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Shannon-Nyquist sampling 

Standard acquisition approach 

  

◦ sampling 

◦ compression/coding 

◦ decoding 

 

 

 

• Sampling frequency - at least twice higher than 

the maximal signal frequency (2fmax)  

• Standard digital data acquisition approach 



Audio, Image, Video Examples 

 Audio signal:  

- sampling frequency 44,1 KHz 

- 16 bits/sample 

 

 Color image:  

-256x256 dimension  

– 24 bits/pixel 

- 3 color channels 

 

 

 

 

 

 

 

 

• Video: 

- CIF format (352x288) 

-NTSC standard  (25 frame/s) 

-4:4:4 sampling scheme  (24 bits/pixel) 

 

Uncompressed: 

 

86.133 KB/s 

 

 

Uncompressed: 

 

576 KB 

 

 

 

 

Uncompressed: 

 

60.8 Mb/s 

 

 

MPEG 1 – compression 

ratio 4: 

 

21.53 KB/s 

 

 

JPEG – quality 30% : 

 

7.72 KB 

 

 

 

 

MPEG 1- common  

bitrate 1.5 Kb/s 

MPEG 4  

28-1024 Kb/s 

 



 

 

 

 

 

 

 

Compressive Sensing / Sampling   

• Is it always necessary to sample the signals according to the 

Shannon-Nyquist criterion? 

 

• Is it possible to apply the compression during the acquisition 

process? 

Compressive Sensing: 

• overcomes constraints of the traditional sampling theory  

• applies a concept of compression during the sensing procedure 

 



CS Applications 

Biomedical 

Appl. 

MRI 

CS promises SMART acquisition and processing 

and SMART ENERGY consumption 

Make entire “puzzle” having just a few pieces:  

Reconstruct entire information from just few measurements/pixels/data 

Compressive sensing is useful in the 

applications where people used to make a large 

number of measurements 

Standard sampling CS reconstruction 

using 1/6 samples 
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L-statistics based Signal Denoising 
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Sorted samples - Removing the extreme values 

Denoised signal 
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Discarded samples are declared  

as “missing samples” on the corresponding 

original positions in non-sorted sequence 

 This corresponds to CS formulation 

After reconstructing “missing samples” 

the denoised version of signal is obtained  



Video sequences 

*Video Object 

Tracking 

 

*Velocity 

Estimation 

 

*Video 

Surveillance 



CS Applications 

Reconstruction of 

the radar images 

 

50% available pulses reconstructed image 

30% available pulses reconstructed image 

ISAR image with full 

data set 

Mig 25 example 



Compressive Sensing Based Separation of 

Non-stationary and Stationary Signals 

Absolute STFT values Sorted values 

CS mask in TF 



STFT of the 

composite signal  

STFT sorted 

values 

STFT values that 

remain after the L-

statistics 

 

Reconstructed 

STFT values 

Fourier transform of the 

original composite signal  

The reconstructed 

Fourier transform 

by using the CS 

values of the STFT 

(c) 



CS Applications 

• Simplified case:  Direct search reconstruction 

of two missing samples (marked with red) 

Time domain Frequency domain 

If we have more missing samples, the direct search would  

be practically useless 



CS Applications-Example 
  ( ) sin 2 2/ 0,..,20xf n N n for n    • Let us consider a signal: 

[0 0 0 0 0 0 0 0 10.5 0 0 0 10.5 0 0 0 0 0 0 0 0];x i i F

• The signal is sparse in DFT, and vector of DFT values is: 
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1. Consider the elements of inverse and direct Fourier 

transform matrices, denoted by  and -1 respectively 

(relation              holds) 

• CS reconstruction using small set of samples: 
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2. Take M random samples/measurements in the time domain  

It can be modeled by using matrix : 
xy Φf

•  is defined as a random permutation matrix 

• y is obtained by taking M random elements of fx 



• Taking 8 random samples (out of 21) on the positions: 

 5 9 10 12 13 15 18 20

x x y ΦΨF AF

A=ΦΨ

obtained by using the 8 

randomly chosen rows 

in  
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Blue dots – missing samples 

Red dots – available samples  

 

The initial Fourier transform  
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A

{2,19}

Components are on the 

positions -2 and 2 (center-

shifted spectrum), which 

corresponds to 19 and 2 in  

nonshifted spectrum 

A

 A is obtained by taking  

the 2nd and the 19th column of A  



Least square solution 
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CS Applications 
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CS problem formulation 

 The method of solving the undetermined system of equations                      

, by searching for the sparsest solution can be described as: y=ΦΨx Ax

0
min subject to x y Ax

0
x l0 - norm 

• We need to search over all possible sparse vectors x with K 

entries, where the subset of K-positions of entries are from the 

set {1,…,N}. The total number of possible K-position subsets is 

N

K

 
 
 



 A more efficient approach uses the near optimal solution 

based on the l1-norm, defined as:  

1
min subject to x y Ax

CS problem formulation 

• In real applications, we deal with noisy signals.  

• Thus, the previous relation should be modified to include the 

influence of noise: 

1 2
min subject to  x y Ax

2
e

L2-norm cannot be used because the minimization problem 

solution in this case is reduced to minimum energy solution, 

which means that all missing samples are zeros  



CS conditions  

 CS relies on the following conditions: 
 

Sparsity – related to the signal nature;  

 Signal needs to have concise representation when expressed in a 

proper basis (K<<N) 

 
Incoherence – related to the sensing modality; It 

should provide a linearly independent measurements 

(matrix rows)  

Random undersampling is crucial 

 

Restriced Isometry Property – is important for 

preserving signal isometry by selecting an appropriate 

transformation 



Signal   - linear combination of the 

orthonormal basis vectors 

Summary of CS problem formulation  

1

( ) ( ), : .
N

i i
i

f t x t or


 f =Ψx𝐟 

y=ΦfSet of random measurements: 

random measurement 

matrix 

transform 

matrix 

transform 

domain vector 



CS conditions 

 
 Restricted isometry property 

◦ Successful reconstruction for a wider range of sparsity 

level 

◦ Matrix A satisfies Isometry Property if it preserves the 

vector intensity in the N-dimensional space: 

 

◦ If A is a full Fourier transform matrix, i.e. : 

 

 

 

 

2 2

2 2
Ax x

NA Ψ

2 2

2

2 2
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1


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N Ψx x

x



 RIP 

CS conditions 

 

• For each integer number K the isometry constant K 

of the matrix A is the smallest number for which the 

relation holds: 

2 2 2

2 2 2
(1 ) (1 )    K Kx Ax x

2 2

2

2 2

2 K



Ax x

x

0 1 K - restricted isometry constant 



CS conditions 

 Matrix A satisfies RIP  
the Euclidian length of 

sparse vectors is 

preserved 

• For the RIP matrix A with (2K, δK) and δK < 1, all subsets 

of 2K columns are linearly independent 

( ) 2spark KA

spark - the smallest number of dependent columns 



CS conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 ( ) 1spark M  A

( ) 1spark A - one of the columns has all zero 

values 

( ) 1 spark MA - no dependent columns 

A (MXN) 

 
1 1

( ) 1
2 2

  K spark MA

the number of measurements should be at 

least twice the number of components K: 

2M K



Incoherence 
 Signals sparse in the transform domain , should be dense in the 

domain where the acquisition is performed  

 

 Number of nonzero samples in the transform domain  and the 

number of measurements (required to reconstruct the signal) 

depends on the coherence between the matrices  and Φ.  

 

  and Φ are maximally coherent - all coefficients would be 

required for signal reconstruction 

22
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i j

i j
i j

 
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 


  

Mutual coherence: the 

maximal absolute value of 

correlation between two 

elements from  and Φ 



Incoherence 

Mutual coherence:   

 

 

 

 

 

 

 

 

22,1 ,

,
( ) max ,

i j

i j i j M
i j

A A

A A


  
A A = ΦΨ 

maximum absolute value of normalized inner product 

between all columns in A 

Ai and Aj - columns of matrix A 

 

• The maximal mutual coherence will have the value 1 in the 

case when certain pair of columns coincides 

• If the number of measurements is: ( , ) logM C K N   Φ Ψ

then the sparsest solution is exact with a high probability (C is a 

constant) 



Reconstruction approaches 

• The main challenge of the CS reconstruction:  solving an 

underdetermined system of linear equations using 

sparsity assumption 

1 - optimization,  based on linear programming methods, 

provide efficient  signal reconstruction with high accuracy 

• Linear programming techniques (e.g. convex 

optimization) may require a vast number of iterations 

in practical applications 

 

• Greedy and threshold based algorithms are fast 

solutions, but in general less stable 



f

Transform matrix

Measurement matrix

y Measurement vector





 

Greedy algorithms – 

Orthogonal Matching 

Pursuit (OMP) 



Influence of missing samples to the 

spectral representation 

• Missing samples produce noise 

in the spectral domain. The 

variance of noise in the DFT 

case depends on M, N and 

amplitudes Ai: 

2
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• The probability that all (N-K) 

non-signal components are 

below a certain threshold value 

defined by T is (only K signal 

components are above T): 

Consequently, for a fixed value of P(T) (e.g. 

P(T)=0.99), threshold is calculated as: 

1
2
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When ALL signal 

components are above the 

noise level in DFT, the 

reconstruction is done 

using a Single-Iteration 

Reconstruction algorithm 

using threshold T 



 How can we determine the number of available samples 

M, which will ensure detection of all signal components?  

 Assuming that the DFT of the i-th signal component (with the 

lowest amplitude) is equal to Mai, then the approximate 

expression for the probability of error is obtained as: 

 

argmin{ }opt err
M

M P

• For a fixed Perr, the optimal value of M (that allows to detect all 

signal components) can be obtained as a solution of the 

minimization problem: 

For chosen value of Perr and expected value of minimal amplitude ai, there 

is an optimal value of M that will assure components detection.  

2 2

2
1 1 1 exp
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i
err i

MS

M a
P P




  

        
  

Optimal number of available samples M 



 

 

 

 

 

 

Algorithms for CS reconstruction of sparse signals 

y – measurements 
 

M - number of measurements 

N – signal length 

T - Threshold 

• DFT domain is assumed as sparsity domain 

• Apply threshold to initial DFT components 

(determine the frequency support) 

• Perform reconstruction using identified support 

 

Single-Iteration Reconstruction Algorithm in DFT domain 
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25% random measurements 

Original DFT is sparse 

Incomplete DFT is not sparse 

Threshold 

Reconstructed signal in frequency Reconstructed signal in time 



In each iteration we 

need to remove the 

influence of previously 

detected components 

and to update the 

value of threshold  

Case 2: Threshold cannot 

select desired components 

– iterative solution 



 

 

 

 

 

• External noise + noise 

caused by missing samples 
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Case 3: External noise 

1
2 log(1 ( ) )NT P T  

• To ensure the same probability of 

error as in the noiseless case we need 

to increase the number of 

measurements M such that: 

( )
1

( ) ( 1)




  N N

M N M SNR

M SNR N M N

2 2( 1) ( ) 0        N NM SNR M SNR N N SNR MN M

Solve the equation:  



Dealing with a set of noisy data – L-estimation 

approach 
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General deviations-based approach 

( )x n -K-sparse in DFT domain 

-Navail – positions of the 

available samples 

- M-number of available samples 
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An incomplete set of samples causes  

random deviations of the DFT outside the 

signal frequencies.  

 

The DFT values at the frequencies 

corresponding to signal components are 

characterized by non-random behavior: the 

sum of generalized deviations of the values 

at non-signal frequencies is constant and 

higher than at the signal components 

positions. 
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General deviations-based approach 
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General deviations-based approach 

• If the number of 

components/number of iterations is 

unknown, the stopping criterion can be 

set 

• Stopping criterion:  
Adjusted based on  the l2-

norm bounded residue that 

remains after removing  

previously detected 

components 



Variances at signal 

(marked by red 

symbols) and non-

signal positions  

Fourier transform of 

original signal  

General deviations-based approach 

Example 



 

 

 

 

 

 

 

 

 

 

 

 

in - missing samples positions 

( )y n - Available signal samples 

 - Constant; determines 

whether sample should be 

decreased or increased 

 - Constant that affect 

algorithm performance 

P - Precision 

Gradient algorithm 

jn - Available samples positions 

Form gradient vector G 

Estimate the differential of the signal 

transform measure 
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Gradient algorithm - Example 

Signal contains 16 samples  

 

Missing – 10 samples (marked with red) 

 

Signal is iteratively reconstructed using Gradient algorithm 



Web application 

Some Developments 

http://www.cs-ict.ac.me/Demo.php


Virtual instrument for 

Compressive sensing 



EEG signals: QRS complex is sparse in Hermite transform domain, 

meaning that it can be represented using just a few Hermite 

functions and corresponding coeffs.   

CS of QRS complexes in the Hermite transform domain 
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