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INTRODUCTION, CONT’D
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INTRODUCTION, CONT’D

Although there are many different TFRs, such as the short-time
Fourier transform (STFT) and Wigner-Ville distribution (WVD),

each has its individual limits.

The STFT assumes that the frequency of the signal within a segment 1s
not changing with time, its resolution for time-varying signal is rather
low.

WVD suffers from the cross-term for multi-component signals.

The local polynomial Fourier transform (LPFT) 1s used to overcome
these limits [V. Katkovnik, Signal Processing, 1995]
The LPFT is a linear transform, thus is free from the cross-term.

The LPFT can provide high resolution for time-varying signals with a
local polynomial function approximating to the instantaneous frequency
(IF) characteristic of the analyzed signals.

Disadvantage: heavy computational load (reduced overlap, various fast
algorithms)
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LOCAL POLYNOMIAL FOURIER TRANSFORM

The LPFT, the generalized form of the STFT, 1s
defined as [V. Katkovnik, Signal Processing, 1995]

LPFT(t,@) = LPFT(t,0,@,...,a,, ;)
B I X(t+7)h*(z)e”""7dz

where
Or,@)=wr+wr’2+..+0, " M

M: the order of the LPFT

LPFT assumes that the frequency of the signal
within a segment 1s changing with time.



LLOCAL POLYNOMIAL FOURIER TRANSFORM,

CONTD

The polynomial time frequency
transform (PTFT) is an
1mportant tool for the analysis of
PPSs. It 1s the maximum
likelihood estimator (MLE) to
find the parameters for the PPSs.

For a PPS, the PTFT yields the
same number of peaks as that of
components in the PPS.

The parameters of the LPFT can
be estimated from the location
coordinates of the peaks.
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The PTFT of the sum of two second-order PPSs

(SNR = 0dB).
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UNCERTAINTY PRINCIPLE OF THE LPFT

The LPFT is particularly suited to process the PPSs
with a Gaussian amplitude defined by

a1 at’ < a ,t"
S(t) =(—) " exp{——rex m
=) expl-" Jontid i)
We use the Gaussian window function

ht) = (4)"* expf-23
T 2



UNCERTAINTY PRINCIPLE OF THE LPFT

The normalized signal within a short duration at

time 1nstantt 1s defined as [I.. Cohen, Time-
frequency Analysis, 1995]

s(h(e-tyexpljot— 3. U=V

Jls@h@-vfdz

which ensures that for any t
2
[l (@) dr=1

m(7) =

The Fourier transform of this short duration
signal (or the modified signal) n. () 1s

R () == [1 o0l joddr



UNCERTAINTY PRINCIPLE OF THE LPFT,

CONT’'D

The mean time for
this signal segment
1s defined as

<r>t = jr‘nt (r)‘zdr

and the duration 1s
2= [(c-(r ) ) (@) dr
e

where

<72> = ITZ‘Ut (r)‘zd T

* The mean frequency

and bandwidth of the
signal segment are

(), :.[a)\ = (a))\zdco

= (1 @) 5o 0e

B = I (a)—<a)>t)2‘ F (a))‘zda)
=(o")~ (@),

where

d2
:_J.m d72 — n(r)dr



UNCERTAINTY PRINCIPLE OF THE LPFT,
CONT’'D

For the second-order PPS, we achieve

h . (z) =—2t
the mean time t atg
the duration T2 = 1

' 2(a+a)

the mean frequency () =a,+mt+ (@ -
t a+a

the bandwidth gz_a+ta 1l(a-m)
2 2 a+ta




UNCERTAINTY PRINCIPLE OF THE LPFT,
CONT’'D

The uncertainty product 1s

2
Bt-l-t :1\/1_|_ (al_a)l)z
2 (a+a)

the uncertainty product is time independent when Gaussian
window 1s used.

When the parameter @ is correctly estimated, that is @, = a,,
the mean frequency becomes

(@), =a, +at

Instantaneous frequency

The uncertainty product beiomes

B.T, =—
2



UNCERTAINTY PRINCIPLE OF THE LPFT,
CONT’D
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UNCERTAINTY PRINCIPLES OF THE STFT AND
WVD

For the STFT of the chirp signal, the mean
frequency and bandwidth are

a ait
at+o

<a)>t =dt
2

B2 =L (ata)+- 2

2 2(a+a)

The WVD of the chirp signal is

WVD(t, ®) = lexp{— NI a‘))z}
7T

a

The mean frequency and bandwidth are
(@), =ay +apt
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EXAMPLE: A SPEECH SEGMENT
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SYSTEMATIC ANALYSIS OF UNCERTAINTY

PRINCIPLES OF THE LPFT

Table I Expressions of the uncertainty principles for the LPFT

Tvpe of uncertainty principle

Uncertainty product

1. global uncertainty principle
2. local duration-conditional standard deviation

3.local bandwidth-conditional standard deviation
4. conditional standard deviations in time and frequency

) T =
I ppBipp =1
UilfTE >

o2 B2 :
W

=
tlw™ w|t >

Table II Expressions of the uncertainty principles for the Mth-order LPFT

Type of uncertainty principle

Uncertainty product

1. global uncertainty principle
2. local duration-conditional standard deviation

7 ) =
IippBipp =1

2 1
Tl J7 =

3.local bandwidth-conditional standard deviation crfl_w,BE, = i

4. conditional standard deviations in time and frequency Jf2|wgi|t > i




SUMMARY OF UNCERTAINTY PRINCIPLES
OF LPFT

The LPFT 1s shown to be limited by the uncertainty
principle, and the uncertainty principles of various order
LPFTs are derived to show the trade-off between the
resolutions of signal representation in the time and
frequency domains.

The uncertainty product of an arbitrary order is discussed.
When Gaussian window function is employed to segment
the signals, the uncertainty products of the LPFT are time
independent.

Comparisons and example In speech processing are
demonstrated to show that, compared with the STFT and

the WVD, the LPFT is a better tool to deal with signals
having time-varying frequencies.



OUTLINE

o Work on time-frequency representation (TFR)
e Introduction

e Local polynomial Fourier transform (LPFT)
o Definition
o Uncertainty principles of second-order and higher-order LPFT
o Reassignment method for second-order and higher-order LPP

o Work on compressive sensing
o Work on compressive sensing based TFR
o Future work

LPP: local polynomial periodogram




REASSIGNMENT METHOD DEFINITION

The reassignment method was applied to the TFR
[F. Auger & P. Flandrin, IEEESP, 1995.]

RTFR(X;t', ') = j j TFER(X;t, @) (t'—f (X:t, ®)) 5 (@ —(X;t, @))dtdw

It changes the attribution point of the average
operation to the gravitational center of the energy
contribution, and the operators are defined as:

j j ug(u, QWVD(X:t —U, w—Q)dudQ

t(x;t,w)=t—
/] ¢(u QWVD(X;t —u, —Q)dudQ

) [ [ Qa(u, QWVD(x;t —u, - Q)dudQ
o(X;t,w) = w—==

[ [#u, QWVD(x;t-u, 0 - Q)dud®




REASSIGNED SPECTROGRAM

The gravitational center of the reassigned spectrogram
was reported to be

J I UWVD(h; u, QWVD(x;t —u, @ —Q)dudQ
i I IWVD(h;u,Q)WVD(x;t—u,a)—Q)dudQ

_ t_Re{STF'I'Th(x;t,a))}

t(x;t,w) =t

STFT. (X;t, ®)
i | [wvD(h;u, QWVD(x;t - u, &0 Q)dud®
(X t, ) =0——=
[ [wvD(h; u, QWVD(x;t —u, - Q)dudQ

(STFT,. (X;t, )
| STFT, (X;tw)

=+ My




THE REASSIGNED LPP

Similarly, we define the gravitational center of
the reassigned LPP as

[ Juwvpeh;u, -2 u+ QWVD(X;t —u, -2 u—Q)dud
t(x;t,w)=t- 2 2

”WVD(h;u,—CZlu +Q)WVD(x;t—u,a>—“2’1u—Q)dudQ

_{_Re LPFT, (X;t, w)
LPFT, (X;t, ®)

”(Q—az)lu)WVD(h;u,—a;lu +Q)WVD(x;t—u,co—a;1u —Q)dudQ

o(Xt,w) =w—
”WVD(h;u,—‘Zlu +Q)WVD(x;t—u,a)—‘Zlu—Q)dudQ

{LPFTDh(x;t,a))}

=w+1Im

LPFT, (X;tw)

Therefore the RLPP 1s defined as

RLPP(x,t, @) = j j LPP(x;t, 0)S(t'—f(x;t, ®))S(w'—d(X:t, w))dtde




PROPERTIES OF THE RLPP

Non-negativity

Non-bilinearity

Time and frequency shifts invariance
Time-scaling property

Energy conservation

Perfect localization on chirp aI}d 1mpulse signals
For a chirp signal X(t) = Ag l{etrat’/2) , we have
RLPP(x;t', ') = j j LPP(x;t, 0)5(e'—a, —at)S(t—E (X;t, w))dtdw

For an impulse signal X(t) =Ad(t—1t;) we have
RLPP(x;t', @) = 5(t—t;) | [ LPP(x;t, 0)S(/-d(x;t, w))dtde
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SIMULATIONS, CONT’D
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SIMULATIONS, CONT’D
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DEFINITION OF THE HIGHER-ORDER RLPP

To define the higher order reassigned LPP and its
properties, the modified WVD and its properties are first
investigated. Based on the modified WVD, the definition of
the Mth order reassigned LPP is given.

Forthe Mth order PPSs, suppose ¢(t) is the phase of the signal, and ¢!™) (1) is the mth-order derivative of &. When

M >4 and M is odd, the modified WVD is defined as

. T T -
MW U{‘”}{I; tw) = /J.'{f. . E]J.',{f - E]r*. Ju
L 3] 3 L 15 B P L
e dTEm e TEET e I E - Tan

slm]lpom

T T R
= /;;.'{E + e (t — =) MTe Lim=3 5m midT,
2 2
when M > 4 and M is even, the modified WVD is defined

MWV D™ s, w) = j a(t + %‘JJ:’{! — D)e T

2
i N i (5] 5 ; Al = 1] M =1
e TR e TEE T e TP TM— r

1 I'I_I_m 1

T T . r M :i[”
= [att+ Dt~ Deore T B TR Ay




DEFINITION OF THE HIGHER-ORDER RLPP,

CONTD

Hxst, w)

L t, w)

RLPPIMY (g ') = jfLPP{”}{m; bow) 8w’ — Dz t,w)] 6 [t — f(x;t,w)] dt(j—:

m—1 =1 ;
ffu. WVD (h;u, Q) MW lfD{M}( o, wt Z (=1) {m“"’”l‘]:"‘ —ﬂ) %

! =2
m—1 L1 )
ffwvﬂ(h u, Q) MWV DM ;r,t—u.,w-}—z{ DE_wnuwr ) dudd
- (m—1)! 2r

s e | EPETS W t, w) LPPTM (28, w)
|LPFT{M}{;1:; t, w2

LPFT " H(ast, w)
t— e T
LPFTh{‘ (21, w)

¥ — 1 #—1 .
ffﬂwvn{h uﬂMWVD{M}(;rI—uw-i—Z{ b ot _Q)@

| {'.-:-1 -1t D
I'_J T — 1
1) ™™ dud
WVD (hyu, Q) MWVDME[ g — E (= o —
ff (hsu, u. w+m . (m — 1)! 2T

ol LPFT M at, w) LPFT ™ (151, w)
H I
|LPFT ™ s b, w)|2

LPFT ) (2t
wt Im {H}_{I’ » ) .
LPFT," "1, w)




PROPERTIES OF HIGHER-ORDER RLPP

o time and frequency shifts invariance
for a signal y(t) =x(t-t,)e’” | we have
RLPPYMY (¢ ') = REPPIMY (21 —tg,0" — a1).
o time-scaling property
for a signal y(t) =x(at) , we have

RLPPIMi(y: ¢ ') = |—RLPP{M} (x; at', — )

| a

O energy conservation
f f RLPPM} (g t’,w’)dt;rw = f | (t)| 2 dt,
Y

when

dudﬂ _1

ffwv (h u, Q)




PROPERTIES OF HIGHER-ORDER RLPP, CONT'D

o perfect localization on higher-order PPSs

For other higher-order PPSs such as z(f) =
Aexp{j M %}, we have

12 aptM-1
MWVDIMY (g: 1. w) = 21 A28 (w—a; —agl— —— .. ,
(2;t,w) = 27 A0 (w—a;—a- o1 (M’—l)!)

therefore, the corresponding reassigned LPP with the same
order can also perfectly localize the PPSs as

RLPP{M}(:.':;t’,w')://LPP{M}(:.':;t,w)

f13t2 thM—l

I
;(S(w — ] — ﬂ-zt — 21 ...m)

St —t(rst,w)] dt{;—:.




SIMULATIONS, CONT’D
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SIMULATIONS, CONT’D

E o
-

o4} o4

0.3 0.3

: 9

1 &
o 2og .

ol /-\ aif \

0 ) 200 =0 00 500 0 100 200 30 400 500
im= im=
(a) LPP {h) RLPP

The LPP, RLPP for a signal containing

two PPSs of second and fourth orde s, res pectively,
with SNE = (dB.




SUMMARY OF REASSIGNMENT METHODS OF
LPEFT

The reassignment method 1s extended to the second-
order LPP and higher-order LPP to improve the signal
concentration performance for time-varying signals.

Properties of the second-order RLPP and higher-order
RLPP are studied and theoretically derived.

Simulation results are also presented to verify some
properties and improvements of the second-order RLPP.
Moreover, performances of the higher-order RLPP for

higher-order PPSs are presented to show the advantage
of the higher-order RLPP.
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INTRODUCTION ON COMPRESSIVE SENSING

signal sparity measurement sparse signal Original signal
P ™ transform |—»| matrix || reconstruction [~® reconstruction
f=¥x y=% x=agminf s2. OF=y f=¥x
=P¥x =0x

Fig. 1. The diagram of compressive sensing




COMPRESSIVE SENSING BASED IMAGE
RECONSTRUCTION

When using the traditional compressive sensing
algorithm for image reconstruction, the wavelet
decomposition divides the 1mage 1into high-
frequency  coefficients and  low-frequency
coefficients, most high-frequency coefficients are
around zero and therefore can be considered as
sparse.



COMPRESSIVE SENSING BASED IMAGE
RECONSTRUCTION

However, the low-frequency coefficients cannot
be considered as sparse since they concentrate
most of the i1mage energy and they are the
approximation of the original image.

Therefore, when using the  traditional
compressive sensing algorithm by putting the
low-frequency coefficients together with the high-
frequency coefficients to multiply with the
measurement matrix, the coherences among the
low-frequency coefficients will be disrupted, and
the reconstructed 1mage will have a degraded
performance.



COMPRESSIVE SENSING BASED IMAGE
RECONSTRUCTION : OUR WORK

After the wavelet transform of the image, we keep the
low-frequency  coefficients  unchanged, wuse the
measurement matrix to measure the high-frequency
coefficients, and then combine with the unchanged low-
frequency coefficients to reconstruct the image.

In this way, we can efficiently reconstruct the image with
reduced coefficients as well as improve the performance
of the reconstructed images.

we also will give the performance comparisons of the
reconstructed 1images employing different measurement
matrices such as the Gaussian random matrix, Bernoulli
matrix, Toeplitz matrix, and Hadamard matrix



IMAGE RECONSTRUCTION BASED ON THE
IMPROVED COMPRESSIVE SENSING ALGORITHM

(1) Perform the wavelet transform of the N*N image, and
get the four wavelet sub-band coefficients
{LH, . HL, . HH,.LL |

(2) build the measurement matrix to measure the three
high-frequency sub-band coefficients LH,, HL,. HH, to

get the matrices of the measured coefficients while
keep the low-frequency sub-band coefficients
LL ;unchanged.

(3) Use the reconstruction algorithms to reconstruct the
three high-frequency coefficients matrices

LH:, HLi1, HH1, then together with LL, . to reconstruct

the image.




SIMULATIONS AND COMPARISONS

o Performance comparisons of the reconstructed images
using traditional and improved CS algorithms

using the traditional CS algorithm
to reconstruct the image: perform
the 4-layer decomposition for the
1mage, Gaussian random matrix

as the measurement matrix, and
the OMP algorithm.

(a) Orginal image (b) image reconstnucted using the

mdtomlCSalgrtm =190 Rig 9 (b), M=190, PSNR=30.8075dB.
Fig. 2 (c), M=100, PSNR=23.9248dB.

using the improved compressive
sensing algorithm for 1mage

| | ' . reconstruction:  perform  the
1 ' F ® single-layer wa
' : decomposition
(c)image reconstructed using (d) image reconstructed using

the traditional CS algorithm, M=100  the improved CSalgoritim. M=100.  F1g. 2 (d), M=100, PSNR= 30.0757 dB.

Figure 2. The oniginalimage and thereconstructedimages using the
traditional andimproved CS algontlm




SIMULATIONS AND COMPARISONS

performances of the reconstructed images using the
traditional and 1mproved compressive sensing

algorithms with different M values
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with the same measurement
numbers, the improved CS
algorithm can effectively

improve the PSNR of the
reconstructed image.



SIMULATIONS AND COMPARISONS

o Performance comparisons of the reconstructed images
using different measurement matrices: Gaussian random
matrix, Bernoulli matrix, Toeplitz matrix, and Hadamard matrix.

(c) Toeplitzmatrix

(d) Hadamardmatrix
Figure 4. Using different matrices forimage reconstruction in the improved CS
algonthm with M=30.

M=50, the four measurement matrices
can achieve comparable reconstructed
performances with similar PSNR.

Table I PSINE. compansons using different matnces for image reconstmction in

the mproved CS algonthmwath M=30.

Measurement matrix

PSNR of the reconstructed

image (dB)
(Gaussian random matrix 271996
Bemoulli matrix 270512
Toeplitz matrix 27.1089
Hadamard matrix 272567
W




SIMULATIONS AND COMPARISONS

M=100, the reconstructed image using
the Hadamard matrix can achieve
better performance with higher PSNR.

Table IT PENE. companisons using different matrices for image reconstruction
in the improved C3 algonthm with M=100.

Measurement matrix+ PSNR of the reconstructed
image (dB)
(Gaussian random matrix 30.0455
Bemoulli matrix 30.1990
Toeplitz matrix 301518
Hadamard matrix 322892

(c) Toeplitz matrix {d) Hadamard matnx

Figure 5. Using different matrices forimage reconstruction in the improved CS
algonthm with M=100.




SIMULATIONS AND COMPARISONS

to investigate the effects of the four measurement
matrices to the reconstructed 1mages in different M

values, we provide the PSNRs of the reconstructed
1mages using different M=[30:120],
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Figure 6 Perfonmance conpansons ofthe reconstructed images using the
mprovedCS algonthmwith differert measirement matnces.



SUMMARY ON COMPRESSIVE SENSING
BASED IMAGE RECONSTRUCTION

Based on the improved CS algorithm, we only measure the
high-frequency wavelet coefficients, and combines with the
unchanged low-frequency coefficients to reconstruct the
image.

Compared with the traditional CS algorithm with the same
measurement numbers, the improved CS algorithm can
effectively improve the performance of the reconstructed
1mages.

Reconstructed image performance comparisons are given for
different measurement matrices such as Gaussian random
matrix, Bernoulli matrix, Toeplitz matrix, and Hadamard
matrix. Better reconstructed image performance can be
achieved with higher PSNR when using Hadamard mat#ix
as the measurement matrix.
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COMPRESSIVE SENSING BASED TFR

Suppose the analyzed nonstationary signal 1s of length
N 1 time, and after the time-frequency analysis, its time-
frequency representation 1s of NV X N when computed over NV
frequency bins. Since the energy of the nonstationary signal 1s
concentrated 1n a certain trajectory, and at most only NV values
are expected to be non-zero. Therefore the nonstationary signal
1s sparse or compressible in the time-frequency domain, and
satisfies the sparse condition in the compressive sensing.



COMPRESSIVE SENSING BASED TFR

E. Candes proved that 1t 1s possible to reconstruct

the signal from its partial Fourier coefficients. [E.
Candes, IEEEIT, 2006]

Since the ambiguity function (AF) 1s related to
the WVD by a two-dimensional Fourler
transform, we can use the samples in the AF

domain to reconstruct the time frequency
representation. [P. Flandrin, IEEESP, 2010]



COMPRESSIVE SENSING BASED TFR

The ambiguity function (AF) is important in the field of
time frequency analysis, and its definition for a signal f(t) is
as follows:

A(f;:0,7) = f flt+ %)f* (t— %)ef‘”dt. (4)

In the AF domain, the auto terms pass through the origin
of the TF plane, while the cross terms are away from the

origin.




COMPRESSIVE SENSING BASED TFR

The algorithm to reconstruct the time-frequency representa-
tions based on the compressive sensing includes the following
steps:

I. compute the ambiguity function of the nonstationary
signals;

2. using window function, such as the rectangular window
function or the Gaussian window function, to select the few
samples 1n the origin part of the AF domain, which mainly
includes the auto terms;

3. using the reconstruction algorithm in the compressive
sensing to reconstruct the time-frequency representation of the

nonstationary signals from the few samples in the origin part
of the AFF domain.



COMPRESSIVE SENSING BASED TFR :
SIMULATIONS AND COMPARISONS
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(2)-(1): TFR reconstruction based on the direct Fourier transform
(j)-(1): TFR reconstruction based on the compressive sensing



COMPRESSIVE SENSING BASED TFR :
SIMULATIONS AND COMPARISONS
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COMPRESSIVE SENSING BASED TFR :
SIMULATIONS AND COMPARISONS
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When the window length is between [5,21], the CS based TFR can achieve
smaller IF estimation errors and higher time-frequency concentration,
compared with the FFT based TFR



COMPRESSIVE SENSING BASED TFR :
SIMULATIONS AND COMPARISONS

tar ideal TFR Chy WWD icy AF
{dy AF sample 1 {e) AF sample 2 (f» AF sample 3
multicomponent _
. (g { hy Ci)
signal

(2)-(1): TFR reconstruction based on the direct Fourier transform
(7)-(D): TFR reconstruction based on the compressive sensing



COMPRESSIVE SENSING BASED TFR :
SIMULATIONS AND COMPARISONS
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COMPRESSIVE SENSING BASED TFR :
SIMULATIONS AND COMPARISONS
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(2)-(1): bat sound TFR reconstruction based on the direct Fourier transform
(7)-(D: bat sound TFR reconstruction based on the compressive sensing



SUMMARY ON COMPRESSIVE SENSING
BASED TFR

The compressive sensing 1s employed to
reconstruct the time-frequency representation of
the nonstationary signals.

Using window function to select the auto terms
concentrated on the origin of the AF domain,
followed by the reconstruction algorithm, the
time-frequency representation of the signals can
be reconstructed.

Performances of different window sizes are
discussed and compared, showing that there
exists a tradeoff between the resolution and the
cross terms 1n the reconstructed representations.



OUTLINE

o Work on time-frequency representation (TFR)
o Work on compressive sensing

o Work on compressive sensing based TFR

o Future work




FUTURE WORK

how to reconstruct the time-frequency
representations for the signals, taking advantage
of the structured sparseness of the signals?
(sparse Bayesian learning)

how to select the proper sample region to
reconstruct the time-frequency representation for
signals? (signal-dependent)

how to reconstruct the time-frequency
representations for the signals heavily corrupted
by noise such as white Gaussian noise or
1mpulsive noise?



Thanks !




