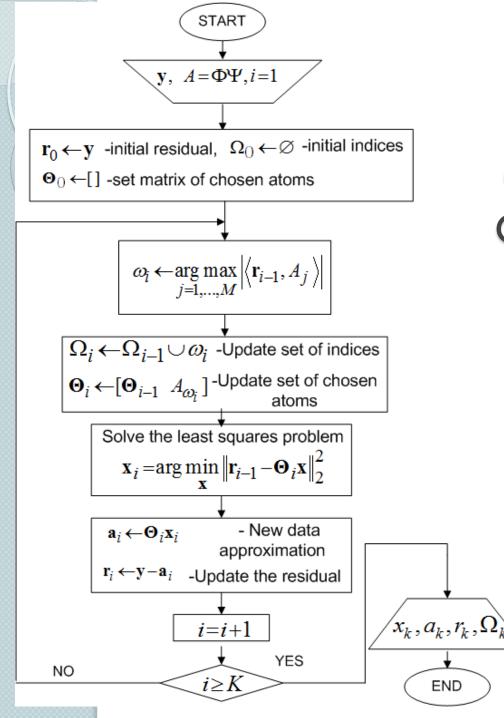
 A_i and A_j - columns of matrix A

- The maximal mutual coherence will have the value 1 in the case when certain pair of columns coincides
- If the number of measurements is: $M \ge C \cdot K \cdot \mu(\Phi, \Psi) \cdot \log N$

then the sparsest solution is exact with a high probability (C is a constant)

Reconstruction approaches

- The main challenge of the CS reconstruction: solving an underdetermined system of linear equations using sparsity assumption
 - ℓ_1 optimization, based on linear programming methods, provide efficient signal reconstruction with high accuracy
- Linear programming techniques (e.g. convex optimization) may require a vast number of iterations in practical applications
- Greedy and threshold based algorithms are fast solutions, but in general less stable



Greedy algorithms – Orthogonal Matching Pursuit (OMP)

 Ψ -Transform matrix Φ -Measurement matrix $y = \Phi f$ -Measurement vector

Influence of missing samples to the spectral representation

Missing samples produce noise in the spectral domain. The variance of noise in the DFT case depends on M, N and amplitudes Ai:

$$\sigma_{MS}^2 = \operatorname{var}\{F_{k\neq k_i}\} = M \frac{N-M}{N-1} \sum_{i=1}^{K} A_i^2$$

The probability that all (*N-K*) non-signal components are below a certain threshold value defined by **T** is (only K signal components are above **T**):

$$P(T) = \left(1 - \exp(-\frac{T^2}{\sigma_{MS}^2})\right)^{N-K}$$

Consequently, for a fixed value of P(T) (e.g. P(T)=0.99), threshold is calculated as:

$$T = \sqrt{-\sigma_{MS}^2 \log(1 - P(T)^{\frac{1}{N-K}})}$$
$$\approx \sqrt{-\sigma_{MS}^2 \log(1 - P(T)^{\frac{1}{N}})}$$

When ALL signal components are above the noise level in DFT, the reconstruction is done using a Single-Iteration Reconstruction algorithm using threshold T

Optimal number of available samples M

- How can we determine the number of available samples *M*, which will ensure detection of all signal components?
- Assuming that the DFT of the *i*-th signal component (with the lowest amplitude) is equal to Ma_i, then the approximate expression for the probability of error is obtained as:

$$P_{err} = 1 - P_i \cong 1 - \left(1 - \exp\left(-\frac{M^2 a_i^2}{\sigma_{MS}^2}\right)\right)^{N-K}$$

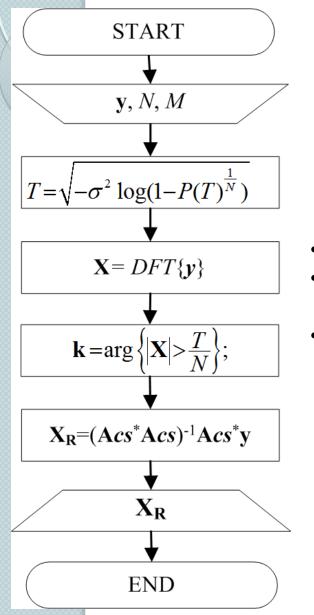
• For a fixed Perr, the optimal value of M (that allows to detect all signal components) can be obtained as a solution of the minimization problem: $M \ge \arg\min\{P_{ij}\}$

$$M_{opt} \ge \arg\min_{M} \{P_{err}\}$$

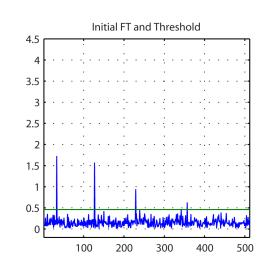
For chosen value of P_{err} and expected value of minimal amplitude a_i , there is an optimal value of M that will assure components detection.

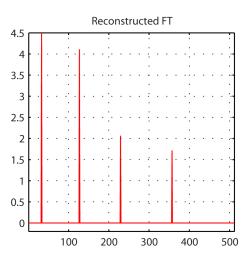
Algorithms for CS reconstruction of sparse signals

Single-Iteration Reconstruction Algorithm in DFT domain

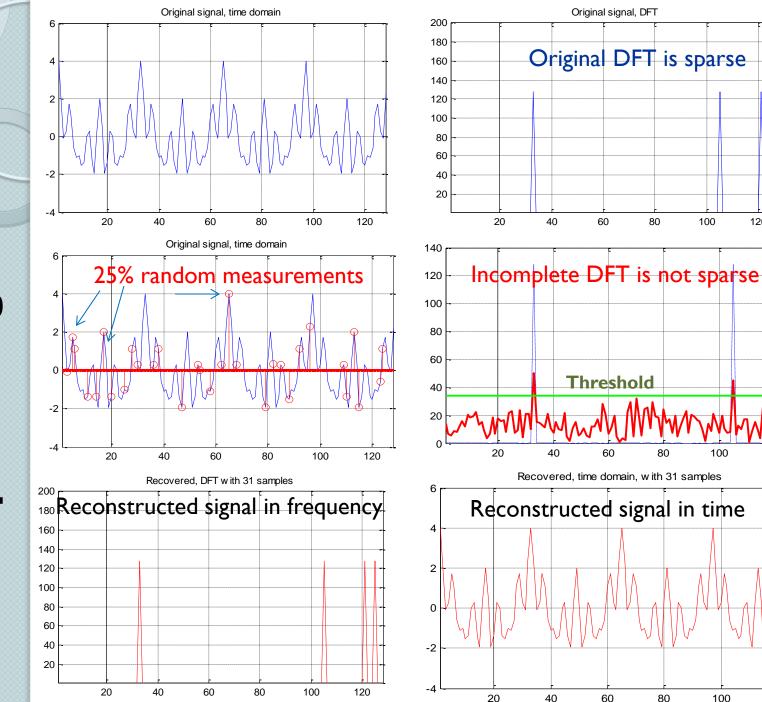


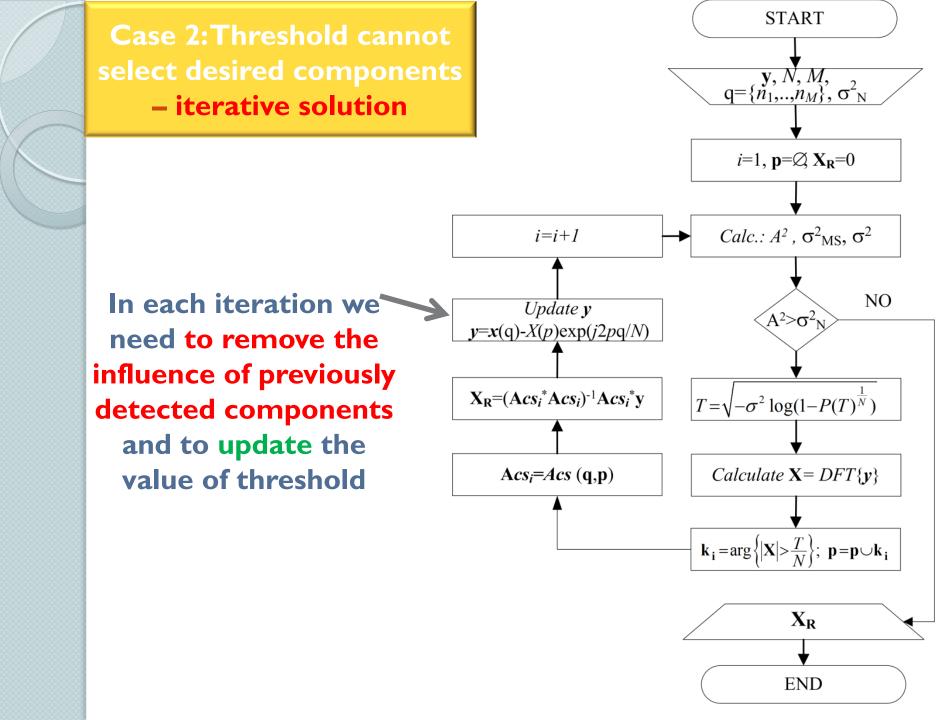
- y measurements
- M number of measurements
- N signal length
- **T** Threshold
- DFT domain is assumed as sparsity domain
- Apply threshold to initial DFT components (determine the frequency support)
- Perform reconstruction using identified support





iteration I: Single Example

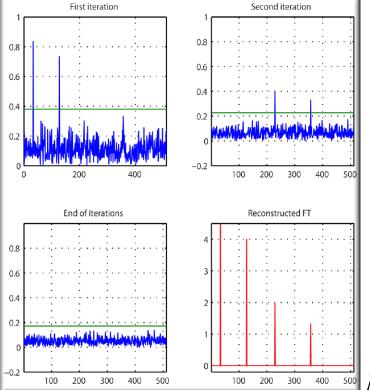




Case 3: External noise

 External noise + noise caused by missing samples

$$\sigma^{2} = \sigma_{MS}^{2} + M \sigma_{N}^{2} = M \frac{N - M}{N - 1} \sum_{i=1}^{K} A_{i}^{2} + M \sigma_{N}^{2}$$
$$T = \sqrt{-\sigma^{2} \log(1 - P(T)^{\frac{1}{N}})}$$



• To ensure the same probability of error as in the noiseless case we need to increase the number of measurements M such that:

$$\frac{\sigma_{MS}^2}{\sigma^2} = \frac{M \frac{N - M}{N - 1} (A_1^2 + A_2^2 + \dots + A_K^2)}{M_N \frac{N - M_N}{N - 1} (A_1^2 + A_2^2 + \dots + A_K^2) + M_N \sigma_N^2} = 1$$

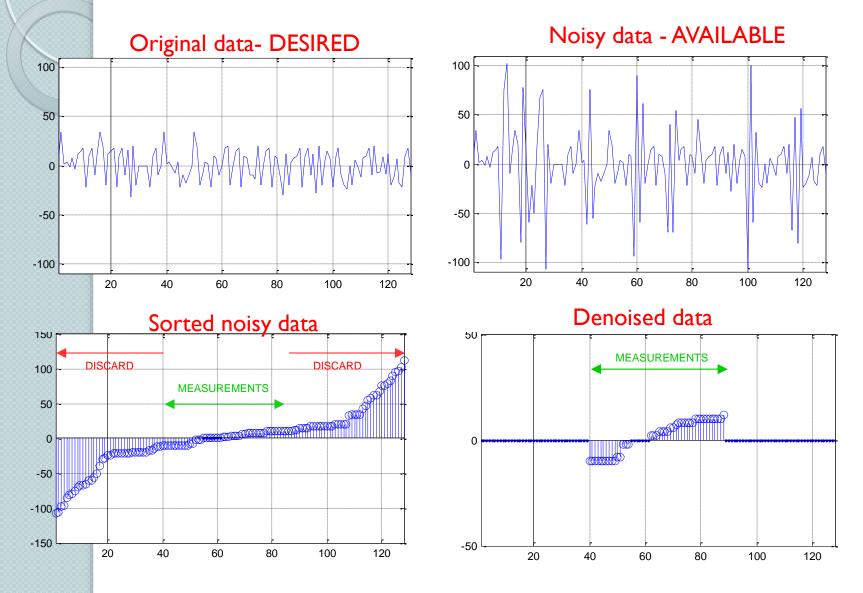
$$\frac{M(N-M)}{M_N} \frac{SNR}{SNR(N-M_N) + (N-1)} = 1$$

Solve the equation:

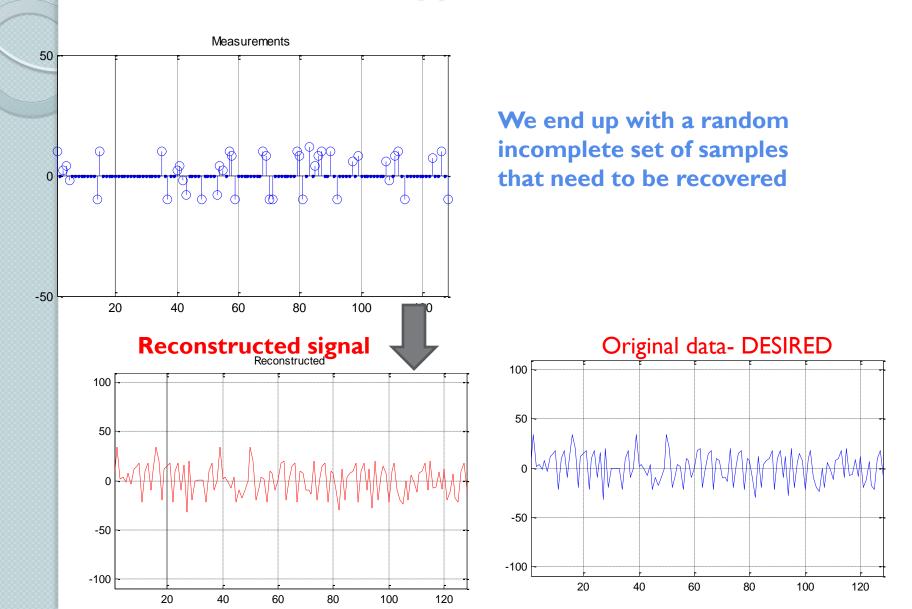
С

 $\int M_{N}^{2} \cdot SNR - M_{N}(SNR \cdot N + N - 1) + SNR \cdot (MN - M^{2}) = 0$

Dealing with a set of noisy data – L-estimation approach



Dealing with a set of noisy data – L-estimation approach



General deviations-based approach

x(n)-K-sparse in DFT domain

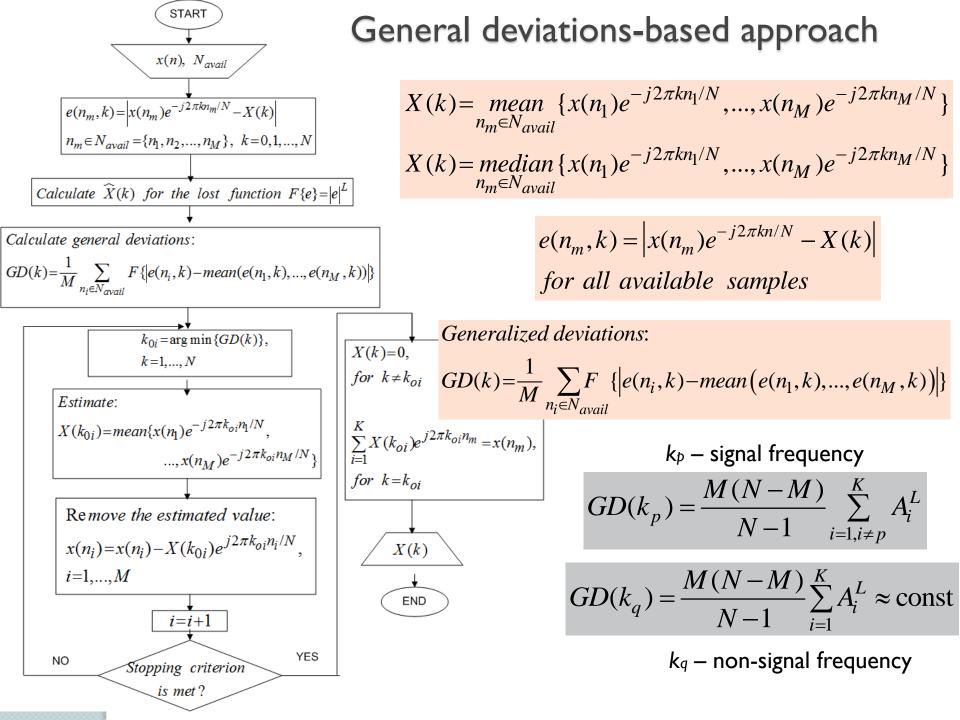
Robust statistics

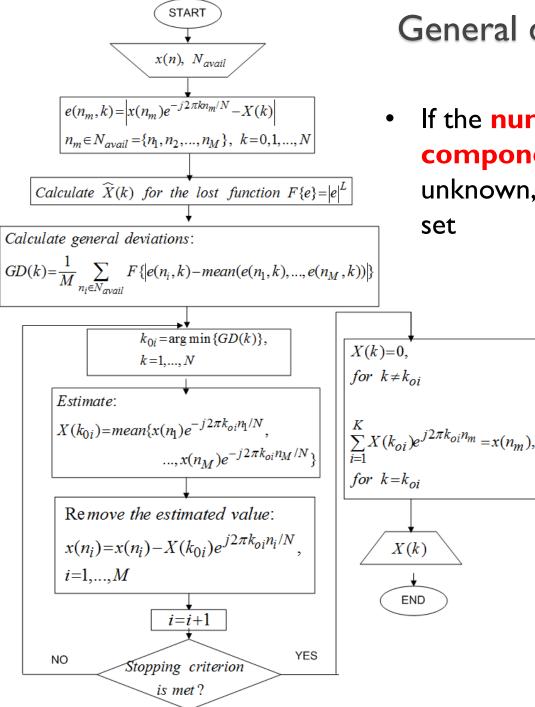
-Navail – positions of the available samples - M-number of available sample $X(k) = \max_{\substack{n_m \in N_{avail}}} \{x(n_1)e^{-j2\pi kn_1/N}, ..., x(n_M)e^{-j2\pi kn_M/N} \}$

$$F\{e(n,k)\} = F\{|x(n)e^{-j2\pi kn/N} - X(k)|\}$$
Loss function
$$F\{e\} = \begin{cases} |e|^2 - \text{standard form} \\ |e| - \text{robust form} \\ |e|^L - \text{general form} \end{cases}$$

An incomplete set of samples causes random deviations of the DFT outside the signal frequencies.

The DFT values at the frequencies corresponding to signal components are characterized by non-random behavior: the sum of generalized deviations of the values at non-signal frequencies is constant and higher than at the signal components positions.

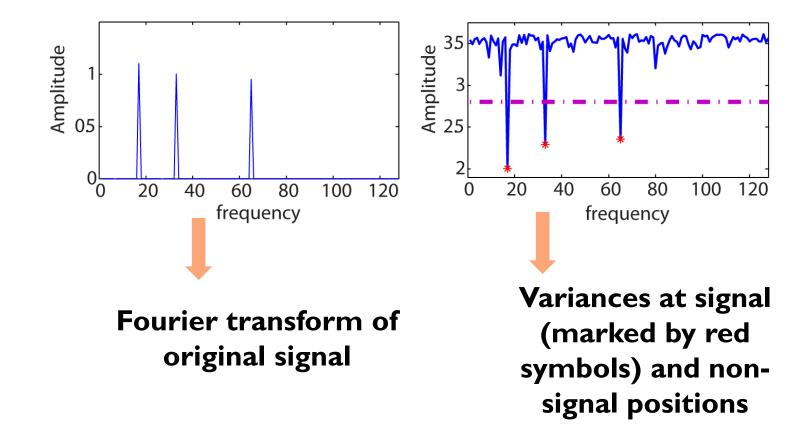


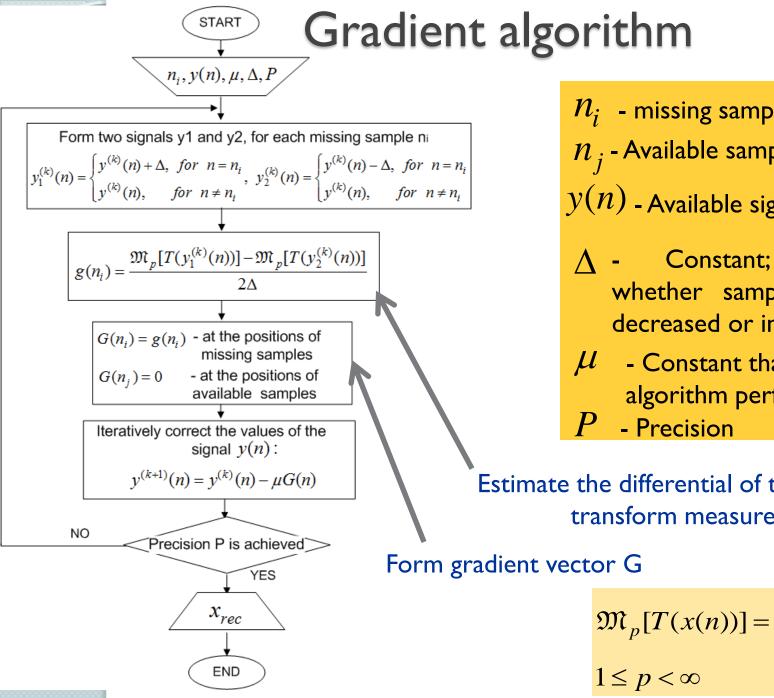


General deviations-based approach

- If the number of components/number of iterations is unknown, the stopping criterion can be set
 - Stopping criterion: Adjusted based on the I2norm bounded residue that remains after removing previously detected components

General deviations-based approach Example





- n_i missing samples positions n_i - Available samples positions y(n) - Available signal samples
 - Constant; determines whether sample should be decreased or increased
- μ Constant that affect algorithm performance

Estimate the differential of the signal transform measure

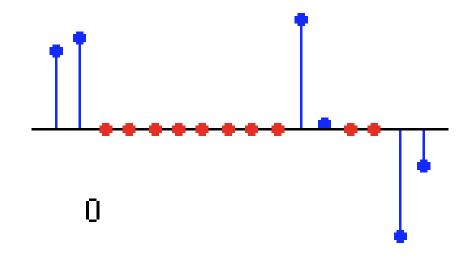
$$\mathfrak{M}_p[T(x(n))] = \frac{1}{N} \sum_k |X(k)|^{1/p},$$

Gradient algorithm - Example

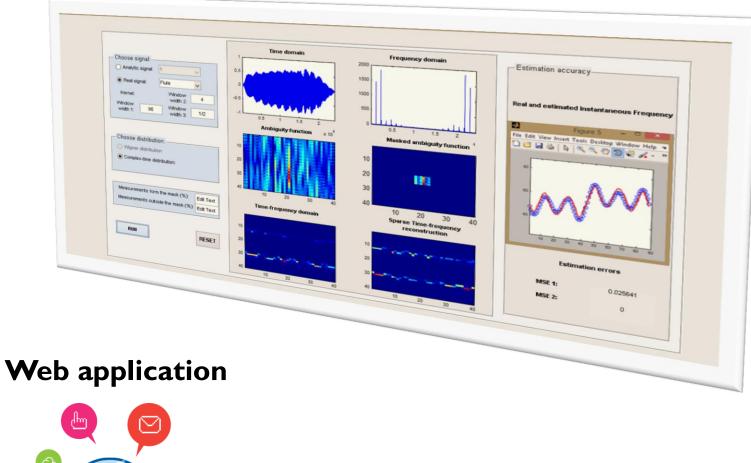
Signal contains 16 samples

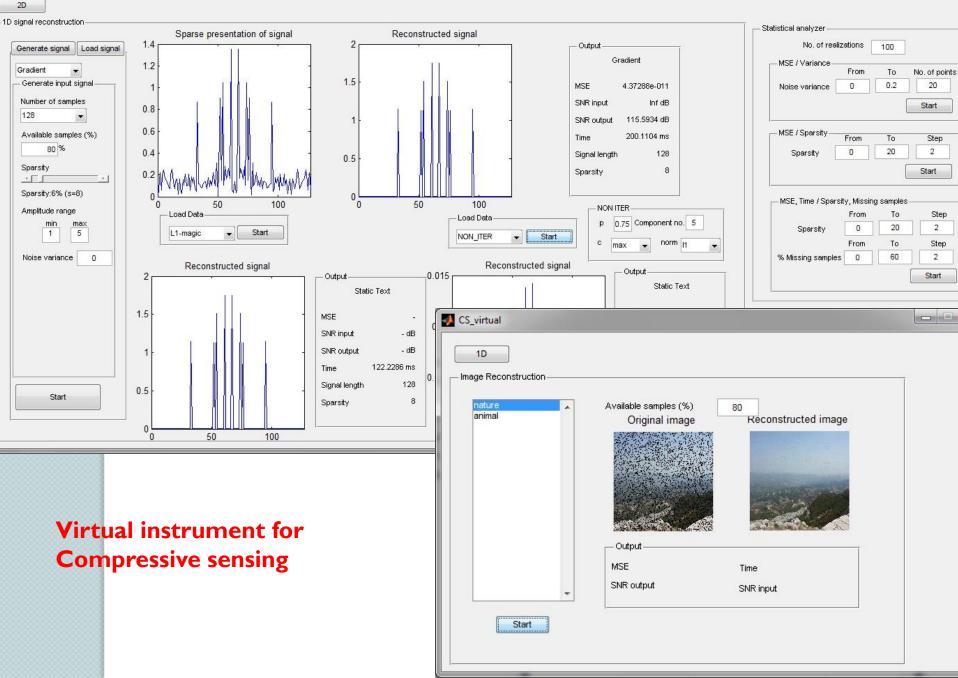
Missing – 10 samples (marked with red)

Signal is iteratively reconstructed using **Gradient algorithm**



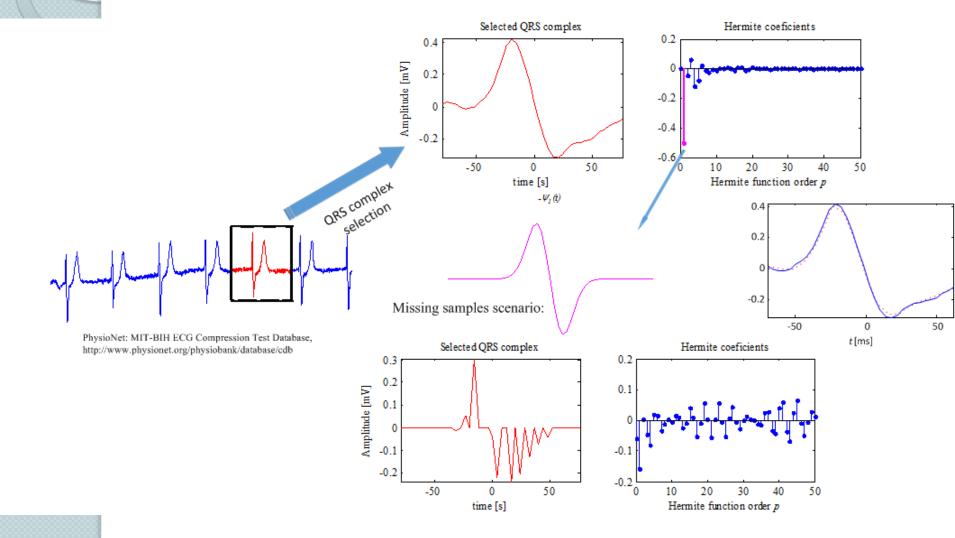
Some Developments



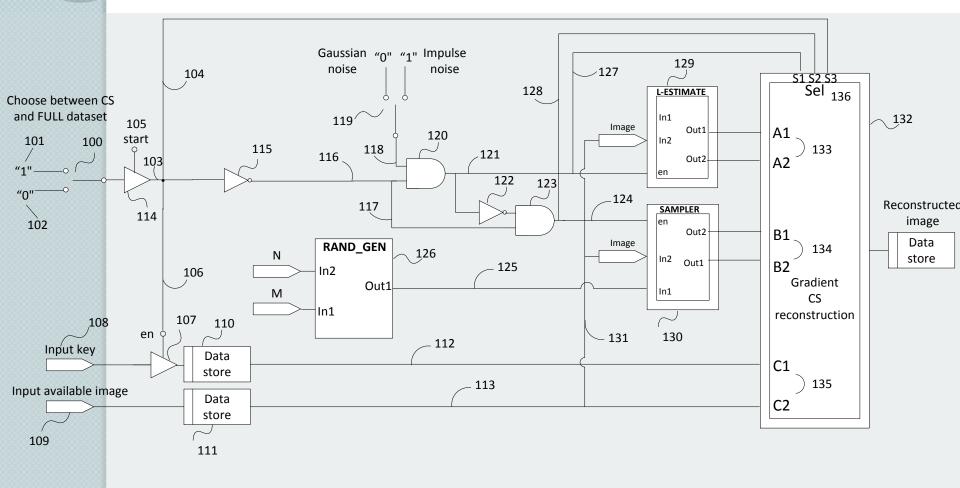


EEG signals: QRS complex is sparse in Hermite transform domain, meaning that it can be represented using just a few Hermite functions and corresponding coeffs.

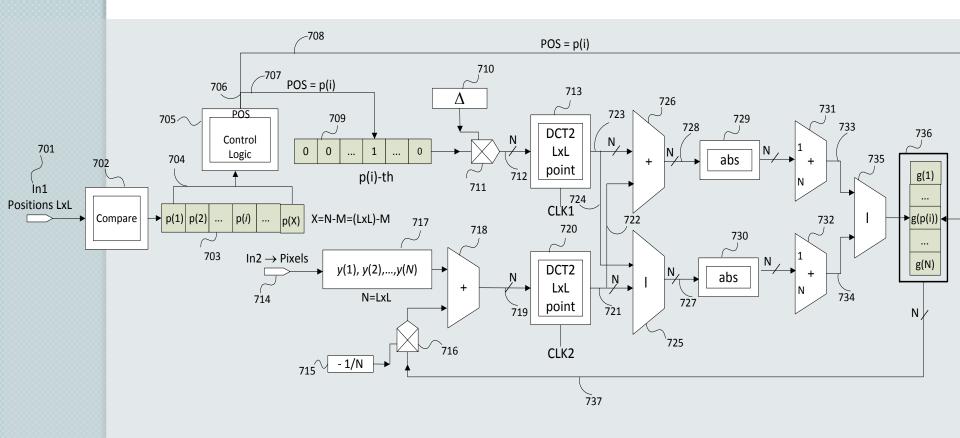
CS of QRS complexes in the Hermite transform domain



Compressive sensing based image filtering and reconstruction



Realization of the adaptive gradientbased image reconstruction algorithm



THANK YOU FOR YOUR ATTENTION!