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INTRODUCTION, CONT’D 

The time waveform, spectrum, and time-frequency representation (TFR) 

 of the bat sound data. 
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INTRODUCTION, CONT’D 

 Although there are many different TFRs, such as the short-time 
Fourier transform (STFT) and Wigner-Ville distribution (WVD), 
each has its individual limits.  
 The STFT assumes that the frequency of the signal within a segment is 

not changing with time, its resolution for time-varying signal is rather 
low. 

 WVD suffers from the cross-term for multi-component signals. 

 

 The local polynomial Fourier transform (LPFT) is used to overcome 
these limits [V. Katkovnik, Signal Processing, 1995] 

 The LPFT is a linear transform, thus is free from the cross-term. 

 The LPFT can provide high resolution for time-varying signals with a 
local polynomial function approximating to the instantaneous frequency 
(IF) characteristic of the analyzed signals. 

 Disadvantage: heavy computational load (reduced overlap, various fast 
algorithms) 
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LOCAL POLYNOMIAL FOURIER TRANSFORM 

 The LPFT,  the generalized form of the STFT, is 

defined as [V. Katkovnik, Signal Processing, 1995] 

 

 

 

 

 

                          M: the order of the LPFT 

 LPFT assumes that the frequency of the signal 

within a segment is changing with time. 
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LOCAL POLYNOMIAL FOURIER TRANSFORM, 

CONT’D 

 The polynomial time frequency 
transform (PTFT) is an 
important tool for the analysis of 
PPSs. It is the maximum 
likelihood estimator (MLE) to 
find the parameters for the PPSs.  

 

 For a PPS, the PTFT yields the 
same number of peaks as that of 
components in the PPS.  

 

 The parameters of the LPFT can 
be estimated from the location 
coordinates of the peaks. 
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UNCERTAINTY PRINCIPLE OF THE LPFT 

 The LPFT is particularly suited to process the PPSs 

with a Gaussian amplitude defined by 

 

 

 

 We use the Gaussian window function  
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UNCERTAINTY PRINCIPLE OF THE LPFT 

 The normalized signal within a short duration at 
time instant     is defined as [L. Cohen, Time-
frequency Analysis, 1995] 

 

 

 

    which ensures that for any 

 

 

 The Fourier transform of this short duration 
signal (or the modified signal)          is  
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UNCERTAINTY PRINCIPLE OF THE LPFT, 

CONT’D 

 The mean time for 

this signal segment 

is defined as 

 

 

      and the duration is 
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UNCERTAINTY PRINCIPLE OF THE LPFT, 

CONT’D 

For the second-order PPS,  we achieve  

 

 the mean time  

 

 the duration 

 

 the mean frequency  

 

 the bandwidth 
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UNCERTAINTY PRINCIPLE OF THE LPFT, 

CONT’D 

 The uncertainty product is  

 

 

 

    the uncertainty product is time independent when Gaussian 

window is used. 

 When the parameter      is correctly estimated, that is            , 

the mean frequency becomes  

                                                                  

                                            Instantaneous frequency 

 

 The uncertainty product becomes 
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UNCERTAINTY PRINCIPLE OF THE LPFT, 

CONT’D 

=50 =2.5 

=0.125 

•  As  decreases, the resolution of the signal 

representation in the frequency direction is 

increased, the resolution in the time direction is 

decreased.  
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UNCERTAINTY PRINCIPLES OF THE STFT AND 

WVD 

 For the STFT of the chirp signal, the mean 

frequency and bandwidth are 

 

 

 

 The WVD of the chirp signal is  

 

 

    The mean frequency and bandwidth are  
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Concentration comparison of the time-frequency representations.  

(a) the FT of the chirp signals, (b) the STFT of a signal with constant 

frequencies, (c), (d) and (e) the time-frequency representations of chirp 

signals using the STFT, the second-order LPFT, and the WVD, 

respectively. 
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EXAMPLE: A SPEECH SEGMENT “YOUR 

MAIL” 



SYSTEMATIC ANALYSIS OF UNCERTAINTY 

PRINCIPLES OF THE LPFT 
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SUMMARY OF UNCERTAINTY PRINCIPLES 

OF LPFT 

 The LPFT is shown to be limited by the uncertainty 
principle, and the uncertainty principles of various order 
LPFTs are derived to show the trade-off between the 
resolutions of signal representation in the time and 
frequency domains.  

 

 The uncertainty product of an arbitrary order is discussed. 
When Gaussian window function is employed to segment 
the signals, the uncertainty products of the LPFT are time 
independent. 

 

 Comparisons and example in speech processing are 
demonstrated to show that, compared with the STFT and 
the WVD, the LPFT is a better tool to deal with signals 
having time-varying frequencies. 
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REASSIGNMENT METHOD DEFINITION 

 The reassignment method was applied to the TFR 
[F. Auger & P. Flandrin, IEEESP, 1995.] 

 

 

 It changes the attribution point of the average 

operation to the gravitational center of the energy 

contribution, and the operators are defined as: 
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REASSIGNED SPECTROGRAM 

 The gravitational center of the reassigned spectrogram 

was reported to be 
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THE REASSIGNED LPP 

 Similarly, we define the gravitational center of 

the reassigned LPP as 

 

 

 

 

 

 

 

 

 Therefore the RLPP is defined as 
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PROPERTIES OF THE RLPP 

 Non-negativity 

 Non-bilinearity 

 Time and frequency shifts invariance 

 Time-scaling property 

 Energy conservation 

 Perfect localization on chirp and impulse signals 

 For a chirp signal                                , we have 

 

 

 For an impulse signal                            , we have   
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SIMULATIONS 

LPP RLPP 

• RLPP can concentrate the chirp signals and impulse signals 
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SIMULATIONS, CONT’D 
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SIMULATIONS, CONT’D 



 

DEFINITION OF THE HIGHER-ORDER RLPP 

 To define the higher order reassigned LPP and its 

properties, the modified WVD and its properties are first 

investigated. Based on the modified WVD, the definition of 

the Mth order reassigned LPP is given. 

31 



DEFINITION OF THE HIGHER-ORDER RLPP, 

CONT’D 
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PROPERTIES OF HIGHER-ORDER RLPP 

 time and frequency shifts invariance 

           for a signal                       , we have  

            

 time-scaling property 

          for a signal                 , we have 

           

 energy conservation  
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PROPERTIES OF HIGHER-ORDER RLPP, CONT’D 

  perfect localization on higher-order PPSs 

         

          

 



SIMULATIONS, CONT’D  

 Fourth-order  

 

 

 

 

 

 Fifth-order 
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SIMULATIONS, CONT’D  



SUMMARY OF REASSIGNMENT METHODS OF 

LPFT 

 The reassignment method is extended to the second-
order LPP and higher-order LPP to improve the signal 
concentration performance for time-varying signals.  

 Properties of the second-order RLPP and higher-order 
RLPP are studied and theoretically derived.  

 Simulation results are also presented to verify some 
properties and improvements of the second-order RLPP. 
Moreover, performances of the higher-order RLPP for 
higher-order PPSs are presented to show the advantage 
of the higher-order RLPP. 
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INTRODUCTION ON COMPRESSIVE SENSING 



COMPRESSIVE SENSING BASED IMAGE 

RECONSTRUCTION     

 When using the traditional compressive sensing 

algorithm for image reconstruction, the wavelet 

decomposition divides the image into high-

frequency coefficients and low-frequency 

coefficients, most high-frequency coefficients are 

around zero and therefore can be considered as 

sparse.  

 

 



COMPRESSIVE SENSING BASED IMAGE 

RECONSTRUCTION  

 However, the low-frequency coefficients cannot 

be considered as sparse since they concentrate 

most of the image energy and they are the 

approximation of the original image.  

 Therefore, when using the traditional 

compressive sensing algorithm by putting the 

low-frequency coefficients together with the high-

frequency coefficients to multiply with the 

measurement matrix, the coherences among the 

low-frequency coefficients will be disrupted, and 

the reconstructed image will have a degraded 

performance. 



COMPRESSIVE SENSING BASED IMAGE 

RECONSTRUCTION : OUR WORK 

 After the wavelet transform of the image, we keep the 
low-frequency coefficients unchanged, use the 
measurement matrix to measure the high-frequency 
coefficients, and then combine with the unchanged low-
frequency coefficients to reconstruct the image.  

 

 In this way, we can efficiently reconstruct the image with 
reduced coefficients as well as improve the performance 
of the reconstructed images.  

 

 we also will give the performance comparisons of the 
reconstructed images employing different measurement 
matrices such as the Gaussian random matrix, Bernoulli 
matrix, Toeplitz matrix, and Hadamard matrix 



IMAGE RECONSTRUCTION BASED ON THE 

IMPROVED  COMPRESSIVE SENSING ALGORITHM 

 



SIMULATIONS AND COMPARISONS 
 Performance comparisons of the reconstructed images 

using traditional and improved CS algorithms 

using the traditional CS algorithm 

to reconstruct the image: perform 

the 4-layer decomposition for the 

image, Gaussian random matrix 

as the measurement matrix,  and 

the OMP algorithm. 

Fig. 2(b), M=190, PSNR=30.8075dB.  

Fig. 2 (c), M=100, PSNR=23.9248dB. 

using the improved compressive 

sensing algorithm for image 

reconstruction: perform the 

single-layer wavelet 

decomposition 

Fig. 2 (d), M=100, PSNR= 30.0757 dB. 



SIMULATIONS AND COMPARISONS 

 performances of the reconstructed images using the 

traditional and improved compressive sensing 

algorithms with different M values 

with the same measurement 

numbers, the improved CS 

algorithm can effectively 

improve the PSNR of the 

reconstructed image.  



SIMULATIONS AND COMPARISONS 

 Performance comparisons of the reconstructed images 

using different measurement matrices:  Gaussian random 

matrix, Bernoulli matrix, Toeplitz matrix, and Hadamard matrix. 

M=50, the four measurement matrices 

can achieve comparable reconstructed 

performances with similar PSNR. 



SIMULATIONS AND COMPARISONS 

M=100, the reconstructed image using 

the Hadamard matrix can achieve 

better performance with higher PSNR.  



SIMULATIONS AND COMPARISONS 

 to investigate the effects of the four measurement 

matrices to the reconstructed images in different M 

values, we provide the PSNRs of the reconstructed 

images using different M=[30:120], 

As the M increases, higher 

PSNR can be achieved when 

using the Hadamard matrix 

as the measurement matrix.  



SUMMARY ON COMPRESSIVE SENSING 

BASED IMAGE RECONSTRUCTION  

 Based on the improved CS algorithm, we only measure the 
high-frequency wavelet coefficients, and combines with the 
unchanged low-frequency coefficients to reconstruct the 
image.  

 

 Compared with the traditional CS algorithm with the same 
measurement numbers, the improved CS algorithm can 
effectively improve the performance of the reconstructed 
images.  

 

 Reconstructed image performance comparisons are given for 
different measurement matrices such as Gaussian random 
matrix, Bernoulli matrix, Toeplitz matrix, and Hadamard 
matrix. Better reconstructed image performance can be 
achieved with higher PSNR when using Hadamard matrix 
as the measurement matrix. 
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COMPRESSIVE SENSING BASED TFR 

 



COMPRESSIVE SENSING BASED TFR 

 E. Candes proved that it is possible to reconstruct 

the signal from its partial Fourier coefficients. [E. 

Candes, IEEEIT, 2006]  

 

 Since the ambiguity function (AF) is related to 

the WVD by a two-dimensional Fourier 

transform, we can use the samples in the AF 

domain to reconstruct the time frequency 

representation. [P. Flandrin, IEEESP, 2010] 



COMPRESSIVE SENSING BASED TFR 

 



COMPRESSIVE SENSING BASED TFR 

 



COMPRESSIVE SENSING BASED TFR : 

SIMULATIONS AND COMPARISONS 

(g)-(i): TFR reconstruction based on the direct Fourier transform 

(j)-(l): TFR reconstruction based on the compressive sensing 

monocomponent 

signal 



COMPRESSIVE SENSING BASED TFR : 

SIMULATIONS AND COMPARISONS 



COMPRESSIVE SENSING BASED TFR : 

SIMULATIONS AND COMPARISONS 

When the window length is between [5,21], the CS based TFR can achieve 

smaller IF estimation errors and higher time-frequency concentration, 

compared with the FFT based TFR 



COMPRESSIVE SENSING BASED TFR : 

SIMULATIONS AND COMPARISONS 

(g)-(i): TFR reconstruction based on the direct Fourier transform 

(j)-(l): TFR reconstruction based on the compressive sensing 

multicomponent 

signal 



COMPRESSIVE SENSING BASED TFR : 

SIMULATIONS AND COMPARISONS 

Gaussian window, multicomponent signal 



COMPRESSIVE SENSING BASED TFR : 

SIMULATIONS AND COMPARISONS 

(g)-(i): bat sound TFR reconstruction based on the direct Fourier transform 

(j)-(l): bat sound TFR reconstruction based on the compressive sensing 



SUMMARY ON COMPRESSIVE SENSING 

BASED TFR 

 The compressive sensing is employed to 

reconstruct the time-frequency representation of 

the nonstationary signals.  

 Using window function to select the auto terms 

concentrated on the origin of the AF domain, 

followed by the reconstruction algorithm, the 

time-frequency representation of the signals can 

be reconstructed.  

 Performances of different window sizes are 

discussed and compared, showing that there 

exists a tradeoff between the resolution and the 

cross terms in the reconstructed representations. 
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FUTURE WORK 

 how to reconstruct the time-frequency 

representations for the signals​, taking advantage 

of the structured sparseness of the signals?  

(sparse Bayesian learning) 

 how to select the proper sample region to 

reconstruct the time-frequency representation for 

signals?  (signal-dependent) 

 how to reconstruct the time-frequency 

representations for the signals heavily corrupted 

by noise such as white Gaussian noise or 

impulsive noise?  

 

 



  

Thanks ! 


