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Shannon-Nyquist sampling
Standard acquisition approach

Sampling frequency - at least twice higher than
the maximal signal frequency (2f...)

Standard digital data acquisition approach

S<<N
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Audio, Image,Video Examples

e Audio signal: MPEG | — compression

sampling frequency 44, KHz Uncompressed: ratio 4:
|6 bits/sample 86.133 KB/s 21.53 KB/s
e Color image: .
Uncompressed: JPEG — quality 30% :
-256x256 dimension
— 24 bits/pixel 576 KB 7.72 KB
3 color channels
Uncompressed: MPEG |- common
- CIF format (352x288) bitrate 1.5 Kb/s
-NTSC standard (25 frame/s) 60.8 Mb/s MPEG 4

-4:4:4 sampling scheme (24 bits/pixel) 28-1024 Kb/s



Compressive Sensing / Sampling

* Is it always necessary to sample the signals according to the
Shannon-Nyquist criterion!

* Is it possible to apply the compression during the acquisition
process!?
Compressive Sensing:

* overcomes constraints of the traditional sampling theory
* applies a concept of compression during the sensing procedure



Reconstruction from
Standard sampling CS reconstruction undersampled data
using 1/6 samples Standard (left)
CS (right)

Make entire “puzzle” having just a few pieces:
Reconstruct entire information from just few measurements/pixels/data

CS promises SMART acquisition and processing
and SMART ENERGY consumption

Compressive sensing is useful in the
applications where people used to make a large
number of measurements




CS Applications

Reconstructed image. lteration: 0

Starting Image Partial Image Reconstructed Image



L-statistics based Signal Denoising

Non-noisy signal
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Sorted samples - Removing the extreme values

Remaining samples Discarded samples are declared

as “missing samples” on the corresponding
original positions in non-sorted sequence
This corresponds to CS formulation
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*Video Object
Tracking

Video sequences

Initial SM CS based SM
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CS Applications

50% available pulses reconstructed image

Reconstruction of
the radar images
Mig 25 example

range
range

ISAR image with full
data set
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Compressive Sensing Based Separation of
Non-stationary and Stationary Signals

Absolute STFT values Sorted values
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STFT of the

composite signal

STFT sorted
values

statistics

STFT values
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CS Applications

* Simplified case: Direct search reconstruction
of two missing samples (marked with red)
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Time domain Frequency domain

If we have more missing samples, the direct search would
be practically useless



CS Applications-Example
* Let us consider a signal: f(n)=sin(2-z-(2/N)-n) for n=0,..,20
* The signal is sparse in DFT, and vector of DFT values is:

F=[0000000O0105 000-105000000 00
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|. Consider the elements of
transform matrices, denoted by W and W' respectively

(relation f, =WF, holds)
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CS reconstruction using small set of samples:

inverse and direct Fourier
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2. Take M random samples/measurements in the time domain
It can be modeled by using matrix @:

@ is defined as a random permutation matrix
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Taking 8 random samples (out of 21) on the positions:
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* The system with 8 equations and 2| unknowns is obtained
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Least square solution

Problem
formulation:

AgF =y === ALAF, =ALY
|Ex =(A5AQ)‘1AEy
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CS Applications

Randomly undersampled Reconstructed signal
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CS problem formulation

* The method of solving the undetermined system of equations
, by searching=fdr'the=sparsest solution can be described as:

min |||, subject to y=Ax
HXHO lo - norm

* We need to search over all possible sparse vectors x with K
entries, where the subset of K-positions of entries are from the
set {l,...,N}.The total number of possible K-position subsets is

)



CS problem formulation

* A more efficient approach uses the near optimal solution
based on the |l-norm, defined as:

min x|, subject to y=Ax

* In real applications, we deal with noisy signals.
* Thus, the previous relation should be modified to include the
influence of noise:

min|x|, subject to |y—Ax|, <

‘e“z d

L2-norm cannot be used because the minimization problem

solution in this case is reduced to minimum energy solution,
which means that all missing samples are zeros




CS conditions

» CS relies on the following conditions:

Sparsity — related to the signal nature;

Signal needs to have concise representation when expressed in a
proper basis (K<<N)

Incoherence — related to the sensing modality; It
should provide a linearly independent measurements
(matrix rows)

Random undersampling is crucial

Restriced Isometry Property — is important for
preserving signal isometry by selecting an appropriate
transformation



Summary of CS problem formulation

N
Signal £ linear combination of the f(t)=> X (t), or:
=1

orthonormal basis vectors

Set of random measurements:  E—) y =df

random measurement transform
matrix matrix

.I:

Yx.



CS conditions

e Restricted isometry property

> Successful reconstruction for a wider range of sparsity
level

o Matrix A satisfies Isometry Property if it preserves the
vector intensity in the N-dimensional space: HAO(HZ _HXH2
2 2

o If A 'is a full Fourier transform matrix, i.e. :

A=N¥Y

2 2
N e M

2
[,




CS conditions
e RIP

* For each integer number K the isometry constant Oy
of the matrix A is the smallest number for which the
relation holds:

=5 Hf, <A, <a+s0) I,

21< 5,

0<o <1 -



CS conditions

the of
sparse vectors is
preserved

e Matrix A satisfies RIP

* For the RIP matrix A with (2K, 0,) and 0, < I, all subsets
of 2K columns are

spark(A)>2K

- the smallest number of dependent columns



CS conditions

2<spark(A)<M +1
A (MXN) -Spark(A) =1 - one of the columns has all zero
values
spark(A)=M +1 - no dependenlt columns
K<t spark(A)<1(M +1)
2 2

the number of measurements should be at
least twice the number of components K:

M >2K



Incoherence

e Signals sparse in the transform domain ¥, should be dense in the
domain where the acquisition is performed

e Number of nonzero samples in the transform domain ¥ and the
number of measurements (required to reconstruct the signal)
depends on the coherence between the matrices ¥ and ®.

* ¥ and @ are maximally coherent - all coefficients would be
required for signal reconstruction

Mutual coherence: the
maximal absolute value of —) O P)— <¢I’Wj>
correlation between two I ] H¢H HWH
elements from ¥ and ® | .




Incoherence

Mutual coherence:

'U(A) - i¢jT§ﬁ)j(£M

(AA)

IAF|A
|

maximum absolute value of normalized inner product
between all columns in A

 A=0Y

A; and A; - columns of matrix A

The maximal mutual coherence will have the value 1 in the
case when certain pair of columns coincides

e [f the number of measurementsis: M >C-K-u(®,%¥)-logN

then the sparsest solution is exact with a high probability (C is a
constant)



Reconstruction approaches

* The main challenge of the CS reconstruction: solving an
underdetermined system of linear equations using
sparsity assumption

(, - optimization, based on linear programming methods,
provide efficient signal reconstruction with high accuracy

* Linear  programming  techniques (e.g.  convex
optimization) may require a vast number of iterations
in practical applications

* Greedy and threshold based algorithms are fast
solutions, but in general less stable
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Influence of missing samples to the
spectral representation

Missing samples produce noise
in the spectral domain. The
variance of noise in the DFT
case depends on M; N and
amplitudes Ai:

K

N
Oy = var{F_ ., }=M

i=1

Consequently, for a fixed value of P(T) (e.g.

P(T)=0.99), threshold is calculated as:

T=\-o logl-P(T)" )
|03 log1-P() ")

M 2
1 2A

The probability that all (N-K)
non-signal components are
below a certain threshold value
defined by T is (only K signal
components are above T):

P(T)=| 1-exp(-—=)

When ALL signal
components are above the
noise level in DFT, the
reconstruction is done

using a

algorithm
using threshold T




Optimal number of available samples M

e How can we determine the number of available samples
M, which will ensure detection of all signal components?

e Assuming that the DFT of the i-th signal component (with the
lowest amplitude) is equal to Ma, then the approximate
expression for the probability of error is obtained as:

|\/|za.2 N-K
P,=1-P=1- 1—exp(— — ]
Owms

* For a fixed Perr, the optimal value of M (that allows to detect all
sighal components) can be obtained as a solution of the
minimization problem: M

>arg min{P,, }
M

For chosen value of P, and expected value of minimal amplitude a, there

err
is an optimal value of M that will assure components detection.

opt



Algorithms for CS reconstruction of sparse signals

Single-lteration Reconstruction Algorithm in DFT domain

( START ) Yy = measurements
v. N. M M - number of measurements
! N - signal length
T:\/—g2 log(l—P(T)%) T - Threshold
X— DFT * DFT domain is assumed as sparsity domain
a i * Apply threshold to initial DFT components
¢ (determine the frequency support)
k=arg {\X‘>%}; * Perform reconstruction using identified support
¢ Initial FT and Threshold Reconstructed FT
Xr—=(Acs"Acs) ' Acs™y o A
i T
250 L 250 | e
Xgr | | | : : Y R R
s B DR
( END ) i ;
100 200 300 400 500
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— iterative solution

In each iteration we™~y,
need to remove the
influence of previously
detected components
and to update the
value of threshold

[ STiRT

ya N) M',-
q={nla--9nM}9 c72N

i=1, p=2 Xg=0

y

=i+ Calc.: A%, 6*\g, G2
Update y NO

y=x(q)-X(p)exp(;2pq/N)

A2>02N

Xr=(Acs;"Acs;) ' Acs;y

T:\/—Jz log(1 —P(T)#)

T

;

Acsi=Acs (q.p)

T

Calculate X= DFT{y}

v

k; =arg{‘X‘>%}; p=puk;




* External noise + noise o’ = O'|\2/|s +M O‘,f, —
caused by missing samples )

T —\-0? log(1-P(T)")

* To ensure the same probability of
Firsttraton Second teration error as in the noiseless case we need
' ' Y O S to increase the number of
SR TP measurements M such that:

N M

o8p ......... .....

=1

0 200 400 e u;o 20:0 30:0 40:o sc;o 02 M N l\/IN (A& _|_A2 + +A§)+M 0_2
N~N

08 ''''' 4 ..... M(N_M) SNR B
06 ..... 3 MN SNR(N_MN)+(N_1)

L

‘ ‘i Solve the equation:

1c;0 2c;o 3[;0 4[;0 5[;0 100 200 300 400 500 MN2SNR_MN(SNRN+N_1)+SNR(MN_M2):C
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Dealing with a set of noisy data - L-estimation
approach

Measurements
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General deviations-based approach

X(n)-K-sparse in DFT domain Robust statistics

-Navail - POS't'OnS Of the X (k): mﬁan- {X(nl)e_jZﬂ'knl/N _ X(nM )e_jZﬂ'knl\/I/N}
available samples < avail S e
- M-number of available sample:X(k)Zr[Egd;?aq{X(m)e_J T X(nyy )M

_ —j2zkn/N '} An incomplete set of samples causes
F{e(n’ k)} qu(n)e X(k) random deviations of the DFT outside the

l signal frequencies.
Loss function

l The DFT values at the frequencies
corresponding to signal components are
(102 haracterized by non-random behavior: the

e|” —standard form charac Y :
sum of generalized deviations of the values
F{e}=-|e|—robust form at non-signal frequencies is constant and

L higher than at the signal components
e| —general form positions.




t(?x‘) Vavmﬁ
€1y, k) =|x(m, e 27N —x (b))
.F'.I‘M'}, k:(],l, ,N

”mENavazf :{"11:”2:---:

General deviations-based approach

X (k)= mean {x(n)e ' Z*WN _ x(ny)e 12Fm/Ny

mENavail

X (k)= median{x(n,)e 1 Z*WN __x(n,,)e1"m/Ny

Calculate X (k) for the lost function F{e}z‘e“[

mENavail

i -
Calculate general deviations: e(nm’ k) = ‘X(nm)e_JZﬂ-kn/N — X (k)‘
1 J -
PO=3r, g2 Flen R mmean(en . el ) for all available samples
kof:afglmin{@(k}}, Generalized deviations:
k=1,..., u N X (%)=0.
! for k=k,; GD(k)— Z F {1e(n, ,k)—mean (e(nl, k),... E(nM ,k))‘}
Estimate: nl eNayail

X (koi) =mean{x(n])e—i 2k, !-nlfN’

) ",x(nM_)e—jszmeﬂMffN}

}

Remove the estimated value:
(1) =x() — X (ko e 2o |
i=l,...M

K 21k
ZX(koi)ejk orm =x(ny, ).
i=1

for k=k,;

kp — signal frequency

topping criterion
is met?

GD(k,) = M(NN 1M) _1Z|: p'Aﬁ

X (k)

M(N=M) K
N -1

kq — non-signal frequency

> A"~ const

=1

GD(k,) =



‘t( n): J?\'(r:rmriﬁ

}

€1y, k) =|x(m, e 27N —x (b))

oy €N grgit =4 H2,ea iy by £=0.1,.. N

General deviations-based approach

* If the number of
components/number of iterations is

Calculate X (k) for the lost function F{e}z‘e“[

unknown, the stopping criterion can be

v

Calculate general deviations: set
1
GD(k):H Z F{‘e(ni,k)—mean(e(nl,k),..., e(nM,k))‘}
mEN gyl
ko —arg min {GD(K)},
k=1...N X (k)=0.
| Jfor k=k,;
v
Estimate:

X(kOf) =mean{x(n])e—f2ffkozﬂlm )
. --,x(?’!ﬁd—)e_jzﬁkmﬂ‘l{f}v}

}

K 21k
ZX(koi)ejh orm =x(m,, ),

i=l

for k=k,;

Remove the estimated value:
(1) =x() — X (ko e 2o |
i=l,...M

topping criterion
is met?

X (k)

* Stopping criterion:
Adjusted based on the I2-
norm bounded residue that
remains after removing
previously detected
components



General deviations-based approach

Example
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Gradient algorithm

”f:}’(n): ,u: A:P

1

Form two signals y1 and y2, for each missing sample ni

A = (k) B
i vio(m+ A, for n=n, . YE A for n=n.
}.-1('{}(31) — {“ ( ) E f i ) }__5,{} (F’I) _ {, ( ) . f .

y(’r{}(n): Jor n=n, - y[k}(n): Jor n#n;
!
o(n) = M, [TV ()] = [T (57 (m))]
2A
.

G(n,) = g(n,) - atthe positions of
missing samples

G(n,)=0 - atthe positions of
) available samples
v
Iteratively correct the values of the
signal y(n):

YED () = B () — uG(n)

NO

Precision P is achieved —

=P

YES

ni - missing samples positions

nj - Available samples positions

Y(n) - Available signal samples

A - Constant; determines
whether sample should be
decreased or increased

- Constant that affect
algorithm performance
P . Precision

u

Estimate the differential of the signal
transform measure

Form gradient vector G

mprr<x<n»]=ﬁ;|><(k>|”p,

1< p<ow



Gradient algorithm - Example

Signal contains 16 samples
Missing — 10 samples (marked with red)

Signal is iteratively reconstructed using Gradient algorithm
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http://www.cs-ict.ac.me/Demo.php

[

-1D signal reconstruction

| CS_virtual
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EEG signals: QRS complex is sparse in Hermite transform domain,

meaning that it can be represented using just a few Hermite
functions and corresponding coeffs.

N

CS of QRS complexes in the Hermite transform domain
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Realization of the adaptive gradient-
based image reconstruction algorithm
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