5. Minimalisation
In the previous section we have seen that a large collection of

functions can be shown to be computable using the operations of substi-
tution and recursion, and operations derived from these. There is a third
important operation which generates further computable functions,
namely unbounded minimalisation, or just minimalisation, which we now
describe.

Suppose that f(x, y) is a function (not necessarily total) and we wish to
define a function g(x) by

g(x) = the least y such that f(x, y) =0,

5 Minimalisation 43

in such a way that if f is computable then so is g. Two problems can arise.
First, for some x there may not be any y such that f(x, y) =0. Second,
assuming that f is computable, consider the following natural algorithm
for computing g(x). ‘Compute f(x, 0), f(x, 1), . . . until y is found such that
f(x, y) = 0. This procedure may not terminate if f is not total, even if such
a y exists; for instance, if f(x, 0) is undefined but f(x, 1) =0.

Thus we are led to the following definition of the minimalisation
operator u, which yields computable functions from computable
functions.

5.1. Definition
For any function f(x, y)
the least y such that
(i) f(x, z)is defined, allz <y, and

wy(flx, y)=0)= (1) f(x,y)=0, ifsucha y exists,
undefined, if there is no such y.
wy(...) is read ‘the least y such that...’. This operator is sometimes

called simply the u-operator.
The next theorem shows that € is closed under minimalisation.

5.2. Theorem
Suppose that f(x, y) is computable; then so is the function g(x) =
py(f(x,y)=0).

Proof. Suppose that x = (x;,..., x,) and that F is a program in stan-
dard form that computes the function f(x, y). Let m = max(n + 1, p(F)).
We write a program G that embodies the natural algorithm for g: for
k=0,1,2..., compute f(x, k) until a value of k£ is found such that
f(x, k) =0; this value of & is the required output.

The value of x and the current value of k will be stored in registers
R,i+1, ... Riins1 before computing f(x, k): thus the typical configura-
tion will be

Storage registers

A

-

Rl s e Rm Rm+1 s Rm+n Rm+n+1 Rm+n+2
x k 0

with k = 0 initially. Note that r,, ., is always 0.

2 Generating computable functions 44

A flow diagram that carries out the above procedure for g is given in fig.
2d. This translates easily into the following program G for g:
T(1,m+1)

T(n, m+n)
I, Fim+1l,m+2,...,m+n+1->1]
J1,m+n+2,q)
Sim+n+1)
J(1,1,p)
I, Tm+n+1,1)

(1, is the first instruction of the subroutine Fim +1,m+2,...»1]) O

Fig. 2d. Minimalisation (theorem 5.2).

START

l

Store x in e
(k = 0 initially)
Rm+l:'--7Rm+n y

/ flx, k)>R,

k->R,

STOP

5 Minimalisation 45

5.3. Corollary
Suppose that R(x, y) is a decidable predicate; then the function

g(x)=py R(x, y)
_ {the least y such that R (x, y) holds, if thereissuchay,
- undefined otherwise,
is computable

Proof. g(x)=pny(glcr(x, y))=0). O

In view of this corollary, the w-operator is often called a search
operator. Given a decidable predicate R(x, y) the function g(x) searches
for a y such that R(x, y) holds, and moreover, finds the least such y if
there is one.

The p-operator may generate a non-total computable function from a
total computable function; for instance, putting f(x, y) = |x—y?, and
g(x)=py(f(x,y)=0), we have that g is the non-total function

Jx if x is a perfect square,
glx)=

undefined otherwise.
Thus, in a trivial sense, using the u-operator together with substitution
and recursion, we can generate from the basic functions more functions
than can be obtained using only substitution and recursion (since these
operations always yield total functions from total functions). There are
also, however, total functions for which the use of the w-operator is
essential. Example 5.5 below gives one such function; we present another
example in chapter 5. Thus we see that, in a strong sense, minimalisation,
unlike bounded minimalisation, cannot be defined in terms of substitu-
tion and recursion. It turns out, nevertheless, that most commonly
occurring computable total functions can be built up from the basic
functions using substitution and recursion only: such functions are called
primitive recursive, and are discussed further in chapter 3 § 3. In practice,
of course, we might establish the computability of these functions by what
amounts to a non-essential use of minimalisation, if this makes the task
easier.

54, Exercises
1. Suppose that f(x) is a total injective computable function; prove
that ! is computable.
2. Suppose that p(x) is a polynomial with integer coefficients; show
that the function

2 Generating computable functions 46

fla)=least non-negative integral root of p(x)—a(aeN)
is computable (f(a) is undefined if there is no such root).
3. Show that the function

x/y if y#0andy|x,
flx,y)=

undefined otherwise,

is computable.

We conclude this chapter with an example of a function that makes
essential use of the u-operator; it also shows how this operator can be
used not only to search for a single number possessing a given property,
but to search for finite sequences or sets of numbers, or other objects
coded by a single number. The function is a modification by Péter of an
example due to Ackermann, after whom it is named. It is rather more
complicated than any function we have considered so far.

5.5. Example (The Ackermann function)
The function ¢(x,y) given by the following equations is
computable:

$0,y)=y+1,
Yx+1,0)=¢(x, 1),
Yax+1,y+1)=¢(x, b(x+1,y)).

This definition involves a kind of double recursion that is stronger than
the primitive recursion discussed in § 3. To see, nevertheless, that these
equations do unambiguously define a function, notice that any value
¢(x, y) (x> 0) is defined in terms of ‘earlier’ values ¥ (x, y;) with x; <x
or x; = x and y; < y. In fact, ¢(x, y) can be obtained by using only a finite
number of such earlier values: this is easily.established by induction on x
and y. Hence ¢ is computable in the informal sense. For instance, it is easy
to calculate that (1,1)=3 and ¢(2,1)=5.

To show rigorously that ¢ is computable is quite difficult. We sketch a
proof using the idea of a suitable set of triples S. The essential property of
a suitable set S (defined below) is that if (x, y, z) € S, then

(5.6) () z=u¢lx,y),
(ii) S contains all the earlier triples
(x1, y1, ¥(xy, ¥1)) that are needed to calculate ¢(x, y).

5 Minimalisation 47

Definition

A finite set of triples S is said to be suitable if the following
conditions are satisfied:

(a) if (0,y,z)eS thenz=y+1,

(b) if (x+1,0,z)eS then (x,1,2)e S,

(c) if(x+1,y+1,z)e S thenthereis u suchthat (x +1,y, u)e S

and (x, u, z)e S.
These three conditions correspond to the three clauses in the definition of
¢ for instance, (a) corresponds to the statement: if z =y(0, y), then
z=y+1; (c) corresponds to the statement: if z =¢(x +1, y +1), then
there is u such that u = ¢(x +1, y) and z = ¢ (x, u).

The definition of a suitable set § ensures that (5.6) is satisfied.
Moreover, for any particular pair of numbers (m, n) there is a suitable set
S such that (m, n, ¢(m, n))e S; for example, let S be the set of triples
(x, y, ¥(x, y)) that are used in the calculation of (m, n).

Now a triple (x, y, z) can be coded by the single positive number
u =2"375%; a finite set of positive numbers {u,, . .., ux} can be coded by
the single number p,,p., - - - pu.- Hence a finite set of triples can be coded
by a single number v say. Let S, denote the set of triples coded by the
number v. Then we have

(x,y,2)e S, & pa=3vs-divides v,
so ‘(x, y, z) € S’ is a decidable predicate of x, y, z, v; and if it holds, then x,
y, z < v. Hence, using the techniques and functions of earlier sections we
can show that the following predicate is decidable:
R (x, y, v)="‘v is the code number of a suitable set
of triples and 3z <v ((x, y, z) € S,).
Thus the function

flx, y)=nvR(x, y, v)
is a computable function that searches for the code of a suitable set
containing (x, y, z) for some z. Hence

Y(x, y)=pz((x, y, 2) € Spx.y))
which shows that ¢ is computable.

A more sophisticated proof that ¢ is computable will be given in
chapter 10 as an application of more advanced theoretical results.

We do not prove here that ¢ cannot be shown to be computable using
substitution and recursion alone. This matter is further discussed in § 3 of
the next chapter.

3

Other approaches to
computability: Church’s thesis

Over the past fifty years there have been many proposals for a precise
mathematical characterisation of the intuitive idea of effective compu-
tability. The URM approach is one of the more recent of these. In this
chapter we pause in our investigation of URM-computability itself to
consider two related questions.

1. How do the many different approaches to the characterisation of
computability compare with each other, and in particular with
URM-computability?

2. How well do these approaches (particularly the URM approach)
characterise the informal idea of effective computability?

The first question will be discussed in §8§ 1-6; the second will be taken
up in § 7. The reader interested only in the technical development of the
theory in this book may omit §§ 3—6; none of the development in later
chapters depends on these sections.

1. Other approaches to computability
The following are some of the alternative characterisations that
have been proposed:
(a) Gédel-Herbrand—Kleene (1936). General recursive
functions defined by means of an equation calculus. (Kleene
[1952], Mendelson [1964].)
(b) Church (1936). A-definable functions. (Church [1936] or
[1941].)
(c) Godel-Kleene (1936). u-recursive functions and partial
recursive functions (§ 2 of this chapter.).
(d) Turing (1936). Functions computable by finite machines
known as Turing machines. (Turing [1936]; § 4 of this chapter.)
(e) Post (1943). Functions defined from canonical deduction
systems. (Post [1943], Minsky [1967]; § 5 of this chapter.)

2 Partial recursive functions 49

(f) Markov (1951). Functions given by certain algorithms over a
finite alphabet. (Markov [1954], Mendelson [1964]; § 5 of this
chapter.)

(g) Shepherdson—Sturgis (1963). URM-computable functions.
(Shepherdson & Sturgis [1963].)

There is great diversity among these various approaches; each has its
own rationale for being considered a plausible characterisation of
computability. The remarkable result of investigation by many resear-
chers is the following:

1.1. The Fundamental result

Each of the above proposals for a characterisation of the notion of
effective computability gives rise to the same class of functions, the class that
we have denoted €.

Thus we have the simplest possible answer to the first question posed
above. Before discussing the second question, we shall examine briefly
the approaches of G6del-Kleene, Turing, Post and Markov, mentioned
above, and we will sketch some of the proofs of the equivalence of these
with the URM approach. The reader interested to discover full details of
these and other approaches, and proofs of all the equivalences in the
Fundamental result, may consult the references indicated.

2. Partial recursive functions (Godel-Kleene)

2.1. Definition

The class R of partial recursive functions is the smallest class of
partial functions that contains the basic functions 0, x +1, U7 (lemma
2-1.1) and is closed under the operations of substitution, recursion and
minimalisation. (Equivalently, R is the class of partial functions that can
be built up from the basic functions by a finite number of operations of
substitution, recursion or minimalisation.)

Note that in the definition of the class 2, no restriction is placed on the
use of the p-operator, so that & contains non-total functions. G6édel and
Kleene originally confined their attention to total functions; the class of
functions first considered was the class &, of u-recursive functions,
defined like &2 above, except that applications of the w-operator are
allowed only if a rotal function results. Thus &, is a class of total
functions, and clearly Zoc R. In fact, Ry contains all of the total

3 Other approaches to computability 50

functions that are in &, although this is not immediately obvious; see
corollary 2.3 below for a proof. Hence A is a natural extension of Ry to a
class of partial functions.

The term recursive function i1s used nowadays to describe u-recursive
functions; so a recursive function is always total — it is a totally defined
partial recursive function. The term general recursive function is some-
times used to describe u-recursive functions, although historically, this
was the name Kleene gave to the total functions given by his equation
calculus approach ((a) in § 1). It was Kleene who proved the equivalence
of general recursive functions (given by the equation calculus) and
w-recursive functions.

We now outline a proof of

2.2. Theorem
R=6.

2.3. Corollary
Every total function in R belongs to R,.

A predicate M (x) whose characteristic function ¢y is recursive is called
a recursive predicate. In view of theorem 2.2, a recursive predicate is the

same as a decidable predicate.

3. A digression: the primitive recursive functions

This is a natural point to mention an important subclass of R, the
class of primitive recursive functions, although they do not form part of the
main line of thought in this chapter. These functions were referred to in

chapter 2 § 5.

3.1. Definition
(a) The class PR of primitive recursive functions is the smallest

class of functions that contains the basic functions 0, x +1, U7,
and is closed under the operations of substitution and recursion.

3 Other approaches to computability ' 52

(b) A primitive recursive predicate is one whose characteristic
function is primitive recursive.

All of the particular computable functions obtained in §§ 1, 3, 4 of
chapter 2 are primitive recursive, since minimalisation was not used
there. We have already noted that the functions ¢ and j used in the proof
of theorem 2.2 are primitive recursive. Further, from theorems 2-4.10
and 2-4.12 we see that PR is closed under bounded sums and products,
and under bounded minimalisation. Thus the class of primitive recursive
functions is quite extensive.

There are nevertheless recursive functions (or, equivalently, total
computable functions) that are not primitive recursive. Indeed, the
Ackermann function ¢ of example 2-5.5 was given as an instance of such
a function. A detailed proof that the Ackermann function is not primitive
recursive is rather lengthy, and we refer the reader to Péter {1967,
chapter 9] or Mendelson [1964, p. 250, exercise 11]. Essentially one
shows that s grows faster than any given primitive recursive function. (To
see how fast ¢4 grows try to calculate a few simple values.)

In chapter 5 we will be able to give an example of a total computable
(i.e. recursive) function that we shall prove is not primitive recursive.

Our conclusion is that although the primitive recursive functions form a
natural and very extensive class, they do not include all computable
functions and thus fall short as a possible characterisation of the informal
notion of computability.

