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Preface 

In 1988 we published the book Automatic Thing  of PID Controllers, 
which summarized experiences gained in the development of an au- 
tomatic tuner for a PID controller. The present book may be regarded 
as a continuation of that book, although it has been significantly ex- 
panded. Since 1988 we have learned much more about PID control as 
a result of our involvement in research and industrial development of 
PID controllers. Because of this we strongly believe that the practice 
of PID can be improved considerably, and that this will contribute 
significantly to  improved quality of manufacturing. This belief has 
been strongly reinforced by recent publications of the industrial state 
of the art, which are referenced in Chapter 1. 

The main reason for writing this book is to  contribute to  a bet- 
ter understanding of PID control. Another reason is that information 
about PID control is scattered in the control literature. The PID con- 
troller has not attracted much attention from the research community 
during the past decades, and i t  is often covered inadequately in stan- 
dard textbooks in control, We believe that this book will be useful to 
users and manufacturers of PID controllers as well as educators. It 
is important to teach PID controI in introductory courses on feedback 
control at universities, and we hope that this book can give useful 
background for such courses. 

It is assumed that the reader has a control background. A reader 
should be familiar with concepts such as transfer functions, poles, 
and zeros. Even so, the explanations are elementary. Occasionally, 
we have stated facts without supporting detailed arguments, when 
they have seemed unnecessary, in an effort to  focus on the practical 
aspects rather than the theory. A reader who finds that he needs som 
specific background in process control is strongly advised to  consult 
a text in process control such as Seborg et al. (1989). 

Compared to the earlier book we have expanded the material 
substantially. The chapters on modeling, PID control, and design 
of PID controllers have been more than doubled. The chapter on 
automatic tuning has been completely rewritten to  account for the 
dynamic product development that has taken place in the last years. 
There are two new chapters. One describes new tuning methods. This 
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vi Preface 

material has not been published before. There is also a new chapter 
on control paradigms that describes how complex systems can be 
obtained by combining PID controllers with other components. 

We would like to express our gratitude to several persons who 
have provided support and inspiration. Our original interest in PID 
control was stimulated by Axel Westrenius and Mike Sommerville 
of Eurotherm who shared their experience of design and of PID 
controllers with us. We have also benefited from discussions with 
Manfred Morari of Caltech, Edgar Bristol of Foxboro, Ken Goff for- 
merly of Leeds and Northrup, Terry Blevins of Fisher-Rosemount 
Control, Gregory McMillan of Monsanto. Particular thanks are due to 
Sune Larsson who initiated our first autotuner experiments and Lars 
BBHth with whom we shared the pleasures and perils of developing 
our first industrial auto-tuner. We are also grateful to  many instru- 
men\ engineers who participated in experiments and who generously 
shared their experiences with us. Among our research colleagues we 
have learned much from Professor C. C. Hang of Singapore National 
University with whom we have done joint research in the field over 
a long period of time. We are also grateful to  Per Persson, who devel- 
oped the dominant pole design method. 

Several persons have read the manuscript of the book. WiTIy 
Wojsznis of Fisher-Rosemount gave many valuable suggestions for im- 
provements. Many present and former colleagues at our department 
have provided much help. Special thanks are due to Eva DagnegArd 
and Leif Andersson who made the layout for the final version and 
Britt-Marie Mdrtensson who drew many of the figures. Ulf Holm- 
berg, Karl-Erik &Zen and Mikael Sohansson gave very useful input 
on several versions of the manuscript. 

Finally we would like to express our deep gratitude t o  the Swedish 
National Board of Industrial and Technical Development QWTEK) 
who have supported our research. 

KARL JOHAN ASTROM 
Tom HAGGLUND 

Department of Automatic Control 
Lund Institute of Technology 
Box 118, S-22100 Lund, Sweden 
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Introduction

The PID controller has several important functions: it provides feed-
back; it has the ability to eliminate steady state offsets through in-
tegral action; it can anticipate the future through derivative action.
PID controllers are sufficient for many control problems, particularly
when process dynamics are benign and the performance requirements
are modest. PID controllers are found in large numbers in all indus-
tries. The controllers come in many different forms. There are stand-
alone systems in boxes for one or a few loops, which are manufactured
by the hundred thousands yearly. PID control is an important ingre-
dient of a distributed control system. The controllers are also em-
bedded in many special-purpose control systems. In process control,
more than 95% of the control loops are of PID type, most loops are
actually PI control. Many useful features of PID control have not been
widely disseminated because they have been considered trade secrets.
Typical examples are techniques for mode switches and anti-windup.
PID control is often combined with logic, sequential machines, se-

lectors, and simple function blocks to build the complicated automa-
tion systems used for energy production, transportation, and manu-
facturing. Many sophisticated control strategies, such as model pre-
dictive control, are also organized hierarchically. PID control is used
at the lowest level; the multivariable controller gives the setpoints to
the controllers at the lower level. The PID controller can thus be said
to be the “bread and butter” of control engineering. It is an important
component in every control engineer’s toolbox.
PID controllers have survived many changes in technology rang-

ing from pneumatics to microprocessors via electronic tubes, tran-
sistors, integrated circuits. The microprocessor has had a dramatic
influence on the PID controller. Practically all PID controllers made
today are based on microprocessors. This has given opportunities to
provide additional features like automatic tuning, gain scheduling,
and continuous adaptation. The terminology in these areas is not
well-established. For purposes of this book, auto-tuning means that
the controller parameters are tuned automatically on demand from
an operator or an external signal, and adaptation means that the
parameters of a controller are continuously updated. Practically all
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2 Chapter 1 Introduction

new PID controllers that are announced today have some capability
for automatic tuning. Tuning and adaptation can be done in many
different ways. The simple controller has in fact become a test bench
for many new ideas in control.
The emergence of the fieldbus is another important development.

This will drastically influence the architecture of future distributed
control systems. The PID controller is an important ingredient of
the fieldbus concept. It may also be standardized as a result of the
fieldbus development.
A large cadre of instrument and process engineers are familiar

with PID control. There is a well-established practice of installing,
tuning, and using the controllers. In spite of this there are substantial
potentials for improving PID control. Evidence for this can be found
in the control rooms of any industry. Many controllers are put in man-
ual mode, and among those controllers that are in automatic mode,
derivative action is frequently switched off for the simple reason that
it is difficult to tune properly. The key reasons for poor performance
is equipment problems in valves and sensors, and bad tuning prac-
tice. The valve problems include wrong sizing, hysteresis, and stiction.
The measurement problems include: poor or no anti-aliasing filters;
excessive filtering in “smart” sensors, excessive noise and improper
calibration. Substantial improvements can be made. The incentive for
improvement is emphasized by demands for improved quality, which
is manifested by standards such as ISO 9000. Knowledge and un-
derstanding are the key elements for improving performance of the
control loop. Specific process knowledge is required as well as knowl-
edge about PID control.
Based on our experience, we believe that a new era of PID control

is emerging. This book will take stock of the development, assess its
potential, and try to speed up the development by sharing our expe-
riences in this exciting and useful field of automatic control. The goal
of the book is to provide the technical background for understanding
PID control. Such knowledge can directly contribute to better product
quality.
Process dynamics is a key for understanding any control problem.

Chapter 2 presents different ways to model process dynamics that
are useful for PID control. Methods based on step tests are discussed

together with techniques based on frequency response. It is attempted
to provide a good understanding of the relations between the different
approaches. Different ways to obtain parameters in simple transfer
function models based on the tests are also given. Two dimension-
free parameters are introduced: the normalized dead time and the
gain ratio are useful to characterize dynamic properties of systems
commonly found in process control. Methods for parameter estimation
are also discussed. A brief description of disturbance modeling is also



Chapter 1 Introduction 3

given.
An in depth presentation of the PID controller is given in Chap-

ter 3. This includes principles as well as many implementation de-
tails, such as limitation of derivative gain, anti-windup, improvement
of set point response, etc. The PID controller can be structured in dif-
ferent ways. Commonly used forms are the series and the parallel
forms. The differences between these and the controller parameters
used in the different structures are treated in detail. Implementation
of PID controllers using digital computers is also discussed. The un-
derlying concepts of sampling, choice of sampling intervals, and anti-
aliasing filters are treated thoroughly. The limitations of PID control
are also described. Typical cases where more complex controllers are
worthwhile are systems with long dead time and oscillatory systems.
Extensions of PID control to deal with such systems are discussed
briefly.
Chapter 4 describes methods for the design of PID controllers.

Specifications are discussed in detail. Particular attention is given to
the information required to use the methods. Many different meth-
ods for tuning PID controllers that have been developed over the years
are then presented. Their properties are discussed thoroughly. A rea-
sonable design method should consider load disturbances, model un-
certainty, measurement noise, and set-point response. A drawback
of many of the traditional tuning rules for PID control is that such
rules do not consider all these aspects in a balanced way. New tuning
techniques that do consider all these criteria are also presented.
The authors believe strongly that nothing can replace understand-

ing and insight. In view of the large number of controllers used in
industry there is a need for simple tuning methods. Such rules will
at least be much better than “factory tuning,” but they can always be
improved by process modeling and control design. In Chapter 5 we
present a collection of new tuning rules that give significant improve-
ment over previously used rules.
In Chapter 6 we discuss some techniques for adaptation and au-

tomatic tuning of PID controllers. This includes methods based on
parametric models and nonparametric techniques. A number of com-
mercial controllers are also described to illustrate the different tech-
niques. The possibilities of incorporating diagnosis and fault detection

in the primary control loop is also discussed.
In Chapter 7 it is shown how complex control problems can be

solved by combining simple controllers in different ways. The control
paradigms of cascade control, feedforward control, model following,
ratio control, split range control, and control with selectors are dis-
cussed. Use of currently popular techniques such as neural networks
and fuzzy control are also covered briefly.
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Process Models

2.1 Introduction

A block diagram of a simple control loop is shown in Figure 2.1. The
system has two major components, the process and the controller, rep-
resented as boxes with arrows denoting the causal relation between
inputs and outputs. The process has one input, the manipulated vari-
able, also called the control variable. It is denoted by u. The process
output is called process variable (PV) and is denoted by y. This vari-
able is measured by a sensor. The desired value of the process variable
is called the setpoint (SP) or the reference value. It is denoted by ysp.
The control error e is the difference between the setpoint and the
process variable, i.e., e = ysp − y. The controller in Figure 2.1 has
one input, the error, and one output, the control variable. The figure
shows that the process and the controller are connected in a closed
feedback loop.
The purpose of the system is to keep the process variable close

to the desired value in spite of disturbances. This is achieved by the
feedback loop, which works as follows. Assume that the system is in
equilibrium and that a disturbance occurs so that the process variable
becomes larger than the setpoint. The error is then negative and the
controller output decreases which in turn causes the process output
to decrease. This type of feedback is called negative feedback, because
the manipulated variable moves in direction opposite to the process
variable.
The controller has several parameters that can be adjusted. The

control loop performs well if the parameters are chosen properly. It
performs poorly otherwise, e.g., the system may become unstable.
The procedure of finding the controller parameters is called tuning.
This can be done in two different ways. One approach is to choose
some controller parameters, to observe the behavior of the feedback
system, and to modify the parameters until the desired behavior is
obtained. Another approach is to first develop a mathematical model
that describes the behavior of the process. The parameters of the
controller are then determined using some method for control design.

5



6 Chapter 2 Process Models

Controller Process
e u y

Σ

1−

y sp

Figure 2.1 Block diagram of a simple feedback system.

An understanding of techniques for determining process dynamics is
a necessary background for both methods for controller tuning. This
chapter will present such techniques.
Static models are discussed in the next section. Dynamic models

are discussed in Section 2.3. Transient response methods, which are
useful for determining simple dynamic models of the process, are pre-
sented in Section 2.4. Section 2.5 treats methods based on moments.
These methods are less sensitive to measurement noise and, further-
more, are not restricted to any specific input signal. The frequency
response methods, described in Section 2.6, can be used to obtain
both simple models and more detailed descriptions. Methods based
on estimation of parametric models are more complex methods that
require more computations but less restrictions on the experiments.
These methods are presented in Section 2.7. The models discussed so
far describe the relation between the process input and output. It is
also important to model the disturbances acting on the system. This
is discussed in Section 2.8. Section 2.9 treats methods to simplify a
complex model and the problem of unmodeled dynamics and mod-
eling errors. Conclusions and references are given in Sections 2.10
and 2.11.

2.2 Static Models

The static process characteristic is a curve that gives the steady state
relation between process input signal u and process output y. See
Figure 2.2. Notice that the curve has a physical interpretation only
for a stable process.
All process investigations should start by a determination of the

static process model. It can be used to determine the range of control
signals required to change the process output over the desired range,
to size actuators, and to select sensor resolution. It can also be used
to assess whether static gain variations are so large that they have
to be accounted for in the control design.
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y

u

Figure 2.2 Static process characteristic. Shows process output y
as a function of process input u under static conditions.

The static model can be obtained in several ways. It can be de-
termined by an open-loop experiment where the input signal is set
to a constant value and the process output is measured when it has
reached steady state. This gives one point on the process characteris-
tics. The experiment is then repeated to cover the full range of inputs.
An alternative procedure is to make a closed-loop experiment.

The setpoint is then given a constant value and the corresponding
control variable is measured in steady state. The experiment is then
repeated to cover the full range of setpoints.
The experiments required to determine the static process model

often give a good intuitive feel for how easy it is to control the process,
if it is stable, and if there are many disturbances.
Sometimes process operations do not permit the experiments to be

done as described above. Small perturbations are normally permitted,
but it may not be possible to move the process over the full operating
range. In such a case the experiment must be done over a long period
of time.

Process Noise

Process disturbances are easily determined by logging the process
output when the control signal is constant. Such a measurement
will give a combination of measurement and load disturbances. There
are many sophisticated techniques such as time-series analysis and
spectral analysis that can be used to determine the characteristics
of the process noise. Crude estimates of the noise characteristics
are obtained simply by measuring the peak-to-peak value and by
determining the average time between zero crossings of the error
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signal. This is discussed further in Section 2.8.

2.3 Dynamic Models

A static process model like the one discussed in the previous section
tells the steady state relation between the input and the output signal.
A dynamic model should give the relation between the input and the
output signal during transients. It is naturally much more difficult
to capture dynamic behavior. This is, however, very significant when
discussing control problems.
Fortunately there is a restricted class of models that can often be

used. This applies to linear time-invariant systems. Such models can
often be used to describe the behavior of control systems when there
are small deviations from an equilibrium. The fact that a system is
linear implies that the superposition principle holds. This means that
if the input u1 gives the output y1 and the input u2 gives the output
y2 it then follows that the input au1 + bu2 gives the output ay1 + by2.
A system is time-invariant if its behavior does not change with time.
A very nice property of linear time-invariant systems is that their

response to an arbitrary input can be completely characterized in
terms of the response to a simple signal. Many different signals can be
used to characterize a system. Broadly speaking we can differentiate
between transient and frequency responses.
In a control system we typically have to deal with two signals

only, the control signal and the measured variable. Process dynamics
as we have discussed here only deals with the relation between those
signals. The measured variable should ideally be closely related to the
physical process variable that we are interested in. Since it is difficult
to construct sensors it happens that there is considerable dynamics
in the relation between the true process variable and the sensor. For
example, it is very common that there are substantial time constants
in temperature sensors. There may also be measurement noise and
other imperfections. There may also be significant dynamics in the
actuators. To do a good job of control, it is necessary to be aware of
the physical origin the process dynamics to judge if a good response
in the measured variable actually corresponds to a good response in
the physical process variable.

Transient Responses

In transient response analysis the system dynamics are characterized
in terms of the response to a simple signal. The particular signal is
often chosen so that it is easy to generate experimentally. Typical
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examples are steps, pulses, and impulses. Because of the superpo-
sition principle the amplitude of the signals can be normalized. For
example, it is sufficient to consider the response to a step with unit
amplitude. If s(t) is the response to a unit step, the output y(t) to an
arbitrary input signal u(t) is given by

y(t) =
∫ t

−∞
u(τ ) ds(t− τ )

dt
dτ =

∫ t

−∞
u(τ )h(t − τ )dτ (2.1)

where the impulse response h(t) is introduced as the time derivative
of the step response.
In early process control literature the step response was also

called the reaction curve.
Pulse response analysis is common in medical and biological ap-

plications, but rather uncommon in process control. Ramp response
analysis is less common. One application is the determination of the
derivative part of a PID controller. In process control, the step re-
sponse is the most common transient used for process identification.
This is primarily because this is the type of disturbance that is easi-
est to generate manually. Step response methods are treated in detail
in Section 2.4.

Frequency Response

Another way to characterize the dynamics of a linear time-invariant
system is to use sine waves as a test signal. This idea goes back
to Fourier. The idea is that the dynamics can be characterized by
investigating how sine waves propagate through a system.
Consider a stable linear system. If the input signal to the system

is a sinusoid, then the output signal will also be a sinusoid after a
transient (see Figure 2.3). The output will have the same frequency as
the input signal. Only the phase and the amplitude are different. This
means that under stationary conditions, the relationship between the
input and the output can be described by two numbers: the quotient
(a) between the input and the output amplitude, and the phase shift
(ϕ) between the input and the output signals. The functions a(ω ) and
ϕ(ω ) describe a and ϕ for all frequencies (ω ). It is convenient to view
a and ϕ as the magnitude and the argument of a complex number

G(iω ) = a(ω )eiϕ (ω ) (2.2)
The function G(iω ) is called the frequency response function of the
system. The function a(ω ) = �G(iω )� is called the amplitude function,
and the function ϕ(ω ) = ar�(G(iω )) is called the phase function.
The complex number G(iω ) can be represented by a vector with

length a(iω ) that forms angle ϕ(iω ) with the real axis (see Figure
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Figure 2.3 Input signal u is a sinusoid and output signal y be-
comes sinusoidal after a transient.

ω

ϕ−1

Ultimate point

a
    G(iω)  Re

    G(iω)  Im

Figure 2.4 The Nyquist curve of a system.

2.4). When the frequency goes from 0 to∞, the endpoint of the vector
describes a curve in the plane, which is called the frequency curve
or the Nyquist curve. The Nyquist curve gives a complete description
of the system. It can be determined experimentally by sending sinu-
soids of different frequencies through the system. This may be time
consuming. Normally, it suffices to know only parts of the Nyquist
curve. For controller tuning there are some parts that are of particu-
lar interest. The lowest frequency where the phase is −180○ is called
the ultimate frequency (ωu). The corresponding point on the Nyquist
curve is called the ultimate point. The value of G(iωu) is all that is
needed for the tuning methods developed by Ziegler and Nichols.
The frequency response is intimately related to the Laplace trans-
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form. Let f (t) be a signal. The Laplace transform of the signal, F(s),
is then defined by

F(s) =
∫ ∞

0
e−st f (t)dt (2.3)

Let U (s) and Y(s) be the Laplace transforms of the input and the
output of a linear time-invariant dynamical system. Assume that the
system is at rest at time t = 0. The following relation then holds

Y(s) = G(s)U (s) (2.4)
where G(s) is the transfer function of the system.
It follows from Equation (2.3) that the Laplace transform of an

impulse is 1. From Equation (2.4) we can conclude that G(s) is the
Laplace transform of the impulse response. The frequency response
is simply G(iω ).
In the following sections we will show how linear system dynamics

can be obtained experimentally. We will illustrate both transient and
frequency response methods.

2.4 Step Response Methods

The dynamics of a process can be determined from the response of
the process to pulses, steps, ramps, or other deterministic signals.
The dynamics of a linear system is, in principle, uniquely given from
such a transient response experiment. This requires, however, that
the system is at rest before the input is applied, and that there are no
measurement errors. In practice, however, it is difficult to ensure that
the system is at rest. There will also be measurement errors, so the
transient response method, in practice, is limited to the determination
of simple models. Models obtained from a transient experiment are,
however, often sufficient for PID controller tuning. The methods are
also very simple to use. This section focuses on the step response
method.

The Step Response

Assuming a control loop with a controller, the step response experi-
ment can be determined as follows. Wait until the process is at rest.
Set the controller to manual. Change the control variable rapidly, e.g.,
through the use of increase/decrease buttons. Record the process vari-
able and scale it by dividing by the change in the control variable.
The change in control variable should be as large as possible in order
to get a maximum signal to noise ratio. The limit is set by permissible



12 Chapter 2 Process Models

0 2 4 6 8
0

0.4

0.8

0 2 4 6 8
0

0.4

0 2 4 6 8
0

0.4

0.8

0 2 4 6 8
0

1

0 2 4 6 8
0

2

0 2 4 6 8

−0.5

0.5

A

C

E

B

D

F

Figure 2.5 Open-loop step responses.

process operation. It is also useful to record the fluctuations in the
measurement signal when the control signal is constant. This gives
data about the process noise.
It is good practice to repeat the experiment for different ampli-

tudes of the input signal and at different operating conditions. This
gives an indication of the signal ranges when the model is linear. It
also indicates if the process changes with the operating conditions.
Examples of open-loop step responses are shown in Figure 2.5.

Many properties of the system can be read directly from the step re-
sponse. In Figure 2.5A, the process output is monotonically changed
to a new stationary value. This is the most common type of step re-
sponse encountered in process control. In Figure 2.5B, the process
output oscillates around its final stationary value. This type of pro-
cess is uncommon in process control. One case where it occurs is in
concentration control of recirculation fluids. In mechanical designs,
however, oscillating processes are common where elastic materials are
used, e.g., weak axles in servos, spring constructions, etc. The sys-
tems in Figures 2.5A and B are stable, whereas the systems shown
in Figures 2.5C and 2.5D are unstable. The system in Figure 2.5C
shows the output of an integrating process. Examples of integrating
processes are level control, pressure control in a closed vessel, con-
centration control in batches, and temperature control in well isolated
chambers. The common factor in all these processes is that some kind
of storage occurs in them. In level, pressure and concentration control
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storage of mass occurs, while in the case of temperature control there
is a storage of energy. The system in Figure 2.5E has a long dead
time. The dead time occurs when there are transportation delays in
the process. The system in Figure 2.5F is a non-minimum phase sys-
tem, where the measurement signal initially moves in the “wrong”
direction. The water level in boilers often reacts like this after a step
change in feed water flow.
If the system is linear, all step responses are proportional to

the size of the step in the input signal. It is then convenient to
normalize the responses by dividing the measurement signal by the
step size of the control signal. Throughout this book we assume that
this normalization is done.
The step response is a convenient way to characterize process

dynamics because of its simple physical interpretation. Many tuning
methods are based on it. A formal mathematical model can also be
obtained from the step response. General methods for the design of
control systems can then be used.
For small perturbations the static process model can be described

by one parameter called the process gain. This is simply the ratio of
the steady state changes of process output and process input. The gain
can be obtained as the slope of the curve in Figure 2.2. It can also
be obtained directly from a step response. For nonlinear systems the
process gain will depend on the operating conditions. It is, however,
constant for linear systems. For such systems the static properties are
thus described by one parameter. Additional parameters are needed
to also capture dynamics. Some simple parametric models will be
described below. Stable processes with a monotone step response, as
shown in Figure 2.5A, are quite common. Many methods to obtain
parametric models from such a step response have been presented in
the literature over the years. We will present here models with two,
three, and, four parameters respectively.

Two-Parameter Models

The simplest parametric models of process dynamics have two param-
eters. One parameter can be process gain. The other has to capture
the time behavior. The average residence time Tar is a useful param-
eter. This is obtained as

Tar = A0
K

where K is the static process gain and A0 is defined as

A0 =
∞∫
0

(s(∞) − s(t))dt
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where s(t) is the step response. Notice that K = s(∞) and that A0 is
the shaded area in Figure 2.6.
The time Tar is a rough measure of the time it takes for the step

response to settle. Using the static gain and the average residence
time, the process can be approximated by the model

G2a(s) = K

1+ sTar (2.5)
We call this model the residence time approximation.
Another approximation to the step response that also has two

parameters is given by the transfer function

G2b(s) = a

sL
e−sL (2.6)

This model corresponds to an integrator with dead time. This model
is characterized by the two parameters, a and L, that are easily de-
termined graphically from the step response (see Figure 2.6). The
tangent to the step response s(t) that has the largest slope is drawn,
and the intersections of this tangent with the vertical and horizontal
axes give a and L, respectively. The model given by Equation (2.6) is
the basis for the Ziegler-Nichols tuning procedure discussed in Chap-
ter 4. Notice that the model can also be fitted to unstable processes.
The properties of the approximations (2.5) and (2.6) are illus-

trated by an example.

EXAMPLE 2.1

The two-parameter models (2.5) and (2.6) have been fitted to the

a

L

K

A0

Figure 2.6 Graphical determination of a two-parameter model
from a step response for a stable system with a monotone step
response.
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process model

G(s) = 1
(s+ 1)8 (2.7)

The following models were obtained

G2a(s) = 1
1+ 8.0s G2b(s) = 0.644.3s e

−4.3s

Figure 2.7 shows the step responses and the Nyquist curves of the
transfer functions.
Notice that the model G2a gives a good description of the step

response for long times. The static gain is correct and the step re-
sponse is very close to the correct one for large t. There are, however,
large discrepances for small t. The system given by G2a has, for ex-
ample, a significant response at time t = 2, but the system (2.7)
has barely responded at that time. The model G2b has the opposite
properties. It approximates the true step response very well in the
interval 5 ≤ t ≤ 9, but the approximation is very poor for large t.
These properties are also reflected in the Nyquist curves. They

show that the average residence time approximation is quite good at
low frequencies but very poor at high frequencies. The model G2b, on
the other hand, is poor at low frequencies but reasonable at middle
range frequencies.

Three-Parameter Models

Better approximations are obtained by increasing the number of pa-
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Figure 2.7 Step responses and Nyquist curves of the process
G(s) = 1/(s+ 1)8 (solid line) and the two-parameter models G2a(s)
(dotted line) and G2b(s) (dashed line).
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rameters. The model

G(s) = K

1+ sT e
−sL (2.8)

is characterized by three parameters: the static gain K , the time
constant T , and the dead time L. This is the most common process
model used in papers on PID controller tuning. The parameters L
and T are often called the apparent dead time and the apparent time
constant, respectively. The step response of the model (2.8) is

s(t) = K
(
1− e−(t−L)/T

)
From this equation, it follows that the average residence time is

Tar =

∞∫
0
(s(∞) − s(t))dt

K
= L + T

The ratio

τ = L

L + T =
L

Tar
(2.9)

which has the property 0 ≤ τ ≤ 1, is called the normalized dead time.
This quantity can be used to characterize the difficulty of controlling
a process. It is sometimes also called the controllability ratio. Roughly
speaking, it has been found that processes with small τ are easy to
control and that the difficulty in controlling the system increases
as τ increases. Systems with τ = 1 correspond to pure dead-time
processes, which are indeed difficult to control well.
The parameters in the model (2.8) can be determined graphically.

The static gain (K ) is obtained from the final steady-state level of the
process output. Remember that the process output must be scaled
with the change in the control variable. The intercept of the tangent
to the step response that has the largest slope with the horizontal
axes gives L (see Figure 2.8). The dead time L can also be obtained
as the time between the onset of the step and the time s(t) has
reached a few percent of its final value. There are different ways
to determine T . One method determines T from the distance AC in
Figure 2.8, where the point C is the time when the tangent intersects
the line s(t) = K . Another method determines T from the distance
AB in Figure 2.8, where B is the time when the step response has
reached the value 0.63K . Both methods give identical results if the
process dynamics are given by Equation (2.8), but they may differ
significantly in other cases. The method based on the point B gives
normally better approximations. The other method tends to give a too
large value of T .
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L          
B                    

0.63 K

A C

K

Figure 2.8 Graphical determination of three-parameter models
for systems with a monotone step response.

EXAMPLE 2.2

The three-parameter models of the process model (2.7) are

G3a(s) = 1
1+ 6.7s e

−4.3s G3b(s) = 1
1+ 4.3s e

−4.3s

where the time constant T is determined from the point C in model
G3a, and from the point B in the model G3b. Figure 2.9 shows the
step responses of the true process and the models, as well as the
Nyquist curves of the transfer functions. The figure shows that the
time constant T is overestimated in the model G3a. This overesti-
mation is unfortunately common in this method, since most process
control plants have an S-shaped step response similar to the model
(2.7). Notice that the true step response and the step response of the
model G3b coincide at the 63% point.

Another Model Structure

The model (2.8) is by far the most commonly used model in the papers
of PID controller tuning. In spite of this, it is not a representative
model. In fact, the conclusions drawn based on this model may often
be misleading when applied to real processes. This will be illustrated
by several examples in Chapter 4. One reason for this is that the step
response of the model (2.8) is not S-shaped, or equivalently, that the
frequency response of the model does not decay fast enough for high
frequencies.
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Figure 2.9 Step responses and Nyquist curves of the process
G(s) = 1/(s+1)8 (solid line) and the three-parameter models G3a(s)
(dashed line) and G3b(s) (dotted line).

Another three-parameter model is

G(s) = K

(1+ sT)2 e
−sL (2.10)

The step response of this model is

s(t) = K
(
1−

(
1+ t− L

T

)
e−(t−L)/T

)
(2.11)

This model has an S-shaped step response and often gives a better
approximation than the first-order plus dead-time model (2.8). Static
gain K and dead time L can be determined in the same way as
for the model (2.8). Time constant T can then be determined from
Equation 2.11 if the value of the step response at one time is known.
The equation obtained must be solved numerically.

EXAMPLE 2.3

Fitting the model (2.10) to the process model (2.7) gives

G3c(s) = 1
(1+ 2.0s)2 e

−4.3s

The gain K = 1 is obtained from the steady-state value of the signal,
and the dead time L = 4.3 is obtained from the intersection of the
tangent with the largest slope and the horizontal axis as in the
previous examples. The two time constants T = 2.0 are obtained
by numerical solution of Equation (2.11). The point s(8.6) = 0.63 is
used to obtain the additional condition. Figure 2.10 shows the step
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Figure 2.10 Step responses and Nyquist curves of the process
G(s) = 1/(s+1)8 (solid line) and the three-parameter model G3c(s)
(dashed line).

responses of the true process model and G3c(s), as well as the Nyquist
curves of the two transfer functions. The two step responses coincide
at the 63% point. The model now has the S-shaped form because of
the second-order model, and the fit is much better than the previous
first-order models.

Four-Parameter Models

An even better approximation may be obtained by the transfer func-
tion

G(s) = K

(1+ sT1)(1+ sT2) e
−sL (2.12)

This model has four parameters: the gain K , the time constants T1
and T2, and the dead time L. The gain K can be determined from the
steady-state value of the step response. The dead time L can also be
obtained in the same way as for the three-parameter models either
by drawing the tangent of maximum slope of s(t) or by determining
the time between the onset of the step and the time s(t) has reached
a few percent of its final value. The step response of the model (2.12)
is

s(t) = K
(
1+ T2e

−(t−L)/T2 − T1e−(t−L)/T1
T1 − T2

)
T1 �= T2 (2.13)

The time constants (T1) and (T2) can be calculated from this expres-
sion by determining two points of the step response. The calculation
does involve solution of transcendental equations. This must be done
numerically.
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Figure 2.11 Step responses and Nyquist curves of the process
G(s) = 1/(s+ 1)8 (solid line) and the four-parameter model G4a(s)
(dashed line).

EXAMPLE 2.4

A four-parameter model (2.12) of the process model (2.7) has been
obtained in the following way. The gain K = 1 is determined from
the steady-state values, and the dead time L = 4.3 is obtained from
the largest slope, as in the previous examples. The time constants T1
and T2 are then obtained by numerically fitting the equation for the
step response (2.13) to the values of the true step response at the 33%
point and the 67% point. With s(6.5) = 0.33 and s(8.9) = 0.67, the
time constants become T1 = 0.93 and T2 = 3.2. The transfer function
is thus

G4a(s) = 1
(1+ 0.93s)(1+ 3.2s) e

−4.3s

Figure 2.11 shows the step responses of the true process model and
G4a(s), as well as the Nyquist curves of the two transfer functions.
Notice that the two step responses coincide at the 33% point and at
the 67% point.

In the previous example, gain K and dead time L were deter-
mined graphically from the step response, whereas time constants T1
and T2 were determined by numerical solution of the equation for the
step response. There are several methods presented for a graphical de-
termination of all four parameters of the model (2.12). These methods
are useful when no computers are available for numerical solutions.
Using computer optimization programs, however, often gives a better
approximation than the graphical methods. This is illustrated in the
following example.
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Figure 2.12 Step responses and Nyquist curves of the process
G(s) = 1/(s + 1)8 (solid line) and the four-parameter model G4b
(dashed line).

EXAMPLE 2.5

The four-parameter model (2.12) has been fitted to the process model
(2.7) using least squares optimization, where the aim was to obtain
an accurate model in the third quadrant, i.e., where the phase shift
is between −90○ and −180○. The following model was obtained.

G4b(s) = 1.05
(1+ 2.39s)2 e

−3.75s

Figure 2.12 shows the step responses of the true process model and
G4b(s), as well as the Nyquist curves of the transfer functions.

Models for Integrating Systems

There are some process control systems where the dynamics contain
integration or very long time constants. Such systems will not reach
a steady state under open-loop conditions. They are sometimes called
systems without self regulation. For PID tuning it is useful to treat
such systems separately.

Impulse Responses

For a system with integral action a steady state will not be achieved
when the input signal is a step, since the output will asymptotically
change at a constant rate. There will be, however, a steady state when
the input is an impulse. To determine the dynamics we can, therefore,
apply a short pulse to the process. After normalizing the response by
dividing with the pulse area, we then get a step response that can
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be modeled using the methods we have just discussed. The transfer
function of a system with integral action is then obtained simply by
multiplying the transfer function by 1/s. We illustrate the procedure
with an example.

EXAMPLE 2.6

Assume that a square pulse with unit height and duration τ has been
applied to a process and that the model

G1(s) = K

1+ sT e
−sL

has been fitted to the response as described in Example 2.2. The
transfer function of the process is then

G(s) = 1
sτ
G1(s) = K

sτ (1+ sT) e
−sL

Step Responses

Models based on step responses can also be applied to processes with
integral action. One possibility is to calculate the derivative of the
step response and apply the impulse response method that was just
discussed.
The two-parameter model

G(s) = a

sL
e−sL

that was used to model stable processes previously in this section
can also be applied to integrating processes. This model gives a bad
description of stable processes at high frequencies, but for integrating
processes the low frequency behavior is well captured by the model.
A more sophisticated model that gives a better approximation at

higher frequencies is given by the transfer function

G(s) = K

s(1+ sT) e
−sL (2.14)

The model is characterized by three parameters: the velocity gain K ,
the time constant T , and the dead time L. The step response of the
model (2.14) is

s(t) = K
(
t− L− T

(
1− e−(t−L)/T

))
(2.15)

The gain K and the average residence time Tar = L + T can be
determined graphically as shown in Figure 2.13.
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K(L+T)

L+T

Figure 2.13 Graphical determination of a three-parameter model
for an integrating process.

The dead time L and the time constant T can be determined by
fitting Equation (2.15) to one point of the step response. A suitable
point is

s(L+ T) = KTe−1

which gives

T = s(L+ T)
K

e1

Models for Oscillatory Systems

Oscillatory systems with step responses, as shown in Figures 2.5B
and D, can be crudely approximated by the two-parameter model
(2.6), but this model will not capture the oscillations. None of the
three- or four-parameter models presented above is suitable either. A
three-parameter model that describes the oscillations is given by the
transfer function

G(s) = Kω 2

s2 + 2ζ ω s+ω 2
(2.16)

This model has three parameters: the static gain K , the natural
frequency ω , and the relative damping ζ . These parameters can be
determined approximately from the step response as indicated in
Figure 2.14. The period of the oscillation Tp and the decay ratio d
are first determined. Parameters ω and ζ are related to Tp and d as
follows.

d = e−2ζ π /
√
1−ζ 2 Tp = 2π

ω
√
1− ζ 2
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Figure 2.14 Graphical determination of mathematical models for
systems with an oscillatory step response.

or

ζ = 1√
1+ (2π/ log d)2 ω = 2π

Tp
√
1− ζ 2

(2.17)

A time delay can also be added to the model (2.16) and determined in
the same way as for the previous models, e.g., by drawing the tangent
of maximum slope or determining the time between the onset of the
step and the time the step response has reached a few percent of its
final value.

2.5 Methods of Moments

All average residence time was determined based on calculation of
an area. All other methods discussed in Section 2.4 were based on
evaluation of the step response at single points only. Such methods are
quite sensitive to measurement noise. In this section we will discuss
methods that are based on integrals of the step response.

Area Methods

We will first discuss a method that is based on area calculations.
Static gain K and average residence time Tar are first determined as
in Figure 2.6. The area A1 under the step response up to time Tar is
then determined. For a system having the transfer function

G(s) = K

1+ sT e
−sL



2.5 Methods of Moments 25

we have

A1 =
Tar∫
0

s(t)dt =
T∫
0

K (1− e−t/T)dt = KTe−1

The time constant is thus given by

T = eA1
K

(2.18)

The dead time is then given by

L = Tar − T = A0
K
− eA1
K

(2.19)

With this method parameters L and T are both determined from
computations of areas. The method is illustrated by the following
example.

EXAMPLE 2.7

The method based on area determination has been applied to the
process model (2.7). Static gain K is first determined from the sta-
tionary values to K = 1. Area A0 is then determined to 8.0 providing
the average residence time Tar = 8. Area A1 can be determined by
integrating the step response up to time Tar to A1 = 1.1. From Equa-
tion (2.18), time T can be calculated to T = 3.0, and finally Equation
(2.19) gives L = 5.0. To summarize, the method based on area deter-
mination gives the following three-parameter model

G3d(s) = 1
1+ 3.0s e

−5.0s

Figure 2.15 shows the step responses of the true process model and
G3d(s), as well as the Nyquist curves of the two transfer functions.

The same idea can easily be applied to a system with the transfer
function

G(s) = K

(1+ sT)2 e
−sL (2.20)

Parameters K and residence time Tar are determined as before. In
this case we have

Tar = L+ 2T
The area A1 under the step response up to time Tar is then

determined. For a system having transfer function (2.20) we have

A1 =
Tar∫
0

s(t)dt =
2T∫
0

K

(
1− e−t/T − t

T
e−t/T

)
dt = 4KTe−2
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Figure 2.15 Step responses and Nyquist curves of the process
G(s) = 1/(s+1)8 (solid line) and the three-parameter model G3d(s)
(dashed line).

The time constant is thus given by

T = A1e
2

4K
(2.21)

and the dead time is

L = Tar − 2T = A0
K
− A1e

2

2K
(2.22)

The following example illustrates the properties of the method.

EXAMPLE 2.8

The three-parameter model (2.20) has been fitted to the process
model (2.7) using the method of area determination. Static gain K
is determined from the stationary values to K = 1. The area A0 is
8.0, which gives the average residence time Tar = 8.0. Furthermore
the area A1 is 1.1 and Equation (2.21) then gives T = 2.0. Equation
(2.22) finally gives L = 4.0 and the model becomes

G3e(s) = 1
(1+ 2.0s)2 e

−4.0s

Figure 2.16 shows the step responses of the true process model and
G3e(s), as well as the Nyquist curves of the two transfer functions.

The methods based on area determination are less sensitive to
high-frequency disturbances than the previous methods, where the
model is determined from only a few values of the step response. On
the other hand, they are more sensitive to low-frequency disturbances
such as a change in static load.
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Figure 2.16 Step responses and Nyquist curves of the process
G(s) = 1/(s + 1)8 (solid line) and the three-parameter model
G3e(dashed line).

The Method of Moments

A drawback with the area methods is that they require a storage
of the step response. Area A1 cannot be computed until area A0 is
determined. Therefore, some alternative methods that are also based
on integration will be considered.
Let h(t) be an impulse response and G(s) the corresponding

transfer function. The functions are related through

G(s) =
∞∫
0

e−sth(t)dt

Taking derivatives with respect to s gives

dnG(s)
dsn

= G(n)(s) = (−1)n
∞∫
0

e−sttnh(t)dt

Hence,

G(n)(0) = (−1)n
∞∫
0

tnh(t)dt (2.23)

The values of the transfer function and its derivatives at s = 0 can
thus be determined from integrals of the impulse response.

The Average Residence Time

The impulse response is positive for systems with monotone step re-
sponses. It can be interpreted as the density function of a probability
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distribution if it is normalized as follows:

f (t) = h(t)
∞∫
0
h(t)dt

The quantity f (t)dt can then be interpreted as the probability that
an impulse entering the system at time 0 will leave at time t. The
average residence time is then

Tar =
∞∫
0

t f (t)dt =

∞∫
0
th(t)dt
∞∫
0
h(t)dt

(2.24)

Introduce
�(t) = s(∞) − s(t)

where s(t) is the unit step response. Then
d�(t)
dt

= −h(t)

It follows that
∞∫
0

th(t)dt =
[
−t�(t)

]∞
0
+
∞∫
0

�(t)dt

The first term of the right-hand side is zero if �(t) goes to zero at
least as fast as t1+ε for large t. The average residence time can thus
also be written as

Tar =

∞∫
0
(s(∞) − s(t))dt

s(∞)
which is the definition used previously.
Equation (2.23) gives a convenient way to determine parameters

of different models by computing the moments. This will be illustrated
by some examples.

A Three-Parameter Model

Consider the transfer function

G(s) = K

1+ sT e
−sL (2.25)

It follows that

K = G(0) =
∞∫
0

h(t)dt (2.26)



2.5 Methods of Moments 29

Taking logarithms of Equation (2.25) gives
logG(s) = log K − sL− log (1+ sT)

Differentiating this expression gives

G ′(s)
G(s) = −L −

T

1+ sT
G ′′(s)
G(s) −

(
G ′(s)
G(s)

)2
= T2

(1+ sT)2
Hence

Tar = −G
′(0)
G(0) = L+ T =

∞∫
0
th(t)dt
∞∫
0
h(t)dt

T2 = G
′′(0)
G(0) − T

2
ar =

∞∫
0
t2h(t)dt
∞∫
0
h(t)dt

− T2ar

(2.27)

Gain K is thus given by Equation (2.26) and average residence time
Tar and time constant T by Equation (2.27). The dead time L can
then be computed to

L = Tar − T
It has thus been shown that the parameters of the model can be
obtained from the first two moments of the impulse response. We
illustrate the procedure with an example.

EXAMPLE 2.9

Consider the process model

G(s) = 1
(s+ 1)8

The first two derivatives with respect to s become

G ′(s) = − 8
(s+ 1)9 G ′′(s) = 72

(s+ 1)10

Hence G(0) = 1, G ′(0) = −8, and G ′′(0) = 72. Equations (2.26) and
(2.27) now give

K = 1
Tar = 8
T2 = 72− 64 = 8
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We thus find T = 2√2 	 2.8 and L = 8− 2√2 	 5.2. This result can
be compared with the previous methods in Examples 2.2 and 2.7.

Another Three-Parameter Model

The method of moments will now be applied to determine the param-
eters of the transfer function

G(s) = K

(1+ sT)2 e
−sL

We have
logG(s) = log K − sL− 2 log (1+ sT)

Hence
G ′(s)
G(s) = −L −

2T
1+ sT

G ′′(s)
G(s) −

(
G ′(s)
G(s)

)2
= 2T2

(1+ sT)2
Hence

K = G(0) =
∞∫
0

h(t)dt

Tar = −G
′(0)
G(0) = L+ 2T =

∞∫
0
th(t)dt
∞∫
0
h(t)dt

T2 = G
′′(0)
2G(0) −

1
2
T2ar =

∞∫
0
t2h(t)dt

2
∞∫
0
h(t)dt

− 1
2
T2ar

(2.28)

We illustrate the method with an example.

EXAMPLE 2.10

Consider the process model (2.7). It follows from the previous example
that G(0) = 1, G ′(0) = −8, and G ′′(0) = 72. We thus find K = 1,
Tar = 8, T = 2 and L = 4. This is the same model as the one obtained
in Example 2.8.

Other Input Signals

From a practical point of view it is a drawback to have methods that
require special input signals. The method of moments can be applied
to any signal provided that the system is initially at rest.
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Let U (s) and Y(s) be the Laplace transforms of an arbitrary input
and the corresponding output, respectively. Taking derivatives we get

Y(s) = G(s)U (s)
Y ′(s) = G ′(s)U (s) + G(s)U ′(s)
Y ′′(s) = G ′′(s)U (s) + 2G ′(s)U ′(s) + G(s)U ′′(s)

etc.

Hence,

Y(0) = G(0)U (0)
Y ′(0) = G ′(0)U (0) + G(0)U ′(0)
Y ′′(0) = G ′′(0)U (0) + 2G ′(0)U ′(0) + G(0)U ′′(0)

etc.

(2.29)

The transfer function G(0) and its derivatives can thus be calculated
from experiments with arbitrary inputs by calculating the following
moments of the input and output

U (n)(0) = (−1)n
∞∫
0

tnu(t)dt

Y(n)(0) = (−1)n
∞∫
0

tny(t)dt

and using Equation (2.29).
By using these formulas it is possible to calculate G(n)(0) for any

signals for which the moments

un =
∞∫
0

tnu(t)dt

and

yn =
∞∫
0

tny(t)dt

exist. This means that the signals must decay sufficiently fast.
A typical case where the method can be used is when an exper-

iment is performed in a closed loop with a pulse-like perturbation
signal on the process input.
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Weighted Moments

The method just discussed cannot be used if the signals do not go
to zero or, equivalently, to a priori known mean values that can be
subtracted in the calculations of moments, because the moments will
then be infinite. There is, however, a simple modification that can
be used in this case. It follows from the definition of the Laplace
transform that

Y(n)(s) = d
nY(s)
dsn

= (−1)n
∞∫
0

e−sttny(t)dt

The weighted moments

yn =
∞∫
0

tne−α ty(t)dt = (−1)nY(n)(α )

will exist provided that y(t) does not grow faster than eα t for large
t. By computing yn and the analogously defined moment un, we can
compute Y(n)(α ) and U (n)(α ), and thus also G(n)(α ).

A Three-Parameter Model

Consider a system with the transfer function

G(s) = K

1+ sT e
−sL (2.30)

We have
logG(s) = log K − sL− log (1+ sT)

Hence
G ′(s)
G(s) = −L −

T

1+ sT
G ′′(s)
G(s) −

(
G ′(s)
G(s)

)2
= T2

(1+ sT)2
Thus we get

T2

(1+αT)2 =
G ′′(α )
G(α ) −

(
G ′(α )
G(α )

)2
= a2 (2.31)

Hence,

T = a

1−α a

L = −G
′(α )
G(α ) − a

(2.32)
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The average residence time thus becomes

Tar = L + T = −G
′(α )
G(α ) +

α a2

1−α a

Furthermore the static gain is given by

K = (1+αT)G(α )eα L (2.33)

The formulas are illustrated by an example.

EXAMPLE 2.11

Consider a system with the transfer function

G(s) = 1
(s+ 1)8

We have

G(α ) = 1
(1+α )8 G ′(α ) = −8

(1+α )9 G ′′(α ) = 72
(1+α )10

Computing the derivatives at the origin from the first terms in the
Taylor series expansion gives

G(0) 	 1
(1+α )8 +

8α
(1+α )9 =

1+ 9α
(1+α )9

G ′(0) 	 − 8
(1 +α )9 −

72α
(1+α )10 = −

8(1+ 10α )
(1+α )10

The estimate of the average residence time becomes

T̂ar = −G
′(0)
G(0) 	

8(1+ 10α )
(1+α )(1+ 9α ) =

8(1+ 10α )
1+ 10α + 9α 2

From these expressions it follows that α must be small in order to
give reasonably good approximations. To discuss the values of α , it is
reasonable to normalize and consider αTar. In this case, Tar = 8. With
αTar = 1 we get G(0) = 0.74, G ′(0) = −5.54, and T̂ar = 7.53. With
αTar = 0.5 we get G(0) = 0.91, G ′(0) = −7.1, and T̂ar = 7.83, giving
errors in the range of 10%. With αTar = 0.2 we get G(0) = 0.98,
G ′(0) = −7.81, and T̂ar = 7.96.
It follows from Equation (2.31) that

a =
√

72
(1+α )2 −

64
(1+α )2 =

2
√
2

1+α
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It follows from Equations (2.32) and (2.33) that

T = 2
√
2

1+ (1− 2
√
2)α

L = 8− 2
√
2

1+α

K = 1

(1+α )7(1+ (1− 2√2)α ) e
(8−2

√
2)α /(1+α )

The average residence time becomes

T̂ar = T + L = 8 1+ (2− 2
√
2)α

1+ (2− 2√2)α + (1− 2√2)α 2

With αTar = 1, 0.5, and 0.2, we get the estimates T̂ar = 8.26,
T̂ar = 8.06, and T̂ar = 8.01, respectively. This method of estimat-
ing the average residence time gives slightly better results than the
extrapolation method.

The example shows that we can obtain reasonable estimates of the
model parameters and the average residence time by using weighted
moments. It also seems reasonable to choose parameter α so that
αTar is in the range of 0.2 to 1. The best results are obtained for
a small value of α . There is, however, an advantage in using larger
values of α because there is then a less risk for disturbances to enter
the system.

2.6 Frequency Responses

Two methods for determining interesting points on the Nyquist curve
are presented below. Both are based on the idea of using feedback to
generate sinusoids having the appropriate frequency.

The Ziegler-Nichols Frequency Response Method

Ziegler and Nichols have provided a method for determining the ulti-
mate point on the Nyquist curve experimentally. The method is based
on the observation that many systems can be made unstable under
proportional feedback by choosing sufficiently high gain in the propor-
tional feedback (see Figure 2.17). Assume that the gain is adjusted so
that the process is at the stability boundary. The control signal and
the process output are then sinusoids with a phase shift of −180○ (see
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Figure 2.17 Setpoint ysp and process output y for a closed-loop
system with proportional feedback. The figure shows responses for
three values of controller gain K .

Figure 2.18). Because of the proportional feedback they are related
by

u = −K y

For simplicity it has been assumed that the setpoint is ysp = 0. Since
the gain around the loop must be unity to maintain an oscillation, we
have

KuG(iωu) = −1

where the gain, which brings the system to the stability limit, is called

Σ K

− 1

e u y

ProcessController

    G(s)  
y sp

Figure 2.18 Block diagram of a closed-loop system under propor-
tional feedback.
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Table 2.1 Relations between gain ratio κ and normalized dead
time τ for processes with the transfer functions G(s) = 1/(s+ 1)n.

n 2 3 4 8

τ 0.15 0.25 0.35 0.55

κ 0 0.125 0.25 0.53

the ultimate gain (Ku). It follows from the above equation that

G(iωu) = − 1
Ku

(2.34)

Several design methods based only on the knowledge of G(iωu) are
given in Chapter 4. It is convenient to introduce the gain ratio,

κ =
∣∣∣∣G(iωu)G(0)

∣∣∣∣ (2.35)

i.e., the gain at the ultimate frequency divided by the static gain. This
parameter is an indicator of how difficult it is to control the process.
Processes with a small κ are easy to control. The difficulty increases
with increasing κ .
Parameter κ is also related to the normalized dead time τ , which

was defined in Equation (2.9). For processes described by the transfer
function (2.8) parameters τ and κ are related in the following way:

τ = π − arctan
√
1/κ 2 − 1

π − arctan
√
1/κ 2 − 1+

√
1/κ 2 − 1

This relation is close to linear, it gives τ = 0 for κ = 0 and τ = 1 for
κ = 1. For small values of κ it can be approximated by τ = 1.6κ . This
is illustrated in the following example.

EXAMPLE 2.12

To illustrate the relation between the parameters κ and τ , we give
their values for systems with the transfer functions

G(s) = 1
(s+ 1)n

The results are presented in Table 2.1. For small values of n, both κ
and τ are small. These processes are easy to control. For large values
of n, both κ and τ approach 1. These processes are difficult to control.

The Ziegler-Nichols frequency response method has some advan-
tages. It is based on a simple experiment, and the process itself is
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Σ

− 1

e u y

ProcessRelay

    G(s)
y sp

Figure 2.19 Block diagram of a process under relay feedback.

used to find the ultimate frequency. It is, however, difficult to auto-
mate this experiment or perform it in such a way that the amplitude
of the oscillation is kept under control. Operating the process near in-
stability is also dangerous and may need management authorization
in an industrial plant. It is difficult to use this method for automatic
tuning. An alternative method for automatic determination of specific
points on the Nyquist curve is suggested below.

Relay Feedback

An alternative method to determine interesting points on the Nyquist
curve is based on the observation that the appropriate oscillation
can be generated by relay feedback. The system is thus connected
as shown in Figure 2.19. For many systems there will then be an
oscillation (as shown in Figure 2.20) where the control signal is a
square wave and the process output is close to a sinusoid. Notice that
the process input and output have opposite phase.
To explain how the system works, assume that the relay output is

expanded in a Fourier series and that the process attenuates higher

0 10 20 30 40
−2

0

0 10 20 30 40

−1

1

y

u

Figure 2.20 Relay output u and process output y for a system
under relay feedback.
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harmonics effectively. It is then sufficient to consider the first har-
monic component of the input only. The input and the output then
have opposite phase, which means that the frequency of the oscilla-
tion is the ultimate frequency. If d is the relay amplitude, the first
harmonic of the square wave has amplitude 4d/π . Let a be the am-
plitude of the oscillation in the process output. Then,

G(iωu) = −π a

4d
(2.36)

Notice that the relay experiment is easily automated. Since the am-
plitude of the oscillation is proportional to the relay output, it is easy
to control it by adjusting the relay output. Also notice in Figure 2.20
that a stable oscillation is established very quickly. The amplitude
and the period can be determined after about 20 s only, in spite of
the fact that the system is started so far from the equilibrium that it
takes about 8 s to reach the correct level. The average residence time
of the system is 12 s, which means that it would take about 40 s for
a step response to reach steady state.

Describing Function Analysis

The intuitive discussion about relay oscillations can be dealt with
more quantitatively using a technique called the describing function
method. This is an approximate method that can be used to deter-
mine if there will be an oscillation in a nonlinear feedback system
that is composed of a linear element and a static nonlinearity. To
determine conditions for oscillation, the nonlinear block is described
by a gain, N(a), which depends on signal amplitude a at the in-
put of the nonlinearity. This gain, which describes how a sinusoid of
amplitude a propagates through the system, is called the describing
function. If the process has the transfer function G(iω ), the condition

Describing function 1

N (a)

ω

−

Re G(iω)

Nyquist curve G(iω)

G(iω)  Im

Figure 2.21 Determination of possible oscillations using the de-
scribing function method.



2.6 Frequency Responses 39

for oscillation is simply given by

N(a)G(iω ) = −1 (2.37)
This equation is obtained by requiring that a sine wave with frequency
ω should propagate around the feedback loop with the same ampli-
tude and phase. The equation gives two equations for determining a
and ω , since N and G may be complex numbers. The equation can be
solved graphically by plotting −1/N(a) in the Nyquist diagram (as in
Figure 2.21) together with the Nyquist curve G(iω ) of the linear sys-
tem. An oscillation may occur if there is an intersection between the
two curves. The amplitude and the frequency of the oscillation are the
same as the parameters of the two curves at the intersection point.
Therefore, measuring the amplitude and the period of the oscillation,
the position of one point of the Nyquist curve can be determined.
The describing function, N(a), for a relay is given by

N(a) = 4d
π a

(2.38)

Since this function is real, an oscillation may occur if the Nyquist
curve intersects the negative real axis. This explains why the exper-
iment with relay feedback gives the point where the Nyquist curve
intersects the negative real axis.

A Relay with Hysteresis

There are advantages in having a relay with hysteresis instead of a
pure relay. With an ordinary relay, a small amount of noise can make
the relay switch randomly. By introducing hysteresis, the noise must
be larger than the hysteresis width to make the relay switch. See Fig-
ure 2.22. The describing function approach will be used to investigate
the oscillations obtained. The negative inverse of the describing func-

y

d

u

ε

Figure 2.22 Output y from a relay with hysteresis with input u.
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−
1

N(a)

Figure 2.23 The negative reciprocal of the describing function
N(a) for a relay with hysteresis.

tion of such a relay is

− 1
N(a) = −

π

4d

√
a2 − ε

2 − i π ε

4d
(2.39)

where d is the relay amplitude and ε is the hysteresis width. This
function can be represented as a straight line parallel to the real
axis, in the complex plane (see Figure 2.23).
By choosing the relation between ε and d, it is therefore possible

to determine a point on the Nyquist curve with a specified imaginary
part. Several points on the Nyquist curve can be obtained by repeating
the experiment with different relations between ε and d. It is easy to
control the amplitude of the limit cycle to a desired level by a proper
choice of the relay amplitude.

Other Uses of Relay Feedback

A slight modification of the experiment shown in Figure 2.19 gives
other frequencies of interest. Figure 2.24 shows an experiment that
gives the frequency ω 90, i.e. the frequency where the process has a
phase lag of 90○. Notice that there are two different versions of the
experiment depending on the order in which the integrator and the
relay are connected.

Closed Loop Experiments

Relay feedback can also be applied to closed-loop systems. Figure 2.25
shows an experiment that can be used to determine the amplitude
margin on-line. Let G
 be the loop transfer function, i.e., the combined
transfer function of the controller and the process. The closed-loop
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ProcessΣ
1

s

−1

ProcessΣ
1

s

−1

Figure 2.24 Using relay feedback to determine the frequencyω 90.

transfer function is then

Gcl(s) = G
(s)
1+ G
(s) (2.40)

The experiment with relay feedback then gives an oscillation with the
frequency such that the phase lag of Gcl(iω ) is 180○. It then follows
from Equation (2.40) that this is also the frequency where G
(iω ) has
a phase lag of 180○, i.e., the ultimate frequency. If m is the magnitude
of Gcl at that frequency, we find that an estimate of the amplitude
margin of the closed-loop system is given by

Âm = m

1−m
If the relay has hysteresis, a conformal mapping argument shows that
the experiment gives the frequency, where the loop transfer function

ProcessΣ
    

Σ Controller

−1

−1

Figure 2.25 Using relay feedback to determine the amplitude
margin of the closed-loop system.
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l

Figure 2.26 Experiments with relay feedback give the points
where the curve G
(iω ) intersects the circles.

intersects part of the circle,∣∣∣∣G
(iω ) − 1+ i 12a
∣∣∣∣ = 12a

which is shown as curve A in in Figure 2.26. By introducing an
integrator in series with the relay, the frequency where Gcl(iω ) has
a phase lag of 90○ is obtained. This occurs for loop transfer functions
G
 with the property

arg
G

1+ G
 = argG
 − arg (1+ G
) =

π

2

This corresponds to the circle,∣∣∣∣G
(iω ) + 12
∣∣∣∣ = 12 (2.41)

which is shown as curve B in Figure 2.26. The experiment will thus
give the point where the loop transfer function G
 of the closed-loop
system intersects the circle given by Equation (2.41). Combining this
result with the result from the experiment in Figure 2.24, it is also
possible to approximately determine the maximum sensitivity Ms.
Many controllers use a two-degree-of-freedom configuration in-

stead of pure error feedback. This is discussed in Chapter 3. This
means that the control law is given by

U (s) = Gf f (s)Ysp(s) − Gfb(s)Y(s)
The experiment shown in Figure 2.25 must then be modified by
introducing a block with the transfer function Gfb/Gf f in series with
the relay.
It has thus been demonstrated that several of the quantities

needed to make an assessment of control performance can be obtained
from experiments with relay feedback.
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2.7 Parameter Estimation

A mathematical model of the process can also be obtained by fitting
the parameters of a model to experimental data. For example, a model
of the type given by Equation 2.8 can be obtained by adjusting the
parameters so that they match observed input/output data. The ad-
vantage of such an approach is that any type of input/output data can
be used. However, parameter estimation requires more computations
than the methods discussed previously.

Parametric Models

Since the calculations will typically be made using a digital computer,
the input/output data will typically be sampled. It is then convenient
to operate with a discrete time model based on signals that are sam-
pled periodically. Moreover, if the experimental data is also computer-
generated, it is reasonable to assume that the input to the process is
constant between the sampling instants. Let the sampling period be
h. Assume that time delay L is less than h. The model (2.8) can then
be described as

y(kh) = ay(kh− h) + b1u(kh − h) + b2u(kh − 2h) (2.42)
where

a = e−h/T

b1 = K
(
1− e−(h−L)/T

)
b2 = K e−h/T

(
eL/T − 1

)
For arbitrary time delays L, the model becomes instead

y(kh) = ay(kh− h) + b1u(kh − nh) + b2u(kh − nh− h) (2.43)
where parameters a, b1, and b2 are given as above with n = L div h
and τ = Lmod h replacing L. The model can be given a convenient
representation by introducing a shift operator q, defined by

qy(kh) = y(kh+ h)
The model (2.43) can then be written as

qn(q− a)y(kh) = (b1q+ b2)u(kh)
If the complex variable z (similar to the Laplace transform variable s)
is introduced, the process can also be described by the pulse transfer
function:

H(z) = b1z+ b2
zn(z− a) (2.44)
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Notice that the transfer function is a ratio of two polynomials even if
the corresponding physical process has time delays.
The discussion can be extended to systems of higher order, and

the result is then an input/output relation of the form:

y(kh) + a1y(kh− h) + ⋅ ⋅ ⋅+ any(kh− nh)
= b1u(kh − h) + ⋅ ⋅ ⋅+ bnu(kh − nh)

This equation can be written compactly as

A(q)y(kh) = B(q)u(kh) (2.45)

where A(q) and B(q) are polynomials:

A(q) = qn + a1qn−1 + ⋅ ⋅ ⋅+ an
B(q) = b1qn−1 + b2qn−2 + ⋅ ⋅ ⋅+ bn

The corresponding transfer function is then

H(z) = B(z)
A(z) =

b1z
n−1 + b2zn−2 + ⋅ ⋅ ⋅+ bn
zn + a1zn−1 + ⋅ ⋅ ⋅+ an

Parameter Estimation

There are many ways to estimate the parameters of the discrete time
model (Equation 2.45). A simple method is as follows. Assume that a
sequence of input/output pairs ({u(kh), y(kh), k = 1, 2, . . . ,N}) have
been observed. The parameters can then be determined in such a
way that Equation (2.45) fits the data as well as possible in the least
squares sense. The sum of the squares of the errors is

V (θ) =
N∑

k=n+1
e2(kh) (2.46)

where

e(kh+ nh) = A(q)y(kh) − B(q)u(kh), k = 1, ⋅ ⋅ ⋅ ,N − n

Notice that the error is linear in parameters ai and bi of the model
and that the sum of squares of the errors is a quadratic function.
This means that the minimum of the loss function can be computed
analytically. Rather than showing the solution to the optimization
problem, a convenient way of computing the parameters recursively
is presented below.
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Recursive Computations

In a tuning experiment, a new input/output pair is normally obtained
in each sampling. It is then convenient to compute the parameter
estimates recursively. All parameters are grouped together in the
vector:

θ = (a1 a2 . . .an b1 b2 . . . bn)T

Introduce the regression vector defined by

ϕ k−1 = (−y(kh− h) . . .− y(kh− nh)u(kh − h) . . .u(kh − nh))T

The estimate can then be calculated recursively by

ek = y(kh) −ϕTk−1θ k−1 (2.47A)

Pk = Pk−1 − Pk−1ϕ k−1ϕ
T
k−1Pk−1

1+ϕTk−1Pk−1ϕ k−1
(2.47B)

θ k = θ k−1 + Pkϕ k−1ek (2.47C)
These equations have good physical interpretations. The new estimate
θ k is obtained by adding a correction term Pϕ e to the old estimate
θ k−1. The correction term is a product of three quantities: P, ϕ , and
e. The error e is the difference between the last measurement y(kh)
and the prediction ϕTθ of this measurement based on old estimates.
Regression vector ϕ can be interpreted as the gradient of the error
with respect to the parameters. This vector tells how the scalar error
is distributed to give corrections in all parameters.
Equation (2.47B) may be interpreted as follows. Matrix Pk is

proportional to the covariance matrix of the estimates; the last term
in Equation (2.47B) is the reduction in uncertainty due to the last
measurement.
The equations have to be initialized. The initial value of parame-

ter vector θ can be chosen as the best initial guesses of the parame-
ters. The initial value of matrix P is typically chosen as the identity
matrix multiplied by a large number.

Computer Code

Recursive least squares estimation is an essential part of many
schemes for automatic tuning. The following is a computer code that
implements the algorithm.

{The recursive least squares algorithm}
e=y
for i=1 to 2*n do e=e-ϕ[i]*θ[i]

{Compute estimator gain}
for i=1 to 2*n do
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begin
s=0
d=1
for j=1 to 2*n do

begin
s=s+P[i,j]*ϕ[j]
d=d+s*ϕ[j]

end
r[i]=s

end
{Update estimates}

for i=1 to 2*n do θ[i]=θ[i]+r[i]*e/d
{Update P matrix}

for i=1 to 2*n do
begin
for j=i to 2*n do P[i,j]=P[i,j]-r[i]*r[j]/d
for j=i+1 to 2*n do P[j,i]=P[i,j]
end

{Update ϕ-vector}
for i=1 to 2*n-1 do ϕ[2*n-i+1]=ϕ[2*n-i]
ϕ[1]=-y
ϕ[n+1]=u

The code description is given in “pidgin” Pascal, and it is assumed
that the variables have been properly declared. There are many re-
finements to the algorithm; for instance, its numerical properties can
be improved by using a so-called square root algorithm. It is also com-
mon practice to bandpass filter the signals before introducing them
into the algorithm to get rid of static levels and high frequency distur-
bances. There are also many variations of the algorithm to discount
past data. The code gives an indication of the type of algorithms that
are used in recursive parameter estimation.

2.8 Disturbance Models

So far, we have only discussed modeling of process dynamics. Dis-
turbances is another important side of the control problem. In fact,
without disturbances and process uncertainty there would be no need
for feedback. There is a special branch of control, stochastic control
theory, that deals explicitly with disturbances. This has had little
impact on tuning and design of PID controllers. For PID control, dis-
turbances have mostly been considered indirectly, e.g., by introducing
integral action. As our ambitions increase and we strive for control
systems with improved performances it will be useful to consider dis-
turbances explicitly. In this section, therefore, we will present some
models that can be used for this purpose.



2.8 Disturbance Models 47

0 1 2 3 4 5
0

0.4

0.8

0 1 2 3 4 5
0

2

4

0 1 2 3 4 5
0

1

0 1 2 3 4 5
−2

0

A

C

B

D

Figure 2.27 Prototype disturbances, A impulse, B step, C ramp,
and D sinusoid.

There are some fundamental problems in dealing with distur-
bances. An inherent property of disturbances is that they cannot be
predicted exactly. Most mathematical models, however, do have the
property that they give signals that can be predicted exactly. Some
care must be exercised when interpreting models and results.

Simple Models

Simple mathematical models were found to be very useful when deal-
ing with process dynamics in the previous sections. We will now try
to make models that also can be used to characterize disturbances.
Examples of some simple disturbances—impulse, step, ramp, and

sinusoid—are given in Figure 2.27. The impulse is a mathematical
idealization of a pulse whose duration is short in comparison with
the time scale. The signals are essentially deterministic. The only
uncertain elements in the impulse, step, and ramp are the times
when they start and the signal amplitude. The uncertain elements
of the sinusoid are frequency, amplitude, and phase.
More complex disturbances can be obtained by combining the

simple disturbances, as shown in Figure 2.28. These disturbances are
obtained by repeating a number of impulses, by combining steps and
ramps, and by changing the amplitude and phase of the sinusoid.

Noise

There are also other types of disturbances that are much more ir-
regular than the signals shown in Figure 2.28. Some examples are
given in Figure 2.29. To characterize signals like the ones shown
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Figure 2.28 Disturbances that are obtained by combining the
simple prototype disturbances.

in Figure 2.29, it is necessary to describe both the amplitude and
the time characteristics. A distinction between stationary and non-
stationary behavior must first be made. A signal is stationary if its
behavior is essentially the same for all times. The amplitude prop-
erties of a stationary signal can be described by giving a histogram
that tells the fraction of time when the signal has a given ampli-
tude.
The mean value, the standard deviation or the variance, and the

peak-to-peak values are simple ways to characterize the amplitude
distribution. If the amplitude distribution is normal, the distribution
is uniquely given by the mean value m and the standard deviation
σ . The probability for the signal to be outside the 3σ limits is about
0.0026.
The time behavior of a stationary signal can be described by

the spectral density function φ(ω ). This function characterizes the
frequency content of a signal. The value

1
2π

φ(ω )∆ω

is the average energy of a signal in a narrow band of width ∆ω
centered around ω . The average energy is then

σ 2 = 1
2π

∞∫
−∞

φ(ω )dω

A signal where φ(ω ) is constant is called white noise. Such a signal
has its energy equally distributed among all frequencies.
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Figure 2.29 Examples of noise signals.

Measuring Noise Characteristics

The noise characteristics can be determined in several different ways.
There are simple methods that can be used for crude estimates and
more sophisticated methods that give more precise descriptions.
A simple way to estimate the amplitude characteristics is to mea-

sure the average

m̄ = 1
T

T∫
0

y(t)dt

and the mean square error

σ̄ 2 = 1
T

T∫
0

(y(t) − m̄)2 dt

To evaluate the integrals it is necessary to know a reasonable value
of T , which requires knowledge about the time scale. An alternative
is to compute the peak-to-peak value ypp. The standard deviation can
then be estimated as

σ̄ = 1
6
ypp

Notice that it is also necessary to know the time scales in order to
determine the time interval over which the peak-to-peak value is
computed.
The energy in a given frequency band can be determined by

computing the mean square average or the peak-to-peak value of a
filtered signal.
Useful information about the frequency content in a signal can

also be determined from the zero crossings. For a stationary signal
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the average number of zero crossings per second can be determined
from

N = 1
π



∞∫
−∞

ω 2φ(ω )dω
∞∫
−∞

φ(ω )dω



1/2

where φ(ω ) is the spectral density. Notice that this formula has simi-
larities with the formula for determining the average residence time,
Equation (2.24).
For a spectral density that is uniform over the interval (ω 1,ω 2),

we get

N = 1
π

(
ω 32 −ω 31
3(ω 2 −ω 1)

)1/2
= 1

π

(ω 21 +ω 1ω 2 +ω 22
3

)1/2
For an ideal low-pass filter we have ω 1 = 0 and ω 2 = ω b, where ω b
is the band width. In this case we get

N = ω b

π
√
3
= 2π fb

π
√
3
	 1.16 fb

The average rate of zero crossings per second is thus approximately
equal to the bandwidth measured in Hz. Measurement of zero cross-
ings can easily be combined with computation of the peak-to-peak
value. More accurate determination of the spectral characteristics can
be done by using a spectral analyzer or by recording a data set and
computing the spectrum numerically.

Representation of Disturbances

It is often very convenient to consider signals as generated from a
dynamic system with simple inputs as shown in Figure 2.30. For
example, the signals shown in Figure 2.27 can be represented by
sending an impulse through a dynamic system. The transfer function
of the systems for the different signals are

Impulse G(s) = 1
Step G(s) = 1

s

Ramp G(s) = 1
s2

Sinusoid G(s) = ω 2

s2 +ω 2
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signal
G(s)

simple signal

Figure 2.30 Signals represented as outputs of dynamic systems.

Similarly the signals in Figure 2.28 can be generated by sending a
sequence of pulses through the same systems.
The same idea can be extended to describe noise. In this case the

generating signal is white noise. We illustrate the idea.

EXAMPLE 2.13

The so called RC noise has the spectral density

φ(ω ) = a2

ω 2 + a2
It can be represented by sending white noise through a system with
the transfer function

G(s) = a

s+ a
The possibility of representing signals in this way also gives a pos-

sibility of dealing with nonstationary signals. The process obtained by
sending white noise through an integrator, for example, is a drifting
process that is called a random walk or a Wiener process.
The representation of signals in this way also makes it possible

to see similarities between signals of different type. It turns out
that signals that are generated from the same system have many
similarities. For example, a step signal (Figure 2.27B), a piece-wise
constant signal (Figure 2.28B), and a random walk are all generated
by sending primitive signals through an integrator. The primitive
signals are an impulse, a sequence of impulses for the piece-wise
constant signals, or white noise for a random walk. A consequence of
this is that a controller that is designed to work well for one of these
signals will work well for all of them. A step disturbance is thus not
as special as it may first appear.

2.9 Approximate Models and Unmodeled

Dynamics

In this chapter, we have discussed various ways to model the process
to be controlled. We end the chapter with a discussion about what is
not captured by the models. Typical examples are nonlinearities and
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process variations. Furthermore, the parametric low-order models
give a satisfactory description of the behavior of the true system for
signals with a limited frequency range only.
The process models describe the relation between the process in-

put signal and the process output signal only, but the control system
consists of other signals that influence the control performance. The
characteristics of the setpoint changes, load disturbances, and mea-
surement noise must also be taken into account in the design of the
control system.
Many design methods for PID controllers require that the process

model be of low order. Some methods to approximate higher-order pro-
cess models with low-order models are also presented in this section.

Nonlinearities

All dynamic models presented in this chapter are linear, whereas
most processes in practice are nonlinear. Nonlinear valves, actuators
or sensors result in the process having different dynamics at different
operating points. A linear model, obtained by transient or frequency
response analysis of a nonlinear process, is only valid at the actual
operating point. This means that a controller that is tuned based on
this model may work well only at this operating point.
There are several ways to overcome the problem. A simple way

is to tune the controller for the worst case and accept degraded per-
formance at other operating conditions. If the characteristics of the
nonlinearity are known, it can be compensated by feeding signals
through a function module that forms the inverse of the nonlinearity.
An example is a flow meter based on measurement of difference pres-
sure. The flow is proportional to the square of the difference pressure.
A linear relation between the flow and the output signal from the
flow meter can be obtained by feeding the measured signal through
a square root function.
Another way to compensate for nonlinearities is to divide the op-

erating range into several smaller ranges where the process can be
well approximated by linear models. A controller with satisfactory
behavior for the full operating range can be obtained by determining
one model for each operating range and changing the controller pa-
rameters with the operating condition. This approach is called gain
scheduling.

Parametric Models

If the process is linear, a step response reveals all information about
the process dynamics. In the same way, a Nyquist curve or frequency
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response gives a complete description of the process dynamics. In-
formation is lost when going from these graphical descriptions to
parametric models. The parametric models derived for PID controller
tuning are normally of low order. This means that quite a lot of in-
formation is lost. It is, therefore, particularly important that these
simple models are derived properly and that their limitations are
kept in mind when using them for controller tuning.
The parametric models based on step response analysis are often

accurate at low frequencies, whereas they become more uncertain at
higher frequencies. The simple models based on frequency response
analysis, described in Section 2.6, are accurate at the frequencies of
the input signals, but not at other frequencies. The basic relay method
thus is accurate around the ultimate frequency ωu, but not for higher
and lower frequencies.

Process Variations

The model is valid at the time the experiment is performed. If the
process dynamics change with time, it may not be valid at a later time.
This problem can be handled in the same way as the nonlinearities
described above.
A simple solution is to base the controller tuning on the model

that describes the worst case. Gain scheduling can be used if the time
variations can be related to some measurable variable. Adaptive con-
trol can be used if the process variations are random in the sense that
they cannot be related to any measurable variable. Such a controller
will adapt itself automatically to the actual process dynamics.

Disturbances

There are always disturbances acting on a control system. We distin-
guish between three types of disturbances, namely, setpoint changes
(ysp), load disturbances (l), and measurement noise (n) (see Figure
2.31).

Setpoint Changes

In process control, most control loops have a constant setpoint. (An
exception is the controller sitting in the inner loop in cascade con-
trol.) The setpoint may change at certain time instances because of
desires to change operating conditions such as production rates. The
setpoint is, as a result, typically piece-wise constant with changes oc-
curring rarely. It is, therefore, suitable to model the setpoint as a step
function.
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Since the setpoint is a disturbance that we have access to, it is
possible to feed it through a low-pass filter or a ramping module before
it enters the PID controller. In this way, the step function can be made
smoother. This property is useful, since many control design methods
giving a good rejection of load disturbances give too large overshoots
after a sudden change in the setpoint.

Load Disturbances

Load disturbances are disturbances that enters the control loop some-
where in the process and drive the system away from its desired oper-
ating point. They may be caused by quality variations in a feed flow
or variations in the demand flow, for example. These disturbances
are the most common and the most important disturbances in pro-
cess control. When discussing controller design in Chapter 4, we will,
therefore, focus on the behavior with respect to these disturbances.
The load disturbance is typically a low-frequency disturbance,

and it will, furthermore, be more or less low-pass filtered by the
process depending on where in the process it enters. Consequently, it
usually results in a low-frequency disturbance in the process output.
To obtain this characteristic in the process output, we model the
load disturbance as a step function added to the control signal at
the process input (see Figure 2.31).

Measurement Noise

Measurement noise represents disturbances that distort the informa-
tion about the process variables obtained from the sensors. Measure-
ment noise may be of different character. It may be high-frequency
fluctuations and it may be low-frequency calibration errors. With sev-
eral sensors it is possible to reduce calibration errors. With only one
sensor nothing can be done about calibration errors; we, therefore,

ysp u
Controller ProcessΣΣ

e
Σ

x

l

–1

y

n

Figure 2.31 Block diagram of a simple feedback loop with three
types of disturbances: Setpoint changes (ysp), load disturbances (l)
and measurement noise (n).
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will model measurement noise as a high-frequency signal added to
the process output.
Since measurement noise does not contain any information about

the status of the process, it should be filtered out. Furthermore, high-
frequency components in the measurement signal might be amplified
by the controller and cause wear on the actuator. Filtering does intro-
duce additional dynamics. It is therefore important to take the filter
dynamics into account in the controlling design. We will model the
measurement noise as an impulse function.

Approximating Complex Models

In modeling it is often convenient to split a system into interconnected
subsystems. An example could be to divide a system into actuator, pro-
cess, and sensor. Another example occurs when general control loops
are cascaded. We may be interested then in obtaining a simplified de-
scription of the closed loop. Even if the model for each part is simple,
the complete model may then be quite complex. Since many of the
design methods for PID controllers are based on simple models, we
need a procedure to simplify a complex model. Some ways to make
such approximations are discussed below.
To perform the approximations it is necessary to determine the

frequency range where the approximation should be valid. We do this
simply by saying that the models should describe the system well
around the frequency ω 0. This frequency should be approximately
the same as the frequency of the dominant closed-loop poles of the
desired system or the desired bandwidth of the closed-loop system.
(The notion of dominant poles is discussed in Chapter 4.) Having
restricted the modeling to a rather narrow frequency range, low-order
models can now be determined by fitting them to experimental data,
as described previously in this section.
Another possibility is to start with a complex model of the form

Gp(s) = K 1+ b1s+ b2s
2 + ⋅ ⋅ ⋅+ bnsn

1+ a1s+ a2s2 + ⋅ ⋅ ⋅+ ansn e
−sL

and approximate it. The approximation is done in the following way.
Poles and zeros that are much slower than ω 0 are approximated by
integrators, poles, and zeros of the same order as ω 0 are retained,
and poles and zeros that are much faster than ω 0 are neglected or
approximated by a small time lag. A dead time such that ω 0L ≪ 1
is neglected or approximated by a time constant. The approximation
of fast poles and zeros by a first order system is illustrated by an
example.
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EXAMPLE 2.14 Approximation of fast modes

Consider the transfer function

G(s) = K (1+ sT1)(1+ sT2)
(1+ sT3)(1+ sT4)(1+ sT5)(1+ sT6) e

−sL

where
T = T3 + T4 + T5 + T6 − T1 − T2 − L > 0

and it is assumed that L ≪ T . The transfer function G can be
approximated by

G(s) = K

1+ sT

EXAMPLE 2.15 Approximation of fast and slow modes

Consider the same system as in Example 2.14. Assume that

T3 > T4 > T5 > T6
and that

T5 > max (T1,T2, L)
Furthermore, let it be desired to obtain a model that describes the
process well in the frequency range

1
T4
< ω 0 < 1

T5

The time constant T3 is slower than T4 and T5, and it will therefore
be approximated by an integrator, i.e.,

1
1+ sT3 	

1
sT3

The time constants T1, T2, T6, and the time delay L are all smaller
than T5. They will be approximated by a single time constant

T = T6 − T1 − T2 − L
If T is positive the system is then approximated by

G(s) = K

sT3(1+ st4)(1+ sT5)(1+ sT)
If T is negative the transfer function is instead approximated by

G(s) = K (1+ sT)
sT3(1+ sT4)(1+ sT5)
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Summary

To summarize: When deriving a simple model to be used for PID
controller tuning, it is important to ensure that the model describes
the process well for the typical input signals obtained during the
process operations. The amplitude and frequency distribution of the
signal is of importance. Model accuracy may be poor if the process is
nonlinear or time varying. Control quality can be improved by gain
scheduling or adaptive control. It is also important to know what kind
of disturbances are acting on the system and which limitation they
impose.

2.10 Conclusions

Modeling is an important aspect of controller tuning. The models we
need should describe how the process reacts to control signals. They
should also describe the properties of the disturbances that enter the
system. Most work on tuning of PID controllers have focused on the
process dynamics, which is also reflected in the presentation in this
chapter.
A number of methods for determining the dynamics of a process

have been presented in this chapter. Some are very simple: they
are based on a direct measurement of the step response and simple
graphical constructions. Others are based on the frequency response.
It has been shown that very useful information can be generated from
relay feedback experiments. Such experiments are particularly useful
because the process is brought into self-oscillation at the ultimate
frequency, which is of considerable interest for design of controllers.
The simple methods are useful in field work when a controller

has to be tuned and few tools are available. The methods are also
useful to provide understanding as well as being references when
more complicated methods are assessed. We have also presented more
complicated methods that require significant computations.
Models of different complexity have been presented. Many models

were characterized by a few parameters. Such models are useful for
many purposes and are discussed in Chapter 4. When using such
models it should be kept in mind that they are approximations.
When deriving the models we also introduced two dimension-

free quantities, the normalized dead time τ and the gain ratio κ .
These parameters make it possible to make a crude assessment of
the difficulty of controlling the process. Processes with small values
are easy to control. The difficulty increases as the values approach 1.
Tuning rules based on τ and κ are provided in Chapter 5.
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PID Control

3.1 Introduction

The PID controller is by far the most common control algorithm. Most
feedback loops are controlled by this algorithm or minor variations
of it. It is implemented in many different forms, as a stand-alone
controller or as a part of a DDC (Direct Digital Control) package or
a hierarchical distributed process control system. Many thousands
of instrument and control engineers worldwide are using such con-
trollers in their daily work. The PID algorithm can be approached
from many different directions. It can be viewed as a device that can
be operated with a few rules of thumb, but it can also be approached
analytically.
This chapter gives an introduction to PID control. The basic al-

gorithm and various representations are presented in detail. A de-
scription of the properties of the controller in a closed loop based on
intuitive arguments is given. The phenomenon of reset windup, which
occurs when a controller with integral action is connected to a process
with a saturating actuator, is discussed, including several methods to
avoid it.
Some important aspects of digital computer implementation of

PID controllers are given: issues such as prefiltering, different digi-
tal approximations, noise filtering, and computer code for good imple-
mentation. Operational aspects, such as bumpless transfer between
manual and automatic mode and between different parameter sets,
are also presented. The chapter ends with some aspects on the use
and misuse of PID control with examples of systems where PID con-
trol works well and where it does not.

59
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3.2 The Feedback Principle

The idea of feedback is deceptively simple and, yet, extremely pow-
erful. It has had a profound influence on technology. Application of
the feedback principle has resulted in major breakthroughs in con-
trol, communication, and instrumentation. Many patents have been
granted on the idea. Assume for simplicity that the process is such
that the process variable increases when the manipulated variable is
increased. The principle of feedback can then be expressed as follows:

Increase the manipulated variable when the process variable
is smaller than the setpoint and decrease the manipulated
variable when the process variable is larger than the setpoint.

This type of feedback is called negative feedback because the ma-
nipulated variable moves in opposite direction to the process variable.
The feedback principle can be illustrated by the block diagram shown
in Figure 3.1. In this diagram the process and the controller are repre-
sented as boxes with arrows denoting inputs and outputs. Notice also
that there is a special symbol to denote the summation of signals.
The block diagram shows that the process and the controller are con-
nected in a closed feedback loop. The presence of the sign-reversing
block indicates that the feedback is negative.
The reason why feedback systems are of interest is that feedback

makes the process variable close to the setpoint in spite of distur-
bances and variation of the process characteristics.

On-Off Control

The feedback can be arranged in many different ways. A simple feed-
back mechanism can be described mathematically as follows:

u =
{
umax if e > 0
umin if e < 0

(3.1)

where e = ysp − y is the control error. This control law implies that
maximum corrective action is always used. The manipulated variable,

Controller Process
e u y

Σ

1−

y sp

Figure 3.1 Block diagram of a process with a feedback controller.
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Figure 3.2 Controller characteristics for ideal on-off control (A),
and modifications with dead zone (B) and hysteresis (C).

thus, has its largest value when the error is positive, and its smallest
value when the error is negative. This type of feedback is called
on-off control. It is simple and there are no parameters to choose.
On-off control often succeeds in keeping the process variable close
to the setpoint, but it will typically result in a system where the
variables oscillate. Notice that in Equation (3.1) the control variable
is not defined when the error is zero. It is common to have some
modifications either by introducing hysteresis or a dead zone (see
Figure 3.2).

Proportional Control

The reason why on-off control often gives rise to oscillations is that the
system overreacts because a small change in the error will make the
manipulated variable change over the full range. This effect is avoided
in proportional control where the characteristic of the controller is
proportional to the control error for small errors. Figure 3.3 shows
the characteristic of a proportional controller. The controller is thus
characterized by the nonlinear function u = fc(e) shown in the figure.
To describe the characteristic of a proportional controller we must

of course give the limits umax and umin of the control variable. The lin-
ear range can be specified either by giving the slope of the character-
istic (controller gain K ) or by giving the range where the character-
istic is linear (proportional band Pb). This range is normally centered
around the setpoint. The proportional band and the controller gain
are related through

umax − umin = K Pb (3.2)
It is normally assumed that umax − umin = 100 %, which implies that

K = 100
Pb

(3.3)

Notice that a proportional controller acts like an on-off controller for
large errors.
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    umax
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    umin

Figure 3.3 Characteristic of a proportional controller. The input
is control error e and the output is control signal u.

Static Analysis of Feedback Systems

Some properties of a control system can be understood by a simple
static analysis. To do this we introduce the static process characteris-
tic, which is a curve that shows the stationary value of process output
y as a function of process input u. See Figure 3.4. Notice that the curve
has a physical interpretation only for a stable process. The static pro-
cess characteristic is very important. It can be used to determine the
range of control signals required to change the process output over
the desired range, to size actuators, and to select sensor resolution. It
can also be used to assess whether static gain variations are so large
that they must be accounted for in the control design.

Proportional Control

Consider a process under proportional control. Let the controller char-
acteristic be

u = fc(ysp − y) (3.4)
Introducing the inverse controller characteristic f−1c , this can be writ-
ten as

ysp − y= f−1c (u)
Further introducing the static process characteristic,

y = fp(u) (3.5)
we find that the equilibrium value of u satisfies the equation

ysp − f−1c (u) = fp(u) (3.6)
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y

u

Figure 3.4 Static process characteristic. Shows process output y
as a function of process input u under static conditions.

This equation can be solved graphically by finding the intersection
between the graphs of the functions fp(u) and ysp− f−1c (u) as shown
in Figure 3.5. The intersection is unique if the static characteristics
are monotone. The equilibrium value of process output y is obtained
simply as the y-coordinate of the intersection. In the graphical con-
struction, it is easy to see how the equilibrium is influenced by the
setpoint and the controller gain. The equilibrium agrees with the set-
point only if

ysp = y0 def= fp(ub) (3.7)

yy

a

slope

}

u  u b umaxumin

    
fp(u)

1

K

y sp − fc
−1

(u)

  
y sp

  y

    y0

Figure 3.5 Determination of equilibrium from static process and
controller characteristics.
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For all other values of the setpoint there will be a deviation. If the
process characteristic is approximated by a straight line with slope
Kp, and the controller gain is K , the deviation can easily be computed.
Introducing the parameter a shown in Figure 3.5, we find that

ysp − y0 =
(
Kp + 1

K

)
a

and

ysp − y= 1
K
a

This implies that the steady-state error is given by

e = ysp − y = 1
1+ KpK (ysp − y0) (3.8)

The smaller the deviation, the larger is the loop gain KpK .

3.3 PID Control

In the previous section we saw that proportional control had the draw-
back that it mostly results in a static or steady state error. The control
algorithms used in practice are, therefore, usually more complex than
the proportional controller. It has been found empirically that a so-
called PID controller is a useful structure. Inside the proportional
band the behaviour of the “textbook” version of the PID algorithm
can be described as:

u(t) = K
(
e(t) + 1

Ti

t∫
0

e(τ )dτ + Td de(t)
dt

)
(3.9)

where u is the control variable and e is the control error (e = ysp− y).
The control variable is thus a sum of three terms: the P-term (which
is proportional to the error), the I-term (which is proportional to the
integral of the error), and the D-term (which is proportional to the
derivative of the error). The controller parameters are proportional
gain K , integral time Ti, and derivative time Td.

Proportional Action

In the case of pure proportional control, the control law of Equation
(3.9) reduces to

u(t) = K e(t) + ub (3.10)
The control action is simply proportional to the control error. The
variable ub is a bias or a reset. When the control error e is zero, the
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control variable takes the value u(t) = ub. Bias ub is often fixed to
(umax + umin)/2, but can sometimes be adjusted manually so that the
stationary control error is zero at a given setpoint.

Static Analysis

Several properties of proportional control can be understood by the fol-
lowing argument, which is based on pure static considerations. Con-
sider the simple feedback loop, shown in Figure 3.6, and composed of a
process and a controller. Assume that the controller has proportional
action and that the process is modeled by the static model

x = Kp(u + l) (3.11)
where x is the process variable, u is the control variable, l is a load
disturbance, and Kp is the static process gain. The following equations
are obtained from the block diagram.

y= x + n
x = Kp(u + l)
u = K (ysp − y) + ub

(3.12)

Elimination of intermediate variables gives the following relation be-
tween process variable x, setpoint ysp, load disturbance l, and mea-
surement noise n:

x = K Kp

1+ K Kp (ysp − n) +
Kp

1+ K Kp (l + ub) (3.13)

Compare with Equation (3.8) of the previous section. Product K Kp
is a dimensionless number called the loop gain. Several interesting
properties of the closed-loop system can be read from Equation (3.13).
First assume that n and ub are zero. Then the loop gain should be
high in order to ensure that process output x is close to setpoint ysp.
A high value of the loop gain will also make the system insensitive to

ysp u
Controller ProcessΣΣ

e
Σ

x

l

–1

y

n

Figure 3.6 Block diagram of a simple feedback loop.
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load disturbance l. However, if n is nonzero, it follows from Equation
(3.13) that measurement noise n influences the process output in
the same way as setpoint ysp. To avoid making the system sensitive
to measurement noise, the loop gain should not be made too large.
Further, the controller bias ub influences the system in the same way
as a load disturbance. It is, therefore, obvious that the design of the
loop gain is a trade-off between different control objectives, and that
there is no simple answer to what loop gain is the best. This will
depend on which control objective is the most important.
It also follows from Equation (3.13) that there will normally be

a steady-state error with proportional control. This can be deduced
intuitively from the observation following from Equation (3.12) that
the control error is zero only when u = ub in stationarity. The error,
therefore, can be made zero at a given operating condition by a proper
choice of the controller bias ub.
The static analysis given above is based on the assumption that

the process can be described by a static model. This leaves out some
important properties of the closed-loop system dynamics. The most
important one is that the closed-loop system will normally be un-
stable for high-loop gains if the process dynamics are considered. In
practice, the maximum loop gain is thus determined by the process
dynamics. One way to describe process dynamics leads to descriptions
like Equation (3.11) where the process gain is frequency-dependent.
(This was discussed in Chapter 2.)
A typical example of proportional control is illustrated in Figure

3.7. The figure shows the behaviour of the process output and the
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Figure 3.7 Simulation of a closed-loop system with proportional
control. The process transfer function is G(s) = (s+1)−3. The upper
diagram shows setpoint ysp = 1 and process output y for different
values of controller gain K . The lower diagram shows control signal
u for different controller gains.
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control signal after a step change in the setpoint. The steady state
error can be computed from Equation (3.13). The bias term ub, the
load l, and the noise n are all zero in the simulation. With a controller
gain K = 1 and a static process gain Kp = 1, the error is therefore
50%. The figure shows that the steady state error decreases with
increasing controller gain as predicted by Equation (3.13). Notice also
that the response becomes more oscillatory with increasing controller
gain. This is due to the process dynamics.

Integral Action

The main function of the integral action is to make sure that the
process output agrees with the setpoint in steady state. With propor-
tional control, there is normally a control error in steady state. With
integral action, a small positive error will always lead to an increas-
ing control signal, and a negative error will give a decreasing control
signal no matter how small the error is.
The following simple argument shows that the steady-state error

will always be zero with integral action. Assume that the system is in
steady state with a constant control signal (u0) and a constant error
(e0). It follows from Equation (3.9) that the control signal is then
given by

u0 = K
(
e0 + e0

Ti
t

)
As long as e0 �= 0, this clearly contradicts the assumption that the
control signal u0 is constant. A controller with integral action will
always give zero steady-state error.
Integral action can also be visualized as a device that automati-

cally resets the bias term ub of a proportional controller. This is illus-
trated in the block diagram in Figure 3.8, which shows a proportional
controller with a reset that is adjusted automatically. The adjustment
is made by feeding back a signal, which is a filtered value of the out-
put, to the summing point of the controller. This was actually one of
the early inventions of integral action, or “automatic reset,” as it was
also called.

ΣK

I

e u

    

1

1+ sTi

Figure 3.8 Implementation of integral action as positive feedback
around a lag.
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The implementation shown in Figure 3.8 is still used by many
manufacturers. A simple calculation shows that the controller gives
the desired results. The following equations follow from the block
diagram:

u = K e+ I

Ti
dI

dt
+ I = u

Elimination of u between these equations gives

Ti
dI

dt
+ I = K e+ I

Hence,

Ti
dI

dt
= K e

which shows that the controller in Figure 3.8 is, in fact, a PI controller.
The properties of integral action are illustrated in Figure 3.9,

which shows a simulation of a system with PI control. The propor-
tional gain is constant, K = 1 in all curves, and the integral time is
changed. The case Ti = ∞ corresponds to pure proportional control.
This case is identical to the case K = 1 in Figure 3.7, where the steady
state error is 50%. The steady state error is removed when Ti has fi-
nite values. For large values of the integration time, the response
creeps slowly towards the setpoint. The approach is approximately
exponential with time constant Ti/K Kp. The approach is faster for
smaller values of Ti; and it is also more oscillatory.
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Figure 3.9 Simulation of a closed-loop system with proportional
and integral control. The process transfer function is G(s) = (s +
1)−3, and the controller gain is K = 1. The upper diagram shows
setpoint ysp = 1 and process output y for different values of integral
time Ti. The lower diagram shows control signal u for different
integral times.
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Derivative Action

The purpose of the derivative action is to improve the closed-loop
stability. The instability mechanism can be described intuitively as
follows. Because of the process dynamics, it will take some time before
a change in the control variable is noticeable in the process output.
Thus, the control system will be late in correcting for an error. The
action of a controller with proportional and derivative action may be
interpreted as if the control is made proportional to the predicted
process output, where the prediction is made by extrapolating the
error by the tangent to the error curve (see Figure 3.10 ). The basic
structure of a PD controller is

u(t) = K
(
e(t) + Td de(t)

dt

)
A Taylor series expansion of e(t+ Td) gives

e(t+ Td) 	 e(t) + Td de(t)
dt

The control signal is thus proportional to an estimate of the control
error at time Td ahead, where the estimate is obtained by linear
extrapolation.
The properties of derivative action are illustrated in Figure 3.11,

which shows a simulation of a system with PID control. Controller
gain and integration time are kept constant, K = 3 and Ti = 2, and
derivative time Td is changed. For Td = 0 we have pure PI control. The
closed-loop system is oscillatory with the chosen parameters. Initially
damping increases with increasing derivative time, but decreases
again when derivative time becomes too large.

Summary

The PID controller has three terms. The proportional term P corre-
sponds to proportional control. The integral term I gives a control

0 1 2 3
0

0.5

1

1.5

e(t)
e(t+ Td)

e(t) + Td de(t)dt

Figure 3.10 Interpretation of derivative action as predictive con-
trol, where the prediction is obtained by linear extrapolation.
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Figure 3.11 Simulation of a closed-loop system with proportional,
integral and derivative control. The process transfer function is
G(s) = (s + 1)−3, the controller gain is K = 3, and the integral
time is Ti = 2. The upper diagram shows setpoint ysp = 1 and
process output y for different values of derivative time Td. The lower
diagram shows control signal u for different derivative times.

action that is proportional to the time integral of the error. This en-
sures that the steady state error becomes zero. The derivative term D
is proportional to the time derivative of the control error. This term
allows prediction of the future error. There are many variations of the
basic PID algorithm that will substantially improve its performance
and operability. They are discussed in the next section.

3.4 Modifications of the PID Algorithm

The PID algorithm was given by Equation (3.9) in the previous sec-
tion. This “textbook” algorithm is seldom used in practice because
much better performance is obtained by the modified algorithm dis-
cussed in this section.

Alternative Representations

The PID algorithm given by (Equation 3.9) can be represented by the
transfer function

G(s) = K
(
1+ 1
sTi
+ sTd

)
(3.14)

A slightly different version is most common in commercial controllers.
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Figure 3.12 Interacting and non-interacting form of the PID al-
gorithm.

This controller is described by

G ′(s) = K ′
(
1+ 1
sT ′i

)
(1+ sT ′d) (3.15)

The two controller structures are presented in block diagram form
in Figure 3.12. The controller given by Equation (3.14) is called non-
interacting, and the one given by Equation (3.15) interacting. The
reason for this nomenclature is that in the controller (3.14) the inte-
gral time Ti does not influence the derivative part, and the derivative
time Td does not influence the integral part (see Equation (3.14)).
The parts are thus non-interacting. In the interacting controller, the
derivative time T ′d does influence the integral part. Therefore, the
parts are interacting.
The interacting controller (3.15) can always be represented as a

non-interacting controller (3.14), whose coefficients are given by

K = K ′T
′
i + T ′d
T ′i

Ti = T ′i + T ′d

Td = T ′i T
′
d

T ′i + T ′d

(3.16)

An interacting controller of the form (3.15) that corresponds to a non-
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interacting controller (3.14) can be found only if
Ti ≥ 4Td

Then,

K ′ = K
2

(
1+

√
1− 4Td/Ti

)

T ′i =
Ti

2

(
1+

√
1− 4Td/Ti

)

T ′d =
Ti

2

(
1−

√
1− 4Td/Ti

)
(3.17)

The non-interacting controller given by Equation (3.14) is more gen-
eral, and we will use that in the future. It is, however, claimed that
the interacting controller is easier to tune manually.
There is also an historical reason for preferring the interacting

controller. Early pneumatic controllers were easier to build using
the interacting form. When the controller manufacturers changed
technology from pneumatic to analog electric and, finally, to digital
technique, they kept the interactive form. Therefore, the interacting
form is most common among single-loop controllers.
It is important to keep in mind that different controllers may have

different structures. It means that if a controller in a certain control
loop is replaced by another type of controller, the controller parame-
ters may have to be changed. Note, however, that the interacting and
the non-interacting forms are different only when both the I and the
D parts of the controller are used. If we only use the controller as
a P, PI, or PD controller, the two forms are equivalent. Yet another
representation of the PID algorithm is given by

G ′′(s) = k+ ki
s
+ skd (3.18)

The parameters are related to the parameters of standard form
through

k = K

ki = K
Ti

kd = KTd
The representation (3.18) is equivalent to the standard form, but the
parameter values are quite different. This may cause great difficulties
for anyone who is not aware of the differences, particularly if parame-
ter 1/ki is called integral time and kd derivative time. The form given
by Equation (3.18) is often useful in analytical calculations because
the parameters appear linearly. The representation also has the ad-
vantage that it is possible to obtain pure proportional, integral, or
derivative action by finite values of the parameters.
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Summarizing we have thus found that there are three different
forms of the PID controller.

• The standard or non-interacting form given by Equation (3.14).
• The series or interacting form given by Equation (3.15).
• The parallel form given by Equation (3.18).
The standard form is sometimes called the ISA algorithm, or the
ideal algorithm. The proportional, integral, and derivative actions are
noninteracting in the time domain. This algorithm admits complex
zeros, which is useful when controlling systems with oscillatory poles.
The series form is also called the classical form. This represen-

tation is obtained naturally when a controller is implemented as an
analog device based on a pneumatic force balance system. The name
classical reflects this. The series form has an attractive interpretation
in the frequency domain because the zeros correspond to the inverse
values of the derivative and integral times. All zeros of the controller
are real. Pure integral or proportional action can not be obtained with
finite values of the controller parameters. Most controllers use this
form.
The parallel form is the most general form, because pure pro-

portional or integral action can be obtained with finite parameters.
The controller can also have complex zeros. In this way it is the most
flexible form. However, it is also the form where the parameters have
little physical interpretation.

Setpoint Weighting

A common form of a control system is shown in Figure 3.6. The system
is characterized by forming an error that is the difference between the
setpoint and the process output. The controller generates a control
signal by operating on the error. This control signal is then applied
to the process. Such a system is called a “system with error feedback”
because the controller operates on the error signal. A more flexible
structure is obtained by treating the setpoint and the process output
separately. A PID-controller of this form is given by

u(t) = K
(
ep + 1

Ti

t∫
0

e(s)ds+ Td ded
dt

)
(3.19)

where the error in the proportional part is

ep = bysp − y (3.20)
and the error in the derivative part is

ed = cysp − y (3.21)
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The error in the integral part must be the true control error

e = ysp − y

to avoid steady-state control errors. The controllers obtained for dif-
ferent values of b and c will respond to load disturbances and mea-
surement noise in the same way. The response to setpoint changes will
depend, however, on the values of b and c. This is illustrated in Figure
3.13, which shows the response of a PID controller to setpoint changes,
load disturbances, and measurement errors for different values of b.
The figure shows clearly the effect of changing b. The overshoot for
setpoint changes is smallest for b = 0, which is the case where the
reference is only introduced in the integral term, and increases with
increasing b. Notice that a simulation like the one in Figure 3.13 is
useful in order to give a quick assessment of the responses of a closed-
loop system to setpoint changes, load disturbances, and measurement
errors.
The parameter c is normally chosen equal to zero to avoid large

transients in the control signal due to sudden changes in the setpoint.
An exception is when the controller is the secondary controller in a
cascade coupling (see Section 7.2). In this case, the setpoint changes
smoothly, because it is given by the primary controller output. No-
tice that if the integral action is implemented with positive feedback
around a lag as in Figure 3.8, the parameter b is equal to one.
The controller with b = 0 and c = 0 is sometimes called an I-PD

controller, and the controller with b = 1 and c = 0 is sometimes called
a PI-D controller. We prefer to stick to the generic use of PID and give
the parameters b and c, thereby making a small contribution towards
reduction of three-letter abbreviations.
In general, a control system has many different requirements.

It should have good transient response to setpoint changes, and it
should reject load disturbances and measurement noise. For a system
with error feedback only, an attempt is made to satisfy all demands
with the same mechanism. Such systems are called one-degree of
freedom systems. By having different signal paths for the setpoint
and the process output (two-degree of freedom systems), there is
more flexibility to satisfy the design compromise. This is carried much
further in more sophisticated control systems.
In the block diagram in Figure 3.6, the controller output is gener-

ated from the error e = ysp− y. Notice that this diagram is no longer
valid when the control law given by Equation (3.19) and the error
definitions (3.20) and (3.21) are used. A block diagram for a system
with PID control is now given by Figure 3.14.
Notice that the transfer function from the setpoint ysp to the
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Figure 3.13 The response to setpoint changes, load disturbances,
and measurement errors for different values of setpoint weighting
b. The lower diagrams show the proportional, integral, and deriva-
tive parts of the control signal.
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Figure 3.14 Block diagram of a simple feedback loop whith a PID
controller having a two-degree-of-freedom structure.

control signal u is given by

G f f = K
(
b+ 1
sTi
+ csTd

)

and the transfer function from the process variable y to the control
variable u is given by

Gc = K
(
1+ 1
sTi
+ sTd

)

and that the transfer functions are different.

Limitation of the Derivative Gain

The derivative action may result in difficulties, if there is high-
frequency measurement noise. A sinusoidal measurement noise

n = a sin ω t

gives the following contribution to the derivative term of the control
signal:

un = KTd dn
dt
= aKTdω cos ω t

The amplitude of the control signal can thus be arbitrarily large if
the noise has a sufficiently high frequency (ω ). The high-frequency
gain of the derivative term is therefore limited to avoid this difficulty.
This can be done by implementing the derivative term as

D = − Td
N

dD

dt
− KTd dy

dt
(3.22)

It follows from this equation that the modified derivative term can
be represented as follows:

D = − sKTd

1+ sTd/N y
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The modification can be interpreted as the ideal derivative filtered by
a first-order system with the time constant Td/N. The approximation
acts as a derivative for low-frequency signal components. The gain,
however, is limited to KN. This means that high-frequency measure-
ment noise is amplified at most by a factor KN. Typical values of N
are 8 to 20.

Error-Squared Controllers

In the standard form of PID control, the control error enters linearly
in the control algorithm, see Equation (3.9). It is sometimes desirable
to have higher controller gains when the control error is large, and
smaller gains when the control error is small. One common way of
obtaining this property is to use the square of the control error, i.e.,
the control error is substituted by

esquared = e�e�
The square of the error is mostly used only in the proportional term,
sometimes in the integral term, but seldom in the derivative term.
One reason for using error-squared controllers is to reduce the ef-

fects of low-frequency disturbances in the measurement signal. These
disturbances cannot be filtered out, but the use of error-squared con-
trol gives a small amplification of the noise when the control error is
small, and an effective control when the control error is large.
Another application of error-squared controllers is surge tank

control. Here, the main control objective is to keep the control signal
smooth. On the other hand, the level must not deviate too much from
the setpoint. This is obtained efficiently by error-squared control.

Special Controller Outputs

The inputs and outputs of a controller are normally analog signals,
typically 0–20 mA or 4–20 mA. The main reason for using 4 mA
instead of 0 mA as the lower limit is that many transmitters are
designed for two-wire connection. This means that the same wire is
used for both driving the sensor and transmitting the information
from the sensor. It would not be possible to drive the sensor with
a current of 0 mA. The main reason for using current instead of
voltage is to avoid the influence of voltage drops along the wire due
to resistance in the (perhaps long) wire.

Thyristors and Triacs

In temperature controllers it is common practice to integrate the
power amplifier with the controller. The power amplifier could be a
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thyristor or a triac. With a thyristor, an AC voltage is switched to the
load at a given angle of the AC voltage. Since the relation between
angle and power is nonlinear, it is crucial to use a transformation to
maintain a linear relationship. A triac is also a device that imple-
ments switching of an AC signal, but only at the zero crossing. Such
a device is similar to a pulse output.

Pulse Width Modulation

In some cases, such as with the triac, there is an extreme quantization
in the sense that the actuator only accepts two values, on or off. In
such a case, a cycle time Tcycle is specified, and the controller gives a
pulse with width

Tpulse(t) = u(t) − umin
umax − umin Tcycle (3.23)

A similar, but slightly different, situation occurs when the actuator
has three levels: max, min, and zero. A typical example is a motor-

e
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Time

Time
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100%

0%

Figure 3.15 Illustration of controller output based on pulse width
modulation.
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driven valve where the motor can stand still, go forward, or go back-
ward.
Figure 3.15 illustrates the pulse width modulation. The figure

shows the output from a P controller with pulse width modulation for
different values of the control error.

Velocity Algorithms

The algorithms described so far are called positional algorithms be-
cause the output of the algorithms is the control variable. In certain
cases the control system is arranged in such a way that the control
signal is driven directly by an integrator, e.g., a motor. It is then nat-
ural to arrange the algorithm in such a way that it gives the velocity
of the control variable. The control variable is then obtained by in-
tegrating its velocity. An algorithm of this type is called a velocity
algorithm. A block diagram of a velocity algorithm for a PID con-
troller is shown in Figure 3.16. Velocity algorithms were commonly
used in many early controllers that were built around motors. In sev-
eral cases, the structure was retained by the manufacturers when
technology was changed in order to maintain functional compatibility
with older equipment. Another reason is that many practical issues,
like wind-up protection and bumpless parameter changes, are easy to
implement using the velocity algorithm. This is discussed further in
Sections 3.5 and 3.6. In digital implementations velocity algorithms
are also called incremental algorithms.

A Difficulty with Velocity Algorithms

A velocity algorithm cannot be used directly for a controller without
integral action, because such a controller cannot keep the stationary
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Figure 3.16 Block diagram of a PID algorithm in velocity form.



80 Chapter 3 PID Control

A

e u
K s

  

1

s

B

e u
Σ

    

1

s
K s

a

  ub

+ −

+

Σ

Figure 3.17 Illustrates the difficulty with a proportional con-
troller in velocity form (A) and a way to avoid it (B).

value. This can be understood from the block diagram in Figure 3.17A,
which shows a proportional controller in velocity form. Stationarity
can be obtained for any value of the control error e, since the output
from the derivation block is zero for any constant input. The problem
can be avoided with the modification shown in Figure 3.17B. Here,
stationarity is only obtained when u = K e+ ub.
If a sampled PID controller is used, a simple version of the method

illustrated in figure 3.17B is obtained by implementing the P con-
troller as

∆u(t) = u(t) − u(t− h) = K e(t) + ub − u(t − h)
where h is the sampling period.

3.5 Integrator Windup

Although many aspects of a control system can be understood based
on linear theory, some nonlinear effects must be accounted for. All
actuators have limitations: a motor has limited speed, a valve cannot
be more than fully opened or fully closed, etc. For a control system
with a wide range of operating conditions, it may happen that the
control variable reaches the actuator limits. When this happens the
feedback loop is broken and the system runs as an open loop because
the actuator will remain at its limit independently of the process
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output. If a controller with integrating action is used, the error will
continue to be integrated. This means that the integral term may
become very large or, colloquially, it “winds up”. It is then required
that the error has opposite sign for a long period before things return
to normal. The consequence is that any controller with integral action
may give large transients when the actuator saturates.

EXAMPLE 3.1 Illustration of integrator windup

The wind-up phenomenon is illustrated in Figure 3.18, which shows
control of an integrating process with a PI controller. The initial set-
point change is so large that the actuator saturates at the high limit.
The integral term increases initially because the error is positive; it
reaches its largest value at time t = 10 when the error goes through
zero. The output remains saturated at this point because of the large
value of the integral term. It does not leave the saturation limit until
the error has been negative for a sufficiently long time to let the in-
tegral part come down to a small level. Notice that the control signal
bounces between its limits several times. The net effect is a large over-
shoot and a damped oscillation where the control signal flips from one
extreme to the other as in relay oscillation. The output finally comes
so close to the setpoint that the actuator does not saturate. The sys-
tem then behaves linearly and settles.
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Figure 3.18 Illustration of integrator windup. The diagrams show
process output y, setpoint ysp, control signal u, and integral part I.



82 Chapter 3 PID Control

Integrator windup may occur in connection with large setpoint
changes or it may be caused by large disturbances or equipment mal-
functions. Windup can also occur when selectors are used so that sev-
eral controllers are driving one actuator. In cascade control, windup
may occur in the primary controller when the secondary controller
is switched to manual mode, uses its local setpoint, or if its control
signal saturates. See Section 7.2.
The phenomenon of windup was well known to manufacturers

of analog controllers who invented several tricks to avoid it. They
were described under labels like preloading, batch unit, etc. Although
the problem was well understood, there were often limits imposed
because of the analog implementations. The ideas were often kept
as trade secrets and not much spoken about. The problem of windup
was rediscovered when controllers were implemented digitally and
several methods to avoid windup were presented in the literature. In
the following section we describe several of the ideas.

Setpoint Limitation

One way to try to avoid integrator windup is to introduce limiters
on the setpoint variations so that the controller output will never
reach the actuator bounds. This often leads to conservative bounds
and limitations on controller performance. Further, it does not avoid
windup caused by disturbances.

Incremental Algorithms

In the early phases of feedback control, integral action was integrated
with the actuator by having a motor drive the valve directly. In this
case windup is handled automatically because integration stops when
the valve stops. When controllers were implemented by analog tech-
niques, and later with computers, many manufacturers used a con-
figuration that was an analog of the old mechanical design. This led
to the so-called velocity algorithms discussed in Section 3.4. In this
algorithm the rate of change of the control signal is first computed
and then fed to an integrator. In some cases this integrator is a mo-
tor directly connected to the actuator. In other cases the integrator
is implemented internally in the controller. With this approach it is
easy to handle mode changes and windup. Windup is avoided by in-
hibiting the integration whenever the output saturates. This method
is equivalent to back-calculation, which is described below. If the ac-
tuator output is not measured, a model that computes the saturated
output can be used. It is also easy to limit the rate of change of the
control signal.
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Back-Calculation and Tracking

Back-calculation works as follows: When the output saturates, the
integral is recomputed so that its new value gives an output at the
saturation limit. It is advantageous not to reset the integrator instan-
taneously but dynamically with a time constant Tt.
Figure 3.19 shows a block diagram of a PID controller with anti-

windup based on back-calculation. The system has an extra feedback
path that is generated by measuring the actual actuator output and
forming an error signal (es) as the difference between the output of
the controller (v) and the actuator output (u). Signal es is fed to the
input of the integrator through gain 1/Tt. The signal is zero when
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Figure 3.19 Controller with anti-windup. A system where the
actuator output is measured is shown in A and a system where the
actuator output is estimated from a mathematical model is shown
in B.
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there is no saturation. Thus, it will not have any effect on the normal
operation when the actuator does not saturate. When the actuator
saturates, the signal es is different from zero. The normal feedback
path around the process is broken because the process input remains
constant. There is, however, a feedback path around the integrator.
Because of this, the integrator output is driven towards a value such
that the integrator input becomes zero. The integrator input is

1
Tt
es + K

Ti
e

where e is the control error. Hence,

es = −KTt
Ti
e

in steady state. Since es = u− v, it follows that

v = ulim + KTt
Ti
e

where ulim is the saturating value of the control variable. Since the
signals e and ulim have the same sign, it follows that v is always larger
than ulim in magnitude. This prevents the integrator from winding up.
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Figure 3.20 Controller with anti-windup applied to the system
of Figure 3.18. The diagrams show process output y, setpoint ysp,
control signal u, and integral part I.
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The rate at which the controller output is reset is governed by the
feedback gain, 1/Tt, where Tt can be interpreted as the time constant,
which determines how quickly the integral is reset. We call this the
tracking time constant.
It frequently happens that the actuator output cannot be mea-

sured. The anti-windup scheme just described can be applied by in-
corporating a mathematical model of the saturating actuator, as is
illustrated in Figure 3.19B.
Figure 3.20 shows what happens when a controller with anti-

windup is applied to the system simulated in Figure 3.18. Notice that
the output of the integrator is quickly reset to a value such that the
controller output is at the saturation limit, and the integral has a
negative value during the initial phase when the actuator is satu-
rated. This behavior is drastically different from that in Figure 3.18,
where the integral has a positive value during the initial transient.
Also notice the drastic improvement in performance compared to the
ordinary PI controller used in Figure 3.18.
The effect of changing the values of the tracking time constant

is illustrated in Figure 3.21. From this figure, it may thus seem ad-
vantageous to always choose a very small value of the time constant
because the integrator is then reset quickly. However, some care must
be exercised when introducing anti-windup in systems with deriva-
tive action. If the time constant is chosen too small, spurious errors
can cause saturation of the output, which accidentally resets the in-
tegrator. The tracking time constant Tt should be larger than Td and
smaller than Ti. A rule of thumb that has been suggested is to choose
Tt =

√
TiTd.
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Figure 3.21 The step response of the system in Figure 3.18 for
different values of the tracking time constant Tt. The upper curve
shows process ouput y and setpoint ysp, and the lower curve shows
control signal u.
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Figure 3.22 Block diagram and simplified representation of PID
module with tracking signal.

Controllers with a Tracking Mode

A controller with back-calculation can be interpreted as having two
modes: the normal control mode, when it operates like an ordinary
controller, and a tracking mode, when the integrator is tracking so
that it matches given inputs and outputs. Since a controller with
tracking can operate in two modes, we may expect that it is nec-
essary to have a logical signal for mode switching. However, this is
not necessary, because tracking is automatically inhibited when the
tracking signal w is equal to the controller output. This can be used
with great advantage when building up complex systems with selec-
tors and cascade control.
Figure 3.22 shows a PID module with a tracking signal. The

module has three inputs: the setpoint, the measured output, and a
tracking signal. The new input TR is called a tracking signal because
the controller output will follow this signal. Notice that tracking is
inhibited when w = v. Using the module the system shown in Figure
3.19 can be presented as shown in Figure 3.23.
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Figure 3.23 Representation of the controllers with anti-windup
in Figure 3.19 using the basic control module with tracking shown
in Figure 3.22.

The Proportional Band

The notion of proportional band is useful in order to understand the
wind-up effect and to explain schemes for anti-windup. The propor-
tional band is an interval such that the actuator does not saturate if
the instantaneous value of the process output or its predicted value
is in the interval. For PID control without derivative gain limitation,
the control signal is given by

u = K (bysp − y) + I − KTd dy
dt

(3.24)
Solving for the predicted process output

yp = y+ Td dy
dt

gives the proportional band (yl, yh) as

yl = bysp + I − umax
K

yh = bysp + I − umin
K

(3.25)

and umin, umax are the values of the control signal for which the
actuator saturates. The controller operates in the linear mode, if
the predicted output is in the proportional band. The control signal
saturates when the predicted output is outside the proportional band.
Notice that the proportional band can be shifted by changing the
integral term.
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Figure 3.24 The proportional band for the system in Example
3.1. The upper diagram shows process output y and the proportional
band. The lower diagram shows control signal u.

To illustrate that the proportional band is useful in understand-
ing windup, we show the proportional band in Figure 3.24 for the sys-
tem discussed in Example 3.1. (Compare with Figure 3.18.) The figure
shows that the proportional band starts to move upwards because the
integral term increases. This implies that the output does not reach
the proportional band until it is much larger than the setpoint. When
the proportional band is reached the control signal decreases rapidly.
The proportional band changes so rapidly, however, that the output
very quickly moves through the band, and this process repeats several
times.
The notion of proportional band helps to understand several

schemes for anti-windup. Figure 3.25 shows the proportional band
for the system with tracking for different values of the tracking time
constant Tt. The figure shows that the tracking time constant has a
significant influence on the proportional band. Because of the track-
ing, the proportional band is moved closer to the process output. How
rapidly it does this is governed by the tracking time constant Tt. No-
tice that there may be a disadvantage in moving it too rapidly, since
the predicted output may then move into the proportional band be-
cause of noise, and cause the control signal to decrease unnecessarily.

Conditional Integration

Conditional integration is an alternative to back-calculation or track-
ing. In this method integration is switched off when the control is
far from steady state. Integral action is thus only used when certain
conditions are fulfilled, otherwise the integral term is kept constant.
The method is also called integrator clamping.
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Figure 3.25 The proportional band and the process output y for
a system with conditional integration and tracking with different
tracking time constants Tt.

The conditions when integration is inhibited can be expressed in
many different ways. Figure 3.26 shows a simulation of the system
in Example 3.1 with conditional integration such that the integral
term is kept constant during saturation. A comparison with Figure
3.25 shows that, in this particular case, there is very little difference
in performance between conditional integration and tracking. The
different wind-up schemes do, however, move the proportional bands
differently.
A few different switching conditions are now considered. One

simple approach is to switch off integration when the control error is
large. Another approach is to switch off integration during saturation.
Both these methods have the disadvantage that the controller may get
stuck at a non-zero control error if the integral term has a large value
at the time of switch off.
A method without this disadvantage is the following. Integration

is switched off when the controller is saturated and the integrator
update is such that it causes the control signal to become more satu-
rated. Suppose, for example, that the controller becomes saturated at
the upper saturation. Integration is then switched off if the control
error is positive, but not if it is negative.
Some conditional integration methods are intended mainly for

startup of batch processes, when there may be large changes in the
setpoint. One particular version, used in temperature control, sets the
proportional band outside the setpoint when there are large control
deviations. The offset can be used to adjust the transient response ob-
tained during start up of the process. The parameters used are called
cut-back or preload (see Figure 3.27). In this system the proportional
band is positioned with one end at the setpoint and the other end
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Figure 3.26 Simulation of the system in Example 3.1 with condi-
tional integration. The diagrams show the proportional band, pro-
cess output y, control signal u, and integral part I.
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Figure 3.27 Adjustment of the proportional band using cut-back
parameters. The diagrams show the proportional band, setpoint ysp,
process output y, control signal u, and integral part I.
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towards the measured value when there are large variations. These
methods may give wind-up during disturbances.

Series Implementation

In Figure 3.8, we showed a special implementation of a controller
in interacting form. To avoid windup in this controller we can incor-
porate a model of the saturation in the system as shown in Figure
3.28A. Notice that in this implementation the tracking time constant
Tt is the same as the integration time Ti. This value of the tracking
time constant is often too large.
In Figure 3.28A, the model of the saturation will limit the control

signal directly. It is important, therefore, to have a good model of the
physical saturation. Too hard a limitation will cause an unnecessary
limitation of the control action. Too weak a limitation will cause
windup.
More flexibility is provided if the saturation is positioned accord-

ing to Figure 3.28B. In this case, the saturation will not influence
the proportional part of the controller. With this structure it is also
possible to force the integral part to assume other preload values dur-
ing saturation. This is achieved by replacing the saturation function
by the nonlinearity shown in Figure 3.29. This anti-windup proce-
dure is sometimes called a “batch unit” and may be regarded as a
type of conditional integration. It is mainly used for adjusting the
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Figure 3.28 Two ways to provide anti-windup in the controller in
Figure 3.8 where integral action is generated as automatic reset.
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Figure 3.29 A “batch unit” used to provide anti-windup in the
controller in Figure 3.8.

overshoot during startup when there is a large setpoint change. In
early single-loop controllers the batch unit was supplied as a special
add-on hardware.

Combined Schemes

Tracking and conditional integration can also be combined. In (Howes,
1986) it is suggested to manipulate the proportional band explic-
itly for batch control. This is done by introducing so-called cutback
points. The high cutback is above the setpoint and the low cutback
is below. The integrator is clamped when the predicted process out-
put is outside the cutback interval. Integration is performed with a
specified tracking time constant when the process output is between
the cutback points. The cutback points are considered as controller
parameters that are adjusted to influence the response to large set-
point changes. A similar method is proposed in (Dreinhofer, 1988),
where conditional integration is combined with back-calculation. In
(Shinskey, 1988), the integrator is given a prescribed value i = i0 dur-
ing saturation. The value of i0 is tuned to give satisfactory overshoot
at startup. This approach is also called preloading.
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3.6 Digital Implementation

PID controllers were originally implemented using analog techniques.
Early systems used pneumatic relays, bellows, and needle-valve con-
strictions. Electric motors with relays and feedback circuits and op-
erational amplifiers were used later. Many of the features like anti-
windup and derivation of process output instead of control error were
incorporated as “tricks” in the implementation. It is now common
practice to implement PID controllers using microprocessors, and
some of the old tricks have been rediscovered. Several issues must
be considered in connection with digital implementations. The most
important ones have to do with sampling, discretization, and quanti-
zation.

Sampling

When a digital computer is used to implement a control law, all signal
processing is done at discrete instances of time. The sequence of
operations is as follows:

(1) Wait for clock interrupt
(2) Read analog input
(3) Compute control signal
(4) Set analog output
(5) Update controller variables
(6) Go to 1

The control actions are based on the values of the process output at
discrete times only. This procedure is called samplin�. The normal
case is that the signals are sampled periodically with period h. The
sampling mechanism introduces some unexpected phenomena, which
must be taken into account in a good digital implementation of a PID
controller. To explain these, consider the signals

s(t) = cos(nω st±ω t)
and

sa(t) = cos(ω t)
where ω s = 2π/h [rad/s] is the sampling frequency. Well-known
formulas for the cosine function imply that the values of the signals
at the sampling instants [kh, k = 0, 1, 2, ...] have the property

s(kh) = cos(nkhω s ±ω kh) = cos(ω kh) = sa(ω kh)
The signals s and sa thus have the same values at the sampling
instants. This means that there is no way to separate the signals
if only their values at the sampling instants are known. Signal sa
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Figure 3.30 Illustration of the aliasing effect. The diagram shows
signal s and its alias sa.

is, therefore, called an alias of signal s. This is illustrated in Figure
3.30. A consequence of the aliasing effect is that a high-frequency
disturbance after sampling may appear as a low-frequency signal. In
Figure 3.30 the sampling period is 1 s and the sinusoidal disturbance
has a period of 6/5 s. After sampling, the disturbance appear as a
sinusoid with the frequency

fa = 1− 56 = 1/6 Hz

This low-frequency signal with time period 6 s is seen in the figure.

Prefiltering

The aliasing effect can create significant difficulties if proper pre-
cautions are not taken. High frequencies, which in analog controllers
normally are effectively eliminated by low-pass filtering, may, because
of aliasing, appear as low-frequency signals in the bandwidth of the
sampled control system. To avoid these difficulties, an analog prefilter
(which effectively eliminates all signal components with frequencies
above half the sampling frequency) should be introduced. Such a fil-
ter is called an antialiasing filter. A second-order Butterworth filter
is a common antialiasing filter. Higher-order filters are also used in
critical applications. An implementation of such a filter using opera-
tional amplifiers is shown in Figure 3.31. The selection of the filter
bandwidth is illustrated by the following example.

EXAMPLE 3.2 Selection of prefilter bandwidth

Assume it is desired that the prefilter attenuate signals by a factor
of 16 at half the sampling frequency. If the filter bandwidth is ω b and
the sampling frequency is ω s, we get

(ω s/2ω b)2 = 16
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Figure 3.31 Circuit diagram of a second-order Butterworth filter.

Hence,

ω b = 18 ω s

Notice that the dynamics of the prefilter will be combined with
the process dynamics.

Discretization

To implement a continuous-time control law, such as a PID controller
in a digital computer, it is necessary to approximate the derivatives
and the integral that appear in the control law. A few different ways
to do this are presented below.

Proportional Action

The proportional term is

P = K (bysp − y)
This term is implemented simply by replacing the continuous vari-
ables with their sampled versions. Hence,

P(tk) = K (bysp(tk) − y(tk)) (3.26)
where {tk} denotes the sampling instants, i.e., the times when the
computer reads the analog input.

Integral Action

The integral term is given by

I(t) = K
Ti

t∫
0

e(s)ds



96 Chapter 3 PID Control

It follows that
dI

dt
= K
Ti
e (3.27)

There are several ways of approximating this equation.

Forward differences: Approximating the derivative by a forward
difference gives

I(tk+1) − I(tk)
h

= K
Ti
e(tk)

This leads to the following recursive equation for the integral term

I(tk+1) = I(tk) + Kh
Ti
e(tk) (3.28)

Backward differences: If the derivative in Equation (3.27) is ap-
proximated instead by a backward difference, the following is ob-
tained:

I(tk) − I(tk − 1)
h

= K
Ti
e(tk)

This leads to the following recursive equation for the integral term

I(tk+1) = I(tk) + Kh
Ti
e(tk+1) (3.29)

Tustin’s approximation and ramp equivalence: Another simple
approximation method is due to Tustin. This approximation is

I(tk+1) = I(tk) + Kh
Ti

e(tk+1) + e(tk)
2

(3.30)

Yet another method is called ramp equivalence. This method gives ex-
act outputs at the sampling instants, if the input signal is continuous
and piece-wise linear between the sampling instants. The ramp equiv-
alence method gives the same approximation of the integral term as
the Tustin approximation, i.e., Equation (3.30).
Notice that all approximations have the same form, i.e.,

I(tk+1) = I(tk) + bi1e(tk+1) + bi2e(tk) (3.31)
but with different values of parameters bi1 and bi2.

Derivative Action

The derivative term is given by Equation (3.22), i.e.,
Td

N

dD

dt
+ D = −KTd dy

dt
(3.32)

This equation can be approximated in the same way as the integral
term.
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Forward differences: Approximating the derivative by a forward
difference gives

Td

N

D(tk+1) − D(tk)
h

+ D(tk) = −KTd y(tk+1) − y(tk)
h

This can be rewritten as

D(tk+1) =
(
1− Nh

Td

)
D(tk) − KN (y(tk+1) − y(tk)) (3.33)

Backward differences: If the derivative in Equation (3.32) is ap-
proximated by a backward difference, the following equation is ob-
tained:

Td

N

D(tk) − D(tk−1)
h

+ D(tk) = −KTd y(tk) − y(tk−1)
h

This can be rewritten as

D(tk) = Td

Td + Nh D(tk−1) −
KTdN

Td + Nh (y(tk) − y(tk−1)) (3.34)

Tustin’s approximation: Using the Tustin approximation to ap-
proximate the derivative term gives

D(tk) = 2Td − Nh2Td + Nh D(tk−1) −
2KTdN
2Td + Nh (y(tk) − y(tk−1)) (3.35)

Ramp equivalence: Finally, the ramp equivalence approximation
is

D(tk) = e−Nh/Td D(tk−1) − KTd(1− e
−Nh/Td)

h
(y(tk) − y(tk−1)) (3.36)

All approximations have the same form,

D(tk) = adD(tk−1) − bd (y(tk) − y(tk−1)) (3.37)
but with different values of parameters ad and bd.
The approximations of the derivative term are stable only when

�ad� < 1. The forward difference approximation requires that Td >
Nh/2. The approximation becomes unstable for small values of Td.
The other approximations are stable for all values of Td. Notice, how-
ever, that Tustin’s approximation and the forward difference approx-
imation give negative values of ad if Td is small. This is undesirable
because the approximation will then exhibit ringing. The backward
difference approximation will give good results for all values of Td. It
is also easier to compute than the ramp equivalence approximation
and is, therefore, the most common method.
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Figure 3.32 Phase curves for PD controllers obtained by differ-
ent discretizations of the derivative term sTd/(1 + sTd/N) with
Td = 1,N = 10 and a sampling period 0.02. The discretizations are
forward differences (FD), backward differences (BD), Tustin’s ap-
proximation (T), and ramp equivalence (RE). The lower diagram
shows the differences between the approximations and the true
phase curve.

Figure 3.32 shows the phase curves for the different discrete time
approximations. Tustin’s approximation and the ramp equivalence ap-
proximation give the best agreement with the continuous time case,
the backward approximation gives less phase advance, and the for-
ward approximation gives more phase advance. The forward approx-
imation is seldom used because of the problems with instability for
small values of derivative time Td. Tustin’s algorithm is used quite
frequently because of its simplicity and its close agreement with the
continuous time transfer function. The backward difference is used
when an algorithm that is well behaved for small Td is needed.
All approximations of the PID controller can be represented as

R(q)u(kh) = T(q)ysp(kh) − S(q)y(kh) (3.38)
where q is the forward shift operator, and the polynomials R,S, and
T are of second order. The polynomials R,S, and T have the forms

R(q) = (q− 1)(q− ad)
S(q) = s0q2 + s1q+ s2
T(q) = t0q2 + t1q+ t2

(3.39)

which means that Equation (3.38) can be written as
u(kh) = t0ysp(kh) + t1ysp(kh − h) + t2ysp(kh− 2h)

− s0y(kh) − s1y(kh− h) − s2y(kj − 2h)
+ (1+ ad)u(kh − h) − adu(kh − h)
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Table 3.1 Coefficients in different approximations of the contin-
uous time PID controller.

Forward Backward Tustin Ramp equivalence

bi1 0
Kh

Ti

Kh

2Ti

Kh

2Ti

bi2
Kh

Ti
0

Kh

2Ti

Kh

2Ti

ad 1− Nh
Td

Td

Td + Nh
2Td − Nh
2Td + Nh e−Nh/Td

bd K N
KTdN

Td + Nh
2KTdN
2Td + Nh

KTd(1− e−Nh/Td )
h

The coefficients in the S and T polynomials are

s0 = K + bi1 + bd
s1 = −K (1+ ad) − bi1ad + bi2 − 2bd
s2 = Kad − bi2ad + bd
t0 = Kb+ bi1
t1 = −Kb(1+ ad) − bi1ad + bi2
t2 = Kbad − bi2ad

(3.40)

The coefficients in the polynomials for different approximation meth-
ods are given in Table 3.1.

Incremental Form

The algorithms described so far are called positional algorithms be-
cause they give the output of the controller directly. In digital imple-
mentations it is common to also use velocity algorithms. The discrete
time version of such an algorithm is also called an incremental algo-
rithm. This form is obtained by computing the time differences of the
controller output and adding the increments.

∆u(tk) = u(tk) − u(tk−1) = ∆P(tk) + ∆ I(tk) + ∆D(tk)
In some cases integration is performed externally. This is natural
when a stepper motor is used. The output of the controller should
then represent the increments of the control signal, and the mo-
tor implements the integrator. The increments of the proportional
part, the integral part, and the derivative part are easily calculated
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from Equations (3.26), (3.31) and (3.37):

∆P(tk) = P(tk)−P(tk−1)=K (bysp(tk)− y(tk)−bysp(tk−1)+ y(tk−1))
∆ I(tk) = I(tk)− I(tk−1)=bi1 e(tk)+bi2 e(tk−1)

∆D(tk) = D(tk)−D(tk−1)=ad∆D(tk−1)−bd (y(tk)−2y(tk−1)+ y(tk−2))
One advantage with the incremental algorithm is that most of the
computations are done using increments only. Short word-length cal-
culations can often be used. It is only in the final stage where the
increments are added that precision is needed. Another advantage
is that the controller output is driven directly from an integrator.
This makes it very easy to deal with windup and mode switches. A
problem with the incremental algorithm is that it cannot be used for
controllers with P or PD action only. Therefore, ∆P has to be cal-
culated in the following way when integral action is not used (see
Section 3.4).

∆P(tk) = K
(
bysp(tk) − y(tk)

)+ ub − u(tk−1)

Quantization and Word Length

A digital computer allows only finite precision in the calculations. It
is sometimes difficult to implement the integral term on computers
with a short word length. The difficulty is understood from Equation
(3.31) for the integral term. The correction terms bi1e(tk+1)+ bi2e(tk)
are normally small in comparison to I(tk), and they may be rounded
off unless the word length is sufficiently large. This rounding-off effect
gives an offset, called integration offset. To get a feel for the orders of
magnitude involved, assume that we use the backward approximation
and that all signals are normalized to have a largest magnitude of
one. The correction term Kh/Ti ⋅ e in Equation (3.29) then has the
largest magnitude Kh/Ti. Let the sampling period h be 0.02 s, the
integral time Ti = 20 min = 1200 s and the gain K = 0.1. Then,

Kh

Ti
= 1.7 10−6 = 2−19.2

To avoid rounding off the correction term, it is thus necessary to
have a precision of at least 20 bits. More bits are required to obtain
meaningful numerical values. The situation is particularly important
when a stepping motor that outputs increments is used. It is then
necessary to resort to special tricks to avoid rounding off the integral.
One simple way is to use a longer sampling period for the integral
term. For instance, if a sampling period of 1 s is used instead of 0.02
s in the previous example, a precision of 14 bits is sufficient.
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Three-Position Pulse Output

In Section 3.4, it was mentioned that the PID controller may have
different types of outputs. We now return to the three-position pulse
output and give a more detailed description of its implementation.
If a valve is driven by a constant-speed electrical motor, the valve

can be in three states: “increase,” “stop,” and “decrease.” Control of
valves with electrical actuators is performed with a controller output
that can be in three states. Three-position pulse output is performed
using two digital outputs from the controller. When the first output is
conducting, the valve position will increase. When the second output
is conducting, the valve position will decrease. If none of the outputs
are conducting, the valve position is constant. The two outputs must
never be conducting at the same time.
There is normally both a dead zone and a dead time in the con-

troller to ensure that the change of direction of the motor is not too
frequent and not too fast. It means that the controller output is con-
stant as long as the magnitude of the control error is within the dead
zone, and that the output is stopped for a few seconds before it is
allowed to change direction.
A servomotor is characterized by its running time Trun, which is

the time it takes for the motor to go from one end position to the other.
Since the servomotor has a constant speed, it introduces an integrator
in the control loop, where the integration time is determined by Trun.
A block diagram describing a PID controller with three-position pulse
output combined with an electrical actuator is shown in Figure 3.33.
Suppose that we have a steady-state situation, where the output from
the PID controller u is equal to the position v of the servo-motor.
Suppose further that we suddenly want to increase the controller
output by an amount ∆u. As long as the increase-output is conducting,
the output v from the servo-motor will increase according to

∆v = 1
Trun

t∫
0

1 dt = t

Trun

To have ∆v equal to ∆u, the integration must be stopped after time

t = ∆uTrun

PID
1

–1

Controller Actuator

  

1

sTrun

v  ∆u

Figure 3.33 A PID controller with three-position pulse output
combined with an electrical actuator.
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In a digital controller, this means that the digital output correspond-
ing to an increasing valve position is to be conducting for n sampling
periods, where n is given by

n = ∆uTrun

h

and where h is the sampling period of the controller.
To be able to perform a correct three-position pulse output, two

buffers (Buff increase and Buff decrease) must be used to hold
the number of pulses that should be sent out. The following is a
computer code for three-position pulse output. For the sake of sim-
plicity, details such as dead zone and dead time are omitted in the
code.

if delta u > 0 then
if valve is increasing then

Buff increase = Buff increase + n;
else

Buff decrease = Buff decrease - n;
if Buff decrease < 0 then

Buff increase = - Buff decrease;
Buff decrease = 0;
valve is decreasing = false;
valve is increasing = true;

end;
end;

else if delta u < 0 then
if valve is decreasing then

Buff decrease = Buff decrease + n;
else

Buff increase = Buff increase - n;
if Buff increase < 0 then

Buff decrease = - Buff increase;
Buff increase = 0;
valve is increasing = false;
valve is decreasing = true;

end;
end;

end;
if Buff increase > 0 then

Increaseoutput = 1;
Decreaseoutput = 0;
Buff increase = Buff increase - 1;

else if Buff decrease > 0 then
Increaseoutput = 0;
Decreaseoutput = 1;
Buff decrease = Buff decrease - 1;

end;
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According to Figure 3.33, the controller output is ∆u instead of u in
the case of three-position pulse output. The integral part of the control
algorithm is outside the controller, in the actuator. This solution
causes no problems if the control algorithm really contains an integral
part. P and PD control can not be obtained without information of the
valve position (see Figure 3.17.)

3.7 Operational Aspects

Practically all controllers can be run in two modes: manual or auto-
matic. In manual mode the controller output is manipulated directly
by the operator, typically by pushing buttons that increase or decrease
the controller output. A controller may also operate in combination
with other controllers, such as in a cascade or ratio connection, or with
nonlinear elements, such as multipliers and selectors. This gives rise
to more operational modes. The controllers also have parameters that
can be adjusted in operation. When there are changes of modes and
parameters, it is essential to avoid switching transients. The way the
mode switchings and the parameter changes are made depends on
the structure chosen for the controller.

Bumpless Transfer Between Manual and Automatic

Since the controller is a dynamic system, it is necessary to make sure
that the state of the system is correct when switching the controller
between manual and automatic mode. When the system is in manual
mode, the control algorithm produces a control signal that may be
different from the manually generated control signal. It is necessary
to make sure that the two outputs coincide at the time of switching.
This is called bumpless transfer.
Bumpless transfer is easy to obtain for a controller in incremental

form. This is shown in Figure 3.34. The integrator is provided with
a switch so that the signals are either chosen from the manual or
the automatic increments. Since the switching only influences the
increments there will not be any large transients.
A similar mechanism can be used in the series, or interacting,

implementation of a PID controller shown in Figure 3.8 (see Figure
3.35). In this case there will be a switching transient if the output of
the PD part is not zero at the switching instant.
For controllers with parallel implementation, the integrator of the

PID controller can be used to add up the changes in manual mode. The
controller shown in Figure 3.36 is such a system. This system gives
a smooth transition between manual and automatic mode provided
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Figure 3.34 Bumpless transfer in a controller with incremental
output. MCU stands for manual control unit.
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Figure 3.35 Bumpless transfer in a PID controller with a special
series implementation.
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Figure 3.36 A PID controller where one integrator is used both
to obtain integral action in automatic mode and to sum the incre-
mental commands in manual mode.
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Figure 3.37 PID controller with parallel implementation that
switches smoothly between manual and automatic control.

that the switch is made when the output of the PD block is zero. If
this is not the case, there will be a switching transient.
It is also possible to use a separate integrator to add the incre-

mental changes from the manual control device. To avoid switching
transients in such a system, it is necessary to make sure that the
integrator in the PID controller is reset to a proper value when the
controller is in manual mode. Similarly, the integrator associated with
manual control must be reset to a proper value when the controller is
in automatic mode. This can be realized with the circuit shown in Fig-
ure 3.37. With this system the switch between manual and automatic
is smooth even if the control error or its derivative is different from
zero at the switching instant. When the controller operates in man-
ual mode, as is shown in Figure 3.37, the feedback from the output
v of the PID controller tracks the output u. With efficient tracking
the signal v will thus be close to u at all times. There is a similar
tracking mechanism that ensures that the integrator in the manual
control circuit tracks the controller output.

Bumpless Parameter Changes

A controller is a dynamical system. A change of the parameters of
a dynamical system will naturally result in changes of its output.
Changes in the output can be avoided, in some cases, by a simulta-
neous change of the state of the system. The changes in the output
will also depend on the chosen realization. With a PID controller it
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is natural to require that there be no drastic changes in the output
if the parameters are changed when the error is zero. This will hold
for all incremental algorithms because the output of an incremental
algorithm is zero when the input is zero, irrespective of the param-
eter values. It also holds for a position algorithm with the structure
shown in Figure 3.8. For a position algorithm it depends, however, on
the implementation. Assume that the state is chosen as

xI =
t∫
e(τ )dτ

when implementing the algorithm. The integral term is then

I = K
Ti
xI

Any change of K or Ti will then result in a change of I. To avoid
bumps when the parameters are changed, it is essential that the state
be chosen as

xI =
t∫
K (τ )
Ti(τ ) e(τ )dτ

when implementing the integral term.
With sensible precautions, it is easy to ensure bumpless parame-

ter changes if parameters are changed when the error is zero. There
is, however, one case where special precautions have to be taken,
namely, if setpoint weighting (Equation 3.20) is used. To have bump-
less parameter changes in such a case it is necessary that the quan-
tity P+ I be invariant to parameter changes. This means that when
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Figure 3.38 Manual control module.
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Figure 3.39 A reasonably complete PID controller with anti-
windup, automatic-manual mode, and manual and external set-
point.

parameters are changed, the state I should be changed as follows

Inew = Iold + Kold(bold ysp − y) − Knew(bnew ysp − y) (3.41)
To build automation systems it is useful to have suitable modules.

Figure 3.38 shows the block diagram for a manual control module. It
has two inputs, a tracking input and an input for the manual con-
trol commands. The system has two parameters, the time constant
Tm for the manual control input and the reset time constant Tt. In
digital implementations it is convenient to add a feature so that the
command signal accelerates as long as one of the increase-decrease
buttons are pushed. Using the module for PID control and the man-
ual control module in Figure 3.38, it is straightforward to construct
a complete controller. Figure 3.39 shows a PID controller with inter-
nal or external setpoints via increase/decrease buttons and manual
automatic mode. Notice that the system only has two switches.

Computer Code

As an illustration, the following is a computer code for a PID algo-
rithm. The controller handles both anti-windup and bumpless trans-
fer.

"Compute controller coefficients
bi=K*h/Ti "integral gain
ad=(2*Td-N*h)/(2*Td+N*h)
bd=2*K*N*Td/(2*Td+N*h) "derivative gain
a0=h/Tt
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"Bumpless parameter changes
I=I+Kold*(bold*ysp-y)-Knew*(bnew*ysp-y)

"Control algorithm
r=adin(ch1) "read setpoint from ch1
y=adin(ch2) "read process variable from ch2
P=K*(b*ysp-y) "compute proportional part
D=ad*D-bd*(y-yold) "update derivative part
v=P+I+D "compute temporary output
u=sat(v,ulow,uhigh) "simulate actuator saturation
daout(ch1) "set analog output ch1
I=I+bi*(ysp-y)+ao*(u-v) "update integral
yold=y "update old process output

The computation of the coefficients should be done only when the
controller parameters are changed. Precomputation of the coefficients
ad, ao, bd, and bi saves computer time in the main loop. The main
program must be called once every sampling period. The program
has three states: yold, I, and D. One state variable can be eliminated
at the cost of a less readable code. Notice that the code includes
derivation of the process output only, proportional action on part of
the error only (b �= 1), and anti-windup.

3.8 Commercial Controllers

Commercial PID controllers differ in the structure of the control
law (standard-series-parallel, absolute-velocity), the parameteriza-
tion, the limitation of high-frequency gain (filtering), and in how the
setpoint is introduced. To be able to tune a controller, it is necessary
to know the structure and the parameterization of the control algo-
rithm. This information is, unfortunately, not usually available in the
controller manuals. In this section, we have tried to summarize the
properties of controllers from some different manufacturers.
Different structures of the PID algorithm were presented in Sec-

tion 3.4. To summarize the results we introduce U (s), Y(s), and Ysp(s)
as the Laplace transforms of process input u, process output y, and
setpoint ysp. Furthermore let E(s) = Ysp(s)−Y(s) denote the Laplace
transform of the control error. Three different structures are used in
the commercial controllers. The standard form, or ISA form, is given
by

I. U = K
(
bYsp − Y + 1

sTi
E + sTd

1+ sTd/N (cYsp − Y)
)

the series form is given by
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II. U = K ′
((
b+ 1
sT ′i

) 1+ scT ′d
1+ sT ′d/N

Ysp −
(
1+ 1
sT ′i

) 1+ sT ′d
1+ sT ′d/N

Y

)

and the parallel form by

III. U = K ′′ (bYsp − Y) + K
′′
i

s
E + K ′′d s

1+ sK ′′d/(NK ′′)
(cYsp − Y)

The relations between the different parameters are discussed in Sec-
tion 3.4. Recall that the parameters b and c are the weightings that
influence the setpoint response. The values of b and c used are typi-
cally 0 or 1 in commercial controllers. This does not use the power of
setpoint weighting fully as was discussed in Section 3.4. The setpoint
weight factors b and c are chosen differently in different commercial
controllers.
The high-frequency gain of the derivative term is limited to avoid

noise amplification. This gain limitation can be parameterized in
terms of the parameter N.
The sampling period is an important parameter of a digital PID

controller, which limits how fast processes can be controlled. The
values used in commercial controllers vary significantly.
Table 3.2 summarizes the properties of some common commercial

PID controllers.

3.9 When Can PID Control Be Used?

The requirements on a control system may include many factors, such
as response to command signals, insensitivity to measurement noise
and process variations, and rejection of load disturbances. The design
of a control system also involves aspects of process dynamics, actuator
saturation, and disturbance characteristics. It may seem surprising
that a controller as simple as the PID controller can work so well.
The general empirical observation is that most industrial processes
can be controlled reasonably well with PID control provided that
the demands on the performance of the control are not too high.
In the following paragraphs we delve further into this issue by first
considering cases where PID control is sufficient and then discussing
some generic problems where more sophisticated control is advisable.

When Is PI Control Sufficient?

Derivative action is frequently not used. It is an interesting observa-
tion that many industrial controllers only have PI action and that in
others the derivative action can be (and frequently is) switched off.
It can be shown that PI control is adequate for all processes where
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Table 3.2 Properties of the PID algorithms in some commercial controllers. The
structures of the controllers are labeled ISA (I), series (II), and ideal (III).

Controller Structure Setpoint Derivative gain Sampling
weighting limitation period

b c N (s)

Allen Bradley PLC 5 I, III 1.0 1.0 none load dependent

Bailey Net 90 II, III 0.0 or 1.0 0.0 or 1.0 10 0.25

Fisher Controls Provox II 1.0 0.0 8 0.1, 0.25, or 1.0

Fisher Controls DPR 900, 910 II 0.0 0.0 8 0.2

Fisher Porter Micro DCI II 1.0 0.0 or 1.0 none 0.1

Foxboro Model 761 II 1.0 0.0 10 0.25

Honeywell TDC II 1.0 1.0 8 0.33, 0.5, or 1.0

Moore Products Type 352 II 1.0 0.0 1− 30 0.1

Alfa Laval Automation ECA40, ECA400 II 0.0 0.0 8 0.2

Taylor Mod 30 II 0.0 or 1.0 0.0 17 or 20 0.25

Toshiba TOSDIC 200 II 1.0 1.0 3.3− 10 0.2

Turnbull TCS 6000 II 1.0 1.0 none 0.036− 1.56
Yokogawa SLPC I 0.0 or 1.0 0.0 or 1.0 10 0.1
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the dynamics are essentially of the first order (level controls in single
tanks, stirred tank reactors with perfect mixing, etc). It is fairly easy
to find out if this is the case by measuring the step response or the
frequency response of the process. If the step response looks like that
of a first-order system or, more precisely, if the Nyquist curve lies
in the first and the fourth quadrants only, then PI control is suffi-
cient. Another reason is that the process has been designed so that
its operation does not require tight control. Then, even if the process
has higher-order dynamics, what it needs is an integral action to pro-
vide zero steady-state offset and an adequate transient response by
proportional action.

When Is PID Control Sufficient?

Similarly, PID control is sufficient for processes where the dominant
dynamics are of the second order. For such processes there are no
benefits gained by using a more complex controller.
A typical case of derivative action improving the response is when

the dynamics are characterized by time constants that differ in mag-
nitude. Derivative action can then profitably be used to speed up the
response. Temperature control is a typical case. Derivative control is
also beneficial when tight control of a higher-order system is required.
The higher-order dynamics would limit the amount of proportional
gain for good control. With a derivative action, improved damping is
provided, hence, a higher proportional gain can be used to speed up
the transient response.

When Is More Sophisticated Control Needed?

The benefits of using a more sophisticated controller than the PID is
demonstrated by some examples below.

Higher-Order Processes

When the system is of a higher order than two, the control can be
improved by using a more complex controller than the PID controller.
This is illustrated by the following example.

EXAMPLE 3.3 Control of a higher-order process

Consider a third-order process described by the following transfer
function.

G(s) = 1
(s+ 1)3
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Figure 3.40 Control of the third-order system in Example 3.3
using a PID controller (PID) and a more complex controller (CC).
The figure shows responses to a setpoint change, a load disturbance,
and finally a measurement disturbance. The upper diagram shows
setpoint ysp and measurement signal y, and the lower diagram
shows control signal u.

Figure 3.40 shows the control obtained using a PID controller and a
more complex controller of higher order. The PID controller has the
parameters K = 3.4,Ti = 2.0 and Td = 0.6. The PID controller is
compared with a controller of the form

R(s)u(t) = −S(s)y(t) + T(s)ysp(t)
with the following controller polynomials

R(s) = s(s2 + 11.5s+ 57.5)
S(s) = 144s3 + 575s2 + 870s+ 512
T(s) = 8s3 + 77s2 + 309s+ 512

The benefits of using a more complex controller in the case of higher-
order dynamics is clearly demonstrated in the figure.

Systems with Long Dead Time

Control of systems with a dominant time delay are notoriously dif-
ficult. It is also a topic on which there are many different opinions
concerning the merit of PID control. There seems to be general agree-
ment that derivative action does not help much for processes with
dominant time delays. For open-loop stable processes, the response
to command signals can be improved substantially by introducing
dead-time compensation. The load disturbance rejection can also be
improved to some degree because a dead-time compensator allows a
higher loop gain than a PID controller. Systems with dominant time
delays are thus candidates for more sophisticated control.
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Figure 3.41 Control of the system in Example 3.4 with PI control
(PI) and with a Smith predictor (SP). The upper diagram shows
setpoint ysp and measurement signal y, and the lower diagram
shows control signal u.

EXAMPLE 3.4 Dead-time compensation

Consider a process described by the equation

dy(t)
dt
= −0.5y(t) + 0.5u(t− 4)

The process has a time constant of 2 and a time delay of 4 time units.
This process was first controlled by a PI controller with a gain of 0.2
and an integral time of 2.5 (see Figure 3.41). The figure also shows
the properties of the control obtained with a Smith predictor. The
response to setpoint changes is much improved, while the difference
is less for the load disturbance. When dead-time compensation was
used, the gain in the PI controller was increased to K = 1, and the
integral time was Ti = 1.

Systems with Oscillatory Modes

Systems with oscillatory modes that occur when there are inertias
and compliances is another case where PID control is not sufficient.
There are several approaches to systems of that type. In the so-
called notch filter approach, no attempt is made to damp the oscilla-
tory modes, but an effort is made to reduce the signal transmission
through the controller by a filter that drastically reduces signal trans-
mission at the resonant frequency. A PID controller may be used when
there is only one dominant oscillatory mode. Notch filter action can
be achieved by judicious choice of the controller parameters. In this
case, parameters Ti and Td should be chosen so that the numerator
has complex roots. The interacting form in Equation (3.15) does not
work well in this case.
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Figure 3.42 Response of the closed-loop system to setpoint and
load disturbances. The graphs show setpoint ysp, process output y,
and control signal u. The controller parameters are K = −0.25,
Ti = −1, and b = 0.

EXAMPLE 3.5 PI control of a system with oscillatory modes

Consider for example a process with the transfer function

G(s) = ab2

(s+ a)(s2 + b2)
where a = 1 and b = 5. The process has two undamped oscillatory
poles. If these poles are neglected, the process is simply a first-order
system that can conveniently be controlled by a PI controller. Attempt-
ing to control the process with a PI controller, we find that controller
parameters K and Ti have to be negative. Reasonable values of the
parameters are K = −0.25 and Ti = −1. Figure 3.42 shows the re-
sponse of the closed-loop system to setpoint and load disturbances.
Notice that the setpoint command does not excite the oscillatory poles
so much. These modes are clearly visible, however, in the load distur-
bance response. With a nonzero b the setpoint changes will also excite
the oscillatory modes, as is seen in Figure 3.43.

The system in Example 3.5 gives only moderate damping of the
oscillatory modes. For systems where the oscillatory modes are inside
the servo bandwidth, it is necessary to have a controller with com-
plex zeros. Such a controller can provide damping of the oscillatory
modes because the poles will be attracted to the controller zeros. The
controller zeros are the zeros of the function

1+ 1
sTi
+ sTd = Td

s

(
s2 + 1

Td
s+ 1
TiTd

)
(3.42)

Assume that the zeros correspond to the polynomial

s2 + 2ζ ω s+ω 2
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Figure 3.43 Response of the closed-loop system to setpoint and
load disturbances. The graphs show setpoint ysp, process output y,
and control signal u. The controller parameters are K = −0.25,
Ti = −1, and b = 1.

we find
ωTi = 2ζ
ωTd = 1

2ζ

(3.43)

Hence
Ti

Td
= 4ζ 2 (3.44)

The value of ζ used typically has to be quite small, say ζ = 0.2,
which gives Ti/Td = 0.16. This ratio is significantly different from the
commonly used value 4. Also, notice that a controller with Ti < 4Td
can not be realized using the series form. To deal with oscillatory
systems it is thus essential that the parallel form is used.
The above calculation is based on a simplified PID controller. For

a controller where the derivative term has a limited high-frequency
gain, Equations (3.42) and (3.43) are replaced by

1+ 1
sTi
+ sTd

1+ sTd/N
and

ωTi = ±ζ +
√

ζ 2 − 1
N + 1

ωTd = ∓
(

ζ −
√

ζ 2 − 1
N + 1

) (3.45)

It is desirable to have N as small as possible, this value is

N = 1
ζ 2
− 1



116 Chapter 3 PID Control

which gives
ωTi = ζ

ωTd = Nζ
(3.46)

Hence
Ti

Td
= 1
N
= ζ 2

1− ζ 2
(3.47)

For systems with oscillatory modes, the normal situation is that Ti is
much smaller than Td. Notice also that the choice of parameter N is
critical for these applications.

Summary

When the dynamics of the process to be controlled are simple, a PID
controller is sufficient. When the dynamics become more complicated,
the control performance can be improved by using a more sophisti-
cated controller structure than the PID. Examples of such processes
have been given above. We end this section with some additional ex-
amples.
For some systems with large parameter variations it is possible to

design linear controllers that allow operation over a wide parameter
range. Such controllers are, however, often of high order.
The control of process variables that are closely related to impor-

tant quality variables may be of a significant economic value. In such
control loops it is frequently necessary to select the controller with
respect to the disturbance characteristics. This often leads to strate-
gies that are not of the PID type. These problems are often associated
with time delays.
A general controller attempts to model the disturbances acting on

the system. Since a PID controller has limited complexity, it cannot
model complex disturbance behavior in general nor periodic distur-
bances in particular.

3.10 Conclusions

A detailed presentation of the PID algorithm has been given. Sev-
eral modifications of the “textbook” version must be made to obtain
a practical, useful controller. Problems that must be handled are, for
example, integral wind-up and introduction of setpoint values. In a
computer implementation, a discrete version of the PID algorithm is
needed. Several methods to derive discrete PID algorithms have been
described. Additional problems due to the sampling procedure must
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be handled, such as the design of a prefilter to avoid aliasing. A dis-
cussion of the limitations of the PID algorithm and a characterization
of processes where the PID controller manages to perform the control
have also been given.

3.11 References

Proportional feedback in the form of a centrifugal governor was used
to regulate the speed of windmills around 1750. In 1788 James Watt
used a similar system for speed control of steam engines. The benefits
of integral action was discovered a little later. Feedback control with
proportional and integral action was rediscovered many times after
that. In the early stages, the development of controllers was closely
related to development of sensors and actuators. Sensing, actuation,
and control were often combined in the same device.
The PID controller, in the form we know it today, emerged in

the period from 1915 to 1940. It coincided with the development of
legendary control companies such as Bristol, Fisher, Foxboro, Honey-
well, Leeds & Northrup, and Taylor Instrument. Proportional and
integral action had been used for a long time. Integral action was
often called automatic reset, because it replaced a manual reset that
was used in proportional controllers to obtain the correct steady state
value. The potential of a controller that could anticipate future control
errors was discussed in the 1920s. However, it took some time before
the idea could be implemented. A controller with derivative action was
introduced by Ralph Clarridge of the Taylor Instrument Company in
1935. At that time the function was called “pre-act.” An interesting
overview of the early history of PID controllers is given in (Stock, 1987
88). There is also much interesting material in publications from the
instrument companies. The interview with Nichols, who is one of the
pioneers in our field, in (Blickley, 1990) gives a perspective on the
early development.
It is interesting to observe that feedback was crucial for the con-

struction of the controller itself. The early pneumatic systems used
the idea that an essentially linear controller can be obtained by a
feedback loop composed of linear passive components and a nonlin-
ear amplifier, the flapper valve. Similar ideas were used in electronic
controllers with electric motors and relays.
Many of the practically useful modifications of the controller first

appeared as special hardware functions. They were not expressed in
mathematical form. An early mathematical analysis of a steam engine
with a governor was made in (Maxwell, 1868). This analysis clearly
showed the difference between proportional and integral control. The
papers (Minorsky, 1922), (Küpfmüller, 1928), (Nyquist, 1932), and
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(Hazen, 1934) were available at the time when the PID controller
was developed. However, there is little evidence that the engineers in
the process control field knew about them. Process control, therefore,
developed independently. Two of the early papers were (Grebe et al.,
1933), written by engineers at the Dow Chemical Company, (Ivanoff,
1934), (Callender et al., 1936), and (Hartree et al., 1937).
The PID controller has gone through an interesting development

because of the drastic technology changes that have happened since
1940. The pneumatic controller improved drastically by making sys-
tematic use of the force balance principle. Pneumatics was replaced
by electronics when the operational amplifier appeared in the 1950s.
A very significant development took place with the emergence of com-
puter control in the 1960s. In the early computer control systems the
computer commanded the setpoints of analog controllers. The next
stage of the development was direct digital control (DDC), where the
computer was controlling the actuator directly, see (Webb, 1967). A
digital computer was then used to implement many PID controllers.
This development led to a reconsideration of much of the fundamen-
tals of PID control, see e.g. (Goff, 1966b), (L&N, 1968), (Moore et al.,
1970), and (Palmor and Shinnar, 1979). The appearance of micro-
processors in the 1970s made it possible to use digital control for
single loop controllers, see (Stojić and Petrović, 1986). It also led to
the development of distributed control systems for process control,
where the PID controller was a key element, see (Lukas, 1986). As
the computing power of the microprocessors increased it was possible
to introduce tuning and adaptation in the single loop controllers. This
development started in the 1980s and has accelerated in the 1990s,
see (Åström et al., 1993).
It is interesting to observe that many facts about PID control

were rediscovered in connection with the shifts in technology. One
reason being that many practical aspects of PID control were con-
sidered as proprietory information that was not easily accessible in
public literature. Much useful information was also scattered in the
literature.
In spite of their wide spread use PID controllers are only treated

superficially in many textbooks and at university courses. The book
(Shinskey, 1988) gives a good coverage. Implementation issues are
discussed in (Goff, 1966b), (Takahashi et al., 1972), (Clarke, 1984),
(Åström and Wittenmark, 1990). The paper (Åström and Steingrímsson,
1991) describes an implementation on a digital signal processor,
which admits a very high sampling rate. The usefulness of a two-
degree-of-freedom structure is discussed in (Horowitz, 1963). The ap-
plication to PID control is treated in (Shigemasa et al., 1987).
The phenomena of integral windup was well known in the early

analog implementations. The controller structures used were often
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such that windup was avoided. The anti-windup schemes were redis-
covered in connection with the development of direct digital control.
This is discussed in (Fertik and Ross, 1967). Much work on avoid-
ing windup have been done since then, and windup has now made
its way into some text books of control, see (Åström and Witten-
mark, 1984). There are many papers written on the windup phe-
nomena, see (Kramer and Jenkins, 1971), (Glattfelder and Schaufel-
berger, 1983), (Krikelis, 1984), (Gallun et al., 1985), (Kapasouris
and Athans, 1985), (Glattfelder and Schaufelberger, 1986), (Howes,
1986), (Åström, 1987b), (Hanus et al., 1987), (Chen and Wang, 1988),
(Glattfelder et al., 1988), (Hanus, 1988), (Zhang and Evans, 1988),
(Åström and Rundqwist, 1989), (Rundqwist, 1990), and (Walgama
and Sternby, 1990). Mode switching is treated in the paper (Åström,
1987b).
The Smith predictor for control of systems with long time delays

was presented in (Smith, 1957). The papers (Ross, 1977) and (Meyer
et al., 1976) compare the Smith predictor with the PID controller.



Controller Design

4.1 Introduction

This chapter describes some methods for determining the parame-
ters of a PID controller. To obtain rational methods for designing
controllers it is necessary to define the main purpose of the control
system. This is done in Section 4.2.
The design methods differ with respect to the knowledge of the

process dynamics they require. A PI controller is described by two
parameters (K and Ti) and a PID controller by three or four pa-
rameters (K , Ti, Td, and N). The classical Ziegler-Nichols methods
are discussed in Section 4.3. In these methods process dynamics are
characterized by two parameters. One parameter is related to the
process gain and the other describes how fast the process is. In the
step response method, the parameters are simple characteristics ob-
tained from the step response. In the frequency response method, the
parameters are the ultimate gain and the ultimate frequency.
An obvious extension of the frequency response method is to de-

velop methods that are based on more knowledge of the open-loop
transfer function, e.g., the slope of the transfer function or its values
at two or more frequencies. In Section 4.4 we discuss various meth-
ods that are based on attempts to shape the loop transfer function.
Section 4.5 treats analytical design methods, where the controller
transfer function is obtained from the specifications and the process
transfer function by a direct calculation.
One possibility for compromise between several different criteria

is to use optimization methods. This is discussed in Section 4.6. An-
other way to characterize process dynamics with few parameters is
to use low-order dynamic models with few parameters. Such methods
are discussed in Section 4.7 where the design goal is to position all
the poles of the closed-loop system. It is shown that methods based
on dynamic models of first and second order lead to PI and PID con-
trollers.
Instead of attempting to position all closed-loop poles, it can be at-

tempted to assign only a few dominating poles. Such methods are dis-

120
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cussed in Section 4.8. The approach leads to systematic design meth-
ods and a unification of many other techniques. New simple design
methods based on the dominant pole design method are presented in
Chapter 5.
In Section 4.9, design methods based on disturbance rejection are

presented. Finally, conclusions and references are given in Sections
4.10 and 4.11.

4.2 Specifications

When solving a control problem it is necessary to understand what
the primary goal of control is. Two common types of problems are to
follow the setpoint and to reject disturbances. It is also important to
have an assessment of the major restrictions, which can be

• System dynamics

• Nonlinearities

• Disturbances

• Process uncertainty

Typical specifications on a control system may include

• Attenuation of load disturbances

• Sensitivity to measurement noise

• Robustness to model uncertainty

• Setpoint following

Specifications can be expressed in many different ways. Features of
time responses for typical inputs is one possibility. Features of fre-
quency responses or transfer functions are other possibilities. Some
of the specifications such as attenuation and sensitivity to measure-
ment errors, are conflicting, and others such as setpoint following and
load disturbance rejection are nonconflicting.
For process control applications setpoint following is often less

important than load disturbance attenuation. Setpoint changes are
often only made when the production rate is altered. Furthermore, the
response to setpoint changes can be improved by feeding the setpoint
through ramping functions or by adjusting the setpoint weightings
described in Section 3.4.

Load Disturbances

Load disturbances are disturbances that drive the process variables
away from their desired values. Attenuation of load disturbances is
of primary concern for process control. This is particularly the case
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for regulation problems where the processes are running in steady
state with constant setpoint for a long time. Load disturbances are
often of low frequencies. Step signals are often used as prototype dis-
turbances. The disturbances may enter the system in many different
ways. If nothing else is known, it is often assumed that the distur-
bances enter at the process input. Typical responses due to a unit
step disturbance at the process input are shown in Figure 4.1. The
characteristics of the graphs in Figure 4.1 are often used to specify
the response to load disturbances. Let e be the error caused by a unit
step disturbance at the process input. Typical quantities used to char-
acterize the error are: maximum error emax, time to reach maximum
tmax, settling time ts, decay ratio d, and the integrated absolute error,
which is defined by

IAE =
∫ ∞

0
�e(t)�dt (4.1)

The criterion IAE is in many cases a natural choice, at least for
control of quality variables. A severe drawback is that its evaluation
requires significant computations or a simulation of the process. The
simulation must also be made with sufficient accuracy. Since the cri-
terion is based on an infinite integral it is also necessary to simulate
for a long time.
For processes that are nonoscillatory, IAE is the same as the

integrated error

IE =
∫ ∞

0
e(t)dt (4.2)

The quantity IE is a good approximation of IAE for systems that are
oscillatory but well damped. The reason for using IE is that its value
is directly related to the controller parameters. To see this assume
that the control law is

u(t) = ke(t) + ki
∫ t

0
e(t)dt− kd dy

dt

and that this controller gives a stable closed-loop system. Further-
more assume that the error is initially zero and that a unit step
disturbance is applied at the process input. Since the closed-loop sys-
tem is stable and has integral action the control error will go to zero.
We thus find

u(∞) − u(0) = ki
∫ ∞

0
e(t)dt

Since the disturbance is applied at the process input, the change in
control signal is equal to the change of the disturbance. Hence,

IE =
∫ ∞

0
e(t)dt = 1

ki
= Ti
K

(4.3)
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    d emax

Figure 4.1 The error due to a unit step load disturbance at the
process input and some features used to characterize attenuation
of load disturbances. The curves show the open-loop error and the
error obtained using a controller without integral action (upper)
and with integral action (lower).

Integral gain ki is thus inversely proportional to IE.
The criterion IE is a natural choice for control of quality variables

for a process where the product is sent to a mixing tank. The criterion
may be strongly misleading, however, in other situations. It will be
zero for an oscillatory system with no damping. It will also be zero
for a controller with a double integrator.
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The quadratic criterion

ISE =
∫ ∞

0
e2(t)dt (4.4)

is also easy to compute. It has, however, the disadvantage that it
gives a very high weight to large errors, which often leads to a poorly
damped closed loop.

Sensitivity to Measurement Noise

Measurement noise is typically of high frequency. Care should always
be taken to reduce noise by appropriate filtering. For sampled systems
it is also important to choose the sampling rate properly. Measure-
ment noise will be fed into the system through the feedback. It will
generate control actions and control errors. The transmission of mea-
surement noise to control actions can be described by the transfer
function

Gnu = Gc

1+ G
 (4.5)

where Gp is the process transfer function, Gc is the controller transfer
function, and G
 = GpGc is the loop transfer function. The transfer
function from measurement noise to process output is

Gny = 1
1+ G
 = S (4.6)

where S is called the sensitivity function. Since the magnitude of
G
 normally is small for high frequencies, we have approximately
Gnu = Gc for high frequencies.
The high-frequency gain of a PID controller is

Khf = K (1+ N) (4.7)
Notice that N = 0 corresponds to PI control. Multiplication of the
measurement noise by Kh f gives the fluctuations in the control signal
that are caused by the measurement noise. Also notice that there
may be a significant difference in Kh f for PI and PID control. It is
typically an order of magnitude larger for a PID controller, since the
gain normally is higher for a PID controller than for a PI controller,
and N is typically around 10.

Sensitivity to Process Characteristics

The controller parameters are typically matched to the process char-
acteristics. Since the process may change it is important that the
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controller parameters are chosen in such a way that the closed-loop
system is not too sensitive to variations in process dynamics. There
are many ways to specify the sensitivity. Many different criteria are
conveniently expressed in terms of the Nyquist curve of the loop trans-
fer function G
(s) = Gc(s)Gp(s) (see Figure 4.2). We choose to char-
acterize sensitivity by

Ms = max
0≤ω<∞

∣∣ 1
1+ Gp(iω )Gc(iω )

∣∣ = max
0≤ω<∞

�S(iω )� (4.8)

Notice that the transfer function S, which is called the sensitivity
function, also appeared in the expression for the sensitivity to mea-
surement noise (compare with Equation (4.6)). The quantity Ms is
simply the inverse of the shortest distance from the Nyquist curve to
the critical point −1. Reasonable values of Ms are in the range from
1.3 to 2.
Sensitivity function S has many useful physical interpretations.

One is the following. Assume that there is a sinusoidal disturbance
with frequency ω that enters the system in an arbitrary way. Let the
amplitude of the open-loop system be a0. If the system is controlled
with a controller that gives the sensitivity function S, the amplitude
of the controlled system is then a0�S(iω )�. Feedback thus reduces the

−1

    

1

Ms

    

1

Am

  ϕm

Im G iω( )

      Re G iω( )
l

l

Figure 4.2 Definitions of sensitivity Ms, amplitude margin Am,
and phase marginϕm. A sensitivity Ms guarantees that the distance
from the critical point to the Nyquist curve is always greater than
1/Ms.
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effect of the disturbance if �S(iω )� < 1, and it amplifies a disturbance
if �S(iω )� > 1.
Under very general assumptions it can be shown that the sensitiv-

ity can not be smaller than one for all frequencies. With a controller
having integral action we have �S(0)� = 0. Low frequency disturbances
thus can be reduced effectively with such a controller. When design-
ing a controller it is important to be aware of the frequencies where
disturbances are amplified. It is also important that the largest value
of the sensitivity is limited. It is common to require that the maxi-
mum value of the sensitivity function, Ms be in the range of 1.3 to
2.
Amplitude margin (Am) and phase margin (ϕm) are other com-

mon sensitivity measures. They are defined as

Am = 1
�G
(iωu)�

ϕm = π + argG
(iω �)
(4.9)

where the ultimate frequency ωu is the frequency where argG
(iω ) =
−π and the gain cross-over frequency ω � is the frequency where
�G
(iω )� = 1. See Figure 4.2. The amplitude margin is also called
gain margin. We have the following relations

Am > Ms

Ms − 1
ϕm > 2 arcsin 1

2Ms

(4.10)

Typical values of ϕm range from 30○ to 60○. Amplitude margins could
typically vary from 2 to 5. A geometrical interpretation of the criterion
given by Equation (4.8) is that the Nyquist curve of the loop transfer
function is always outside a circle around the critical point −1 with
the radius 1/Ms. An engineering interpretation is that the system
remains stable even if the gain is increased by the factor Ms/(Ms−1)
or decreased by the vector Ms/(Ms + 1). The closed loop will remain
stable even if a nonlinearity characterized by

xMs/(Ms + 1) < f (x) < xMs/(Ms − 1)
is inserted in the loop. A small value of Ms thus ensures that the sys-
tem will remain stable in spite of nonlinear actuator characteristics.

Setpoint Following

Specifications on setpoint following may include requirements on rise
time, settling time, decay ratio, overshoot, and steady-state offset for
step changes in setpoint. See Figure 4.3. These quantities are defined
in different ways and there are also different standards.
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Figure 4.3 Specifications on setpoint following based on the time
response to a unit step in the setpoint.

• The rise time tr is either defined as the inverse of the largest slope
of the step response or the time it takes the step to pass from 10%
to 90% of its steady state value.

• The settling time ts is the time it takes before the step response
remains within p% of its steady state value. The value p = 2% is
commonly used.

• The decay ratio d is the ratio between two consecutive maxima
of the error for a step change in setpoint or load. The value
d = 1/4, which is called quarter amplitude damping, has been
used traditionally. This value is, however, too high as will be
shown later.

• The overshoot o is the ratio between the difference between the
first peak and the steady state value and the steady state value of
the step response. In industrial control applications it is common
to specify an overshoot of 8%–10%. In many situations it is desir-
able, however, to have an overdamped response with no overshoot.

• The steady-state error ess is the value of control error e in steady
state. With integral action in the controller, the steady-state error
is always zero.
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Criteria like IAE, IE, and ISE can also be used to characterize
setpoint responses if the error in Equations (4.1), (4.2), and (4.4) are
interpreted as the error due to a unit step change of the setpoint. For
step changes in the setpoint there will always be a large initial error.
It is then useful to have criteria that put little weight on the initial
error. It has been found that criteria of the type

ITAE =
∫ ∞

0
t �e(t)� dt

ITE =
∫ ∞

0
te(t)dt

ITSE =
∫ ∞

0
te2(t)dt

ISTE =
∫ ∞

0
t2e2(t)dt

are more suitable to judge performance for setpoint following. These
integrals are finite only if the steady-state error is zero. In some
cases setpoint following may also contain requirements based on ramp
signals.
For a system with pure error feedback the relation between pro-

cess output and setpoint is given by

Y(s) = Gp(s)Gc(s)
1+ Gp(s)Gc(s) Ysp =

G
(s)
1+ G
(s) Ysp (4.11)

The setpoint response is thus uniquely given by G
. For systems with
two degrees of freedom the corresponding relation is

Y(s) = Gp(s)Gf f (s)
1+ Gp(s)Gc(s)Ysp =

Gp(s)Gf f (s)
1+ G
(s) Ysp (4.12)

where Gf f (s) is the transfer function between the setpoint and the
controller output. (Compare with Section 3.4.) Setpoint following and
load disturbance rejection can be decoupled by using a two-degree-
of-freedom structure. For PID controllers it is mostly the setpoint
weighting that is used to modify the setpoint response.
To judge the properties of a control system we must consider both

the process output and the control signal. The response of the control
signal to a step change in the setpoint typically has an overshoot as
is shown in Figure 4.3. The initial change of the control signal is
∆u(0) = Kb∆ysp, where K is the controller gain, b is the setpoint
weighting, and ∆ysp is the setpoint change. The steady-state change
of the control signal is ∆uss = ∆ysp/Kp, where Kp is the static process
gain. The quantity

Mu = ∆u(0)
∆uss

= K Kpb
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is thus a normalized initial overshoot of the control signal. This ex-
pression is a correct value of the overshoot if the control signal has its
largest value immediately after the change in the setpoint. For sys-
tems with time delays the maximum will occur later. The overshoot
can then be approximated by the expression

Mu = K Kp
(
b+ L
Ti

)
where L is the apparent dead time and Ti is the integration time of
the controller.
The dimensionless quantity Mu, which we call the control signal

overshoot, is a quantity that is useful for evaluating the performance
of a control system. For systems where an essential part of the dy-
namics is due to the sensors it is important that Mu is not too large.

Relations Between Specifications

Specifications express different properties of a system such as load
disturbance attenuation and setpoint following. They are also ex-
pressed in different ways using frequency domain or time domain
properties. To get some insight into the relations we will investigate
a second-order system in detail.

Second-Order System

Consider a first-order system with the transfer function

Gp(s) = Kp

1+ sT
that is controlled by an I controller. For such a system the transfer
function from setpoint to process output is

G(s) = GpGc

1+ GpGc =
ω 20

s2 + 2ζ ω 0s+ω 20
(4.13)

The response to a unit step in the setpoint is

y(t) = 1− 1√
1− ζ 2

e−ζ ω 0t sin
(

ω 0t
√
1− ζ 2 + φ

)
(4.14)

where φ = arctan
√
1− ζ 2/ζ .

The transfer function from a load disturbance at the process input
to process output is given by

Gly(s) = Gp

1+ GpGc =
Kp

T

s

s2 + 2ζ ω 0s+ω 20
(4.15)
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A unit step load disturbance at the process input gives the error

e(t) = Kp

ω 0T
√
1− ζ 2

e−ζ ω 0t sinω 0t
√
1− ζ 2 (4.16)

If 0 < ζ < 1, the two closed-loop poles of the system are

pi = −ζ ω 0 ± iω 0
√
1− ζ 2

where ζ is called the relative damping, and ω 0 is the undamped
natural frequency. The time responses of the system are characterized
by a damped oscillation with period

Tp = 2π

ω 0
√
1− ζ 2

(4.17)

and decay ratio

d = e−2πζ /
√
1−ζ 2 (4.18)

From the step response (Equation 4.14) we can calculate the rise
time, the settling time, and the overshoot. Defining the rise time as
the inverse of the maximum slope of the step response we get

tr = 1
ω 0
eφ/ tanφ (4.19)

The settling time, i.e., the time required for the output to be within
the fraction p of the steady state value, is a discontinuous function
of the parameters due to the oscillatory nature of the step response.
An approximative formula is obtained by considering the envelope of
the step response. This gives

ts 	 −
log

(
p
√
1− ζ 2

)
ζ ω 0

(4.20)

This formula is conservative because it overestimates the settling
time. The slope has its maximum at

t = φ

ω 0 cosφ

With ζ = 0.707 and p = 0.02 we get tr = 2.2/ω 0 and ts = 6.0/ω 0. The
overshoot is given by

o = e−πζ /
√
1−ζ 2 =

√
d

where d is the decay ratio. It occurs at the time

tmax = π

ω 0
√
1− ζ 2
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The overshoot is 4% for ζ = 0.707, 8% for ζ = 0.63, 16% for ζ = 0.5.
It is 50% for quarter amplitude decay ratio.
Equation (4.16) gives the error signal after a step disturbance at

the process input. This signal has the maximum

emax = Kp

ω 0T
√
1− ζ 2

e−φ tanφ sinφ

for

tmax = 1

ω 0
√
1− ζ 2

φ

The integrated error is

IE = Kp

ω 20T

This quantity is close to the IAE, if the overshoot is sufficiently small.
The high-frequency gain of the controller is

Khf = 2ζ ω 0T − 1
Kp

	 2ζ ω 0T

Kp

where the approximation holds when ω 0T is large. The sensitivity is

Ms =
√
1+ 8ζ 2 + (1+ 4ζ 2)

√
1+ 8ζ 2

1+ 8ζ 2 + (−1+ 4ζ 2)
√
1+ 8ζ 2

The sensitivity function is infinite for ζ = 0 and decreases with
increasing ζ . Its values for ζ = 0.3, 0.5, and 0.7 are 2.0, 1.5, and
1.3. To have a reasonable value of the sensitivity it must, therefore,
be required that the relative damping is greater than 0.3. This implies
that the decay ratio d must be smaller than 0.14.
The equations given can be used to understand how the proper-

ties of the closed-loop system are influenced by ω 0 and ζ . The in-
tegrated error is inversely proportional to ω−20 . The maximum error,
the rise time, and the settling time are proportional to ω−10 . The high-
frequency gain of the controller is proportional to ω 0. Both the load
disturbance response and the setpoint response are improved by in-
creasing ω 0. The control actions generated by noise do increase, how-
ever, with ω 0. The overshoot, the decay ratio, and the sensitivity will
increase with decreasing ζ .
This general pattern also holds for more complex systems. Both

load disturbance attenuation and response time to setpoint changes
will generally increase with increasing bandwidth of the system. For
more complex controllers, the load disturbance response and the set-
point response can be specified separately.
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Averaging Control

There are several situations where the purpose of control is not to
keep the process variables at constant values. Level control in buffer
tanks is a typical example. The reason for using a buffer tank is to
smooth flow variations. In such a case the tank level should fluctuate
within some limits. It is often undesirable that the tank becomes
empty or that it overflows. The specifications are thus that the tank
level should be allowed to fluctuate between given limits. This is
called averaging control. It is often solved with a controller with a
small gain. Sometimes gain scheduling is introduced to have a larger
gain when the level gets close to the limits. Another approach is to
use error-squared control. This was discussed in Section 3.4.

Dominant Poles

The formulas derived above for a second-order system can often be
used as approximations for more complex systems. The reason for this
is that the dynamics of complex systems can often be characterized by
a few poles. Many properties of the closed-loop system can be deduced
from the poles and the zeros of

G(s) = G
(s)
1+ G
(s) (4.21)

The closed-loop zeros are the same as the zeros of loop transfer func-
tion Gell(s), and the closed-loop poles are the roots of the equation

1+ G
(s) = 0 (4.22)
The pole-zero configurations of closed-loop systems may vary consid-
erably. Many simple feedback loops, however, will have a configuration
of the type shown in Figure 4.4, where the principal characteristics

    Im s

    Re s

    

    z1
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    p3

    p5

    p4

    p1

Figure 4.4 Pole-zero configuration of a simple feedback system.
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of the response are given by a complex pair of poles, p1 and p2, called
the dominant poles. The response is also influenced by real poles and
zeros p3 and z1 close to the origin. The position of p3 and z1 may be
reversed. There may also be more poles and zeros far from the origin,
which typically are of less influence. Poles and zeros with real parts
much smaller than the real part of the dominant poles have little
influence on the transient response.
Complex poles are often characterized in terms of their frequency

ω 0, which is the distance from the origin, and their relative damping
ζ . If a pair of complex poles is dominating, the formulas derived above
for a second-order system can be used as approximation. Classical
control was very much concerned with closed-loop systems having
the pole-zero configuration shown in Figure 4.4.
Even if many closed-loop systems have a pole-zero configuration

similar to the one shown in Figure 4.4, there are, however, exceptions.
For instance, systems with mechanical resonances, which may have
poles and zeros close to the imaginary axis, are generic examples of
systems that do not fit the pole-zero pattern of the figure. Another
example is processes with a long dead time.

Determination of the Dominant Poles from the
Frequency Response

A simple method for approximate determination of the dominant poles
from knowledge of the Nyquist curve of the loop transfer function will
now be given. Consider the loop transfer function G
(s) as a mapping
from the s-plane to the G
-plane. The map of the imaginary axis in
the s-plane is the Nyquist curve G
(iω ), which is indicated in Figure
4.5.
The closed-loop poles are the roots of the characteristic equation

1+ G
(s) = 0
The map of a straight vertical line through the dominant closed-loop
poles in the s-plane is thus a curve through the critical point G
 = −1
in the G
-plane. This curve is shown by a dashed line in Figure
4.5. Since the map is conform, the straight line A′C′ is mapped on
the curve AC, which intersects the Nyquist curve orthogonally. The
triangle ABC is also mapped conformally to A′B′C′. If ABC can be
approximated by a triangle, we have

G
(iω 2) − G
(iω 1)
iω 2 − iω 1 	 1+ G
(iω 2)

σ

When ω 1 is close to ω 2 this becomes

σ = (1+ G
(iω 2)) iω 2 − iω 1
G
(iω 2) − G
(iω 1) 	

1+ G
(iω 2)
G ′
(iω 2)
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where

G ′
(s) =
dG
(s)
ds

To determine the dominant poles we first determine the point A on the
Nyquist curve that is closest to the ultimate point. Then we determine
the derivative of the loop transfer function at that point or evaluate
the transfer function at a neighboring point ω 1.

Design Parameters and Design Methods

In control designs it is often convenient to have a few parameters
that can be changed to influence the performance of the system. The
parameters should be chosen in such a way that their influence on the
performance of the system is transparent. In the case of the second-
order example discussed above, the parameters can be chosen as ω 0
and ζ . The relative damping can be replaced by the sensitivity Ms.
A good design method should take a number of different specifi-

cations into account in a balanced way. Most design methods, unfor-
tunately, concentrate on one or a few of the specifications only.

4.3 Ziegler-Nichols’ and Related Methods

Two classical methods for determining the parameters of PID con-
trollers were presented by Ziegler and Nichols in 1942. These meth-
ods are still widely used, either in their original form or in some
modification. They often form the basis for tuning procedures used
by controller manufacturers and process industry. The methods are
based on determination of some features of process dynamics. The
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Figure 4.5 Representation of the loop transfer function as a map
of complex planes.
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Figure 4.6 Characterization of a step response in the Ziegler-
Nichols step response method.

controller parameters are then expressed in terms of the features by
simple formulas.

The Step Response Method

The first design method presented by Ziegler and Nichols is based
on a registration of the open-loop step response of the system, which
is characterized by two parameters. The parameters are determined
from a unit step response of the process, as shown in Figure 4.6.
The point where the slope of the step response has its maximum

is first determined, and the tangent at this point is drawn. The
intersections between the tangent and the coordinate axes give the
parameters a and L. In Chapter 2, a model of the process to be
controlled was derived from these parameters. This corresponds to
modeling a process by an integrator and a time delay. Ziegler and
Nichols have given PID parameters directly as functions of a and L.
These are given in Table 4.1. An estimate of the period Tp of the
closed-loop system is also given in the table.

EXAMPLE 4.1 Ziegler-Nichols step response method

Ziegler-Nichols method will be applied to a process with the transfer
function

G(s) = 1
(s+ 1)3 (4.23)

Measurements on the step response give the parameters a = 0.218
and L = 0.806. The controller parameters can now be determined
from Table 4.1. The parameters of a PID controller are K = 5.50,
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Table 4.1 PID controller parameters obtained from the Ziegler-
Nichols step response method.

Controller K Ti Td Tp

P 1/a 4L

PI 0.9/a 3L 5.7L

PID 1.2/a 2L L/2 3.4L

Ti = 1.61, and Td = 0.403. Figure 4.7 shows the response of the closed-
loop systems to a step change in setpoint followed by a step change in
the load. The behaviour of the controller is as can be expected. The
decay ratio for the step response is close to one quarter. It is smaller
for the load disturbance. The overshoot in the setpoint response is too
large. This can be improved by reducing parameter b. Compare with
Section 3.4.

The Frequency Response Method

This method is also based on a simple characterization of the pro-
cess dynamics. The design is based on knowledge of the point on the
Nyquist curve of the process transfer function G(s) where the Nyquist
curve intersects the negative real axis. For historical reasons this
point is characterized by the parameters Ku and Tu, which are called
the ultimate gain and the ultimate period. These parameters can be
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Figure 4.7 Setpoint and load disturbance response of a process
with transfer function 1/(s+1)3 controlled by a PID controller tuned
with the Ziegler-Nichols step response method. The diagrams show
setpoint ysp, process output y, and control signal u.
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Table 4.2 PID controller parameters obtained from the Ziegler-
Nichols frequency response method.

Controller K Ti Td Tp

P 0.5Ku Tu

PI 0.4Ku 0.8Tu 1.4Tu

PID 0.6Ku 0.5Tu 0.125Tu 0.85Tu

determined in the following way. Connect a controller to the process,
set the parameters so that control action is proportional, i.e., Ti = ∞
and Td = 0. Increase the gain slowly until the process starts to oscil-
late. The gain when this occurs is Ku and the period of the oscillation
is Tu. The parameters can also be determined approximately by relay
feedback as is discussed in Section 2.6.
Ziegler-Nichols have given simple formulas for the parameters of

the controller in terms of the ultimate gain and the ultimate period
(see Table 4.2). An estimate of the period Tp of the dominant dynam-
ics of the closed-loop system is also given in the table.
We illustrate the design procedure with an example.

EXAMPLE 4.2 The Ziegler-Nichols frequency response method

Consider the same process as in Example 4.1. The process given by
Equation (4.23) has the ultimate gain Ku = 8 and the ultimate
period Tu = 2π/

√
3 	 3.63. Table 4.2 gives the parameters K = 4.8,

Ti = 1.81, and Td = 0.44 for a PID controller. Figure 4.8 shows
the closed-loop setpoint and load disturbance responses when the
controller is applied to the process given by Equation (4.23). The
parameters and the performance of the controllers obtained with the
frequency response method are close to those obtained by the step
response method. The responses are slightly better damped.

The Ziegler-Nichols tuning rules were originally designed to give
systems with good responses to load disturbances. They were obtained
by extensive simulations of many different systems. The design cri-
terion was quarter amplitude decay ratio. Equation (4.18) gives a
relation between decay ratio d and relative damping ζ . Using this re-
lation we find that d = 1/4, gives ζ = 0.22, which is often too small,
as is seen in the examples. For this reason the Ziegler-Nichols method
often requires modification or retuning. Since the primary design ob-
jective was to reduce load disturbances, it is often necessary to choose
setpoint weighting carefully in order to obtain a satisfactory setpoint
response.
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Figure 4.8 Setpoint and load disturbance response of a process
with the transfer function 1/(s + 1)3 controlled by a PID con-
troller that is tuned with the Ziegler-Nichols frequency response
method. The diagrams show setpoint ysp, process output y, and con-
trol signal u.

Relations Between the Ziegler-Nichols Tuning Methods

Insight into the relations between the Ziegler-Nichols methods can
be obtained by calculating the controller parameters for different
systems. Consider a process with the transfer function

G(s) = b
s
e−sL

which is the model originally used by Ziegler and Nichols to derive
their tuning rules for the step response method. For this process we
have a = bL. The ultimate frequency is ωu = π/2L, which gives the
ultimate period Tu = 4L, and the ultimate gain is Ku = π/2bL.
The step response method gives the following parameters for a PI

controller

K = 0.9
bL
, Ti = 3L

This can be compared with the parameters

K = 0.63
bL
, Ti = 3.2L

obtained for the frequency response method. Notice that the integral
times are within 10% but that the step response method gives a gain
that is about 40% higher.
The PID parameters obtained from the step response method are

K = 1.2
bL
, Ti = 2L and Td = L2
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Figure 4.9 A given point on the Nyquist curve may be moved to
another position in the G-plane by PI, PD, or PID control. Point
A may be moved in the directions G(iω ), −iG(iω ), and iG(iω ) by
changing the proportional, integral, and derivative gain, respec-
tively.

and those given by the frequency response methods are,

K = 0.94
bL
, Ti = 2L and Td = L2

In this particular case both methods give the same values of integral
and derivative times but the step response method gives a gain that is
about 25% higher than the frequency response method. The results of
this example are quite typical. The step response method often gives
higher values of the gain.

An Interpretation of the Frequency Domain Method

The frequency domain method can be interpreted as a method where
one point of the Nyquist curve is positioned. With PI or PID control, it
is possible to move a given point on the Nyquist curve to an arbitrary
position in the complex plane, as indicated in Figure 4.9. By changing
the gain, a point on the Nyquist curve is moved radially from the ori-
gin. The point can be moved in the orthogonal direction by changing
integral or derivative gain. Notice that with positive controller param-
eters the point can be moved to a quarter plane with PI or PD control
and to a half plane with PID control. The frequency response method
starts with determination of the point (−1/Ku, 0) where the Nyquist
curve of the open-loop transfer function intersects the negative real
axis. Let us now investigate how the ultimate point is changed by the
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controller. For a PI controller with Ziegler-Nichols tuning we have
K = 0.4Ku and ωuTi = (2π/Tu)0.8Tu = 5.02. Thererfore, the transfer
function of the PI controller at the ultimate frequency is

Gc(iωu) = K
(
1+ 1
iωuTi

)
= 0.4Ku(1− i/5.02) = Ku(0.4− 0.08i)

The ultimate point is thus moved to −0.4+ 0.08i. This means that a
lag of 11.2○ is introduced at the ultimate frequency.
For a PID controller we have K = 0.6Ku, ωuTi = π and ωuTd =

π/4. The frequency response of the controller at frequency ωu is

Gc(iωu) = K
(
1+ i

(
ωuTd − 1

ωuTi

))
= 0.6Ku

(
1+ i

(π

4
− 1

π

))

	 0.6Ku(1+ 0.467i)
This controller gives a phase advance of 25○ at the ultimate frequency.
The loop transfer function is

G
(iωu) = Gp(iωu)Gc(iωu) = −0.6(1+ 0.467i) = −0.6− 0.28i
The Ziegler-Nichols frequency response method thus moves the ulti-
mate point (−1/Ku, 0) to the point −0.6 − 0.28i. The distance from
this point to the critical point is 0.5. This means that the method
gives a sensitivity that is always greater than 2.

Modified Ziegler-Nichols Method

With the given interpretation of the frequency domain method, it is
straightforward to generalize it in the following way. Choose an arbi-
trary point on the Nyquist curve of the open-loop system. Determine a
controller that moves this point to a suitable location. Let the chosen
point be

A = Gp(iω 0) = raei(π+φa)

Determine a controller that moves this point to

B = G
(iω 0) = rbei(π+φb)

Writing the frequency response of the controller as Gc(iω 0) = rceiφ c
we get

rbe
i(π+φb) = rarcei(π+φa+φ c)

The controller should thus be chosen so that

rc = rb
ra

φ c = φb − φa
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For a PI controller this implies

K = rb cos (φb − φa)
ra

Ti = 1
ω 0 tan (φa − φb)

(4.24)

This means that we must require φa > φb in order to have positive
Ti. For a PID controller we get similarly

K = rb cos (φb − φa)
ra

ω 0Td − 1
ω 0Ti

= tan (φb − φa)
(4.25)

The gain K is uniquely given. There is, however, only one equation to
determine parameters Ti and Td. An additional condition must thus
be introduced to determine these parameters uniquely. A common
method is to specify that the ratio of these parameters is constant,
i.e.,

Td = αTi

as in the Ziegler-Nichols rules, where α = 0.25. Straightforward
calculations then give

Ti = 1
2αω 0

(
tan (φb − φa) +

√
4α + tan2 (φb − φa)

)
Td = αTi

(4.26)

Assuming that a Ziegler-Nichols experiment is used to determine a
suitable point, we have ra = 1/Ku and φa = 0. The PI controller
parameters then become

K = Kurb cosφb

Ti = − Tu

2π tanφb

(4.27)

Notice that φb must be negative in order to have positive controller
parameters. Choosing α = 0.25, the PID controller parameters are
given by

K = Kurb cosφb

Ti = Tu
π

(1+ sinφb
cosφb

)
Td = Tu4π

(1+ sinφb
cosφb

) (4.28)

Notice that the tuning rules are of the same form as for the frequency
response method but with different values of the numerical parame-
ters. Systems with better damping than the Ziegler-Nichols rules can
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be obtained by proper choices of rb and φb. A reasonable choice is
rb = 0.5 and φb = 20○.
It has been suggested by Pessen to move the ultimate point to

−0.2 − 0.36i or −0.2 − 0.21i. This corresponds to rb = 0.41 and
φb = 61○, and rb = 0.29 and φb = 46○ respectively.
There are limitations with a design method where only one point

on the Nyquist curve is positioned. The properties of the closed-loop
system can then change significantly depending on the slope of the
curve. This is illustrated in Figure 4.10, which shows the Nyquist
curves of three systems having the same amplitude margin, Am = 2,
which means that the Nyquist curves of all systems pass through the
point (−0.5, 0). The figure also shows the closed-loop responses to a
step change in setpoint.

Assessment of Ziegler-Nichols Tuning

The Ziegler-Nichols tuning procedures are simple and intuitive. They
require little process knowledge and they can be applied with modest
effort. These are some of the reasons why they are so widely used.
The methods have, however, some limitations as we have already
seen. A fundamental drawback is that the basic design criterion is
to obtain a closed-loop system with quarter amplitude decay ratio
(d = 0.25). This gives good rejection of load disturbances, but also
creates a closed-loop system that is very poorly damped and that has
poor stability margins. The closed-loop gain is typically 2 to 3 times
too high. The frequency response method is more reliable than the
step response method. One reason for this is that the ultimate gain is
uniquely defined, but that there are many ways to define the apparent
dead time. The step response method typically also gives somewhat
higher gains.
The methods generally will work better for PID control than for

PI control. The reason for this will be discussed in Chapter 5. Let it
suffice here to give an example.

EXAMPLE 4.3 PI control

Consider the same process as in Examples 4.1 and 4.2, where the
transfer function has three equal lags. See Equation (4.23). Mea-
surements on the step response give the parameters a = 0.218 and
L = 0.806. The step response method gives a PI controller with pa-
rameters K = 4.13 and Ti = 2.42. The ultimate gain is Ku = 8 and
the ultimate period is Tu = 2π/

√
3 	 3.63. The frequency domain

method gives a PI controller with parameters K = 3.2 and Ti = 2.90.
Notice that the gains obtained with the frequency response method
are lower than those obtained with the step response method. Figure
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Figure 4.10 Nyquist curves of three systems with amplitude
margin Am = 2, and their corresponding closed-loop step responses.

4.11 shows the response of the closed-loop system to step changes in
setpoint and load when the PI controller is tuned with the frequency
response method. The figure shows clearly that the decay ratio is
much larger than the design value d = 1/4. The performance is even
worse if the step response method is used. Compare with Figure 4.8
which shows the results obtained with a PID controller tuned by the
Ziegler-Nichols frequency response method.
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Figure 4.11 Setpoint and load disturbance response of a process
with transfer function G(s) = (s+1)−3 controlled by a PI controller
tuned with the Ziegler-Nichols frequency response method. The
diagrams show setpoint ysp, process output y, and control signal u.

Although the Ziegler-Nichols methods have many attractive prop-
erties they are far from perfect. Hence, there is a need to characterize
those situations where reasonable tuning is obtained with the Ziegler-
Nichols method and also to estimate the achievable performance. For
this purpose the process will be characterized by the quantities nor-
malized dead time τ and gain ratio κ introduced in Chapter 2. Recall
that τ is the ratio of apparent dead time and average residence time
and that κ is the ratio of the process gains at frequencies ωu and 0.
Also remember that both quantities normally vary from 0 to 1 and
that they are approximately linearly related. Furthermore processes
with small κ or τ are easy to control. The difficulty increases as the
parameters approach 1.
The following empirical rules have been developed based on sim-

ulation of a large number of systems. There is no precise definition of
the region of validity. Roughly speaking they apply to processes with
essentially monotone step responses.

Case 1: Small κ and τ . Processes with small κ or τ are easy
to control. A small value of τ means that the dynamics is lag domi-
nated. In this case there are factors other than process dynamics that
limits performance, e.g., measurement noise. If specifications on re-
sponse time are not severe, satisfactory performance can often be ob-
tained with a PI controller. The tuning obtained by the Ziegler-Nichols
methods can often be improved significantly by using other methods.
Derivative action or even more complicated control laws are often use-
ful for obtaining systems with high performance in those cases where
the disturbances are small. Notice that the Ziegler-Nichols rules do
not give guidance for finding parameters in PD controllers.
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Case 2: Intermediate κ and τ . This is the primary range for
using the Ziegler-Nichols method for PID control. Derivative action
often gives significant improvement of performance. The overshoot for
setpoint changes can often be too large. It can be reduced by proper
choice of setpoint weighting.

Case 3: κ and τ close to 1. This case corresponds to processes
that are dead time dominated. The Ziegler-Nichols tuning rules do not
perform well in those cases. PI or PID control can still be used, but the
tuning rules must be improved. It is also possible to get drastically
improved setpoint responses by using other control algorithms like
the Smith predictor. (Compare with Example 3.4 in Section 3.9.)
The boundaries between the different cases are approximately

0.07 and 0.4 for κ , or 0.15 and 0.4 for τ . The following example
illustrates that the Ziegler-Nichols rules give poor tuning in Case 3.

EXAMPLE 4.4 Ziegler-Nichols tuning for κ and τ close to 1

Consider a process with the transfer function

G(s) = e−5s

(s+ 1)3
Applying the frequency response method we find that Ku = 1.25 and
Tu = 15.7. The controller parameters then become K = 0.75, Ti = 7.9
and Td = 2.0. The normalized dead time varies between 0.6 and
to 0.7 depending on the method used to compute it. Compare with
Section 2.4. The gain ratio is, however, uniquely defined and becomes
κ = 0.8. This case thus belongs to Case 3 above. Figure 4.12 shows
a simulation of the setpoint and load responses of the closed-loop
system. The responses are oscillatory as can be expected. Notice also
that the recovery from load disturbances is slow because the integral
action is too small.

Achievable Performance

It is also of interest to characterize the performance that can be
achieved with Ziegler-Nichols tuned PID controllers. A first indication
is already given in Table 4.1 and Table 4.2, which give the period
of the closed-loop systems. Several empirical observations have been
made from experimental investigations of tuned loops.
The rise time obtained is approximately equal to the apparent

dead time for processes without integration and L/2 for processes
with integration.
The error due to a step disturbance at the process input has

a maximum at a time that is approximately equal to 0.25Tu or L.
The size of the peak is approximately 1.4Kpκ , where Kp is the static
process gain. Notice that the error is proportional to κ .
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Figure 4.12 Step responses of a process with the transfer func-
tion G(s) = e−5s/(s + 1)3 controlled by PID controllers tuned with
the Ziegler-Nichols frequency response method. The diagrams show
setpoint ysp, process output y, and control signal u.

With Ziegler-Nichols tuning the sensitivity is always larger than
2. In Section 4.2 it was shown that a quarter amplitude decay ratio
corresponds to a sensitivity Ms = 2.6.

Tuning Maps

Since the Ziegler-Nichols methods only give “ball-park” values, it is
necessary to make manual tuning to obtain the desired performance.
A device called tuning maps have been developed to guide man-
ual tuning. The purpose of these maps is to provide intuition about
how changes in controller parameters influence the behaviour of the
closed-loop system. The tuning maps are simply two-dimensional ar-
rays of transient responses or frequency responses organized in a
systematic way.
An example of a tuning map is given in Figure 4.13. The figure

illustrates how the load disturbance response is influenced by changes
in gain and integral time. The process model

G(s) = 1
(s+ 1)8

has been used in the example. The Ziegler-Nichols frequency response
method gives the controller parameters K = 1.13, Ti = 7.58, and
Td = 1.9. The figure shows clearly the benefits of having a smaller
value of Ti. Judging from the figure, the values K = 1 and Ti = 5.0
appear reasonable. The figure also shows that the choice of Ti is
fairly critical. Also notice that controllers with Ti < 7.6 cannot be
implemented on series form (compare with Section 3.4).
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Figure 4.13 Tuning map for PID control of a process with the
transfer function G(s) = (s+ 1)−8. The figure shows the responses
to a unit step disturbance at the process input. Parameter Td has
the value 1.9.

Another example of a tuning map is given in Figure 4.14, which
shows the Nyquist curves of the loop transfer functions that corre-
spond to Figure 4.13. The figure shows that with Ziegler-Nichols tun-
ing there is too much phase lead. This is reduced by reducing param-
eter Ti. A comparative study of curves like Figure 4.13 and Figure
4.14 is a good way to develop intuition for the relations between the
time domain and the frequency domain.
It is useful to have a simple way to judge if the integral action

of a controller is too weak, as in the three left and the lower middle
examples in Figures 4.13 and 4.14. Such a criterion can be based on a
calculation of the asymptotic behaviour of the loop transfer function
for low frequencies. For a process with transfer function Gp and a PI
controller with transfer function Gc we have

G
(s) = Gp(s)Gc(s)

	 (
Gp(0) + sG ′p(0)

)
K

(
1+ 1
sTi

)

	 KGp(0)
sTi

+ KGp(0) +
KG ′p(0)
Ti

Thus, for low frequencies the asymptote of the Nyquist curve is
parallel to the imaginary axis with the real part equal to

KGp(0) +
KG ′p(0)
Ti

= K Kp
(
1− Tar

Ti

)

where Kp = G(0) is the static process gain, and Tar is the average
residence time. It is reasonable to require that the real part of the
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Figure 4.14 Tuning map for PID control of a process with
the transfer function G(s) = (s + 1)−8. The figure shows the
Nyquist curves of the loop transfer function. Parameter Td has the
value 1.9.

asymptote is less than −0.5. This gives

Ti < Tar 2K Kp
1+ 2K Kp (4.29)

For the system in Figures 4.13 and 4.14, we get the requirement
Ti < 6.0 for the systems in the upper row, Ti < 5.3 for the systems in
the middle row, and Ti < 4.0 for the systems in the lower row. This
means that condition (4.29) excludes the three left and the lower
middle examples in Figures 4.13 and 4.14.
Assuming that the process dynamics is governed by

Gp(s) = Kp e
−sL

1+ sT
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we find that Tar = L + T . With Ziegler-Nichols tuning of a PI con-
troller, we then find that condition (4.29) is satisfied if

3L < (L + T) 1.8T
L + 1.8T

This means that we must require that the normalized dead time
satisfies

τ = L

L+ T < 0.28

A similar calculation for a process described by

Gp(s) = Kp e−sL

(1+ sT)2
which has

τ = L + (3− e)T
L + 2T

shows that condition (4.29) holds for a PI controller tuned according
to the Ziegler-Nichols method if

τ < 0.38
We can thus conclude that the Ziegler-Nichols tuning rules for PI con-
trollers can be applied only for small values of τ . The upper bound is
approximately τ = 0.3. For larger normalized dead times the integral
action is too weak.

The Chien, Hrones and Reswick Method

There has been many suggestions of modifications of the Ziegler-
Nichols methods. Chien, Hrones and Reswick (CHR) changed the
step response method to give better damped closed-loop systems. They
proposed to use “quickest response without overshoot” or “quickest
response with 20% overshoot” as design criteria. They also made
the important observation that tuning for setpoint response or load
disturbance response are different.
To tune the controller according to the CHR method, the param-

eters a and L of the process model are first determined in the same
way as for the Ziegler-Nichols step response method. The controller
parameters for the load disturbance response method are then given
as functions of these two parameters. They are summarized in Ta-
ble 4.3.
The tuning rules based on the 20% overshoot design criteria in Ta-

ble 4.3 are quite similar to the Ziegler-Nichols step response method
presented in Table 4.1. However, when the 0% overshoot design cri-
teria is used, the gain and the derivative time are smaller and the
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Table 4.3 Controller parameters obtained from the Chien, Hrones
and Reswick load disturbance response method.

Overshoot 0% 20%

Controller K Ti Td K Ti Td

P 0.3/a 0.7/a
PI 0.6/a 4L 0.7/a 2.3L

PID 0.95/a 2.4L 0.42L 1.2/a 2L 0.42L

integral time is larger. This means that the proportional action, the
integral action, as well as the derivative action, are smaller.
In the setpoint response method, the controller parameters are

not only based on a and L, but also on the time constant T . Methods
to obtain these parameters were presented in Section 2.4. The tuning
rules for setpoint response are summarized in Table 4.4.

Discussion

The Ziegler-Nichols tuning rules were developed empirically based on
simulation of a large number of cases. The cases considered were typ-
ically such that process dynamics is the main factor that limits per-
formance. When developing the rules it was also attempted to choose
numerical values that give simple rules. The methods are simple and
easy to use. The process is characterized by two parameters that can
be determined by simple experiments. The frequency response method
has the advantage that parameters Ku and Tu are easier to determine
accurately than the parameters a and L, which are used by the step
response method.
The main design criterion was to obtain good rejection of load dis-

turbances specified as quarter amplitude decay ratio. Little emphasis
was given to measurement noise, sensitivity to process variations,
and setpoint response. The quarter amplitude decay ratio gives sys-
tems with very poor damping. The step response method often gives
higher loop gains than the frequency domain method. Both methods
give better parameters for PID control than for PI control, but in spite
of their widely spread use they give poor tuning.
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Table 4.4 Controller parameters obtained from the Chien, Hrones
and Reswick setpoint response method.

Overshoot 0% 20%

Controller K Ti Td K Ti Td

P 0.3/a 0.7/a
PI 0.35/a 1.2T 0.6/a T

PID 0.6/a T 0.5L 0.95/a 1.4T 0.47L

4.4 Loop Shaping

The Ziegler Nichols frequency response method tries to position one
point on the loop transfer function appropriately. Even though the
point is chosen cleverly it is surprising that such a method works so
well. Some consequences of positioning one point only were discussed
in Section 4.3. There are many other design methods that try to obtain
a loop transfer function with a good shape. Some of these methods
are discussed in this section.

Slope Adjustments

Only two parameters are needed to change the value of the loop
transfer function at one frequency. This is the reason why the Ziegler-
Nichols method gives unique parameters for a PI controller. For a PID
controller, which has three parameters, the condition Ti = 4Td was
introduced in order to obtain unique parameter values. Thus, for PID
controllers we have one degree of freedom that can be used to shape
the loop transfer function. One possibility is to position one point
and to adjust the slope of the Nyquist curve at the chosen point.
A natural requirement is that the slope at the chosen frequency ω 0
should be orthogonal to the line 1 + G
(iω 0) (see Figure 4.15). This
ensures that the sensitivity is minimized locally. To see how this can
be accomplished, consider a system with Ziegler-Nichols tuning, i.e.,

Gp(iωu) = − 1
Ku

where the controller

Gc(iω ) = K
(
1+ i(ωTd − 1

ωTi

))
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Figure 4.15 Adjustment of the slope of the Nyquist curve.

is chosen so that the loop transfer function has the value rbei(π+φb) at
ωu as was discussed in Section 4.3. This means that

K = Kurb cosφb

Td − 1
ω 2uTi

= 1
ωu
tanφb = a

(4.30)

Notice that we still have freedom to choose the ratio Ti/Td. To make
this choice so that the Nyquist curve has a given slope at ωu consider
the loop transfer function G
(iω ) = Gp(iω )Gc(iω ). Differentiating the
loop transfer function with respect to ω gives.

dG
(iω )
dω

= Gp(iω ) dGc(iω )
dω

+ dGp(iω )
dω

Gc(iω )

Furthermore, we have

dGc(iω )
dω

= iK
(
Td + 1

ω 2Ti

)
= iK (2Td − a)

where the last equality follows from Equation (4.30). If transfer func-
tion Gp is parameterized as

Gp(iω ) = r(ω )ei(φ(ω )−π )

straightforward but tedious calculations give

G ′
(iωu) = −
K

Ku

(
r′

r
− aφ ′ωu + i

(
φ ′ + aωu r

′

r
+ 2Td − a

))

where ′ denotes derivative with respect to ω . Hence

arg
dG
(iω )
dt

= arctan φ ′ + aωur′/r + 2Td − a
r′/r − aωuφ ′
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This gives the following equation for Td.

Td = 12
(
a− φ ′ − aωu r

′

r
+ ( r′
r
− aωuφ ′

)
tanψ

)
(4.31)

where ψ is the desired slope of the Nyquist curve at ωu. Parameter
Ti is then given by

Ti = 1
ω 2u(Td − a)

(4.32)

We illustrate the procedure with an example

EXAMPLE 4.5

Consider the same process model as in Examples 4.1 and 4.2, i.e.

G(s) = 1
(s+ 1)3

This process has ultimate gain Ku = 8 and ultimate frequency ωu =√
3. The amplitude r and its derivative, and the phase φ and its
derivative are

r = 1
(1+ω 2)3/2 r′ = − 3ω

(1+ω 2)5/2

φ = π − 3 arctanω φ ′ = − 3
(1+ω 2)

Their values at ωu become

r(ωu) = 18 r′(ωu) = −3
√
3
32

φ(ωu) = 0 φ ′(ωu) = −34
Suppose that we want to move the ultimate point to the new position

rb = 1√
2

φb = 45○

The slope of Nyquist curve is orthogonal to the line 1 + G
(iωu) if
it is chosen to ψ = 45○. This choice gives an Ms value equal to
Ms =

√
2 	 1.4.

The controller parameters can now be obtained from Equations
(4.30), (4.31) and (4.32). They become K = 4, Ti = 1.9, and Td = 0.75.
Figure 4.16 shows the response of the closed-loop systems to a step
change in setpoint followed by a step change in the load.

Frequency Domain Design of a PID Controller

The Ziegler-Nichols method was based on knowledge of the process
transfer function at the ultimate point. The design method we have
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Figure 4.16 Setpoint and load disturbance response of a process
with transfer function 1/(s + 1)3 controlled by a PID controller
tuned with the loop-shaping method. The diagrams show setpoint
ysp, process output y, and control signal u.

just discussed requires, in addition, knowledge of the slope of the
plant transfer function at the ultimate point. More effective methods
can be used if the whole plant transfer function is known. Such a
method will now be discussed.
The design criterion is to obtain a specified sensitivity Ms with

good rejection of load disturbances. Let r(ω ) and φ(ω ) denote magni-
tude and phase of the frequency response of the process i.e.

Gp(iω ) = r(ω )ei(φ(ω )−π )

and let the controller transfer function be

Gc(s) = k+ ki
s
+ kds

To have a given sensitivity Ms, the Nyquist curve of the loop trans-
fer function must avoid a circle around the critical point with radius
r0 = 1/Ms (see Figure 4.17). Assume that the curve meets the cir-
cle tangentially at the point A. The condition that the loop transfer
function goes through A is

r(ω )ei(φ(ω )−π )
(
k+ i(kdω − ki

ω

)) = −1+ r0 cosθ − ir0 sinθ

where r0 and θ are defined in Figure 4.17. Separating real and imag-
inary parts we get

kr(ω ) cosφ(ω ) + ki r(ω )
ω
sinφ(ω ) − kdω r(ω ) sinφ(ω ) = −1+ r0 cosθ

kr(ω ) sinφ(ω ) − ki r(ω )
ω
cosφ(ω ) + kdω r(ω ) cosφ(ω ) = −r0 sinθ
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Figure 4.17 Geometrical illustration of the loop-shaping design
method.

Calculating the derivative of the loop transfer function we find, after
simplifications,

dG
(iω )
dω

= rei(φ−π )
(
k
r′

r
−

(
ω kd − ki

ω

)
φ ′

+ i
(
kφ ′ +

(
ω kd − ki

ω

) r′
r
+ kd + ki

ω 2

))

The condition for tangency can be written as

arg
dG
(iω )
dω

= π

2
− θ

This can be simplified to

ak+ bki + ckd = 0
where

a = φ ′(ω ) − r
′(ω )
r(ω ) tanδ

b = 1
ω 2
− r

′(ω )
ω r(ω ) −

φ ′(ω ) tanδ

ω

c = 1+ ω r′(ω )
r(ω ) +ωφ ′(ω ) tanδ

(4.33)

and the angle δ is defined in Figure 4.17. We thus obtain three equa-
tions to determine the controller parameters k, ki, and kd. Notice,
however, that both ω and θ can be considered as unknowns. To deter-
mine these parameters, we can introduce the condition that ki should
be as large as possible, i.e., to minimize IE. Another possibility is
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to make ω as large as possible. The design of the controller then is
reduced to an optimization problem. Notice that parameter θ varies
in the range (0,π/2). The value ωu can be used as an initial value
for the optimization. Instead of minimizing IE we could also consider
minimization of IAE. However, this will increase the computational
effort considerably. Notice that when performing the optimization we
also obtain the argument ω 0 for which the optimum is achieved. This
indicates the frequency range where model precision is needed.

4.5 Analytical Tuning Methods

There are several analytical tuning methods where the controller
transfer function is obtained from the specifications by a direct cal-
culation. Let Gp and Gc be the transfer functions of the process and
the controller. The closed-loop transfer function obtained with error
feedback is then

G0 = GpGc

1+ GpGc
Solving this equation for Gc we get

Gc = 1
Gp

⋅
G0

1− G0 (4.34)

If the closed-loop transfer function G0 is specified and Gp is known, it
is thus easy to compute Gc. The key problem is to find reasonable ways
to determine G0 based on engineering specifications of the system.
It follows from Equation (4.34) that all process poles and zeros

are canceled by the controller. This means that the method cannot
be applied when the process has poorly damped poles and zeros. The
method will also give a poor load disturbance response when slow
process poles are canceled.

λ-Tuning

The method called λ-tuning was developed for processes with long
dead time L. Consider a process with the transfer function

Gp = Kp

1+ sT e
−sL

Assume that the desired closed-loop transfer function is specified as

G0 = e−sL

1+ sλT
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where λ is a tuning parameter. The time constants of the open- and
closed-loop systems are the same when λ = 1. The closed-loop system
responds faster than the open-loop system if λ < 1. It is slower when
λ > 1.
It follows from Equation (4.34) that the controller transfer func-

tion becomes

Gc = 1+ sT
Kp(1+ λsT − e−sL) (4.35)

The controller has integral action, because Gc(0) = ∞. The input-
output relation of the controller is

(
1+ sλT − e−sL)U (s) = 1

Kp
(1+ sT)E(s) (4.36)

This can be written as

U (s) = 1
λKp

(
1+ 1
sT

) (
E(s) − Kp

1+ sT
(
1− e−sL)U (s)) (4.37)

When L = 0, this becomes a PI controller with gain K = 1/(λKp)
and integral time Ti = T . The term

Kp

1+ sT
(
1− e−sL)U (s)

can be interpreted as a prediction of the process output at time t
based on the values of the control signal in the time interval (t−T , t).
The controller given by Equation (4.37) can thus be interpreted as a
predictive PI controller where the prediction is formed by correcting
for the effects of the control actions that have been taken, but have not
yet appeared in the output because of the delay in the process. The
controller is, therefore, called a predictive PI controller (PPI). For
processes with long dead times, the prediction given in Equations
(4.36) and (4.37) is much better than the prediction obtained by
derivative action.
The PPI controller can be written as

U (s) = 1
λKp

(
1+ 1
sT

)
E(s) − 1

sλT

(
1− e−sL)U (s) (4.38)

In Section 4.2, it was shown that the integral error for a PID
controller is

IEPID = Ti
K

The integrated errors obtained with a PID controller and a controller
with λ-tuning are compared. With a PID controller based on the
Ziegler-Nichols step response method, we obtain

IEPID = KpL
2

0.6T
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To compute the integral error for the PPI controller it will be assumed
that the system is initially at rest and that a load disturbance in the
form of a unit step is applied to the process input. Since the controller
has integral action, we have u(∞) = 1. To integrate Equation (4.38),
first note that

1
λT

∫ ∞

0

(
u(t) − u(t − L))dt = L

λT

Integration of Equation (4.38) from 0 to ∞ now gives

u(∞) − u(0) = 1 = 1
λKpT

∫ ∞

0
e(t)dt− L

λT

The integral error thus becomes

IEPPI = Kp(L + λT)
The integrated error is smaller with PPI control than with PID

control when L is large. For λ = 1 the criteria are equal when L/T =
1.1. The improvements with PPI control increases with decreasing
values of λ .
The sensitivity function obtained with λ-tuning is given by

S(s) = 1− e−sL

1+ sλT =
1+ sλT − e−sL
1+ sλT

It can be shown that
Ms = max

ω
�S(iω )�

is always less than 2. An approximate expression for Ms is given by

Ms = 2− λ
T

L

Thus, to have a value of Ms smaller than 2 it is important that λ is
sufficiently large.
We note that in order to make the integrated error small it is

advantageous to have a small value of λ . A small value of λ , however,
will increase the sensitivity.
In practice it is common to choose λ between 0.5 and 5. The PPI

controller is particularly simple if λ = 1, i.e., if the desired closed-
loop time constant is equal to the open-loop time constant. Equation
(4.38) then becomes

U (s) = K
(
1+ 1
sTi

)
E(s) − 1

sTi

(
1− e−sL)U (s)

where K = 1/Kp and Ti = T . This equation can also be written as

U (s) = K E(s) + e−sL

1+ sTi U (s) (4.39)
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Figure 4.18 Block diagram of the PPI controller with λ = 1.

A block diagram describing this equation is given in Figure 4.18. No-
tice the strong similarity with the PI controller shown in Figure 3.8.

The Haalman Method

Another approach is to determine an ideal loop transfer function
G
 that gives the desired performance and to choose the controller
transfer function as

Gc = G

Gp

(4.40)

where Gp is the process transfer function. Such an approach can
give PI and PID controllers provided that G
 and Gp are sufficiently
simple. There are many ways to obtain a suitable G
.
For systems with a time delay L, Haalman has suggested choosing

G
(s) = 2
3Ls

e−sL (4.41)

The value 2/3 was found by minimizing the mean square error for a
step change in the setpoint. This choice gives a sensitivity Ms = 1.9,
which is a reasonable value. Notice that it is only the dead time of the
process that influences the loop transfer function. All other process
poles and zeros are canceled, which may lead to difficulties.
Applying Haalman’s method to a processes with the transfer func-

tion

Gp(s) = 1
1+ sT e

−sL

gives the controller

Gc(s) = 2(1+ sT)3Ls
= 2T
3L

(
1+ 1
sT

)
which is a PI controller with K = 2T/3L and Ti = T . These param-
eters can be compared with the values K = 0.9T/L and Ti = 3L ob-
tained by the Ziegler-Nichols step response method. A PID controller
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Figure 4.19 Simulation of a closed-loop system obtained by Haal-
man’s method. The plant transfer function is G(s) = e−s/(s+1). The
diagrams show setpoint ysp, process output y, and control signal u.

is obtained if the method is applied to a process with the transfer
function

Gp(s) = 1
(1+ sT1)(1+ sT2) e

−sL

The parameters of the controller are K = 2(T1+T2)/3L, Ti = T1+T2,
and Td = T1T2/(T1 + T2).
For more complex processes it is necessary to approximate the

processes to obtain a transfer function of the desired form as was
discussed in Section 2.9. Figure 4.19 shows a simulation of Haalman’s
method for a system whose dynamics is dominated by dead time. The
normalized dead time is 0.5 for this system. The figure shows that
the responses are excellent.

Drawbacks of Pole-Zero Cancellations

A key feature of Haalman’s method is that process poles and zeros are
canceled by poles and zeros in the controller. When poles and zeros
are canceled, there will be uncontrollable modes in the closed-loop
system. This may lead to poor performance if the modes are excited.
The problem is particular severe if the canceled modes are slow or
unstable. We use an example to illustrate what may happen.

EXAMPLE 4.6 Loss of controllability due to cancellation

Consider a closed-loop system where a process with the transfer func-
tion

Gp(s) = 1
1+ sT e

−sL
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is controlled with a PI controller whose parameters are chosen so that
the process pole is canceled. The transfer function of the controller is
then

Gc(s) = K
(
1+ 1
sT

) = K 1+ sT
sT

The process can be represented by the equation

dy(t)
dt
= 1
T
(u(t − L) − y(t)) (4.42)

and the controller can be described by

du(t)
dt

= −K
(
dy(t)
dt
+ y(t)
T

)
(4.43)

Consider the behaviour of the closed-loop system when the initial
conditions are chosen as y(0) = 1 and u(t) = 0 for −L < t < 0.
Without feedback the output is given by

yol(t) = e−t/T

To compute the output for the closed-loop system we first eliminate
y(t) between Equations (4.42) and (4.43). This gives

du(t)
dt

= −K
T
u(t− L)

It thus follows that u(t) = 0, and Equation (4.42) then implies that

ycl(t) = e−t/T = yol(t)
The trajectories of the closed-loop system and the open-loop system
thus are the same. The control signal is zero, which means that the
controller does not attempt to reduce the control error.

The example clearly indicates that there are drawbacks with can-
cellation of process poles. Another illustration of the phenomenon is
given in Figure 4.20, which is a simulation of a closed-loop system
where the controller is designed by Haalman’s method. This simula-
tion is identical to the simulation in Figure 4.19 but the process time
constant is now 10 instead of 1 for the simulation in Figure 4.19. In
this case we find that the setpoint response is excellent but that the
response to load disturbances is very poor. The reason for this is that
the controller cancels the pole s = −0.1, by having a controller zero
at s = −0.1. Notice that the process output after a load disturbance
decays with the time constant T = 10, but that the control signal is
practically constant due to the cancellation. The attenuation of load
disturbances is improved considerably by reducing the integral time
of the controller as shown in Figure 4.20.
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Figure 4.20 Simulation of a closed-loop system obtained by Haal-
man’s method. The process transfer function is G(s) = e−s/(10s+1),
and the controller parameters are K = 6.67 and Ti = 10. The upper
diagram shows setpoint ysp = 1 and process output y, and the lower
diagram shows control signal u. The figure also shows the responses
to a retuned controller with K = 6.67, Ti = 3 and b = 0.5.

We have thus shown that cancellation of process poles may give
systems with poor rejection of load disturbances. Notice that this does
not show up in simulations unless the process is excited. For example,
it will not be noticed in a simulation of a step change in the setpoint.
We may also ask why there is such a big difference in the simulation
in Figure 4.18 and Figure 4.20. The reason is that the canceled pole
in Figure 4.20 is slow in comparison with the closed-loop poles, but
it is of the same magnitude as the closed-loop poles in Figure 4.18.
We can thus conclude that pole cancellation can be done for sys-

tems that are dead time dominated but not for systems that are lag
dominated.

The Internal Model Controller (IMC)

The internal model principle is a general method for design of control
systems that can be applied to PID control. A block diagram of such
a system is shown in Figure 4.21. In the diagram it is assumed that
all disturbances acting on the process are reduced to an equivalent
disturbance d at the process output. In the figure Gm denotes a model
of the process, G†m is an approximate inverse of Gm, and Gf is a low-
pass filter. The name internal model controller derives from the fact
that the controller contains a model of the process internally. This
model is connected in parallel with the process.
If the model matches the process, i.e., Gm = Gp, the signal e is

equal to the disturbance d for all control signals u. If Gf = 1 and G†m is
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Figure 4.21 Block diagram of a closed-loop system with a con-
troller based on the internal model principle.

an exact inverse of the process, then the disturbance d will be canceled
perfectly. The filter Gf is introduced to obtain a system that is less
sensitive to modeling errors. A common choice is Gf (s) = 1/(1+ sTf ),
where Tf is a design parameter.
The controller obtained by the internal model principle can be

represented as an ordinary series controller with the transfer function

Gc = Gf G
†
m

1− Gf G†mGm
(4.44)

From this expression it follows that controllers of this type cancel
process poles and zeros.
The internal model principle will typically give controllers of high

order. By making special assumptions it is, however, possible to obtain
PI or PID controllers from the principle. To see this consider a process
with the transfer function

Gp(s) = Kp

1+ sT e
−sL (4.45)

An approximate inverse is given by

G†m(s) =
1+ sT
Kp

Notice that it is not attempted to find an inverse of the time delay.
Choose the filter

Gf (s) = 1
1+ sTf

Approximating the time delay by

e−sL 	 1− sL



164 Chapter 4 Controller Design

Equation (4.44) now gives

Gc(s) = 1+ sT
Kps(L+ Tf )

which is a PI controller. If the time delay is approximated instead by
a first-order Padé approximation

e−sL 	 1− sL/2
1+ sL/2

Equation (4.44) gives instead the PID controller

Gc(s) = (1+ sL/2)(1+ sT)
Kps(L + Tf + sTf L/2) 	

(1+ sL/2)(1+ sT)
Kps(L+ Tf )

For processes described by Equation (4.45), we thus find that the
internal model principle will give PI or PID controllers. Approxima-
tions like the ones discussed in Section 2.9 can be used in the usual
manner to obtain PI and PID controllers for more complex processes.
An interesting feature of the internal model controller is that

robustness is considered explicitly in the design. Robustness can be
adjusted by selecting the filter Gf properly. A trade-off between per-
formance and robustness can be made by using the filter constant as a
design parameter. The IMC can be designed to give excellent response
to setpoint changes. Since the design method inherently implies that
poles and zeros of the plant are canceled, the response to load dis-
turbances may be poor if the canceled poles are slow in comparison
with the dominant poles. Compare with the responses in Figure 4.20.
The IMC controller can also be viewed as an extension of the Smith
predictor.

4.6 Optimization Methods

Optimization is a powerful tool for design of controllers. The method
is conceptually simple. A controller structure with a few parameters
is specified. Specifications are expressed as inequalities of functions
of the parameters. The specification that is most important is cho-
sen as the function to optimize. The method is well suited for PID
controllers where the controller structure and the parameterization
are given. There are several pitfalls when using optimization. Care
must be exercised when formulating criteria and constraints; other-
wise, a criterion will indeed be optimal, but the controller may still
be unsuitable because of a neglected constraint. Another difficulty is
that the loss function may have many local minima. A third is that
the computations required may easily be excessive. Numerical prob-
lems may also arise. Nevertheless, optimization is a good tool that
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Table 4.5 Controller parameters obtained from minimization of
integrated absolute error, IAE.

L IAE Ms Kh f K Ti

0.0 0 ∞ ∞ 0

0.2 0.14 3.3 4.7 4.7 0.62

0.5 0.60 3.0 2.0 2.0 1.1

1.0 1.5 2.4 1.0 1.0 1.4

2.0 3.2 2.1 0.60 0.60 1.8

5.0 7.7 2.0 0.42 0.42 3.1

10.0 15 1.9 0.37 0.37 5.3

has successfully been used to design PID controllers. In this section
we discuss some of these methods.

EXAMPLE 4.7 A PI controller optimized for IAE

Consider a process with the transfer function

Gp(s) = 1
s+ 1 e

−sL (4.46)

Table 4.5 gives controller parameters obtained when minimizing IAE
for load disturbances. Some of the other criteria are also given in the
table. Notice that the integrated absolute error increases with L, as
can be expected. Notice also that, although the criterion IAE is min-
imized, several other design criteria such as the Ms value and the
high-frequency controller gain Khf have undesirable values. Notice
in particular that the values of Ms are quite high. The example illus-
trates the necessity of considering many performance criteria when
using optimization methods. Unfortunately, this was not observed in
much of the early work on controller tuning.

Tuning Formulas Based on Optimization

Many studies have been devoted to development of tuning rules based
on optimization. Very often a process described by

Gp = Kp

1+ sT e
−sL

has been considered. The loss functions obtained for unit step changes
in setpoint and process input have been computed and formulas of the
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type

p = a
(
L

T

)b
where p is a controller parameter and a and b are constants, have
been fitted to the numerical values obtained. In many cases the
criterion is IAE for load disturbances, which often gives systems with
low damping and poor sensitivity. The formulas given often only hold
for a small range of normalized dead times, e.g., 0.2 < τ < 0.6. It
should also be observed that criteria based on setpoint changes can
often be misleading because it is often not observed that the setpoint
changes are drastically influenced by different setpoint weightings.

Modulus and Symmetrical Optimum

Modulus Optimum (BO) and Symmetrical Optimum (SO) are two
methods for selecting and tuning controllers that are similar in spirit
to Haalman’s method. The acronyms BO and SO are derived from the
German words Betrags Optimum and Symmetrische Optimum. These
methods are based on the idea of finding a controller that makes the
frequency response from setpoint to plant output as close to one as
possible for low frequencies. If G(s) is the transfer function from the
setpoint to the output, the controller is determined in such a way
that G(0) = 1 and that dn�G(iω )�/dω n = 0 at ω = 0 for as many n
as possible. We illustrate the idea with a few examples.

EXAMPLE 4.8 Second-order system

Consider the transfer function

G(s) = a2

s2 + a1s+ a2
which has been chosen so that G(0) = 1. Let us first consider how
the parameters should be chosen in order to get a maximally flat
frequency response. We have

�G(iω )�2 = a22
a21ω

2 + (a2 −ω 2)2 =
a22

a22 +ω 2(a21 − 2a2) +ω 4

By choosing a1 =
√
2a2 we find

�G(iω )�2 = a22
a22 +ω 4

The first three derivatives of �G(iω )� will vanish at the origin. The
transfer function then has the form

G(s) = ω 20
s2 +√2ω 0s+ω 20
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The step response of a system with this transfer function has an
overshoot o = 4%. The settling time to 2% of the steady state value
is ts = 6/ω 0.
If the transfer function G in the example is obtained by error

feedback of a system with the loop transfer function GBO, the loop
transfer function is

GBO(s) = G(s)
1− G(s) =

ω 20
s(s+

√
2ω 0)

(4.47)

which is the desired loop transfer function for the method called
modulus optimum.
The calculation in Example 4.8 can be performed for higher-order

systems with more effort. We illustrate by another example.

EXAMPLE 4.9 Third-order system

Consider the transfer function

G(s) = a3

s3 + a1s2 + a2s+ a3
After some calculations we get

�G(iω )� = a3√
a23 + (a22 − 2a1a3)ω 2 + (a21 − 2a2)ω 4 +ω 6

Five derivatives of �G(iω )� will vanish at ω = 0, if the parameters
are such that a21 = 2a2 and a22 = 2a1a3. The transfer function then
becomes

G(s) = ω 30
s3 + 2ω 0s2 + 2ω 20s+ω 30

= ω 30
(s+ω 0)(s2 +ω 0s+ω 20)

(4.48)

The step response of a system with this transfer function has an
overshoot o = 8.1%. The settling time to 2% of the steady state value
is 9.4/ω 0. A system with this closed-loop transfer function can be
obtained with a system having error feedback and the loop transfer
function

G
(s) = ω 30
s(s2 + 2ω 0s+ 2ω 20)

The closed-loop transfer function (4.48) can also be obtained from
other loop transfer functions if a two-degree of freedom controller is
used. For example, if a process with the transfer function

Gp(s) = ω 20
s(s+ 2ω 0)
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is controlled by a PI controller having parameters K = 2, Ti = 2/ω 0
and b = 0, the loop transfer function becomes

GSO = ω 20(2s+ω 0)
s2(s+ 2ω 0) (4.49)

The symmetric optimum aims at obtaining the loop transfer function
given by Equation (4.49). Notice that the Bode diagram of this trans-
fer function is symmetrical around the frequency ω = ω 0. This is the
motivation for the name symmetrical optimum.
If a PI controller with b = 1 is used, the transfer function from

setpoint to process output becomes

G(s) = GSO(s)
1+ GSO(s) =

(2s+ω 0)ω 20
(s+ω 0)(s2 +ω 0s+ω 20)

This transfer function is not maximally flat because of the zero in the
numerator. This zero will also give a setpoint response with a large
overshoot, about 43%.

The methods BO and SO can be called loop-shaping methods
since both methods try to obtain a specific loop transfer function.
The design methods can be described as follows. It is first established
which of the transfer functions, GBO or GSO, is most appropriate.
The transfer function of the controller Gc(s) is then chosen so that
G
(s) = Gc(s)Gp(s), where G
 is the chosen loop transfer function.
We illustrate the methods with the following examples.

EXAMPLE 4.10 BO control

Consider a process with the transfer function

Gp(s) = Kp

s(1+ sT) (4.50)

With a proportional controller the loop transfer function becomes

G
(s) = K Kp

s(1+ sT)
To make this transfer function equal to GBO given by Equation (4.47)
it must be required that

ω 0 =
√
2
2T

The controller gain should be chosen as

K = ω 0
√
2

2Kp
= 1
2KpT
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EXAMPLE 4.11 SO control

Consider a process with the same transfer function as in the previous
example (Equation (4.50)). With a PI controller having the transfer
function

Gc(s) = K (1+ sTi)
sTi

we obtain the loop transfer function

G
(s) = KpK (1+ sTi)
s2Ti(1+ sT)

This is identical to GSO if we choose

K = 1
2KpT

Ti = 4T
To obtain the transfer function given by Equation (4.48) between
setpoint and process output, the controller should have the input-
output relation

u(t) = K
(
−y(t) + 1

Ti

∫ t

(ysp(s) − y(s)) ds
)

The coefficient b in the standard controller thus should be set to zero.

A Design Procedure

A systematic design procedure can be based on the methods BO and
SO. The design method consists of two steps. In the first step the
process transfer function is simplified to one of the following forms

G1(s) = Kp

1+ sT (4.51)

G2(s) = Kp

(1+ sT1)(1+ sT2) , T1 > T2 (4.52)

G3(s) = Kp

(1+ sT1)(1+ sT2)(1+ sT3) , T1 > T2 > T3 (4.53)

G4(s) = Kp

s(1+ sT) (4.54)

G5(s) = Kp

s(1+ sT1)(1+ sT2) , T1 > T2 (4.55)

Process poles may be canceled by controller zeros to obtain the desired
loop transfer function. A slow pole may be approximated by an inte-
grator; fast poles may be lumped together as discussed in Section 2.9.



170 Chapter 4 Controller Design

The rule of thumb given in the original papers on the method is that
time constants such that ω 0T < 0.25 can be regarded as integrators.
The controller is derived in the same way as in Examples 4.10

and 4.11 by choosing parameters so that the loop transfer function
matches either GBO or GSO. By doing this we obtain the results
summarized in Table 4.6. Notice, for example, that Example 4.10 and
4.11 correspond to the entries Process G4 in the table. It is natural
to view the smallest time constant as an approximation of neglected
dynamics in the process. It is interesting to observe that it is this time
constant that determines the bandwidth of the closed-loop system.
The setpoint response for the BO method is excellent. Notice

that it is necessary to use a controller with a two-degree-of-freedom
structure or a prefilter to avoid a high overshoot for the SO method.
Notice that process poles are canceled in the cases marked C1 or C2
in Table 4.6. The response to load disturbances will be poor if the
canceled pole is slow compared to the closed-loop dynamics, which is
characterized by ω 0 in Table 4.6.
These design principles can be extended to processes other than

those listed in the table.

EXAMPLE 4.12 Application of BO and SO

Consider a process with the transfer function

G(s) = 1
(1+ s)(1+ 0.2s)(1+ 0.05s)(1+ 0.01s) (4.56)

Since this transfer function is of fourth order, the design procedure
cannot be applied directly. We show how different controllers are ob-
tained depending on the approximations made. The performance of
the closed-loop system depends on the approximation. We use param-
eter ω 0 as a crude measure of performance.
If a controller with low performance is acceptable, the process

(4.56) can be approximated with

G(s) = 1
1+ 1.26s (4.57)

The approximation has a phase error less than 10○ for ω ≤ 1.12. It
follows from Table 4.6 that the system (4.57) can be controlled with
an integrating controller with

ki = K
Ti
= 0.5
1.26

= 0.4
This gives a closed-loop system with ω 0 = 0.55.
A closed-loop system with better performance is obtained if the

transfer function (4.56) is approximated with

G(s) = 1
(1+ s)(1+ 0.26s) (4.58)
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Table 4.6 Controller parameters obtained with the BO and SO
methods. Entry P gives the process transfer function, entry C gives
the controller structure, and entry M tells whether the BO or SO
method is used. In the entry Remark, A1 means that 1 + sT1 is
approximated by sT1 and Ci means that the time constant Ti is
canceled.

P C M Remark KKp Ti Td ω 0 b c

G1 I BO 0.5 T
0.7
T

G2 P BO A1
T1

2T2

0.7
T2

1

G2 PI BO C1
T1

2T2
T1

0.7
T2

1

G2 PI SO A1
T1

2T2
4T2

0.5
T2

0

G3 PD BO A1, C2
T1

2T3
T2

0.7
T3

1 1

G3 PID BO C1, C2
T1 + T2
2T3

T1 + T2 T1T2

T1 + T2
0.7
T3

1 1

G3 PID SO A1, C2
T1(T2 + 4T3)

8T23
T2 + 4T3 4T2T3

T2 + 4T3
0.5
T3

T2

T2 + 4T3 0

G4 P BO
1
2T

0.7
T

1

G4 PI SO
1
2T

4T
0.5
T

0

G5 PD BO C1
1
2T2

T1
0.7
T2

1 1

G5 PD SO A1
T1

8T22
4T2

0.5
T2

1 0

G5 PID SO C1
T1 + 4T2
8T22

T1 + 4T2 4T1T2
T1 + 4T2

0.5
T2

T1

T1 + 4T2 0

The slowest time constant is thus kept and the remaining time con-
stants are approximated by lumping their time constants. The approx-
imation has a phase error less than 10○ for ω ≤ 5.15. A PI controller
can be designed using the BO method. The parameters K = 1.92
and Ti = 1 are obtained from Table 4.6. The closed-loop system has
ω 0 = 2.7.
If the transfer function is approximated as

G(s) = 1
(1+ s)(1+ 0.2s)(1+ 0.06s) (4.59)

the approximation has a phase error less than 10○ for ω ≤ 26.6. The
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Figure 4.22 Simulation of the closed-loop system obtained with
different controllers designed by the BO and SO methods given in
Table 4.7. The upper diagram shows setpoint ysp and process output
y, and the lower diagram shows control signal u.

BO method can be used also in this case. Table 4.6 gives the controller
parameters K = 10, Ti = 1.2, and Td = 0.17. The controller structure
is defined by the parameters b = 1 and c = 1. This controller gives a
closed-loop system with ω 0 = 11.7.
The method SO can also be applied to the system (4.59). Table

4.6 gives the controller parameters K = 15.3, Ti = 0.44, Td = 0.11,
and b = 0.45. For these parameters we get ω 0 = 8.3.
Thus, we note that controllers with different properties can be

obtained by approximating the transfer function in different ways. A
summary of the properties of the closed-loop systems obtained is given
in Table 4.7, where IAE refers to the load disturbance response. Notice
that Controller 2 cancels a process pole with time constant 1 s, and
that Controller 3 cancels process poles with time constants 1 s and
0.25 s. This explains why the IAE drops drastically for Controller 4,
which does not cancel any process poles. Controller 4 actually has a
lower bandwidth ω 0 than Controller 3.
A simulation of the different controllers is shown in Figure 4.22.

Summary

In this section we discussed using optimization methods to arrive at
desirable loop transfer functions. The method by Haalman is designed
for systems having dead time. The methods BO and SO apply to
systems without dead time. Small dead times can be dealt with by
approximation. An interesting feature of both BO and SO is that
approximations are used to obtain simple low order transfer functions.
There are possibilities to combine the approaches. A drawback with
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Table 4.7 Results obtained with different controllers designed by
the BO and SO methods in Example 4.12. The frequencyωm defines
the upper limit when the phase error is less than 10%.

Controller K Ti Td ki b c ω 0 ωm IAE

1 0.4 0.55 1.12 2.7

2 1.92 1 0.52 1 2.7 5.15 0.52

3 10 1.2 0.17 8.3 1 1 11.7 26.6 0.12

4 15.3 0.44 0.11 35 0.45 0 8.3 26.6 0.029

all design methods of this type is that process poles are canceled.
This may lead to poor attenuation of load disturbances if the canceled
poles are excited by disturbances and if they are slow compared to the
dominant closed-loop poles.

4.7 Pole Placement

This section presents design methods that are based on knowledge
of the process transfer function. The pole placement design method
simply attempts to find a controller that gives desired closed-loop
poles. We illustrate the method by two simple examples.

EXAMPLE 4.13 PI control of a first-order system

Suppose that the process can be described by the following first-order
model:

Gp(s) = Kp

1+ sT (4.60)

which has only two parameters, the process gain (Kp) and the time
constant (T). By controlling this process with the PI controller,

Gc(s) = K
(
1+ 1
sTi

)
a second-order closed-loop system is obtained:

G(s) = GpGc

1+ GcGp
The two closed-loop poles can be chosen arbitrarily by a suitable choice
of the gain (K ) and the integral time (Ti) of the controller. This is
seen as follows. The poles are given by the characteristic equation,

1+ GcGp = 0
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The characteristic equation becomes

s2 + s 1+ KpK
T

+ KpK
TTi

= 0

Now suppose that the desired closed-loop poles are characterized by
their relative damping (ζ ) and their frequency (ω 0). The desired
characteristic equation then becomes

s2 + 2ζ ω 0s+ω 20 = 0
Making the coefficients of these two characteristic equations equal
gives two equations for determining K and Ti:

ω 20 =
KpK

TTi

2ζ ω 0 =1+ KpK
T

Solving these for the controller parameters, we get

K = 2ζ ω 0T − 1
Kp

Ti = 2ζ ω 0T − 1
ω 20T

Notice that the transfer function from setpoint to process output has
a zero at s = −1/(bTi). To avoid excessive overshoot in the setpoint
response, parameter b should be chosen so that the zero is to the left
of the dominant closed-loop poles. A reasonable value is b = 1/(ω 0Ti),
which places the zero at s = −ω 0. Notice also that in order to have
positive controller gains it is necessary that the chosen frequency (ω 0)
is larger than 1/(2ζ T). It also follows that if ω 0 is large, the integral
time Ti is given by

Ti 	 2ζ
ω 0

and is, thus, independent of the process dynamics for large ω 0. There
is no formal upper bound to the bandwidth. However, a simplified
model like Equation (4.60) will not hold for large frequencies. The
upper bound on the bandwidth is determined, therefore, by the valid-
ity of the model.

EXAMPLE 4.14 System with two real poles

Suppose that the process is characterized by the second-order model

Gp = Kp

(1+ sT1)(1+ sT2) (4.61)
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This model has three parameters. By using a PID controller, which
also has three parameters, it is possible to arbitrarily place the three
poles of the closed-loop system. The transfer function of the PID
controller can be written as

Gc(s) = K (1+ sTi + s
2TiTd)

sTi

The characteristic equation of the closed-loop system becomes

s3 + s2( 1
Ti
+ 1
T2
+ KpKTd
T1T2

)+ s( 1
T1T2

+ KpK
T1T2

)+ KpK

T1T2Ti
= 0 (4.62)

A suitable closed-loop characteristic equation of a third-order system
is

(s+αω 0)(s2 + 2ζ ω 0s+ω 20) = 0 (4.63)
which contains two dominant poles with relative damping (ζ ) and
frequency (ω 0), and a real pole located in −αω 0. Identifying the
coefficients of equal powers of s in the Equations (4.62) and (4.63)
gives

1
Ti
+ 1
T2
+ KpKTd
T1T2

= ω 0(α + 2ζ )
1
T1T2

+ KpK
T1T2

= ω 20(1+ 2ζ ω 0)
KpK

T1T2Ti
= αω 30

Solving these equations gives the following controller parameters

K = T1T2ω
2
0(1+ 2αζ ) − 1
Kp

Ti = T1T2ω
2
0(1+ 2αζ ) − 1
T1T2αω 30

Td = T1T2ω 0(α + 2ζ ) − T1 − T2
T1T2ω 20(1+ 2αζ ) − 1

Provided that c = 0, the transfer function from setpoint to process
output has one zero at s = −1/(bTi). To avoid excessive overshoot in
the setpoint response, parameter b can be chosen so that this zero
cancels the pole at s = −αω 0. This gives

b = 1
αω 0Ti

= ω 20T1T2
ω 20T1T2(1+ 2αζ ) − 1

Also, notice that pure PI control is obtained for

ω 0 = ω c = T1 + T2
(α + 2ζ )T1T2
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The choice of ω 0 may be critical. The derivative time is negative
for ω 0 < ω c. Thus, the frequency (ω c) gives a lower bound to the
bandwidth. The gain increases rapidly with ω 0. The upper bound
to the bandwidth is given by the validity of the simplified model
(Equation 4.61).
The methods BO and SO, discussed in the previous section, can

clearly be interpreted as pole placement methods. The desired closed-
loop characteristic polynomial is

ABO(s) = s2 +
√
2ω 0s+ω 20

for the modulus optimum and

ASO(s) = (s+ω 0)(s2 +ω 0s+ω 20)
for the symmetrical optimum.
The calculations in Example 4.14 can be done for any linear sys-

tem. The algebraic formulas obtained, however, may be quite compli-
cated. Another useful example follows.

EXAMPLE 4.15 Second-order systems with a zero

Suppose that the process is characterized by the second-order model

Gp = b1s+ b2
s2 + a1s+ a2 (4.64)

This model has four parameters. It has two poles that may be real
or complex, and it has one zero. The model given by Equation (4.64)
captures many processes, oscillatory systems, and systems with right
half-plane zeros. The right half-plane zero can also be used as an ap-
proximation of a time delay. We assume that the process is controlled
by a PID controller parameterized as

Gc(s) = k+ ki
s
+ kds (4.65)

The closed-loop system is of third order and has the characteristic
equation

s(s2 + a1s+ a2) + (b1s+ b2)(kds2 + ks+ ki) = 0 (4.66)
A suitable closed-loop characteristic equation of a third-order system
is

(s+αω 0)(s2 + 2ζ ω 0s+ω 20) = 0 (4.67)
Equating coefficients of equal power in s in Equations (4.66) and
(4.67) gives the following equations:

a1 + b2kd + b1k = (αω 0 + 2ζ ω 0)(1+ b1kd)
a2 + b2k+ b1ki = (1+ 2αζ )ω 20(1+ b1kd)

b2ki = αω 30(1+ b1kd)
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This is a set of linear equations in the controller parameters. The
solution is straightforward but tedious and is given by

k = a2b
2
2− a2b1b2(α + 2ζ )ω 0−(b2− a1b1)(b2(1+ 2αζ )ω 20 +α b1ω

3
0)

b32− b1b22(α + 2ζ )ω 0+ b21b2(1+ 2αζ )ω 20−α b31ω
3
0

ki = (−a1b1b2+ a2b21+ b22)αω 30
b32− b1b22(α + 2ζ )ω 0+ b21b2(1+ 2αζ )ω 20−α b31ω

3
0

kd = −a1b
2
2+ a2b1b2+ b22(α + 2ζ )ω 0− b1b2ω 20(1+ 2αζ )+ b21αω 30
b32− b1b22(α + 2ζ )ω 0+ b21b2(1+ 2αζ )ω 20−α b31ω

3
0

These formulas are quite useful because many processes can be ap-
proximately described by the transfer function given by Equation
(4.64).
The formulas given in Example 4.15 are particularly useful in

cases when we are “stretching” the PID controller to extreme situa-
tions. The standard tuning rules will typically not work in these cases.
Typical examples are systems with zeros in the right half-plane and
systems with poorly damped oscillatory modes. To illustrate this we
will consider an example.

EXAMPLE 4.16 A difficult process

Consider a system with the transfer function

G(s) = 1− s
s2 + 1

This system has one right half-plane zero and two undamped complex
poles. None of the standard methods for tuning PID controllers work
well for this system. To apply the pole-placement method we require
that the closed-loop system has the characteristic equation

s3 + 2s2 + 2s+ 1 = 0
The formulas in Example 4.15 give a controller with the parameters
k = 0, ki = 1/3, and kd = 2/3. This can also be verified with a
simple calculation. Notice that the proportional gain is zero and that
the controller has two complex zeros at ±i

√
2. Such a controller can

only be implemented with a PID controller having the parallel form.
Compare with section 3.4.

The General Case

The calculations in the examples can be extended to general linear
systems. They are, however, more complicated. It is necessary to spec-
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ify more closed-loop poles. Some pole patterns that are used are But-
terworth configurations, where the roots of the characteristic polyno-
mials are placed symmetrically in a circle, and the Bessel configura-
tions, which correspond to filters that attempt to preserve the shape
of the wave form. The order of the controllers also increases with the
complexity of the model. To obtain PID controllers it is necessary to
restrict the models to first- or second-order systems. For more complex
processes, it is, therefore, necessary to make approximations so that
a process model in the form of a rational function of first or second
order is obtained. Several ways to perform these approximations aree
given in Chapter 2. We illustrate the procedure with an example.

EXAMPLE 4.17 Pole placement with an approximate model

Consider a process described by the transfer function

Gp(s) = 1
(1+ s)(1+ 0.2s)(1+ 0.05s)(1+ 0.01s) (4.68)

This process has four lags with time constants 1, 0.2, 0.05, and 0.01.
The approximations can be done in several different ways. If the con-
trol requirements are not too severe, we can attempt to approximate
the transfer function by

Gp(s) = 1
1+ 1.26s

where the time constant is the average residence time of the system.
As discussed in Section 2.9, this approximation is good at low fre-
quencies. The phase error is less than 10○ for frequencies below 1.1
rad/s. Designing a PI controller with the pole placement method with
ζ = 0.5, the following controller parameters are obtained

K = 1.26ω 0 − 1

Ti = 1.26ω 0 − 1
1.26ω 20

b = 1.26ω 0
1.26ω 0 − 1

where b is chosen so that the zero becomes s = −ω 0. If the process
model would be correct, the phase margin with ζ = 0.5 would be 50○.
Because of the approximations made, the phase margin will be less. It
will decrease with ω 0. For ω 0 = 1 the phase margin is ϕm = 42○.
Another way of applying pole placement design is given in the

next example.
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EXAMPLE 4.18 Application to an approximate model

Consider the same process model as in the previous example (Equa-
tion 4.68). Approximate the transfer function by

Gp(s) = 1
(1+ s)(1+ 0.26s)

It is obtained by keeping the longest time constant and approximat-
ing the three shorter time constants with their sum. The phase error
is less than 10○ for frequencies below 5.1 rad/s. By making an ap-
proximation of the process model that is valid for higher frequencies
than in the previous example, we can thus design a faster controller.
If ζ = 0.5 and α = 1 are chosen in Equation (4.67), the design calcu-
lations in Example 4.14 gives the following PID parameters:

K = 0.52ω 20 − 1

Ti = 0.52ω
2
0 − 1

0.26ω 30

Td = 0.52ω 0 − 1.260.52ω 20 − 1

b = 0.26ω 20
0.52ω 20 − 1

In this case, pure PI control is obtained for ω 0 = 2.4. The derivative
gain becomes negative for lower bandwidths. The approximation ne-
glects the time constant 0.05. If the neglected dynamics are required
to give a phase error of, at most, 0.3 rad (17 deg) at the bandwidth,
ω 0 < 6 rad/s can be obtained. In Figure 4.23, the behavior of the
control is demonstrated for ω 0 = 4, 5, and 6.
The specification of the desired closed-loop bandwidth is crucial,

since the controller gain increases rapidly with the specified band-
width. It is also crucial to know the frequency range where the model
is valid. Alternatively, an upper bound to the controller gain can be
used to limit the bandwidth. Notice the effect of changing the design
frequency (ω 0). The system with ω 0 = 6 responds faster and has a
smaller error when subjected to load disturbances. The design will
not work well when ω 0 is increased above 8.

4.8 Dominant Pole Design

In pole placement design it is attempted to assign all closed-loop
poles. One difficulty with the method is that complex models lead to
complex controllers. In this section we will introduce a related method
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Figure 4.23 Setpoint and load disturbance responses of the pro-
cess (Equation 4.68) controlled by a PID controller tuned according
to Example 4.18. The responses for ω 0 = 4, 5, and 6 are shown. The
upper diagram shows setpoint ysp = 1 and process output y, and
the lower diagram shows control signal u.

where it is attempted to assign only a few poles. With this method
it is possible to design simple controllers for complex processes. The
method is based on the assumption that the transfer function of the
process is known. The idea of positioning a few closed-loop poles was
used in several of the early papers on PID control. A complete design
methodology based on this idea is developed in this section. The
method makes it possible to consider many different specifications.
It is also possible to design controllers of many different types and to
compare their performances.

The Cohen-Coon Method

The Cohen-Coon method is based on the process model

Gp = Kp

1+ sT e
−sL

The main design criterion is rejection of load disturbances. It attempts
to position dominant poles that give a quarter amplitude decay ratio.
For P and PD controllers the poles are adjusted to give maximum
gain, subject to the constraint on the decay ratio. This minimizes
the steady state error due to load disturbances. For PI and PID
control the integral gain ki = K/Ti is maximized. This corresponds
to minimization of IE, the integral error due to a unit step load
disturbance. For PID controllers three closed-loop poles are assigned;
two poles are complex, and the third real pole is positioned at the
same distance from the origin as the other poles. The pole pattern is
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Table 4.8 Controller parameters from the Cohen-Coon method.

Controller K Ti Td

P
1
a

(
1+ 0.35τ

1− τ

)

PI
0.9
a

(
1+ 0.92τ

1− τ

)
3.3− 3.0τ
1+ 1.2τ L

PD
1.24
a

(
1+ 0.13τ

1− τ

)
0.27− 0.36τ
1− 0.87τ L

PID
1.35
a

(
1+ 0.18τ

1− τ

)
2.5− 2.0τ
1− 0.39τ L

0.37− 0.37τ
1− 0.81τ L

adjusted to give quarter amplitude decay ratio, and the distance of
the poles to the origin are adjusted to minimize IE.
Since the process is characterized by three parameters (Kp, L,

and T), it is possible to give tuning formulas where controller pa-
rameters are expressed in terms of these parameters. Such formulas
were derived by Cohen and Coon based on analytical and numerical
computations. The formulas are given in Table 4.8. The parameters
a = KpL/T and τ = L/(L + T) are used in the table. A comparison
with Table 4.1 shows that the controller parameters are close to those
obtained by the Ziegler-Nichols step response method for small τ . Also
notice that the integral time decreases for increasing τ which is de-
sirable as was found in Section 4.3. The method does suffer, however,
from the decay ratio being too small, which means that the closed-loop
systems obtained have low damping and high sensitivity.

Integrating Control

Consider a process with transfer function Gp(s) controlled by an
integrating controller. Such a controller has the transfer function

Gc(s) = ki
s

The closed-loop poles are given by

1+ ki Gp(s)
s
= 0

Since the controller has one adjustable parameter, it is possible to
assign one pole. To obtain a pole at s = −a the controller parameter
should be chosen as

ki = a

Gp(−a) (4.69)
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So far parameter a is a design parameter. To find suitable ways of
choosing a it is observed that gain ki is small when a is small. This
means that the closed-loop poles are the design pole at s = −a and a
number of poles that are close to the open-loop poles. If the open-loop
system is stable, the design pole is thus the slowest pole. Increasing a
gives a faster closed-loop system. Notice that ki becomes zero when a
is equal to a real process pole. Since IE = 1/ki, the integrated error
will also decrease with increasing a. One possible way to choose a is
to use a value that maximizes ki.

PI Control

A PI controller has two parameters. Consequently, it is necessary to
assign two poles. Consider a process with transfer function Gp(s) and
let the controller be parameterized as

Gc(s) = k+ ki
s

The closed-loop characteristic equation is

1+
(
k+ ki

s

)
Gp(s) = 0 (4.70)

Require that this equation have roots at

p1,2 = ω 0

(
−ζ 0 ± i

√
1− ζ 20

)
= ω 0e

i(π±γ ) = ω 0(− cos γ ± i sinγ )
(4.71)

where γ = arccosζ 0. This gives

1+ (
k+ ki
p1

)
Gp(p1) = 0

Introduce a(ω 0) and φ(ω 0) defined as
Gp

(
ω 0e

i(π−γ )
)
= a(ω 0)eiφ(ω 0)

Notice that Gp
(
ω 0e

i(π−γ )) represents the values of the transfer func-
tion on the ray ei(π−γ ). When γ = π/2, then Gp

(
ω 0e

i(π−γ )) = Gp(iω 0),
which is the normal frequency response.
Equation (4.70) can be written as

1+ (
k+ ki

ω 0ei(π−γ )
)
a(ω 0)eiφ(ω 0) = 0

This equation, which is linear in k and ki, has the solution

k = −sin(φ(ω 0) + γ )
a(ω 0) sinγ

(4.72)

ki = −ω 0 sinφ(ω 0)
a(ω 0) sin γ

(4.73)
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Notice that φ(ω 0) is zero for ω 0 = 0 and typically negative as ω 0
increases. This implies that the proportional gain is negative and the
integral gain positive but small for small ω 0. When ω 0 increases both
k and ki will increase initially. For larger values ofω 0 both parameters
will decrease. Requiring that both parameters are positive, we find
that ω 0 must be selected so that

γ < −φ(ω 0) < π

The integral time of the controller is

Ti = k
ki
= sin(φ(ω 0) + γ )

ω 0 sinφ(ω 0) (4.74)

Notice that Ti is independent of a(ω 0).

PD Control

A PD controller has two parameters. To obtain these it is necessary
to specify two closed-loop poles. The controller is assumed to be pa-
rameterized as

Gc(s) = k+ kds
Specifying the desired poles as

p1,2 = ω 0
(
−ζ 0 ± i

√
1− ζ 20

)
and proceeding as in the derivation of the PI controller we find

k = sin(φ(ω 0) − γ )
a(ω 0) sinγ

(4.75)

kd = sinφ(ω 0)
ω 0a(ω 0) sinγ

(4.76)

Note that the expressions of k and kd for PD controllers are similar
to those of PI controllers.

PID Control

Now we consider PID control. For simplicity, it is assumed that the
controller is parameterized as

Gc(s) = k+ ki
s
+ kds (4.77)

Modifications in the setpoint weighting and limitation of the deriva-
tive gain are taken care of later. Since the controller has three param-
eters, it is necessary to specify three poles of the closed-loop system.
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We choose them as

p1,2 = ω 0

(
−ζ 0 ± i

√
1− ζ 20

)
(4.78)

p3 = −α 0ω 0. (4.79)
Introduce the quantities a(ω 0), b(ω 0), and φ(ω 0) defined by

Gp

(
ω 0e

i(π−γ )
)
= a(ω 0)eiφ(ω 0)

Gp(−αω 0) = −b(ω 0)
The condition that p1, p2, and p3 are roots of

1+ Gp(s)Gc(s) = 0 (4.80)
gives the conditions

k = −α 20b(ω 0) sin (γ + φ) + b(ω 0) sin (γ − φ) +α 0a(ω 0) sin 2γ
a(ω 0)b(ω 0)(α 20 − 2α 0 cosγ + 1) sin γ

ki = −α 0ω 0
a(ω 0) sinγ + b(ω 0)(sin (γ − φ) +α 0 sinφ)
a(ω 0)b(ω 0)(α 20 − 2α 0 cosγ + 1) sinγ

kd = −α 0a(ω 0) sinγ + b(ω 0)(α 0 sin (γ + φ) − sinφ)
ω 0a(ω 0)b(ω 0)(α 20 − 2α 0 cosγ + 1) sin γ

PID Controller Based on PI Controller

Another way to obtain a PID controller is to start with a PI controller
and to add derivative action. This can be done as follows. Assume
that the controller

Gc(s) = k+ ki
s
+ kds (4.81)

is used and that it is desired to have two closed-loop poles in

p1,2 = ω 0

(
−ζ 0 ± i

√
1− ζ 20

)

The value of the controller transfer function at these poles can be
written as

Gc(p1) = k+ ki
ω 0
e−i(π−γ ) + kdω 0ei(π−γ )

= k−
(
kdω 0 + ki

ω 0

)
cosγ + i

(
kdω 0 − ki

ω 0

)
sin γ

This implies that

k = k′ + 2kdζ 0ω 0
ki = k′i + kdω 20
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where k′ and k′i are the controller parameters for a pure PI controller
given by Equations (4.72) and (4.73). Using this parameterization the
PID controller can be written

Gc(s) = G ′c(s) +
kd

s

(
s2 + 2ζ 0ω 0s+ω 20

) (4.82)

where G ′c(s) is a pure PI controller, i.e., Gc(s) with kd = 0. The task
is now to choose ζ 0, ω 0, and kd such that the system behaves well.
The characteristic equation of the closed-loop system becomes

1+Gp(s)Gc(s) = 1+Gp(s)
(
G ′c(s) +

kd

s

(
s2 + 2ζ 0ω 0s+ω 20

))
(4.83)

For a system controlled by a PI controller we have

1+ Gp(s)G ′c(s) =
(
s2 + 2ζ 0ω 0s+ω 20

)
R(s)

The zeros of R(s) are the free poles of the system controlled by the
PI controller G ′c(s). Thus,

1+ Gp(s)Gc(s) =
(
s2 + 2ζ 0ω 0s+ω 20

)(
R(s) + Gp(s) kd

s

)
(4.84)

The root locus of 1 + Gp(s)Gc(s) with respect to kd will start in the
zeros of R(s) and end in the zeros of Gp(s) or in infinity.
This parameterization offers a natural way to tune a PID con-

troller: start with a well tuned PI controller and add derivative ac-
tion. As kd is increased the parameter ω 0 may have to be modified,
e.g., in such a way that IE is maximized.

PID Controller Based on PD controller

Another way to obtain a PID controller is to start with a PD controller
and to add integral action. Proceeding in the same way as previously
but starting with a PD controller we get

k = k′′ + 2kiζ 0
ω 0

kd = k′′d +
ki

ω 20

where k′′ and k′′d are the controller parameters for a pure PD controller
given by Equations (4.75) and (4.76).

A Design Procedure

We have shown that it is possible to find controllers that assign as
many closed-loop poles as there are free parameters in the controller.



186 Chapter 4 Controller Design

The calculations required are simply a solution of a set of linear
equations. For a PI controller it is possible to assign a pair of complex
poles with given frequency ω 0 and relative damping ζ 0. The assigned
poles will be dominating if the frequency is sufficiently small. We
can use this idea to develop systematic design procedures. To do
so we start with a set of specifications and design parameters. The
specifications considered are to express load disturbance rejection,
sensitivity to measurement noise and process variations and setpoint
following as discussed in Section 4.2.

Method DPD1: Frequency and Damping as Design Parame-

ters

One possibility is to use frequency ω 0 and relative damping ζ 0 as
design parameters. Other specifications then have to be translated
to conditions on frequency and damping using the relations in Sec-
tion 4.2.

Method DPD2: Relative Damping as Design Parameter

It is comparatively easy to give reasonable values of relative damping
ζ 0. Good values are in the range of 0.4 to 1.0. It is much more
difficult to find reasonable values of frequency ω 0. This parameter
may change by many orders of magnitude depending on the process. It
would be useful, therefore, to determine parameter ω 0 automatically.
This can be done by selecting a value that gives good rejection of
load disturbances. Notice that the integrated error IE is related to
parameter ki through

IE = 1
ki

Hence, ki should be maximized in order to minimize IE. The design
procedure then becomes a bit more complicated because the controller
parameters have to be computed for different values of ω 0, and an op-
timization has to be performed. Example 4.7. illustrates this. Notice
that if relative damping is specified in a reasonable way, the crite-
rion IE is a good measure of the rejection of load disturbances. An
alternative is to consider the criterion IAE instead. The computa-
tional burden then increases significantly and the improvement in
performance is marginal. When doing the optimization it must also
be checked that measurement noise does not generate too much con-
trol action. This can be expressed by the constraint

Khf = K (1+ N) < Kmax (4.85)
It is straightforward to consider this constraint in the optimization.
The optimization then also tells if performance is limited by process
dynamics or measurement noise. This information is useful in order
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to direct redesign of the system. Also notice that the design gives the
frequency ω 0 as a result. This indicates the frequency range where
the process model has to be reasonably accurate.

Method DPD3: Sensitivity as Design Parameter

One drawback of the design methods given is that sensitivity is only
considered indirectly in the design through the specification of rela-
tive damping ζ 0. Another drawback is that for some systems it is pos-
sible to obtain significantly better attenuation of load disturbances
by decreasing damping. One design method that takes this into ac-
count uses sensitivity Ms as a design parameter. The design is then
carried out in the following way. We first fix ζ 0 and perform the de-
sign as in Method DPD2, but we also compute the sensitivity Ms.
The parameter ζ 0 is then changed in order to maximize ki subject to
the constraints on sensitivity and measurement noise, see Equation
(4.85). This method requires more computations than the previous
methods, but has been shown to give very good results. One partic-
ular feature of this method is that the behaviors of the closed-loop
system are very similar for many different processes. Another feature
is that it gives values of both frequency and damping as intermedi-
ate results. The frequency gives an indication of the frequency ranges
where model accuracy is needed. By comparing the values of ki, Khf ,
and ω 0, it is also possible to make an assessment of the performances
of controllers having different structures, e.g., to compare PI and PID
controllers.
Also notice that, if ki can be maximized without violating the

constraint on measurement noise, the method is equivalent to the loop
shaping procedure discussed in Section 4.4, where IE was minimized
subject to constraints on sensitivity Ms.

Examples

We illustrate the design method with a few examples.

EXAMPLE 4.19 A pure dead-time process

Consider a process with the transfer function

Gp(s) = e−sL

Using pure integral control, it follows from Equation (4.69) that

ki = ae−aL
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Table 4.9 Controller parameters obtained in Example 4.19.

ζ 0 k kiL Ti/L ω 0L Ms IAE/L

0.1 0.388 1.50 0.258 1.97 6.34 4.03

0.2 0.343 1.27 0.270 1.93 3.60 2.42

0.3 0.305 1.09 0.279 1.89 2.70 1.89

0.4 0.273 0.956 0.285 1.87 2.25 1.67

0.5 0.244 0.847 0.288 1.86 1.99 1.56

0.6 0.218 0.759 0.288 1.86 1.81 1.52

0.707 0.195 0.688 0.284 1.88 1.69 1.54

0.8 0.174 0.629 0.276 1.90 1.61 1.61

0.9 0.154 0.581 0.265 1.94 1.54 1.72

1.0 0.135 0.541 0.250 2.00 1.49 1.85

The gain has its largest value ki = e−1/L for a = 1/L. The loop
transfer function for the system is then

G
(s) = 1
sL
e−(sL+1)

The sensitivity of the system is Ms = 1.39, which is a good value.
Let us now consider PI control of the process. To do this we first

must evaluate the transfer function on the ray ω 0e
π−γ . We have

Gp(ω 0eπ−γ ) = Gp(−ω 0 cosγ + iω 0 sinγ ) = eω 0L cosγ e−iω 0L sinγ

Hence,
a(ω 0) = eω 0L cosγ

φ(ω 0) = −ω 0L sin γ

It follows from Equations (4.72) and (4.73) that

k = sin(ω 0L sin γ − γ )
sin γ

e−ω 0L cos γ

ki = ω 0
sin(ω 0L sin γ )

sinγ
e−ω 0L cosγ

To minimize IE, we determine the value of ω 0 that maximizes ki.
Setting the derivative of ki with respect to ω 0 equal to zero we get

sin (ω 0L sin γ ) = ω 0L (sin (ω 0L sin γ )ζ 0 − cos (ω 0L sin γ ) sin γ )
Solving this equation with respect to ω 0L for different values of γ ,
we find the controller parameters given in Table 4.9. Table 4.9 also
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Figure 4.24 Simulation of different controllers for a pure delay
process. The relative dampings are ζ 0=0.2, 0.4, 0.6, 0.8, and 1.0,
respectively. The upper diagram shows setpoint ysp = 1, process
output y, and the lower diagram shows control signal u.

gives the Ms values and the IAE. The Ms value is reasonable for
ζ 0 ≥ 0.5. The IEA has its minimum for ζ 0 = 0.6. In particular we
notice that for ζ 0 = 1 we get k = e−2 and ki = 4e−2/L. This can
be compared with ki = e−1L for pure I control. With PI control the
integral gain can thus be increased by a factor of 1.5 compared with
an I controller. Notice that for a well-damped system (ζ 0 = 0.707)
the gain is about 0.2 and the integral time is Ti = 0.28L. This
can be compared with the values 0.9 and 3.3L given by the Ziegler-
Nichols step response method, 0.45 and 2L by the Ziegler-Nichols
frequency response method, and 0.083 and 0.14L for the Cohen-Coon
method. Figure 4.24 shows a simulation of controllers with different
parameters. In summary, we find that a process with a pure delay
dynamics can be controlled quite well with a PI controller. Notice,
however, that the tuning cannot be done by the Ziegler-Nichols rules.

In the next example, the dominant pole design method is applied
to the same process as the Ziegler-Nichols methods in Section 4.3.

EXAMPLE 4.20 Three equal lags

Consider a process with the transfer function

G(s) = 1
(s+ 1)3

Table 4.10 gives the controller parameters obtained with the dominant
pole design method that uses Ms as a tuning parameter for a PI
controller. Figure 4.25 shows simulations with controllers obtained
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Table 4.10 PI controller parameters obtained in Example 4.20.

Ms ω 0 ζ 0 K ki Ti IAE

1.2 0.39 1.16 0.18 0.14 1.24 6.81

1.4 0.59 0.67 0.48 0.31 1.53 3.29

1.6 0.67 0.49 0.71 0.45 1.58 2.54

1.8 0.73 0.39 0.92 0.57 1.60 2.20

2.0 0.78 0.33 1.09 0.68 1.60 2.06

2.2 0.82 0.28 1.24 0.77 1.60 1.97

2.4 0.85 0.25 1.37 0.86 1.60 1.90

2.6 0.88 0.22 1.49 0.93 1.60 1.86

2.8 0.90 0.20 1.59 1.00 1.59 1.85

3.0 0.92 0.18 1.67 1.06 1.59 1.87

with different values of Ms. The behavior is good for values of Ms in
the interval 1.4 ≤ Ms ≤ 2.0. For higher values of Ms, the responses
become oscillatory. For Ms = 1.2, the value of ζ 0 is greater than
one. This means that the two dominant poles are real. The weighting
factor b = 1 is used in the simulation. A smaller value of b would give
responses to setpoint changes with a smaller overshoot.

0 10 20 30 40
0

1

0 10 20 30 40
−1

1

Ms = 2.8

Ms = 1.2

Ms = 1.2

Ms = 2.8

Figure 4.25 Simulation of different PI controllers for a process
with transfer function 1/(s + 1)3. The Ms values are Ms=1.2, 1.6,
2.0, 2.4, and 2.8. The upper diagram shows setpoint ysp = 1 and
process output y, and the lower diagram shows control signal u.
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Table 4.11 PID controller parameters obtained in Example 4.20.

Ms ω 0 ζ 0 KKp kiKp Ti Td IAE/Kp

1.2 0.83 0.85 0.99 0.43 2.27 0.57 2.93

1.4 1.07 0.55 2.05 0.93 2.21 0.54 1.08

1.6 1.22 0.42 2.89 1.37 2.11 0.50 0.74

1.8 1.33 0.34 3.61 1.77 2.04 0.47 0.60

2.0 1.42 0.29 4.24 2.14 1.98 0.44 0.52

2.2 1.49 0.26 4.80 2.47 1.94 0.42 0.48

2.4 1.54 0.23 5.29 2.77 1.91 0.41 0.44

2.6 1.59 0.21 5.74 3.04 1.89 0.40 0.42

2.8 1.64 0.19 6.14 3.29 1.87 0.39 0.41

3.0 1.67 0.17 6.51 3.52 1.85 0.38 0.40

In Example 4.3, Ziegler-Nichols methods were used to tune the
same process. The step response method gave the controller parame-
ters K = 4.13 and Ti = 2.42, whereas the frequency response method
gave K = 3.2 and Ti = 2.90. Comparing these values with the ones in
Table 4.10 shows that the Ziegler-Nichols method gives a PI controller
with a far too high gain and a too long integral time.
Table 4.11 gives the controller parameters obtained with the dom-

inant pole design method that uses Ms as a tuning parameter for a
PID controller, and Figure 4.26 shows the results of the simulation.
The load disturbance rejection is good for Ms values greater than
1.2. The IAE is significantly smaller than for corresponding PI con-
trollers. The setpoint responses give too large overshoots, since the
setpoint weighting is chosen to b = 1.

EXAMPLE 4.21 Multiple lag process

Consider a process with the transfer function

G(s) = 1
(s+ 1)n

To design an integrating controller, it follows from Equation (4.69)
that

ki = a(1− a)n
Taking derivatives with respect to a gives

dki

da
= (1− a)n − na(1− a)n−1
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The derivative is zero for

a = 1
n+ 1

The gain has its largest value

ki = 1
n+ 1

( n

n+ 1
)n

The closed-loop characteristic equation is

s(s+ 1)n + 1
n+ 1

( n

n+ 1
)n = 0

This equation has double roots at s = −1/(n+ 1).
For n = 1 Equations (4.72) and (4.73) give the PI controller

parameters
k = 2ζ ω 0 − 1
ki = ω 20

Since the closed-loop system is of second order the parameters are
the same as those obtained by the pole placement method. Compare
with Section 4.7.

Choosing the Setpoint Weighting

It was shown in Chapter 3 that setpoint weighting is very useful in
order to shape the response to setpoint changes. To do this properly,
we also need a procedure to determine parameter b. For the dominant
pole design method, it is easy to find such a method. With this method,
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1
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Ms = 1.2

Ms = 2.8

Figure 4.26 Simulation of different PID controllers for a process
with transfer function 1/(s + 1)3. The Ms values are Ms=1.2, 1.6,
2.0, 2.4, and 2.8. The upper diagram shows setpoint ysp = 1 and
process output y, and the lower diagram shows control signal u.
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the closed-loop system will have two complex poles and one pole −p0
on the real axis. This pole may be slower than the dominant poles.
With setpoint weighting, the closed-loop system has a zero at

s = −z0 = − 1
bTi

By choosing b so that z0 = p0, we make sure that the setpoint does not
excite the mode corresponding to the pole in −p0. This works well and
gives good transient responses for systems where the dominant poles
are well damped, (ζ 0 > 0.7). For systems where the poles are not so
well damped, the choice z0 = 2p0 gives systems with less overshoot.
A suitable choice of parameter b is thus

b =




0.5
p0Ti

if ζ < 0.5

0.5+ 2.5(ζ − 0.5)
p0Ti

if 0.5 ≤ ζ ≤ 0.7

1
p0Ti

if ζ > 0.7

4.9 Design for Disturbance Rejection

The design methods discussed so far have been based on a character-
ization of process dynamics. The properties of the disturbances have
only influenced the design indirectly. A load disturbance in the form
of a step was used and in some cases a loss function based on the
error due to a load disturbance was minimized. Measurement noise
was also incorporated by limiting the high-frequency gain of the con-
troller.
In this section, we briefly discuss design methods that directly

attempt to make a trade-off between attenuation of load disturbances
and amplification of measurement noise due to feedback.
Consider the system shown in Figure 4.27. Notice that the mea-

surement signal is filtered before it is fed to the controller. Let V
and E be the Laplace transforms of the load disturbance and the
measurement error, respectively. The process output and the control
signal are then given by

X = Gp

1+ G
 V −
G

1+ G
 E

U = − G

1+ G
 V −

GcGf

1+ G
 E
(4.86)
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Figure 4.27 Block diagram of a closed-loop system.

where G
 is the loop transfer function given by

G
 = GpGcGf
Different assumptions about the disturbances and different design
criteria can now be given. We illustrate by an example.

EXAMPLE 4.22

Assume that the transfer functions in Figure 4.27 are given by

Gp = 1
s

Gf = 1 Gc = k+ ki
s

Furthermore, assume that e is stationary noise with spectral density
φ e and that v is obtained by sending stationary noise with the spec-
trum φv through an integrator. This is one way to model the situation
that the load disturbance is drifting and the measurement noise has
high frequency.
With the given assumptions, Equation (4.86) is simplified to

X = s

s2 + ks+ ki
1
s
V1 − sk+ ki

s2 + ks+ ki E

U = − sk+ ki
s2 + ks+ ki

1
s
V1 − s2k+ kis

s2 + ks+ ki E
(4.87)

where we have assumed

V (s) = 1
s
V1(s)

If e and v1 are white noises, it follows that the variance of x is given
by

J = Ex2 = 1
2kki

φv + 12
(
k+ ki

k

)
φ e
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This equation clearly indicates the compromise in designing the con-
troller. The first term of the right-hand side is the contribution to
the variance due to the load disturbance. The second term represents
the contribution due to the measurement noise. Notice that the at-
tenuation of the load disturbances increases with increasing k and
ki, but that large values of k and ki also increase the contribution of
measurement noise.
We can attempt to find values of k and ki that minimize J.

A straightforward calculation gives

k =
√
2

(
φv
φ e

)1/4

ki =
√

φv
φ e

This means that the controller parameters are uniquely given by the
ratio of the intensities of the process noise and the measurement
noise. Also notice that with these parameters the closed-loop charac-
teristic polynomial becomes

s2 +
√
2ω 0s+ω 20

with ω 0 =
√

φv/φ e. The optimal system thus has a relative damping
ζ = 0.707 and a bandwidth that is given by the ratio of the intensities
of load disturbance and measurement noise.

Notice that in Example 4.22 we have a controller that minimizes
the variance of the process output. With white measurement noise it
follows, however, from Equation (4.87) that the variance of the control
signal is infinite. To obtain a control signal with finite variance, we
can introduce a filter as shown in Figure 4.27. The effect of that is
illustrated with another example.

EXAMPLE 4.23

Consider the same system as in the previous example, but assume
that

Gf (s) = 1
1+ sTf =

a

s+ a
We get

X = s(s+ a)
s3 + as2 + aks+ aki

1
s
V1 − aks+ aki

s3 + as2 + aks+ aki E

U = − aks+ aki
s3 + as2 + aks+ aki

1
s
V1 − aks2 + akis

s3 + as2 + aks+ aki E
(4.88)
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Assuming that v1 and e are white noise, the variance of the process
output becomes

J = Ex2 = 1
2

(
ki + a2

aki(ak− ki) φv + aki(k
2 + ki)

ki(ak− ki) φ e

)

4.10 Conclusions

The PID controller is by far the most commonly used control strategy.
There are many different methods to find suitable parameters of the
controllers. The methods differ in complexity, flexibility, and in the
amount of process knowledge used.
There is clearly a need to have several types of tuning methods.

We need simple, easy-to-use, intuitive methods that require little
information and that give moderate performance. There is also a need
for sophisticated methods that give the best possible performance
even if they require more information and more computations.
To discuss the methods we must realize that there are many dif-

ferent applications. There are cases where it is desirable to have tight
control of the process variable. There are other cases where signifi-
cant variations in the process variable is permitted. A typical case is
surge tanks where the tank level is allowed to fluctuate considerably,
as long as the vessel is neither flooded nor empty.
A good tuning method should be based on a rational design

method that considers trade-offs between

• Load disturbance attenuation

• Effects of measurement noise

• Robustness to process variations

• Response to setpoint changes

• Model requirements

• Computational requirements

A tuning method should also be widely applicable. It should contain
design parameters that influence the performance of the closed-loop
system, and it should admit assessment of the differences in perfor-
mance between PI and PID controllers. The method should also make
it possible to judge whether controllers other than PID are more ap-
propriate, and it should be applicable to different types of a priori
data. Finally, it is desirable that the method be easy to use. Since
these requirements are conflicting, it is clear that we need several
methods.
The Ziegler-Nichols method is insufficient in spite of being simple

and widely used. For the more complex models, it is necessary to have
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more information about the process. This can be obtained by fitting
rational functions to frequency responses or by applying system iden-
tification techniques. Methods based on cancellation of process poles
like the IMC give simple calculations, but they are not uniformly
applicable. Methods like the dominant pole design or the frequency
response methods are better in this respect, but they are also more de-
manding computationally. Since the available computational capacity
is expected to increase over the next ten year period, we do not think
that this is a major disadvantage.

4.11 References

There is a very large literature on tuning of PID controllers. Good gen-
eral sources are the books (Smith, 1972), (Deshpande and Ash, 1981),
(Shinskey, 1988), (McMillan, 1983), (Corripio, 1990), and (Suda et al.,
1992). The books clearly show the need for a variety of techniques,
simple tuning rules, as well as more elaborate procedures that are
based on process modeling, formulation of specifications, and control
design. Even if simple heuristic rules are used, it is important to
realize that they are not a substitute for insight and understanding.
Successful controller tuning can not be done without knowledge about
process modeling and control theory. It is also necessary to be aware
that there are many different types of control problems and conse-
quently many different design methods. To only use one method is as
dangerous as to only believe in empirical tuning rules.
Control problems can be specified in many different ways. A good

review of different ways to specify requirements on a control system
is given in (Truxal, 1955), (Maciejowski, 1989), and (Boyd and Bar-
ratt, 1991). To formulate specifications it is necessary to be aware of
the factors that fundamentally limit the performance of a control sys-
tem. Simple ways to asses the achievable performance of controllers
are given in (Shinskey, 1990), (Shinskey, 1991a), and (Åström, 1991).
There are many papers on comparisons of control algorithms and tun-
ing methods. The paper (McMillan, 1986) gives much sound advice;
other useful papers are (Miller et al., 1967) and (Gerry, 1987).
The paper (Ziegler and Nichols, 1942) is the classic work on

controller tuning. An interesting perspective on this paper is given
in an interview with Ziegler, see (Blickley, 1990). The CHR-method,
described in (Chien et al., 1952), is a modification of the Ziegler-
Nichols method. This is one of the first papers where it is mentioned
that different tuning methods are required for setpoint response and
for load disturbance response. Good response to load disturbances is
often the relevant criteria in process control applications. In spite of
this, most papers concentrate on the setpoint response. Notice also
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that the responses can be tuned independently by having a controller
that admits a two-degree-of-freedom structure. The usefulness of a
design parameter is also mentioned in the CHR-paper. In spite of
its shortcomings the Ziegler-Nichols method has been the foundation
for many tuning methods, see (Tan and Weber, 1985), (Mantz and
Tacconi, 1989), and (Hang et al., 1991). Tuning charts were presented
in (Wills, 1962b), (Wills, 1962a), and (Fox, 1979).
The loop-shaping methods were inspired by classical control de-

sign methods based on frequency response, see (Truxal, 1955). Appli-
cations to PID control are found in (Pessen, 1954), (Habel, 1980),
(Chen, 1989), (Yuwana and Seborg, 1982).
The analytical tuning method was originally proposed in (New-

ton et al., 1957); a more recent presentation is found in (Boyd and
Barratt, 1991). The original papers on the λ-tuning method are
(Dahlin, 1968) and (Higham, 1968). The method is sometimes called
the Dahlin method, see (Deshpande and Ash, 1981). This method
is closely related to the Smith predictor and the internal model con-
troller, see (Smith, 1957), (Chien, 1988), (Chien and Fruehauf, 1990),
and (Rivera et al., 1986). The PPI controller, which is described in
(Hägglund, 1992), and the method given in (Haalman, 1965) are spe-
cial cases. The tuning technique developed in (Smith and Murrill,
1966), (Pemberton, 1972a), (Pemberton, 1972b), (Smith et al., 1975),
(Hwang and Chang, 1987) are also based on the analytical approach.
The analytical tuning method gives controllers that cancel poles

and zeros in the transfer function of the process. This leads to lack
of observability or controllability. There are severe drawbacks in this
as has been pointed out many times, e.g., in (Shinskey, 1991b) and
(Morari and Lee, 1991). The response to load disturbances will be
very sluggish for processes with dominating, long time constants.
Many methods for control design are based on optimization tech-

niques. This approach has the advantage that it captures many differ-
ent aspects of the design problem. There is also powerful software that
can be used. A general discussion of the use of optimization for control
design is found in (Boyd and Barratt, 1991). The papers (Rovira et al.,
1969) and (Lopez et al., 1969) give controllers optimized with respect
to the criteria ISE, IAE and ITAE. Other applications to PID control
are given in (Hazebroek and van der Waerden, 1950), (Wolfe, 1951),
(Oldenburg and Sartorius, 1954), (van der Grinten, 1963a), (Lopez
et al., 1967), (Marsili-Libelli, 1981), (Yuwana and Seborg, 1982), (Pat-
wardhan et al., 1987), (Wong and Seborg, 1988), (Polonoyi, 1989), and
(Zhuang and Atherton, 1991). The methods BO and SO were intro-
duced in (Kessler, 1958a) and (Kessler, 1958b). A discussion of these
methods with many examples are found in (Fröhr, 1967) and (Fröhr
and Orttenburger, 1982).
Pole placement is a straightforward design method much used
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in control engineering, see (Truxal, 1955). It has the advantage that
the closed-loop poles are specified directly. Many other design meth-
ods can also be interpreted as pole placement. The papers (Elgerd and
Stephens, 1959) and (Graham and Lathrop, 1953) show how many
properties of the closed-loop system can be deduced from the closed-
loop poles. This gives good guidance for choosing the suitable closed-
loop poles. An early example of pole placement is (Cohen and Coon,
1953), (Coon, 1956a), and (Coon, 1956b). It may be difficult to choose
desired closed-loop poles for high-order systems. This is avoided by
specifying only a few poles, as in the dominant pole design method
described in (Persson, 1992), (Persson and Åström, 1992), and (Pers-
son and Åström, 1993).
There are comparatively few papers on PID controllers that con-

sider the random nature of disturbances. The papers (van der Grin-
ten, 1963b), (Goff, 1966a), and (Fertik, 1975) are exceptions.



New Tuning Methods

5.1 Introduction

Many methods for designing PID controllers were presented in Chap-
ter 4. From this we can conclude that there are many issues that
have to be taken into account when designing a controller, e.g., load
disturbance response, measurement noise, setpoint following, model
requirements, and model uncertainty. It is also clear that there is a
need for a variety of tuning methods; simple techniques that require
little process knowledge as well as more elaborate methods that use
more information about the process.
In this chapter we use the insight obtained in Chapter 4 to develop

new methods for controller tuning. In Section 5.2 we discuss the key
requirements on a good design method. In addition to the issues
mentioned above, we consider the choice of design parameters and
the process knowledge required. The method used to develop the new
rules is quite straightforward. First we apply a reliable design method
with the desired characteristics to a large test batch of representative
processes. Then we try to correlate the controller parameters obtained
with simple features that characterize the process dynamics.
In Sections 5.3 and 5.4 we present tuning rules that can be viewed

as extensions of the Ziegler-Nichols rules. The main difference is that
we are using three parameters to characterize process dynamics in-
stead of two parameters used by Ziegler and Nichols. It is shown that
the new methods give substantial improvements in control perfor-
mance while retaining much of the simplicity of the Ziegler-Nichols
rules.
Methods based on the step response of the process are presented

in Section 5.3. In this case we characterize process dynamics with
the parameters a and L used by Ziegler and Nichols and, in addition,
the normalized dead time τ . These parameters are easily determined.
The tuning rules obtained give the normal PID parameters and, in
addition, the setpoint weighting.
In Section 5.4 we present frequency-domain methods. They are

based on the parameters ultimate gain Ku, ultimate period Tu and

200
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gain ratio κ . These parameters can be obtained from the conventional
Ziegler-Nichols experiment or an experiment with relay tuning com-
bined with a determination of the static gain of the process.
The methods used in Sections 5.3 and 5.4 are based on approxi-

mate process models. In Section 5.5 we present an efficient method of
computing controller gains when the transfer function of the process
in known. These results make it possible to judge the advantage in
obtaining more process information.
In Section 5.6 we explore some consequences of the results of

the previous sections. The closed-loop systems obtained with the new
tuning rules may have many poles and zeros. The behavior of the
closed-loop system, however, is dominated by a few poles and zeros.
These can be related to the key features of the process. By investi-
gating these relations we get interesting insight into the properties
of the closed-loop system, which can be used to judge achievable per-
formance directly from the process features.
Examples of using the new tuning rules are given in Section 5.7.

5.2 A Spectrum of Tools

The results of Chapter 4 clearly indicate that a sound tuning method
should consider many different issues such as load disturbances, mea-
surement noise, model requirements, and model accuracy. A good tun-
ing method should also have design parameters so that the desired
performance can be changed easily. Unfortunately, it is not possible to
find a single tuning method that satisfies all requirements. Instead,
we develop a spectrum of methods that differ in the effort required
to use them and in the performance obtained.
The wide-spread use of the Ziegler-Nichols methods and its vari-

ants clearly indicates the need for simple methods that use minimal
process information, but there is also a need for more complex meth-
ods that require more effort but, in return, give better control perfor-
mance.
To develop the simple methods we must first find out if it is at

all possible to obtain reliable tuning rules based on a simple charac-
terization of process dynamics. We must also find features that are
useful for characterizing the process dynamics. We have approached
this in an empirical way by trial and error.
We start with a test batch of processes with known transfer func-

tions. Controllers for these processes are then designed using a good
tuning method, e.g., dominant pole design. We then attempt to find
process features that admit simple description of the controller pa-
rameters. The choice of parameters that are useful to characterize
process dynamics is guided by the analysis in Chapter 2. After sev-
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eral attempts we find that it is possible to obtain reasonable tuning
rules based on three parameters, and that the dimension-free param-
eters relative dead time τ and relative gain κ are useful.
Since the method is based on the parameters κ and τ , it is called

Kappa-Tau tuning, which we also abbreviate as KT tuning. For more
accurate tuning, it is suggested to use dominant pole design. This
method will, however, require more process knowledge.

The Test Batch

The results of an investigation depend critically on the chosen test
batch. We have chosen processes that are representative for the dy-
namics of typical industrial processes. The following systems were
used for stable processes.

G1(s) = e−s

(1+ sT)2 T = 0.1, . . . , 10

G2(s) = 1
(s+ 1)n n = 3, 4, 8

(5.1)
G3(s) = 1

(1+ s)(1+α s)(1+α 2s)(1+α 3s) α = 0.2, 0.5, 0.7

G4(s) = 1−α s

(s+ 1)3 α = 0.1, 0.2, 0.5, 1, 2

To cover processes with integration we also include models obtained
by adding an integrator to the systems listed above.
The test batch (5.1) does not include the transfer function

G(s) = Kp e
−sL

1+ sT (5.2)

because this model is not representative for typical industrial pro-
cesses. Tuning based on the model (5.2) typically give a controller
gain that is too high. This is remarkable because tuning rules have
traditionally been based on this model.

Simple Tuning Rules

To obtain the simple tuning rules we use the Ziegler-Nichols rules as
a starting point. These rules are based on process data in the form of
two parameters: a and L for the step-response method, and Tu and
Ku for the frequency-response method. The properties of the Ziegler-
Nichols rules were discussed extensively in Section 4.3. The results
can be summarized as follows.
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A. The responses are too oscillatory.

B. Different tuning rules are required for setpoint response and for
load disturbance response.

C. The rules give poor results for systems with long normalized dead
time.

D. There is no tuning parameter.

Drawback A is easy to deal with. It is sufficient to modify the pa-
rameters in the tables. Item B can be dealt with by tuning for load
disturbances and using setpoint weighting to obtain the desired set-
point response. Item C is more difficult to deal with because it is
necessary to have more process information. A first step is to char-
acterize the process by three parameters instead of two. It turns out
that this gives a substantial improvement.
As a tuning parameter we use the maximum sensitivity Ms. Recall

that this parameter is defined as

Ms = max
ω

∣∣∣∣ 1
1+ Gp(iω )Gc(iω )

∣∣∣∣
where Gc(s) is the controller transfer function and Gp(s) the process
transfer function. The parameter also has a nice geometrical interpre-
tation in the Nyquist diagram. The shortest distance from the critical
point −1 to the Nyquist curve of GpGc is 1/Ms. This admits a direct
interpretation as a robustness measure, because it tells how much
the process can change without causing instability. Typical values of
Ms are in the range of 1.2 to 2. Larger values of Ms give systems that
are faster but less robust. It is also useful that the range to consider
is not too large.

5.3 Step-Response Methods

In this section we describe simple tuning rules based on step-response
data. The need for such techniques are clear in an historical perspec-
tive. A simple tuning method of this type is useful for manual tuning
and it can also be incorporated into automatic tuners. It turns out
that it is possible to obtain substantial improvements compared to
other approaches at the cost of a modest increase in complexity.

Stable Processes

First we consider the case when the processes are stable. Process
dynamics are characterized by three parameters: the static gain Kp,
the apparent lag T , and the apparent dead time L. In Chapter 2 we
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discussed different ways to determine these parameters experimen-
tally. In that section we also found that it is difficult to determine
more than three parameters from a step response. There is some ar-
bitrariness in the determination of L and T . Here we determine L
as the intersection of the tangent with the steepest slope with the
time axis. Parameter T is determined as the time when the step re-
sponse reaches 63% of its final value. An alternative is to determine
the average residence time, Tar , by the method of moments and to
determine T from

T = Tar − L
To present the results it is convenient to reparameterize the process.
Guided by the Ziegler-Nichols formula we use the parameter

a = Kp L
T

instead of Kp and the relative dead time

τ = L

L + T =
L

Tar

instead of T .

Integrating Processes

Parameters a and L can be determined from a step-response exper-
iment for processes with integration. Since the process is not stable
it will, however, not reach a steady state. The initial part of the re-
sponse can be determined, but the experiment has to be interrupted
after some time.
The relative dead time τ is zero for processes with integration.

It can thus be attempted to use the formulas derived for stable pro-
cesses with τ = 0. It is, however, useful to base the tuning on more
information about the initial part of the step response. This can be
obtained from the impulse response of the system, which can be ap-
proximated by the pulse response if the pulse is sufficiently short. If
the transfer function of the process is G(s), we have

G(s) = 1
s
H(s)

where H(s) is a stable transfer function. A step-response experiment
performed on H(s) is equivalent to a pulse-response experiment per-
formed on G(s). Thus, we can determine the steady-state gain K ′p and
the average residence time T ′ar for the transfer function H(s) using
the methods discussed in Chapter 2. It can be shown that

a = K ′pT ′ar = K ′p(L′ + T ′)
L = T ′ar = L′ + T ′
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Parameters a and L are therefore easy to obtain from the pulse
experiment. The normalized dead time τ ′, associated with transfer
function H(s), can be used as an additional parameter. Tuning rules
based on a, L, and τ ′ can be developed for processes with integration.
They are similar to the rules for stable processes.
In the old literature on controller tuning the expression “processes

with self-regulation” was used to describe stable processes and “pro-
cesses without self-regulation” was used to describe processes with
integration. It is interesting to observe that these classes always were
treated separately in classical papers on controller tuning.

Normalization of Controller Parameters

The PI controller has three parameters: the gain K , the integration
time Ti, and the setpoint weighting b. It is convenient to represent
these parameters in dimension-free form by suitable normalization.
The normalized controller gain is aK , and the normalized integration
time Ti/L. This is the same normalization used in the Ziegler-Nichols
rules. (Compare with Section 4.3.) In some cases the integration time
will be normalized by T instead of L. Notice that parameter T is not
defined for processes with integration. This is the reason why it is
better to base the tuning on L than on T .

The Method

An empirical method is used to find the new tuning rules. Controller
parameters are computed for the different processes in the test batch,
using dominant pole design. We then attempt to find relations be-
tween the normalized controller parameters and the normalized pro-
cess parameters. This is done by plotting the normalized controller
parameters as a function of normalized dead time τ . For example, we
investigate whether the normalized controller gain can be expressed
as

aK = f (τ )
and analogous expressions for the other parameters. It turns out that
it is indeed possible to find approximations of this type. The functions
obtained can be well approximated by functions having the form

f (τ ) = a0ea1τ+a2τ 2 (5.3)
Many other functions can also be used.

PI Control for Stable Processes

The simplified tuning rules for PI controllers are treated first. Fig-
ure 5.1 shows the normalized controller parameters as a function of
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normalized dead time for PI control of stable processes. This figure is
based on the systems in the test batch (5.1). The curves drawn corre-
spond to the results obtained by curve fitting. The tuning obtained by
the Ziegler-Nichols rules are shown by the dashed lines in the figure.
To get some insight we consider the results for Ms = 2, which

corresponds to the data labeled � in the figure. Figure 5.1 shows that
the normalized controller gain ranges from 0.35 to 1.5, the normalized
integration time from 0.2 to 9, and the setpoint weighting from 0.4 to
0.6. This shows clearly that it is impossible to obtain good tuning rules
that do not depend on τ . The deviations from the solid lines in the
figure is about ±20%. With tuning rules based on three parameters
it is thus possible to obtain reasonable tuning rules, at least for the
classes of systems given in the test batch (5.1). If the range of τ is
restricted to values between 0.2 and 0.6, the gain ratio varies between
0.35 and 0.50, but the normalized integration time varies between
0.6 and 3. The behavior for Ms = 1.4 is similar but the ranges of the
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Figure 5.1 Tuning diagrams for PI control of stable processes.
Controller parameters are obtained by applying dominant pole de-
sign with Ms = 1.4, marked with ○, and Ms = 2, marked with � to
the systems in the test batch (5.1). The dashed lines correspond to
the Ziegler-Nichols tuning rule.
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normalized parameters are even larger. It is thus not possible to find
a good tuning rule that does not depend on τ even for a restricted
range of values. This explains why tuning rules for PI control of the
Ziegler-Nichols type have performed so poorly.
The figure also shows that there is a significant difference be-

tween the controller gains obtained when the design parameter Ms
has the values 1.4 and 2. Notice, however, that the integral time ap-
pears to be independent of the design parameter Ms. This means that
for PI control of stable processes we can choose integration time in-
dependent of Ms and simply use the gain to adjust Ms. The setpoint
weighting does not vary much with τ when Ms = 2, but it changes
significantly when Ms = 1.4.
Figure 5.1 illustrates the well-known difficulties with Ziegler

Nichols tuning of PI controllers. It indicates that the gain obtained
from the Ziegler-Nichols rule should be reduced. It also shows that
control of processes with small and large τ is very different. For lag-
dominated processes, i.e., small values of τ , the proportional gain
and the integral time should be smaller. Another way to express this
is that proportional action should be stronger and integral action
weaker. For dead-time dominated process we have the reverse situ-
ation. Also, recall that in both extremes there are other controllers
that will perform better than PI controllers.
Figure 5.1 also suggests that if the integral time is normalized

with apparent time constant T instead of apparent dead time L, the
Ziegler-Nichols method can be replaced by the following simple tuning
rule, aK = 0.4, Ti = 0.7T , and b = 0.5. This gives quite good tuning
for relative dead times in the range 0.1 < τ < 0.7. This means that the
ratio of apparent dead time to apparent time constant is between 0.1
and 2. Table 5.1 gives the coefficients a0, a1, and a2 of functions of the
form (5.3) that are fitted to the data in Figure 5.1. The corresponding
graphs are shown in solid lines in the figure.

Table 5.1 Tuning formula for PI control obtained by the step-
response method. The table gives parameters of functions of the
form f (τ ) = a0 exp(a1τ +a2τ 2) for the normalized controller param-
eters.

Ms = 1.4 Ms = 2.0
a0 a1 a2 a0 a1 a2

aK 0.29 −2.7 3.7 0.78 −4.1 5.7

Ti/L 8.9 −6.6 3.0 8.9 −6.6 3.0

Ti/T 0.79 −1.4 2.4 0.79 −1.4 2.4

b 0.81 0.73 1.9 0.44 0.78 −0.45
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Figure 5.2 Tuning diagrams for PID control. Controller parame-
ters are obtained by applying dominant pole design with Ms = 1.4,
marked with ○, and Ms = 2, marked with �, to the systems in
test batch (5.1). The dashed lines correspond to the Ziegler-Nichols
tuning rule.
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PID Control for Stable Processes

Tuning rules for PID control are developed in the same way as the
rules for PI control. Process dynamics are characterized by the param-
eters a, L, and τ which were also used for PI control. The controller
parameters are normalized as aK , Ti/L, and Td/L. The parameters
are determined for the systems in the test batch (5.1) using the dom-
inant pole design method. The controller parameters are then nor-
malized and plotted against normalized dead time τ . The results are
given in Figure 5.2, where curves fitted to the data are given in solid
lines and the Ziegler-Nichols tuning is shown in dashed lines.
Consider the values obtained for Ms = 2, i.e., the points marked

� in Figure 5.2. The normalized gain varies from 0.8 to 3, the nor-
malized integration time from 0.55 to 2.5, the normalized derivation
time from 0.15 to 0.55, and the setpoint weighting from 0.2 to 0.4.
Notice that the ranges of parameters are significantly smaller than
for PI control. This explains why it is easier to find tuning rules that
do not depend on τ for PID than for PI controllers. With tuning rules
based on three parameters, like those illustrated by full lines in Fig-
ure 5.2, it is possible to obtain controller parameters with a precision
of about 25% for the processes in the test batch.
The Ziegler-Nichols tuning rules are represented by dashed lines

in the figure. There is reasonable agreement with the Ziegler-Nichols
rules when τ is between 0.2 and 0.4. This is in sharp contrast with
Figure 5.1, where no agreement with the Ziegler-Nichols rule was
obtained for any τ . This corresponds well with the observation that
the Ziegler-Nichols step-response rules work better for PID than for
PI control. The general pattern indicated in Figure 5.2 is that both
integration time Ti and derivative time Td should be decreased with
increasing τ . The value of the normalized gain depends on Ms. It is
slightly less than the value obtained with the Ziegler-Nichols rule
for Ms = 2. Both the integral time and the derivative time, however,
should depend on τ . The figure also shows that proportional action
dominates for small τ and integral action for large τ . In Table 5.2 we
give the results of curve fitting for Figure 5.2. Figure 5.2 shows that
constant gain can be used for values of τ between 0.2 and 0.7, if the
normalization is performed with T instead of L.

Integrating Processes

Tuning rules for processes with integration were developed by apply-
ing the dominant pole design method to processes with the transfer
functions

Gi(s) = 1
s
Hi(s)
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Table 5.2 Tuning formula for PID control obtained by the step-
response method. The table gives parameters of functions of the
form f (τ ) = a0 exp(a1τ +a2τ 2) for the normalized controller param-
eters.

Ms = 1.4 Ms = 2.0
a0 a1 a2 a0 a1 a2

aK 3.8 −8.4 7.3 8.4 −9.6 9.8

Ti/L 5.2 −2.5 −1.4 3.2 −1.5 −0.93
Ti/T 0.46 2.8 −2.1 0.28 3.8 −1.6
Td/L 0.89 −0.37 −4.1 0.86 −1.9 −0.44
Td/T 0.077 5.0 −4.8 0.076 3.4 −1.1
b 0.40 0.18 2.8 0.22 0.65 0.051

where Hi(s) are the transfer functions given in the test batch (5.1).
The apparent dead time L′, the apparent time constant T ′, and the
gain K ′p of the transfer functions Hi(s) were determined. The nor-
malized controller parameters aK , Ti/L, Td/L, and b have then been
plotted as functions of the normalized dead time for Gi(s).

PI Control for Integrating Processes

Figure 5.3 gives the results for PI control. The figure shows that there
is some variation in the normalized parameters aK and Ti/L with
τ ′. For Ms = 2, the values of aK varies between 0.5 and 0.7, and the
values of Ti/L are between 3 and 5. The parameter b changes more,
from 0.3 to 0.7. The variation is larger for Ms = 1.4. The parameter
values given by the Ziegler-Nichols rule are shown by dashed lines in
Figure 5.3. Our rules give controller gains that are about 30 % lower
and integration times that are about 50% longer than the values
obtained by the Ziegler-Nichols method. The functions fitted to the
data in Figure 5.3 are given in Table 5.3.
For PI control it appears that reasonable tuning can be based on

formulas for τ = 0, and that there will be a modest improvement from
knowledge of τ ′. A comparison with Figure 5.1 shows that the curve
for Ti/L has to be modified a little for small values of τ .

PID Control for Integrating Processes

Figure 5.4 shows the results obtained for PID control of processes
with integration. Notice that the normalized controller parameters
vary significantly with τ ′ in this case. For the case Ms = 2 parameter
aK varies between 0.8 and 5, parameter Ti/L is in the range of 1 to
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Figure 5.3 Tuning diagrams for PI control for processes with
integration. Controller parameters are obtained by applying domi-
nant pole design with Ms = 1.4, marked with ○, and Ms = 2, marked
with � to the systems in the test batch (5.1) complemented with
an integrator. The dashed lines correspond to the Ziegler-Nichols
tuning rule.

Table 5.3 Tuning formula for PI control obtained by the step-
response method for processes with integration. The table gives
parameters of functions of the form f (τ ) = a0 exp(a1τ + a2τ 2) for
the normalized controller parameters.

Ms = 1.4 Ms = 2.0
a0 a1 a2 a0 a1 a2

aK 0.41 −0.23 0.019 0.81 −1.1 0.76

Ti/L 5.7 1.7 −0.69 3.4 0.28 −0.0089
b 0.33 2.5 −1.9 0.78 −1.9 1.2
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3.5, and Td/L is in the range of 0.25 to 0.4. There are even larger
variations for Ms = 1.4. To obtain good PID control of processes with
integration it is therefore essential to know τ ′.
The controller parameters obtained by the Ziegler-Nichols rule

are shown with dashed lines in the figure. It is interesting to observe
that the gain given by our rules is larger and the integration time is
smaller for small τ ′. The parameters obtained when fitting functions
of the form (5.3) to the data are given in Table 5.4. The ratio Ti/Td
varies significantly with parameter τ ′. For Ms = 2 it increases from
2.5 for τ ′ = 0 to 12 for τ ′ = 1. The variations in the ratio is even larger
for designs with Ms = 1.4.

Summary

The results show that for PI control we can obtain tuning formulas
based on τ that can be applied also to processes with integration. The
formulas are obtained simply by extending the formulas for stable
processes to τ = 0. A small improvement can be obtained for small
values of τ by also determining parameter τ ′.
For PID control it is necessary to have separate tuning formulas

for stable processes and processes with integration. For processes with
integration good tuning cannot be obtained by tuning formulas that
are only based on parameter τ . It is necessary to provide additional
information, e.g., by providing the parameter τ ′. The tuning formulas
derived for processes with integration can also be applied when τ is
small, say τ < 0.2, which corresponds to T > 4L.

5.4 Frequency-Response Methods

In this section, the tuning rules based on frequency-domain methods
are developed. In the tradition of Ziegler and Nichols we characterize
the process by the ultimate gain Ku, the ultimate period Tu, and the
gain ratio κ = 1/KpKu. (Compare with Chapter 2.) The controller
parameters are normalized as K/Ku, Ti/Tu and Td/Tu. The tuning
rules are obtained in the same way as for the step-response method.
Controllers for the different processes are designed using the domi-
nant pole design with two values of the design parameter, Ms = 1.4
and Ms = 2. It has then been attempted to find relations between the
normalized controller parameters and the normalized process param-
eters. The results can be conveniently represented as graphs where
normalized controller parameters are given as functions of the gain
ratio κ .
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Figure 5.4 Tuning diagrams for PID control of processes with
integration. Controller parameters are obtained by applying domi-
nant pole design with Ms = 1.4, marked with ○, and Ms = 2, marked
with � to the systems in the test batch (5.1) complemented with
an integrator. The dashed lines correspond to the Ziegler-Nichols
tuning rule.

Table 5.4 Tuning formula for PID control based on the step-
response method for processes with integration. The table gives
parameters of functions of the form f (τ ) = a0 exp(a1τ + a2τ 2) for
the normalized controller parameters.

Ms = 1.4 Ms = 2.0
a0 a1 a2 a0 a1 a2

aK 5.6 −8.8 6.8 8.6 −7.1 5.4

Ti/L 1.1 6.7 −4.4 1.0 3.3 −2.3
Td/L 1.7 −6.4 2.0 0.38 0.056 −0.60
b 0.12 6.9 −6.6 0.56 −2.2 1.2
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Figure 5.5 Tuning diagrams for PI control based on Ku, Tu, and
κ . Controller parameters are obtained by applying dominant pole
design with Ms = 1.4, marked with ○, and Ms = 2, marked with �,
to the systems in test batch (5.1). The dashed lines correspond to
the Ziegler-Nichols tuning rule.

Table 5.5 Tuning formula for PI control based on the frequency-
response method. The table gives parameters of functions of the
form f (κ ) = a0 exp(a1κ + a2κ 2) for the normalized controller pa-
rameters.

Ms = 1.4 Ms = 2.0
a0 a1 a2 a0 a1 a2

K/Ku 0.053 2.9 −2.6 0.13 1.9 −1.3
Ti/Tu 0.90 −4.4 2.7 0.90 −4.4 2.7

b 1.1 −0.0061 1.8 0.48 0.40 −0.17
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PI Control for Stable Processes

Figure 5.5 shows the normalized parameters of a PI controller as a
function of κ . Consider the case of Ms = 2, i.e., the points marked
� in Figure 5.5. The normalized gain ranges from 0.15 to 0.3, the
normalized integration time from 0.15 to 1, and the setpoint weighting
from 0.4 to 0.6. The ranges of variation are smaller than for the
step-response method (compare with Figure 5.1). The variations are,
however, too large to admit tuning rules that do not depend on κ .
If we choose tuning rules that do depend on κ , e.g., those shown in
straight lines in Figure 5.5, we can find rules that give controller
parameters within ±20% for the systems in the test batch (5.1). If we
are satisfied with less precision it suffices to let the integration time
depend on κ . The behavior for Ms = 1.4 is similar, but the setpoint
weighting changes over a wider range.
The normalized controller gain and the setpoint weighting depend

on the design parameter Ms, but the same value of the integral time
can be used for all Ms. This is similar to what we found for the step-
response method. A comparison with Figure 5.1 shows that there is
slightly less scatter with the step-response method than with the
frequency-domain method.
The variation of the integration time with κ is particularly notice-

able in Figure 5.5. This reflects the situation that the proportional
action is larger than integral action for processes that are lag domi-
nant. The reverse situation occurs for processes where the dynamics
are dominated by dead time.
The Figure 5.5 also shows why Ziegler-Nichols tuning is not very

good in this case. The controller gain is too high for all values of gain
ratio κ , and the integral time is too short except for very small values
of κ . This agrees well with the observation that the Ziegler-Nichols
rules for PI control do not work well.
Table 5.5 gives the coefficients of functions of the form (5.3) fitted

to the data in Figure 5.5. The corresponding graphs are shown in solid
lines in the figure.

PID Control for Stable Processes

Figure 5.6 shows the normalized parameters of a PID controller as a
function of κ . Consider the situation for Ms = 2. The normalized gain
varies from 0.45 to 0.9, the normalized integral time from 0.2 to 0.55,
the derivative time from 0.06 to 0.15, and the setpoint weighting from
0.2 to 0.4. Notice that the ranges are significantly smaller than for
PI control. The situation is similar for Ms = 1.4, with the exception
that the setpoint weighting varies over a larger range in this case.
Thus, it is easier, in this case, to find tuning rules that only depend
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on two parameters. With tuning rules based on three parameters it
is, however, possible to find tuning rules that give an accuracy of 25%,
at least for the test batch (5.1).
The figure shows that different values of gain K and setpoint

weighting b are obtained for Ms = 1.4 and Ms = 2. The curves for the
integral and derivative times do not vary so much with Ms.
A comparison with Figure 5.5 shows that the range of parameter

variations with κ are much less for PID control than for PI control.
This supports the well-known observation that rules of the Ziegler-
Nichols type work better for PID than for PI control. Figure 5.6 also
shows that the normalized gain obtained with Ms = 2 is quite close to
the gain given by the Ziegler-Nichols rule, whereas the integral and
derivative times are smaller for most values of κ .
Table 5.6 gives the parameters a0, a1, and a2 of functions of the

form (5.3) fitted to the data in Figure 5.6.
K/Ku vs. κ

0 0.5 1

0.1

1

b vs. κ

0 0.5 1
0.1

1

10

Ti/Tu vs. κ

0 0.5 1

0.1

1

Td/Tu vs. κ

0 0.5 1
0.01

0.1

1

Figure 5.6 Tuning diagrams for PID control based on Ku, Tu and
κ . Controller parameters are obtained by applying dominant pole
design with Ms = 1.4, marked with ○, and Ms = 2 marked with �,
to the systems in test batch (5.1). The dashed lines correspond to
the Ziegler-Nichols tuning rule.
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Table 5.6 Tuning formula for PID control based on the frequency-
response method. The table gives parameters of functions of the
form f (κ ) = a0 exp(a1κ + a2κ 2) for the normalized controller pa-
rameters.

Ms = 1.4 Ms = 2.0
a0 a1 a2 a0 a1 a2

K/Ku 0.33 −0.31 −1.0 0.72 −1.6 1.2

Ti/Tu 0.76 −1.6 −0.36 0.59 −1.3 0.38

Td/Tu 0.17 −0.46 −2.1 0.15 −1.4 0.56

b 0.58 −1.3 3.5 0.25 0.56 −0.12

The Relation Between Ti and Td

In many tuning rules the ratio of Ti and Td is fixed. In Figure 5.7
we show the ratio of Ti/Td obtained with the new tuning rules. The
figure shows that the design for Ms = 2 gives ratios that are close
to 4. This is the same ratio as in the Ziegler-Nichols method. For
Ms = 1.4, the ratio is close to 4 for κ < 0.6. For higher values of κ
the ratio becomes larger.

Processes with Integration

For integrating processes, the ultimate gain and the ultimate period
can be determined as described in Section 2.6, but static gain Kp is
not defined. Processes with integration have κ = 0. For PI control it
is possible to extrapolate the previous formulas to κ = 0 but for PID
control it is necessary to have additional information. One possibility
is to provide information about other points on the Nyquist curve of
the process. A good choice is ω 90, i.e., the frequency where the phase

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Ti/Td

κ

Figure 5.7 Ratio of Ti to Td obtained with the new tuning rule
based on frequency response. The full line corresponds to Ms = 2
and the dotted line to Ms = 1.4. The dashed line shows the ratio
given by the Ziegler-Nichols methods Ti/Td = 4.
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lag is 90○.

5.5 Complete Process Knowledge

The methods presented in Sections 5.3 and 5.4 are approximate meth-
ods based on partial knowledge of the process. These methods are
sufficient in many cases. There are, however, situations where more
accuracy is required. This can be achieved either by on-line refine-
ment or by using a more accurate model. There are many empirical
rules for on-line tuning that can be refined further by selecting dif-
ferent rule sets depending on the values of τ or κ .
A more accurate model can be obtained by using system iden-

tification. This will typically give a model in the form of a pulse
transfer function. This model can be transformed into an ordinary
transfer function in several different ways. Since the tuning methods
are based on the transfer function of the process, it is attractive to
use frequency response techniques. The multifrequency method is a
technique where a signal that is a sum of sinusoids is chosen as the
input. The phases of the sinusoids are chosen so that the amplitude
of the signal is minimized. The frequencies chosen can be based on
the knowledge of the ultimate frequency ωu. In this way it is possible
to obtain the value of the transfer function for several frequencies
in one test. A transfer function can then be fitted to the data, and
the dominant pole design technique can then be used. In this sec-
tion we present alternative methods of performing the computations
required for dominant pole design. An alternative to this is to deter-
mine a pulse transfer function by applying the system identification
methods discussed in Section 2.7 and to develop a design procedure
that is based on the pulse transfer function. Such a method can be
obtained using ideas similar to those discussed in this chapter.

PI Control

Consider a process with the transfer function G(s). Let the PI con-
troller be parameterized as

Gc(s) = k+ ki
s

(5.4)

In this particular case the design problem can be formulated as fol-
lows. Find the parameters k and ki such that ki is as large as possible
and so that the robustness constraint

�1+ G
(iω )� = a(k, ki,ω ) ≥ m0 (5.5)
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where G
 = G(s)Gc(s) is the loop transfer function. The problem is a
constrained optimization problem that, unfortunately, is not convex.
To solve it we use an iterative method with good initial conditions.
The idea of the algorithm is to evaluate the function

m(k, ki) = min
ω∈Ω
a(k, ki,ω ) = m0 (5.6)

for several values of the controller parameters and then to determine
the value of k, which maximizes ki subject to the constraint.
Determination of the function m requires minimization with re-

spect to ω . This is done by a simple search over the interval Ω =
[ω 1,ω 2].
The function m can be locally approximated by

m(k, ki) = a+ b0ki + b1k+ 12
(
c0k

2
i + 2c1kki + c2k2

) (5.7)

Maximizing ki with respect to k subject to the constraint (5.6) gives

b1 + c1ki + c2k = 0 (5.8)

This gives the following relation between k and ki:

k = −b1 + c1ki
c2

(5.9)

Inserting this into Equation (5.7) and using the condition m(k, ki) =
m0 gives

A0k
2
i + 2A1ki + A2 = 0 (5.10)

where

A0 = c0 − c
2
1

c2

A1 = b0 − b1c1
c2

A2 = 2(a0 −m0) − b
2
1

c2

Solving Equation (5.10) gives

ki =
−A1 ±

√
A21 − A0A2
A0

(5.11)

Having obtained ki the value of k is then given by Equation (5.9).
Parameters for PID controllers can be determined in a similar

way.
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Figure 5.8 Configuration of dominant poles and zeros for a sys-
tem with PI control. Case A corresponds to systems where the open-
loop poles are clustered and case B is the case when the open-loop
poles are widely spread.

5.6 Assessment of Performance

In this section we explore some properties of the closed-loop sys-
tems obtained with the design methods discussed in the previous
sections. The closed-loop systems obtained with PID control typically
have many poles and zeros. The behavior of the system is, however,
characterized by only a small number of poles. (Compare with Fig-
ure 4.4.) The key idea with the dominant pole design procedure was
actually to position a few of the dominant poles. In this section we
explore the dominant poles further. In particular we investigate how
they are related to features of the open loop system and the design
parameters.
A preliminary assessment of the nature of the control problem

can be made based on the value of the normalized dead time or the
gain ratio. For small values (τ < 0.1 or κ < 0.06) it is often possible to
obtain improved control by more complex strategies than PID control.
Similarly when the values are close to one (τ > 0.7 or κ > 0.7)
consider using dead-time compensation.

PI Control

Many systems with PI control can be characterized by the closed-
loop poles that are closest to the origin in the complex plane. It is
often sufficient to consider only three closed-loop poles. In a typical
case there are two complex and one real pole (see Figure 5.8). The
responses of a system with three poles is a linear combination of the
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Figure 5.9 Signal modes for a system with one real pole and
one complex pole pair. The modes are a damped exponential ye, a
damped cosine yc, and a damped sine function ys.

signals
ye = e−α 0t

ys = e−ζ ω 0t sinω 0
√
1− ζ 2

yc = e−ζ ω 0t cosω 0
√
1− ζ 2

The signal ye is a decaying exponential, ys and yc are exponentially
damped sine and cosine functions. The responses may also contain a
component due to the excitation, e.g., a constant for the step distur-
bances. The signals are illustrated in Figure 5.9. The damped sine
and cosine waves are often the dominating components and the expo-
nential function corresponds to the creeping behavior found on some
occasions.
Since the responses are well approximated by the functions shown

in Figure 5.9, it is easy to visualize responses if we know the parame-
ters α 0, ω 0, and ζ , and the amplitudes of the signals. The amplitudes
of the different components depend on the parameters and the exci-
tation of the system in a fairly complicated way.

The Real Pole

The real pole at s = −α 0 determines the decay rate of the exponential
function. The time constant is T0 = 1/α 0, where α 0 is approximately
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equal to 1/Ti. This explains the sluggish response obtained when Ti
is too large, compare with Figure 5.9.
For processes, where the open-loop poles are clustered together,

the configuration of the poles is as shown in Figure 5.8A. The pole
located in −α 0 is thus to the right of the zero −z0 = −1/Ti. For
systems where the open-loop poles are widely separated, the pole
configuration is as shown in Figure 5.8B, where the real pole is to
the left of the zero −z0. The cases can approximately be separated
through the inequality

T0 > 2
(
L +

n∑
k=1
Tk

)
= 2(Tar − T0) (5.12)

where T0 is the time constant associated with the slowest pole (α 0),
Tk are the time constants associated with the remaining poles, and
Tar is the average residence time (see Section 2.4). The inequality is
obtained by analyzing the root locus of the system.

Complex Poles

The damped sine and cosine modes are determined by parameters ω 0
and ζ . The period of the oscillation is

Tp = 2π

ω 0
√
1− ζ 2

and the ratio of two successive peaks are

d = e−2πζ /
√
1−ζ 2

(Compare with Section 4.2.) Knowing parameters ω 0 and ζ , it is thus
easy to visualize the shape of the mode.
If the parameters of the controller are determined by the dom-

inant pole design, we can determine how ω 0, ζ , and α 0 depend on
the system and the specifications. In this way it is possible to relate
the properties of the closed-loop system directly to the features of the
process.
To find good relations we use the normalized quantities ω 0L and
α 0Ti. The relative damping is dimension free by itself. Figure 5.10
shows the relations obtained for the test batch (5.1). For Ms = 2 the
quantity ω 0L ranges from 0.5 to 1.5; ζ ranges from 0.3 to 0.6, and
α 0Ti from 0.8 to 1.2. The value of ω 0L is less than one for small τ
or κ and larger than one for large values. The variation with τ or
κ is larger for Ms = 1.4 than for Ms = 2. For Ms = 1.4 the relative
damping depends strongly on τ or κ ; it is larger than one for large
values of τ or κ . This means that the closed-loop system has three
real poles. The value of α 0Ti is smaller than one in most cases. This
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Figure 5.10 Dependence of ω 0, ζ , and α 0 on the system charac-
teristics and the specifications Ms on closed-loop sensitivity. Points
marked with o correspond to Ms = 1.4, and points marked with �
correspond to Ms = 2.0.

indicates that the pole-zero configuration shown in Figure 5.8A is the
most common case. Figure 5.10 also shows that the quantity α 0Ti is
close to one independently of τ or κ for Ms = 2, but that the value
varies significantly with τ or κ for Ms = 1.4.
By using the relations in Figure 5.10, we can reach a reasonable

estimate of the properties of the closed-loop systems obtained by the
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Table 5.7 Characterization of the closed-loop poles obtained in
Example 5.1.

α τ κ Ms ω 0 ζ α 0 z0 ω 0L α 0Ti

0.2 0.12 0.033 1.4 2.5 0.70 1.9 1.4 0.38 1.4

0.5 0.25 0.15 1.4 1.0 0.70 0.93 0.97 0.51 0.96

0.7 0.31 0.21 1.4 0.69 0.74 0.67 0.68 0.57 0.81

0.2 0.12 0.033 2.0 4.0 0.36 2.1 1.8 0.60 1.2

0.5 0.25 0.15 2.0 1.3 0.35 1.0 1.02 0.67 1.0

0.7 0.31 0.21 2.0 0.86 0.36 0.77 0.81 0.71 0.94

design procedures directly from the process characteristics. This is
illustrated by a simple example.

EXAMPLE 5.1

Consider a system with the transfer function.

G(s) = 1
(s+ 1)(1+α s)(1+α 2s)(1+α 3s)

In this case it is easy to vary the spread of the process poles by
varying parameter α . The process has one dominating pole with time
constant T0 = 1. The average residence time is

Tar = 1+α +α 2 +α 3

Thus, the inequality (5.12) gives the value where the poles are con-
sidered as clustered to a = 0.3425. In Table 5.7 we summarize some
parameters for the system. The table shows that the approximate es-
timates from Figure 5.10 give reasonably good estimates in this case.

Systems with PID control can be analyzed in a similar manner.
In this case it is necessary to consider more closed-loop poles. There
are also two zeros corresponding to 1/T ′i and 1/T ′d, where T ′i and T ′d
are the integral and derivative time constants for the series repre-
sentation of the PID controller (compare with Section 3.4).

5.7 Examples

To illustrate the effectiveness of the tuning methods we apply them
in a few examples.
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Figure 5.11 Setpoint and load-disturbance response of a process
with transfer function 1/(s+1)3 controlled by a PID controller tuned
with the new simple tuning rules with Ms = 1.4 and 2.0. The upper
diagram shows setpoint ysp = 1 and process output y, and the lower
diagram shows control signal u.

EXAMPLE 5.2 Three equal lags

In Examples 4.1 and 4.2, the Ziegler-Nichols methods were applied to
the process model

G(s) = 1
(s+ 1)3

It has ultimate gain Ku = 8, ultimate period Tu = 3.6, and gain ratio
κ = 0.125. The new frequency-response method gives the following
parameters for a PID controller:

Ms = 1.4 Ms = 2.0
K 2.5 4.8
Ti 2.2 1.8
Td 0.56 0.46
b 0.52 0.27

The step-response method gives parameters that differ less than
10% from these values.
Figure 5.11 shows the response of the closed-loop systems to a

step change in setpoint followed by a step change in the load. The
control is significantly better than in Examples 4.1 and 4.2, where
the Ziegler-Nichols methods were used. Compare with Figures 4.7
and 4.8.

In the next example, the new design methods are applied to a
process with a significant dead time.
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Figure 5.12 Setpoint and load-disturbance response of a process
with transfer function e−5s/(s + 1)3 controlled by a PID controller
tuned with the new simple tuning rules with Ms = 1.4 and 2.0. The
upper diagram shows setpoint ysp = 1 and process output y, and
the lower diagram shows control signal u.

EXAMPLE 5.3 Dead-time dominant process

The Ziegler-Nichols methods were applied to the process model

G(s) = e−5s

(s+ 1)3
in Example 4.4, which showed that the Ziegler-Nichols methods are
not suitable for processes with large normalized dead time τ and
large gain ratio κ . The process has ultimate gain Ku = 1.25, ultimate
period Tu = 15.7, and gain ratio κ = 0.8. The new frequency-response
method gives the following parameters for a PID controller:

Ms = 1.4 Ms = 2.0
K 0.17 0.54
Ti 2.6 4.2
Td 0.48 1.1
b 1.9 0.36

The step-response method gives controller parameters that differ
less than 10% from these parameters.
Figure 5.12 shows the response of the closed-loop systems to a

step change in setpoint followed by a step change in the load. The
control is significantly better than in Example 4.4 (compare with
Figure 4.12). The new design method gives a higher gain and shorter
integral and derivative times than the Ziegler-Nichols method. Notice
that the value of design parameter Ms is crucial in this example.

The next example illustrates the new design method applied on
an integrating process.
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Figure 5.13 Setpoint and load-disturbance response of a process
with transfer function 1/s(s + 1)3 controlled by a PID controller
tuned with the new simple tuning rules with Ms = 1.4 and 2.0. The
upper diagram shows setpoint ysp = 1 and process output y, and
the lower diagram shows control signal u.

EXAMPLE 5.4 Integrating process

Consider the integrating process

G(s) = 1
s
H(s) = 1

s(s+ 1)3

The stable process H(s) has static gain Kp = 1, apparent dead time
L′ = 0.81, apparent time constant T ′ = 3.7, and relative dead time
τ ′ = 0.18. This gives the following parameters for process G(s):

a = K ′p(L′ + T ′) = 4.5
L = L′ + T ′ = 4.5

Table 5.4 gives the following PID controller parameters:

Ms = 1.4 Ms = 2.0
K 0.32 0.67
Ti 14 7.6
Td 2.6 1.7
b 0.33 0.39

Figure 5.13 shows the response of the closed-loop systems to a step
change in setpoint followed by a step change in the load. The figure
shows that the responses are in accordance with the specifications.
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5.8 Conclusions

In this section we have developed new methods for tuning PID con-
trollers. The methods are based on specifications in terms of rejection
of load disturbances and measurement noise, sensitivity to model-
ing errors, and setpoint response. Rejection of load disturbances is
the primary design criterion that is optimized by minimizing the in-
tegrated error. Modeling errors are captured by requiring that the
maximum sensitivity be less than a specified value Ms. This value
is a design variable that can be chosen by the user. Reasonable vari-
ables range from Ms = 1.4 to Ms = 2. The standard value is Ms = 2,
but smaller values can be chosen if responses without overshoot are
desired.
The method is based on the dominant pole design, wich requires

that the transfer function of the process is known. The methods de-
scribed in this section require the same parameters as the Ziegler-
Nichols methods, and, in addition, κ for the frequency domain method
and τ for the step response method. The tuning method, therefore, is
called the Kappa-Tau method or the KT method for short. The tuning
method works for processes that are typically encountered in process
control. The KT-tuning techniques may be viewed as a generalization
of the Ziegler-Nichols method.
For the step-response method the process is characterized by the

apparent dead time, the apparent time constant, and the static gain.
For the frequency-domain method, the parameters ultimate gain, ul-
timate period, and static gain characterize the process. The tuning
rules are conveniently expressed using the normalized variables gain
ratio κ and normalized dead time τ .
The KT method gives insight into the shortcomings of the Ziegler-

Nichols rules. First, they avoid the poor damping obtained with the
Ziegler-Nichols rule. Secondly, they give good tuning also for processes
with long dead time. The results also show that knowledge about
the gain ratio or the normalized dead time is required for tuning
a PI controller. For PID control with small values of κ and τ , e.g.,
processes with integration, it is shown that improved tuning requires
additional knowledge. This can be obtained from the impulse response
of the system. The results admit assessment of the performance that
can be achieved with the new tuning rules based on simple process
characteristics.

5.9 References

The results given in this chapter were motivated by the desire to
obtain tuning rules that are simple and significantly better than the
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Ziegler-Nichols rules. The chapter is based on the ideas in (Hang
et al., 1991), (Åström et al., 1992). The idea to use dimension-free
parameters was used there. Notice, however, that the definitions of
normalized dead time τ , and gain ratio κ are different. The reason
for making changes is that it is helpful to have parameters that
range from zero to one. Much more primitive tuning procedures were
used in the previous work. The dominant pole design, which is the
basis for the work, is given in (Persson, 1992), see also (Persson and
Åström, 1992), (Persson and Åström, 1993), and (Persson, 1992). The
idea of using dimension-free quantities for performance assessment is
discussed in (Åström, 1991). They are also useful for an autonomous
controller, see (Åström, 1992).



Automatic Tuning
and Adaptation

6.1 Introduction

By combining the methods for determination of process dynamics (de-
scribed in Chapter 2) with the methods for computing the parameters
of a PID controller (described in Chapter 4), methods for automatic
tuning of PID controllers can be obtained. By automatic tuning (or
auto-tuning) we mean a method where the controller is tuned auto-
matically on demand from a user. Typically the user will either push
a button or send a command to the controller. An automatic tuning
procedure consists of three steps:

• Generation of a process disturbance.

• Evaluation of the disturbance response.

• Calculation of controller parameters.

This is the same procedure that an experienced operator uses when
tuning a controller manually. The process must be disturbed in some
way in order to determine the process dynamics. This can be done
in many ways, e.g., by adding steps, pulses, or sinusoids to the pro-
cess input. The evaluation of the disturbance response may include a
determination of a process model or a simple characterization of the
response.
Industrial experience has clearly indicated that automatic tuning

is a highly desirable and useful feature. Automatic tuning is some-
times called tuning on demand or one-shot tuning. Commercial PID
controllers with automatic tuning facilities have only been available

since the beginning of the eighties. There are several reasons for this.
The recent development of microelectronics has made it possible to
incorporate the additional program code needed for the automatic
tuning at a reasonable cost. The interest in automatic tuning at uni-
versities is also quite new. Most of the research effort has been devoted
to the related, but more difficult, problem of adaptive control.

230
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Automatic tuning can also be performed using external equip-
ment. These devices are connected to the control loop only during
the tuning phase. When the tuning experiment is finished, the prod-
ucts suggest controller parameters. Since these products are supposed
to work together with controllers from different manufacturers, they
must be provided with quite a lot of information about the controller
in order to give an appropriate parameter suggestion. The information
required includes controller structure (standard, series, or parallel
form), sampling rate, filter time constants, and units of the different
controller parameters (gain or proportional band, minutes or seconds,
time or repeats/time). The fact that PID controllers are parameter-
ized in so many ways creates unnecessary difficulties.
Tuning facilities are also starting to appear in the distributed

control systems. In this case it is possible to have a very powerful
interaction of the user because of the graphics and computational
capabilities available in the system.
Even when automatic tuning devices are used, it is important to

obtain a certain amount of process knowledge. This is discussed in
the next section. Automatic tuning is only one way to use the adap-
tive technique. Section 6.3 gives an overview of several adaptive tech-
niques, as well as a discussion about the use of these techniques.
The automatic tuning approaches can be divided into two categories,
namely model-based approaches and rule-based approaches. In the
model-based approaches, a model of the process is obtained explicitly,
and the tuning is based on this model. Section 6.4 treats approaches
were the model is obtained from transient response experiments, fre-
quency response experiments, and parameter estimation. In the rule-
based approaches, no explicit process model is obtained. The tuning is
based instead on rules similar to those rules that an experienced op-
erator uses to tune the controller manually. The rule-based approach
is treated in Section 6.5.
Some industrial products with adaptive facilities are presented

in Section 6.6. Four single-station controllers are presented: Foxboro
EXACT (760/761), Alfa Laval Automation ECA400, Honeywell UDC
6000, and Yokogawa SLPC-181 and 281. Three tuning packages to be
used within DCS systems, Fisher-Rosemount Intelligent Tuner and
Gain Scheduler, Honeywell Looptune, and ABB DCS Tuner are also
presented, as well as the process analyzer Techmation Protuner.
Adaptive techniques are closely related to diagnosis procedures.

Section 6.7 gives an overview of both manual and automatic on-line
diagnosis procedures. The chapter ends with conclusions and refer-
ences in Sections 6.8 and 6.9
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6.2 Process Knowledge

In this chapter we will discuss several methods for automatic tuning.
Before going into details we must remark that poor behavior of a
control loop can not always be corrected by tuning the controller. It is
absolutely necessary to understand the reason for the poor behavior.
The process may be poorly designed so that there are long dead

times, long time constants, nonlinearities, and inverse responses. Sen-
sors and actuators may be poorly placed or badly mounted, and they
may have bad dynamics. Typical examples are thermocouples with
heavy casings that make their response slow, or on-off valve motors
with long travel time. Valves may be oversized so that they only act
over a small region. The sensor span may be too wide so that poor
resolution is obtained, or it may also have excessive sensor noise. The
procedure of investigating whether a process is well designed from a
control point of view is called loop auditing.
There may also be failure and wear in the process equipment.

Valves may have excessive stiction. There may be backlash due to
wear. Sensors may drift and change their properties because of con-
tamination.
If a control loop is behaving unsatisfactorily, it is essential that

we first determine the reason for this before tuning is attempted. It
would, of course, be highly desirable to have aids for the process engi-
neer to do the diagnosis. Automatic tuning may actually do the wrong
thing if it is not applied with care. For example, consider a control
loop that oscillates because of friction in the actuator. Practically all
tuning devices will attempt to stabilize the oscillation by reducing the
controller gain. This will only increase the period of the oscillation!
Remember—no amount of so called “intelligence” in equipment

can replace real process knowledge.

6.3 Adaptive Techniques

Techniques for automatic tuning grew out of research in adaptive con-
trol. Adaptation was originally developed to deal with processes with
characteristics that were changing with time or with operating con-
ditions. Practically all adaptive techniques can be used for automatic
tuning. The adaptive controller is simply run until the parameters
have converged and the parameters are then kept constant. The draw-
back with this approach is that adaptive controllers may require prior
information. There are many special techniques that can be used for
this purpose. Industrial experience has shown that this is probably
the most useful application of adaptive techniques. Gain scheduling is
also a very effective technique to cope with processes that change their
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Figure 6.1 Block diagram of an indirect adaptive controller.

characteristics with operating conditions. An overview of these tech-
niques will be given in this section. In this book the phrase adaptive
techniques will include auto-tuning, gain scheduling, and adaptation.

Adaptive Control

By adaptive control we mean a controller whose parameters are con-
tinuously adjusted to accommodate changes in process dynamics and
disturbances. Adaptation can be applied both to feedback and feedfor-
ward control parameters. It has proven particularly useful for feedfor-
ward control. The reason for this is that feedforward control requires
good models. Adaptation is, therefore, almost a prerequisite for using
feedforward control. Adaptive control is sometimes called continuous
adaptation to emphasize that parameters are changed continuously.
There are two types of adaptive controllers based on direct and

indirect methods. In a direct method, controller parameters are ad-
justed directly from data in closed-loop operation. In indirect methods,
the parameters of a process model are updated on-line by recursive
parameter estimation. (Compare with Section 2.7 where parameter
estimation was discussed briefly.) The controller parameters are then
obtained by some method for control design. In direct adaptive con-
trol the parameters of the controller are updated directly. The self-
tuning regulator is a typical example of a direct adaptive controller;
the model reference system is an example of an indirect adaptive con-
troller. There is a large number of methods available both for direct
and indirect methods. They can conveniently be described in terms of
the methods used for modeling and control design.
A block diagram of a direct adaptive controller is shown in Fig-
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ure 6.1. There is a parameter estimator that determines the param-
eters of the model based on observations of process inputs and out-
puts. There is also a design block that computes controller parameters
from the model parameters. If the system is operated as a tuner, the
process is excited by an input signal. The parameters can either be
estimated recursively or in batch mode. Controller parameters are
computed and the controller is commissioned. If the system is oper-
ated as an adaptive controller, parameters are computed recursively
and controller parameters are updated when new parameter values
are obtained.

Automatic Tuning

By automatic tuning (or auto-tuning) we mean a method where a con-
troller is tuned automatically on demand from a user. Typically the
user will either push a button or send a command to the controller.
Industrial experience has clearly indicated that this is a highly desir-
able and useful feature. Automatic tuning is sometimes called tuning
on demand or one-shot tuning. Auto-tuning can be built into the con-
trollers. Practically all controllers can benefit from tools for automatic
tuning. This will drastically simplify the use of controllers. Single loop
controllers and distributed systems for process control are important
application areas. Most of these controllers are of the PID type. This
is a vast application area because there are millions of controllers of
this type in use. Automatic tuning is currently widely used in PID
controllers.
Auto-tuning can also be performed with external devices that are

connected to a process. Since these systems have to work with con-
trollers from different manufacturers, they must be provided with
information about the controller structure in order to give an ap-
propriate parameter suggestion. Such information includes controller
structure (standard, series, or parallel form), sampling rate, filter
time constants, and units of the different controller parameters (gain
or proportional band, minutes or seconds, time or repeats/time).

Gain Scheduling

Gain scheduling is a technique that deals with nonlinear processes,
processes with time variations, or situations where the requirements
on the control change with the operating conditions. To use the
technique it is necessary to find measurable variables, called schedul-
ing variables, that correlate well with changes in process dynam-
ics. The scheduling variable can be, for instance, the measured sig-
nal, the control signal, or an external signal. For historical reasons
the phrase gain scheduling is used even if other parameters than
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the gain, e.g., derivative time or integral time, are changed. Gain
scheduling is a very effective way of controlling systems whose dy-
namics change with the operating conditions. Gain scheduling has
not been used much because of the effort required to implement it.
When combined with auto-tuning, however, gain scheduling is very
easy to use.
A block diagram of a system with gain scheduling is shown in

Fig. 6.2. The system can be viewed as having two loops. There is an
inner loop, composed of the process and the controller, and an outer
loop, which adjusts the controller parameters based on the operating
conditions.
The notion of gain scheduling was originally used for flight control

systems, but it is being used increasingly in process control. It is, in
fact, a standard ingredient in some single-loop PID controllers. For
process control applications significant improvements can be obtained
by using just a few sets of controller parameters.
Gain scheduling is often an alternative to adaptation. It has the

advantage that it can follow rapid changes in the operating condi-
tions. The key problem is to find suitable scheduling variables. Possi-
ble choices are the control signal, the process variable, or an external
signal. Production rate is often a good choice in process control ap-
plications, since time constants and time delays are often inversely
proportional to production rate.
Development of a schedule may take a substantial engineering ef-

fort. The availability of automatic tuning can significantly reduce the
effort because the schedules can then be determined experimentally.
A scheduling variable is first determined. Its range is quantitized

into a number of discrete operating conditions. The controller pa-
rameters are then determined by automatic tuning when the sys-
tem is running in one operating condition. The parameters are stored
in a table. The procedure is repeated until all operating conditions
are covered. In this way it is easy to install gain scheduling into a

ProcessController

Table

y sp

  y
u

Controller
parameters

Scheduling
variable

Figure 6.2 Block diagram of a system with gain scheduling.
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computer-controlled system by programming a table for storing and
recalling controller parameters and appropriate commands to accom-
plish this.

Uses of Adaptive Techniques

We have described three techniques that are useful in dealing with
processes that have properties changing with time or with operating
conditions. In Figure 6.3 is a diagram that guides the choice among
the different techniques.
Controller performance is the first thing to consider. If the re-

quirements are modest, a controller with constant parameters and
conservative tuning can be used. With higher demands on perfor-
mance, other solutions should be considered. If the process dynamics
are constant, a controller with constant parameters should be used.
The parameters of the controller can be obtained using auto-tuning.
If the process dynamics or the nature of the disturbances are

changing, it is useful to compensate for these changes by changing the
controller. If the variations can be predicted from measured signals,
gain scheduling should be used because it is simpler and gives su-
perior and more robust performance than the continuous adaptation.
Typical examples are variations caused by nonlinearities in the con-
trol loop. Auto-tuning can be used to build up the gain schedules.
There are also cases where the variations in process dynamics

Use a controller with
varying parameters

Unpredictable
variations

Process dynamics

Use a controller with
constant parameters

Use an adaptive
controller

Use gain scheduling

Varying Constant

Predictable 
variations

Figure 6.3 When to use different adaptive techniques.
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are not predictable. Typical examples are changes due to unmeasur-
able variations in raw material, wear, fouling etc. These variations
cannot be handled by gain scheduling, since no scheduling variable
is available, but must be dealt with by adaptation. An auto-tuning
procedure is often used to initialize the adaptive controller. It is then
sometimes called pre-tuning or initial tuning.
Feedforward control deserves special mentioning. It is a very pow-

erful method for dealing with measurable disturbances. Use of feed-
forward control, however, requires good models of process dynamics.
It is difficult to tune feedforward control loops automatically on de-
mand, since the operator often cannot manipulate the disturbance
used for the feedforward control. To tune the feedforward controller
it is necessary to wait for an appropriate disturbance. Adaptation,
therefore, is particularly useful for the feedforward controller.

6.4 Model-Based Methods

This section gives an overview of automatic tuning approaches that
are based on an explicit derivation of a process model. Models can be
obtained in many ways, as seen in Chapter 2. In this section we dis-
cuss approaches based on transient responses, frequency responses,
and parameter estimation.

Transient Response Methods

Auto-tuners can be based on open-loop or closed-loop transient re-
sponse analysis. Methods for determining the transient response were
discussed in Section 2.3. The most common methods are based on step
or pulse responses, but there are also methods that can use many
other types of perturbations.

Open-Loop Tuning

A simple process model can be obtained from an open-loop transient
response experiment. A step or a pulse is injected at the process input,
and the response is measured. To perform such an experiment, the
process must be stable. If a pulse test is used, the process may include
an integrator. It is necessary that the process be in equilibrium when
the experiment is begun.
There are, in principle, only one or two parameters that must

be set a priori, namely the amplitude and the signal duration. The
amplitude should be chosen sufficiently large, so that the response
is easily visible above the noise level. On the other hand, it should
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be as small as possible in order not to disturb the process more than
necessary and to keep the dynamics linear. The noise level can be
determined automatically at the beginning of the tuning experiment.
However, even if the noise level is known, we cannot decide a suitable
magnitude of a step in the control signal without knowing the gain of
the process. Therefore, it must be possible for the operator to decide
the magnitude.
The duration of the experiment is the second parameter that

normally is set a priori. If the process is unknown, it is very difficult
to determine whether a step response has settled or not. An intuitive
approach is to say that the measurement signal has reached its new
steady state if its rate of change is sufficiently small. The rate of
change is related, however, to the time constants of the process, which
are unknown. If a pulse test is used, the duration of the pulse should
also be related to the process time constants.
Many methods can be used to extract process characteristics from

a transient response experiment. Most auto-tuners determine the
static gain, the dominant time constant, and the apparent dead time.
The static gain is easy to find accurately from a step-response exper-
iment by comparing the stationary values of the control signal and
the measurement signal before and after the step change. The time
constant and the dead time can be obtained in several ways (see Sec-
tion 2.3). The method of moments, presented in Section 2.4, is an
appealing method, which is relatively insensitive to high-frequency
disturbances.
The transient response methods are often used in a pre-tuning

mode in more complicated tuning devices. The main advantage of
the methods, namely that they require little prior knowledge, is then
exploited. It is also easy to explain the methods to plant personnel.
The main drawback with the transient response methods is that they
are sensitive to disturbances. This drawback is less important if they
are used only in the pre-tuning phase.

Closed-Loop Tuning

Automatic tuning based on transient response identification can also
be performed on line. The steps or pulses are then added either to
the setpoint or to the control signal. There are also auto-tuners that
do not introduce any transient disturbances. Perturbations caused by
setpoint changes or load disturbances are used instead. In these cases
it is necessary to detect that the perturbations are sufficiently large
compared to the noise level.
Closed-loop tuning methods cannot be used on unknown pro-

cesses. Some kind of pre-tuning must always be performed in order
to close the loop in a satisfactory way. On the other hand, they do not
usually require any additional a priori information. The magnitude of
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Figure 6.4 The relay auto-tuner. In the tuning mode the process
is connected to relay feedback.

the step changes in setpoint are easily determined from the desired,
or accepted, change in the measurement signal.
Since a proper closed-loop transient response is the goal for the

design, it is appealing to base tuning on closed-loop responses. It is
easy to give design specifications in terms of the closed-loop transient
response, e.g., damping, overshoot, closed-loop time constants, etc.
The drawback is that the relation between these specifications and
the PID parameters is normally quite involved. Heuristics and logic
are required therefore.

Frequency Response Methods

There are also auto-tuners that are based on frequency response
methods. In Section 2.5, it was shown how frequency response tech-
niques could be used to determine process dynamics.

Use of the Relay Method

In traditional frequency response methods, the transfer function of
a process is determined by measuring the steady-state responses to
sinusoidal inputs. A difficulty with this approach is that appropri-
ate frequencies of the input signal must be chosen a priori. A special
method, where an appropriate frequency of the input signal is gener-
ated automatically, was described in Section 2.5. The idea was simply
to introduce a nonlinear feedback of the relay type in order to gen-
erate a limit cycle oscillation. With an ideal relay the method gives
an input signal to the process with a period close to the ultimate
frequency of the open-loop system.
A block diagram of an auto-tuner based on the relay method is

shown in Figure 6.4. Notice that there is a switch that selects ei-
ther relay feedback or ordinary PID feedback. When it is desired to
tune the system, the PID function is disconnected and the system is
connected to relay control. The system then starts to oscillate. The
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period and the amplitude of the oscillation is determined when steady-
state oscillation is obtained. This gives the ultimate period and the
ultimate gain. The parameters of a PID controller can then be de-
termined from these values, e.g., using the Ziegler-Nichols frequency
response method. The PID controller is then automatically switched
in again, and the control is executed with the new PID parameters.
This tuning device has one parameter that must be specified in

advance, namely, the initial amplitude of the relay. A feedback loop
from measurement of the amplitude of the oscillation to the relay
amplitude can be used to ensure that the output is within reasonable
bounds during the oscillation. It is also useful to introduce hysteresis
in the relay. This reduces the effects of measurement noise and also
increases the period of the oscillation. With hysteresis there is an
additional parameter. This can be set automatically, however, based
on a determination of the measurement noise level. Notice that there
is no need to know time scales a priori since the ultimate frequency
is determined automatically.
In the relay method, an oscillation with suitable frequency is

generated by a static nonlinearity. Even the order of magnitude of
the time constant of the process can be unknown. Therefore, this
method is not only suitable as a tuning device; it can also be used in
pre-tuning. It is also suitable for determination of sampling periods
in digital controllers.
The relay tuning method also can be modified to identify several

points on the Nyquist curve. This can be accomplished by making
several experiments with different values of the amplitude and the
hysteresis of the relay. A filter with known characteristics can also
be introduced in the loop to identify other points on the Nyquist
curve. If the static process gain is determined, the KT tuning method
presented in Chapter 5 can be used.

On-Line Methods

Frequency response analysis can also be used for on-line tuning of PID
controllers. The relay feedback technique can be used, as described
in Section 2.5. By introducing bandpass filters, the signal content
at different frequencies can be investigated. From this knowledge, a
process model given in terms of points on the Nyquist curve can be
identified on line. In this auto-tuner the choice of frequencies in the
bandpass filters is crucial. This choice can be simplified by using the
tuning procedure described above in a pre-tuning phase.
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Parameter Estimation Methods

A common tuning procedure is to use recursive parameter estimation
to determine a low-order discrete time model of the process. The
parameters of the low-order model obtained are then used in a design
scheme to calculate the controller parameters. An auto-tuner of this
type can also be operated as an adaptive controller that changes the
controller parameters continuously. Auto-tuners based on this idea,
therefore, often have an option for continuous adaptation.
The main advantage of auto-tuners of this type is that they do not

require any specific type of excitation signal. The control signal can
be a sequency of manual changes of the control signal, for example, or
the signals obtained during normal operation. A drawback with auto-
tuners of this type is that they require significant prior information.
A sampling period for the identification procedure must be specified;
it should be related to the time constants of the closed-loop system.
Since the identification is performed on line, a controller that at least
manages to stabilize the system is required. Systems based on this
identification procedure need a pre-tuning phase, which can be based
on the methods presented earlier in this section.

6.5 Rule-Based Methods

This section treats automatic tuning methods that do not use an
explicit model of the process. Tuning is based instead on the idea
of mimicking manual tuning by an experienced process engineer.
Controller tuning is a compromise between the requirement for

fast control and the need for stable control. Table 6.1 shows how
stability and speed change when the PID controller parameters are
changed. Note that the table only contains rules of thumb. There
are exceptions. For example, an increased gain often results in more
stable control when the process contains an integrator. The same
rules can also be illustrated in tuning maps. See, for example, the
tuning map for PI control in Figure 4.13.

Table 6.1 Rules of thumb for the effects of the controller param-
eters on speed and stability in the control loop.

Speed Stability

K increases increases reduces

Ti increases reduces increases

Td increases increases increases
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Figure 6.5 A setpoint response where a correct rule is to increase
the gain and decrease the integral time. The upper diagram shows
setpoint ysp and process output y, and the lower diagram shows
control signal u.

The rule-based automatic tuning procedures wait for transients,
setpoint changes, or load disturbances, in the same way as the model-
based methods. When such a disturbance occurs, the behavior of
the controlled process is observed. If the control deviates from the
specifications, the controller parameters are adjusted based on some
rules.
Figures 6.5 and 6.6 show setpoint changes of control loops with a

poorly tuned PI controller. The response in Figure 6.5 is very sluggish.
Here, a correct rule is to increase the gain and to decrease the integral
time. Figure 6.6 also shows a sluggish response because of a too large
integral time. The response is also oscillatory because of a too high
gain. A correct rule, therefore, is to decrease both the gain and the
integral time.
If graphs like those in Figures 6.5 and 6.6 are provided, it is easy

for an experienced operator to apply correct rules for controller tun-
ing. To obtain a rule-based automatic tuning procedure, the graphs
must be replaced by quantities that characterize the responses. Com-
monly used quantities are overshoot and decay ratio to characterize
the stability of the control loop, and time constant and oscillation
frequency to characterize the speed of the control loop.
It is rather easy to obtain relevant rules that tell whether the

different controller parameters should be decreased or increased.
However, it is more difficult to determine how much they should
be decreased or increased. The rule-based methods are, therefore,
more suitable for continuous adaptation where rather small succes-
sive changes in the controller parameters are performed after each
transient.
The rule-based methods have a great advantage compared to the
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Figure 6.6 A setpoint response where a correct rule is to decrease
the gain and decrease the integral time. The upper diagram shows
setpoint ysp and process output y, and the lower diagram shows
control signal u.

model-based approaches when they are used for continuous adapta-
tion, namely, that they handle load disturbances efficiently and in
the same way as setpoint changes. The model-based approaches are
well suited for setpoint changes. However, when a load disturbance
occurs, the transient response is caused by an unknown input signal.
To obtain an input-output process model under such circumstances is
not so easy.
A drawback with the rule-base approaches is that they normally

assume that the setpoint changes or load disturbances are isolated
steps or pulses. Two setpoint changes or load disturbances applied
shortly after each other may result in a process output that invokes
an erroneous controller tuning rule.

6.6 Commercial Products

In this section, some industrial products with automatic tuning fa-
cilities will be presented. Four controllers are presented; the Foxboro
EXACT (760/761), which uses step-response analysis for automatic
tuning, and pattern recognition technique and heuristic rules for its
adaptation; the Alfa Laval Automation ECA400 controller, which uses
relay auto-tuning and model-based adaptation; the Honeywell UDC
6000 controller, which uses step-response analysis for automatic tun-
ing and a rule base for adaptation; and the Yokogawa SLPC-181 and
281, which use step-response analysis for auto-tuning and a model-
based adaptation.
Four tuning devices are also described. Intelligent Tuner and
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Gain Scheduler is a software package used in distributed control
systems by Fisher-Rosemount. Looptune is a tuning program package
to be used within the DCS system Honeywell TDC 3000. DCS Tuner
is a software package for controller tuning in the ABB Master system.
The Techmation Protuner is a process analyzer, that is only connected
to the control loop during the tuning and analyzing phase.

Foxboro EXACT (760/761)

The single-loop adaptive controller EXACT was released by Foxboro
in October 1984. The reported application experience in using this
controller has been favorable. The adaptive features are also available
in DCS products.

Process Modeling

Foxboro’s system is based on the determination of dynamic character-
istics from a transient, which results in a sufficiently large error. If
the controller parameters are reasonable, a transient error response
of the type shown in Figure 6.7 is obtained. Heuristic logic is used to
detect that a proper disturbance has occurred and to detect peaks e1,
e2, e3, and oscillation period Tp.

Control Design

The user specifications are given in terms of maximum overshoot and
maximum damping. They are defined as

damping = e3 − e2
e1 − e2

overshoot =
∣∣∣∣ e2e1

∣∣∣∣
(6.1)

for both setpoint changes and load disturbances. Note that the defini-
tion of damping here is different from the damping factor associated
with a standard second-order system.
The controller structure is of the series form. From the response

to a setpoint change or a load disturbance, the actual damping and
overshoot pattern of the error signal is recognized, and the period
of oscillation Tp measured. This information is used by the heuristic
rules to directly adjust the controller parameters to give the speci-
fied damping and overshoot. Examples of heuristics are to decrease
proportional band PB, integral time Ti and derivative time Td, if dis-
tinct peaks are not detected. If distinct peaks have occurred and both
damping and overshoot are less than the maximum values, PB is
decreased.
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Figure 6.7 Response to a step change of setpoint (upper curve)
and load (lower curve).

Prior Information and Pre-Tuning

The controller has a set of required parameters that must be given
either by the user from prior knowledge of the loop or estimated
using the pre-tune function (Pre-Tune is Foxboro’s notation for auto-
tuning). The required parameters are

• Initial values of PB, Ti and Td.

• Noise band (NB). The controller starts adaptation whenever the
error signal exceeds two times NB.

• Maximum wait time (Wmax). The controller waits for a time of
Wmax for the occurrence of the second peak.

If the user is unable to provide the required parameters, a pre-tune
function that estimates these quantities can be activated. To activate
the pre-tune function, the controller must first be put in manual.
When the pre-tune function is activated, a step input is generated.
The process parameters static gain Kp, dead time L and time con-
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stant T are then obtained from a simple analysis of the process reac-
tion curve. The controller parameters are calculated using a Ziegler-
Nichols-like formula:

PB = 120KpL/T
Ti = 1.5L
Td = Ti/6

(6.2)

Notice that the controller is parameterized in the series form. Max-
imum wait time, Wmax, is also determined from the step response
as:

Wmax = 5L

The noise band is determined during the last phase of the pre-tune
mode. The control signal is first returned to the level before the step
change. With the controller still in manual and the control signal held
constant, the output is passed through a high-pass filter. The noise
band is calculated as an estimate of the peak-to-peak amplitude of
the output from the high-pass filter.
The estimated noise band (NB) is used to initialize the derivative

term. Derivative action is decreased when the noise level is high in
order to avoid large fluctuations in the control signal. The derivative
term is initialized using the following logic:

1. Calculate a quantity Z = (3.0− 2NB)/2.5;
2. if Z > 1 then set Td = Ti/6;
3. if Z < 0 then set Td = 0;
4. if 0 < Z < 1 then set Td = Z ⋅ Ti/6.
Apart from the set of required parameters, there is also a set of
optional parameters. If these are not supplied by the user then the
default values will be used. The optional parameters are as follows
(default values in parenthesis):

• Maximum allowed damping (0.3)
• Maximum allowed overshoot (0.5)
• Derivative factor (1). The derivative term is multiplied by the
derivative factor. This allows the derivative influence to be ad-
justed by the user. Setting the derivative factor to zero results in
PI control.

• Change Limit (10). This factor limits the controller parameters
to a certain range. Thus, the controller will not set the PB, Ti and
Td values higher than ten times or lower than one tenth of their
initial values if the default of 10 is used for the change limit.
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Alfa Laval Automation ECA400

This controller was announced by Alfa Laval Automation in 1988. It
has the adaptive functions of automatic tuning, gain scheduling, and
continuous adaptation of feedback and feedforward control. An earlier
product, ECA40, which only has auto-tuning and gain scheduling was
announced in 1986.

Automatic Tuning

The auto-tuning is performed using the relay method in the following
way. The process is brought to a desired operating point, either by
the operator in manual mode or by a previously tuned controller in
automatic mode. When the loop is stationary, the operator presses a
tuning button. After a short period, when the noise level is measured
automatically, a relay with hysteresis is introduced in the loop, and
the PID controller is temporarily disconnected (see Figure 6.4). The
hysteresis of the relay is determined automatically from the noise
level. During the oscillation, the relay amplitude is adjusted so that
a desired level of the oscillation amplitude is obtained. When an
oscillation with constant amplitude and period is obtained, the relay
experiment is interrupted and Gp(iω 0), i.e., the value of the transfer
function Gp at oscillation frequency ω 0, is calculated using describing
function analysis.

Control Design

The PID algorithm in the ECA400 controller is of series form. The
identification procedure provides a process model in terms of one
point Gp(iω 0) on the Nyquist curve. By introducing the PID controller
Gc(iω ) in the control loop, it is possible to give the Nyquist curve of
the compensated system GpGc a desired location at frequency ω 0.
For most purposes, the PID parameters are chosen so that Gp(iω 0)
is moved to the point where

Gp(iω 0)Gc(iω 0) = 0.5e−i135π /180 (6.3)
This design method can be viewed as a combination of phase- and
amplitude-margin specification. Since there are three adjustable pa-
rameters, K , Ti, and Td, and the design criterion (6.3) only specifies
two parameters, it is required, furthermore, that

Ti = 4Td (6.4)
For some simple control problems, where the process is approximately
a first-order system, the derivative action is switched off and only a
PI controller is used. This kind of process is automatically detected.
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For this PI controller, the following design is used:

K = 0.5/�Gp(iω 0)�
Ti = 4/ω 0

(6.5)

There is also another situation in which it is desirable to switch off
the derivative part, namely for processes with long dead time. If the
operator tells the controller that the process has a long dead time, a
PI controller with the following design will replace the PID controller.

K = 0.25/�Gp(iω 0)�
Ti = 1.6/ω 0

(6.6)

Gain Scheduling

The ECA400 controller also has gain scheduling. Three sets of con-
troller parameters can be stored. The parameters are obtained by us-
ing the auto-tuner three times, once at every operating condition. The
actual value of the scheduling variable, which can be the controller
output, the measurement signal, or an external signal, determines
which parameter set to use. The ranges of the scheduling variable
where different parameters are used can also be given by the user.

Adaptive Feedback

The ECA400 controller uses the information from the relay feedback
experiment to initialize the adaptive controller. Figure 6.8 shows the
principle of the adaptive controller. The key idea is to track the point
on the Nyquist curve obtained by the relay auto-tuner. It is performed
in the following way. The control signal u and the measurement signal

  y
  u

  
y sp

Controller

Design Estimator

BP filter

Process

BP filter

Figure 6.8 The adaptive control procedure in ECA400.
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y are filtered through narrow band-pass filters centered at frequency
ω 0. This frequency is obtained from the relay experiment. The signals
are then analyzed in a least-squares estimator which, provides an
estimate of the point Gp(iω 0).

Adaptive Feedforward Control

Adaptive feedforward is another feature in ECA400. The adaptive
feedforward control procedure is initialized by the relay auto-tuner.
A least-squares algorithm is used to identify parameters a and b in
the model

y(t) = au(t − 4h) + bv(t− 4h) (6.7)
where y is the measurement signal, u is the control signal and v is the
disturbance signal that should be fed forward. The sampling interval
h is determined from the relay experiment as h = T0/8, where T0 is
the oscillation period. The feedforward compensator has the simple
structure

∆uf f (t) = kf f (t)∆v(t) (6.8)
where the feedforward gain kf f is calculated from the estimated pro-
cess parameters

kf f (t) = −0.8 b̂(t)
â(t) (6.9)

Operator Interface

The initial relay amplitude is given a default value suitable for a wide
range of process control applications. This parameter is not critical
since it will be adjusted after the first half period to give an admissible
amplitude of the limit cycle oscillation. The operation of the auto-
tuner is then very simple. To use the tuner, the process is simply
brought to an equilibrium by setting a constant control signal in
manual mode. The tuning is activated by pushing the tuning switch.
The controller is automatically switched to automatic mode when the
tuning is complete.
The width of the hysteresis is set automatically, based on mea-

surement of the noise level in the process. The lower the noise level,
the lower the amplitude required from the measured signal. The relay
amplitude is controlled so that the oscillation is kept at a minimum
level above the noise level.
The following are some optional settings that may be set by the

operator:

Control Design [normal, PI, dead time]. The default design method
[normal] can result in either a PI or a PID controller depending on
whether the process is of first order or not. (See the discussion about
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control design above.) The operator can force the controller to be PI
by selecting [PI]. The PI design method suited for processes with long
dead time is chosen by selecting the option [dead time]. The control
design can be changed either before or after a tuning, as well as
during the adaptation.

Reset [Yes/No]. A reset of information concerning the auto-tuner,
the gain-scheduling, or the adaptive controller can be done. Some
information from a tuning is saved and used to improve the accuracy
of the subsequent tunings, including the noise level, the initial relay
amplitude, and the period of the oscillation. If a major change is
made in the control loop, for instance if the controller is moved to
another loop, the operator can reset the tuning information. Resetting
the adaptive controller will reset the controller parameters to those
obtained by the relay auto-tuner.

Initial relay amplitude. In some very sensitive loops, the initial
input step of the relay experiment may be too large. The initial step
can then be changed by the operator.

Gain scheduling reference. The switches between the different
sets of PID parameters in the gain-scheduling table can be performed
with different choices of the scheduling reference. The scheduling can
be based on the control signal, the measurement signal, or an external
signal. The gain scheduling is active only when a reference signal is
configured.

Honeywell UDC 6000

The Honeywell UDC 6000 controller has an adaptive function called
Accutune. Accutune uses both model-based procedures and rule-based
procedures. It can only be used on stable processes. Consequently,
integrating processes can not be treated.

Initial Tuning

The adaptive procedure is initialized by a step-response experiment.
The user brings the process variable to a point some distance away
from the desired setpoint in manual and waits for steady state.
Switching to automatic mode will initiate an open-loop step response
experiment, where the size of the step is calculated to be so large that
it is supposed to take the process variable to the setpoint.
During the experiment, the process variable and its derivative

are continuously monitored. Dead time L is calculated as the time
interval between the step change and the moment the process variable
crosses a certain small limit.
If the derivative of the process variable continuously decreases

from the start, it is concluded that the process is of first order. Static
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gain Kp and time constant T1 are then calculated as

Kp = y2 + ẏ2T1
∆u

T1 = y2 − y1
ẏ1 − ẏ2

(6.10)

where y1 and y2 are two measurements of the process variable, ẏ1
and ẏ2 are estimates of the derivatives of the process variable at the
corresponding instants, and ∆u is the step size of the control signal.
The values yi are calculated as distances from the value at the onset of
the step. These calculations can be performed before the steady-state
is reached. It is claimed that the process is identified in a time less
than one third of the time constant. The controller is then switched
to automatic mode and controlled to the setpoint. When this is done,
a fine adjustment of the parameters is done by calculating the gain
Kp from the steady-state levels.
If the derivative of the process variable increases to a maximum

and then decreases, the process is identified as a second-order process.
The step response of a second-order process with two time constants
is

y(t) = Kp
(
1+ T2e

−t/T2 − T1e−t/T1
T1 − T2

)
(6.11)

This equation is used to calculate static gain Kp and time constants
T1 and T2. Process identification is performed in two steps. A first
calculation is done shortly after the time of maximum slope. The con-
troller is then switched to automatic mode and controlled to the set-
point. When steady state is reached, the parameters are recalculated
using the additional information of steady state levels. The equations
for calculating the process parameters are

Kp = y(tmax) + ẏ(tmax)(T1 + T2)
∆u

T1 + T2 = 1− N2
N ln

(
1
N

) tmax
N = T1

T2

(6.12)

where tmax is the time from the start of the rise to the point of
maximum slope. These three equations have four unknowns: Kp, T1,
T2 and N. At the first time of identification, shortly after the time of
maximum slope, it is assumed that N = 6, and Kp, T1, and T2, are
determined from the equations. When steady state is reached, gain Kp
is calculated from the steady-state levels. This provides the possibility
to calculate the other three unknowns from the three equations above.
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Adaptation

The UDC 6000 controller also has continuous adaptation. The adapta-
tion mechanism is activated when the process variable changes more
than 0.3% from the setpoint or if the setpoint changes more than a
prescribed value. (More details are given below.)
The full details of the adaptive controller are not published, but

some of the rules in the heuristic rule base will be presented. The
controller monitors the behavior of the process variable and makes
the following adjustments:

1. The controller detects oscillations in the process variable. If the
oscillation frequency, ω 0, is less than 1/Ti, then the integral time
is increased to Ti = 2/ω 0.

2. If the oscillation frequency ω 0 is greater than 1/Ti, then the
derivative time is chosen as Td = 1/ω 0.

3. If the oscillation remains after adjustment 1 or 2, the controller
will cut its gain K in half.

4. If a load disturbance or a setpoint change gives a response with a
damped oscillation, the derivative time is chosen to be Td = 1/ω 0.

5. If a load disturbance or a setpoint change gives a sluggish re-
sponse, where the time to reach setpoint is longer than L+T1+T2,
both integral time Ti and derivative time Td are divided by a fac-
tor of 1.3.

6. If the static process gain Kp changes, the controller gain K is
changed so that the product K Kp remains constant.

Control Design

The UDC 6000 uses a controller on series form that has the transfer
function

Gc(s) = K (1+ sTi)(1+ sTd)
sTi(1+ 0.125sTd)

The design goal is to cancel the process poles with the two zeros in
the controller. If there is no dead time in the process, the controller
parameters are chosen in the following way:

First-order process Second-order process

K = 24/Kp K = 6/Kp
Ti = 0.16T1 Ti = T1
Td= 0 Td= T2
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For processes with dead time, the controller parameters are deter-
mined as follows:

First-order process Second-order process

K = 3
Kp (1+ 3L/Ti) K = 3

Kp (1+ 3L/Ti)
Ti = T1 Ti = T1 + T2
Td= 0 Td= T1T2

T1 + T2

Operator Interface

The following are some optional parameters that may be set by the
operator:

• Select whether adaptation should be performed during setpoint
changes only, or during both setpoint changes and load distur-
bances.

• Set the minimum value of setpoint change that will activate the
adaptation. Range: ±5% to ±15%.

Yokogawa SLPC-181, 281

The Yokogawa SLPC-181 and 281 both use a process model as a first-
order system with dead time for calculating the PID parameters.
A nonlinear programming technique is used to obtain the model.
The PID parameters are calculated from equations developed from
extensive simulations. The exact equations are not published.
Two different controller structures are used.

1: u = K
(
−y+ 1

Ti

∫
edt− Td dyf

dt

)

2: u = K
(
e+ 1
Ti

∫
edt− Td dyf

dt

) (6.13)

where
dyf

dt
= N
Td
(y− yf ) (6.14)

The first structure is recommended if load disturbance rejection is
most important, and structure 2 if setpoint responses are most im-
portant. The setpoint can also be passed through two filters in series:

Filter 1:
1+α isTi
1+ sTi Filter 2:

1+α dsTd
1+ sTd (6.15)
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Table 6.2 Setpoint response specifications used in the Yokogawa
SLPC-181 and 281.

Type Features Criteria

1 no overshoot no overshoot
2 5% overshoot ITAE minimum
3 10% overshoot IAE minimum
4 15% overshoot ISE minimum

where α i and α d are parameters set by the user, mainly to adjust
the overshoot of the setpoint response. The effects of these two filters
are essentially equivalent to setpoint weighting. It can be shown that
α i = b, where b is the setpoint weighting factor.
The user specifies the type of setpoint response performance ac-

cording to Table 6.2. A high overshoot will, of course, yield a faster
response. The controller has four adaptive modes:

Auto mode. The adaptive control is on. PID parameters are auto-
matically updated.

Monitoring mode. In this mode, the computed model and the PID
parameters are only displayed. This mode is useful for validating the
adaptive function or checking the process dynamics variations during
operation.

Auto startup mode. This is used to compute the initial PID pa-
rameters. An open loop step response is used to estimate the model.

On-demand mode. This mode is used to make a setpoint change.
When the on-demand tuning is requested, a step change is applied to
the process input in closed loop. The controller estimates the process
model using the subsequent closed-loop response.

The controller constantly monitors the performance of the system
by computing the ratio of the variances of process output and model
output. This ratio is expected to be about 1. If it is greater than 2
or less than 0.5, a warning message for retuning of the controller
is given. Dead time and feedforward compensation are available for
the constant gain controller, but they are not recommended by the
manufacturer to be used in conjunction with adaptation.

Fisher-Rosemount Intelligent Tuner and Gain Scheduler

The intelligent tuner is a software package that runs in the dis-
tributed control systems ProvoxTM and RS3TM. It is interesting to
note that the same software runs on two different systems. Tuning
is done on demand from the operator. There are good facilities for an
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Figure 6.9 Input (u) and output (y) signals during an experiment
with relay feedback.

instrument engineer to influence both the tuning experiment and the
control design. Information about the process is obtained from an ex-
periment with relay feedback. Several different tuning methods can
be chosen.
It is easy for the operator to follow the experiment because the

control variable and the process variable are plotted on the console
during the experiment. A typical behavior of the signals is illustrated
in Figure 6.9. Tuning starts with the process in equilibrium. Then
there is an initialization phase in which a step change is made in
the control variable. The process output is monitored, and the step
is reversed when the process output has changed a specified amount.
Relay feedback is initiated when the output equals the setpoint again.
The step size is typically 3%, 5%, or 10% of the range of the control
variable. There is a default value but a particular value can be chosen
from the console. The amplitude of the process variable is typically
between 1% and 3% of the signal span.
An hysteresis is normally used to overcome the problem of noisy

signals in a relay feedback experiment. This has the drawback of
giving too high a value of the ultimate period. A different method
that gives a more accurate value of the ultimate period can also be
used in the Fisher-Rosemount system. The initialization phase gives
information about the dead time of the process. After a switch the
relay is prohibited from switching during a time approximately equal
to the dead time. The recommendation is to use this only in very noisy
environments.
The tuning experiment gives process data in terms of the ap-

parent dead time L, the ultimate gain Ku, and the ultimate period
Tu. From these parameters, process static gain Kp, dominating time
constant T , and apparent dead time L are calculated and displayed
on the screen. In a distributed system there may be communication
delays. Special care has been taken to make sure that the delay is
short and to account for it when calculating the ultimate gain and
the ultimate period.
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Tuning is done from a display that can be brought up on the
console. The display shows curves; it also has menus and buttons
to execute the tuning. The program has the following methods for
computing the controller parameters.

PID Standard PID controller with a design that gives a mod-
erately fast response with small overshoot and a phase
margin of about 45○.

PID-60 PID controller with slow response and small overshoot.

P Proportional controller with Ziegler-Nichols design.

PI PI control based on Ziegler-Nichols design.

PID-ZN PID controller based on Ziegler-Nichols design, fast but
with considerable overshoot.

PID-45N PID control for a noisy control loop. The controller has 45○

phase margin and less derivative action than the standard
PID design.

PID-60N Similar to PID-45N but with less overshoot.

PI-DT PI design for processes with dominating dead time, smaller
gain and integral time than the PI design.

IMC Design based on the internal model principle. (See Section
4.5.) The details are not available. This design does not
work for processes with integral action.

IMC-NSR Similar to IMC design for processes with integral action.

There are also recommendations for choosing different control de-
signs. PI control is the primary choice for flow-pressure and level
control, while PID is recommended for pH and temperature control.
In addition, the closed loop can be modified by selecting SLOW, NOR-
MAL, or FAST. With these choices the controller gain is multiplied
with the factors 0.50, 1.00, and 1.25. It is possible to change the design
without retuning the process.
After a tuning the new controller parameters are displayed to-

gether with the old controller parameters. It is then possible to accept,
reject, redesign, or modify the controller parameters.
The intelligent gain scheduler is a complement to the tuner. The

scheduling variable is the process variable, the control variable, or an
external signal. The range of the scheduling variable is divided into
three regions. The values of the controller parameters in each region
are stored in a table. Interpolation between the entries is done with
a fuzzy scheme. Values from the tuner are entered automatically in
the tables. They can also be entered manually.
Typical applications of gain scheduling are pH control, split-range

control, level control in vessels with unusual geometries, and surge
tank control.
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Honeywell Looptune

Looptune is a tuning-program package for the DCS system Honeywell
TDC 3000. It offers the following features:

• A search algorithm, which performs incremental improvements
of the controller parameters until an optimum is reached.

• A relay feedback technique to tune the controller according to the
Ziegler-Nichols frequency response method.

• Gain scheduling, where the schedule contains three sets of con-
troller parameters.

In this presentation, we focus on the search algorithm.

The Objective Function

The control performance is optimized by adjusting the controller pa-
rameters in such a way that an objective function (J) is minimized.
The objective function is

J = (1−w)σ 2e +wσ 2u

where σ 2e is the variance of the control error e = ysp − y; σ 2u is the
variance of the control signal; and w is a weighting factor with range
0 ≤ w ≤ 1, specified by the user. (This is the only parameter that
has to be specified by the user.) If a small value of w is chosen, the
error variance term dominates the objective function. This means that
objective function J is minimized if the controller is tuned for tight
control. If w is large, the control signal variance term dominates, and
objective function J is minimized when the controller is tuned to give
a smoother control with smaller control actions.
The objective function is calculated in the following way. Setpoint

ysp, process output y, and control signal u are registered during an
evaluation period. The variance of the control error (σ 2e ) and the
variance of the control signal (σ 2u) are then calculated in the following
way:

σ 2e =
1
n

n∑
i=1
(ysp(i) − y(i))2

σ 2u =
1
n

n∑
i=1
(u(i) − ū)2

where n is the number of data points and

ū = 1
n

n∑
i=1
u(i)

is the mean value of the control signal during the evaluation period.
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The Search Procedure

The procedure consists of the following steps:

1. Collect n new values of ysp, y, and u during an evaluation period.

2. Compute the value of the objective function and compare it with
the previous value.

3. If the value of the objective function has decreased, the controller
parameter is adjusted further in the same direction, otherwise
the direction is reversed.

4. If the value of the objective function has reached its minimum,
then stop the adjustment. If not, go back to step 1 again.

When a controller parameter has been adjusted according to these
rules, the Looptuner goes on to the next controller parameter and
starts to adjust it to an optimal value. It is claimed that normally
several passes through the tuning constants are needed in order to
arrive at the optimal controller parameters.
The evaluation period is a crucial parameter in this tuning pro-

cedure. It is determined automatically and it should be as short as
possible in order to get a fast tuning procedure. On the other hand,
it is important that it is long enough, so that a representative num-
ber of disturbances occur within the period. At least eight significant
disturbances must occur within the evaluation period. The Looptune
also has a rule-base that compensates the objective functions for vari-
ations in the disturbance behavior between the different evaluation
periods.
The search procedure in the Looptune has two modes of operation:

One-shot tuning. The tuning is deactivated when all controller
parameters have reached their optimal values.

Continuous adaptation. The adjustments goes on until it is inter-
rupted by the operator.

ABB DCS Tuner

This DCS Tuner is a software package for on-line and off-line auto-
matic tuning of PID controllers in the ABB Master system. It runs on
personal computers and is connected to the ABB Master by a serial
link interface. The DCS Tuner has four main functions: process iden-
tification, controller tuning, process analysis, and simulation. These
four functions are described below.

Process Identification

The process identification can be based on either historical data or
on-line data. The on-line data acquisition can be event initiated. This
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means that the data used for process identification can be controlled
based on a high- or low-level triggering. The triggering signal can
be the control error, the process variable, or any other signal logged
during the session. The major steps performed during the process
model identification are:

1. Signal filering using Butterworth filters

2. Process dead-time estimation

3. Process model order identification

4. Least-squares identification of continuous-time and discrete-time
models

5. Process model validation

These steps are normally performed automatically, but the operator
may interfere by changing parameters.

Controller Tuning

The tuning procedure uses the discrete-time model to obtain the
controller parameters. The tuning method is based on a dominant
pole design procedure. The user may select among three different
closed-loop performances: Fast, Normal, or Damped.

Process Analysis

Three functions are available for process analysis. They are called
Statistics, FFT, and Correlation. The Statistics function provides sta-
tistical information about the different data series, such as mean,
standard deviation etc. Frequency spectra of the different signals
and frequency domain models of the process can be obtained using
the Fast Fourier Transform (FFT). Finally, the Correlation function
gives results of auto- and cross-correlation analysis.

Simulation

In the simulation mode, both open-loop and closed-loop simulation
are available. The user has access to both controller and process pa-
rameters. This provides a possibility to check how different controller
settings suit a certain process model, and also how changes in the
process model influence the control loop performance.

Techmation Protuner

The Protuner is a process analyzer from Techmation Inc. It consists
of a software package for personal computers and an interface mod-
ule with cables to be connected to the process output and the control
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signal of the control loop to be analyzed. The Protuner monitors a
step-response experiment, calculates the frequency response of the
process based on the experimental data, and suggests controller pa-
rameters based on several methods for controller tuning.

Prior Information

Before the process analysis is performed, the user must provide some
information about the process and the controller. This is done using
a couple of “Set-up menus.” The following process information must
be given:

• The ranges of the control and the measurement signals.

• It must be determined if the process is stable or if it has integral
action.

To be able to set relevant controller parameters, the following data
about the controller must be provided:

• P-type (gain or proportional band)
• I-type (seconds, seconds/repeat, minutes, or minutes/repeat)
• Controller structure (ideal, series, or parallel)
• Sampling rate

• Filter time constant (if there is a low-pass filter connected to the
measurement signal).

Before the tuning experiment can be performed, the user must also
specify a sample time. This is the time during which data will be
collected during the experiment. It is important to choose the sample
time long enough, so that the step response settles before the sample
time has ended. In case of an open-loop experiment of an integrating
process, the response must reach a constant rate of change when the
experiment ends.

Determining the Process Model

The tuning procedure is based on a step-response experiment. It can
be performed either in open or closed loop. The open-loop experiment
is recommended. When the user gives a start command, the process
output and the control signal are displayed on the screen, with a time
axis that is given by the sample time defined by the user. The user
then makes a step change in the control signal. If the experiment is
performed in closed loop a step is instead introduced in the setpoint.
There are several facilities for editing the data obtained from the

step-response experiment. Outliers can be removed and data can be
filtered. These features are very useful because they make it possi-
ble to overcome problems that are often encountered when making
experiments on industrial processes.
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When the data has been edited the Protuner calculates the fre-
quency response of the process. The result can be displayed in a Bode
diagram, a Nyquist diagram, or a Nichols diagram. The static gain,
the dominant time constant and the apparent dead time are also dis-
played, as well as the ultimate gain and the ultimate period.

Design Calculations

The controller parameters are calculated from the frequency response.
A special technique is used. This is based on cancellation of process
poles by controller zeros. The integral time and the derivative time
are first determined to perform this cancellation. The gain is then
determined to meet predetermined gain and phase margins.
The Protuner provides several design options. Controller param-

eters are given for the following closed-loop responses:

Slow: Critically damped response.

Medium: Slightly underdamped response.

Fast: Response with decay ratio 0.38.

The different design options are obtained by specifying different val-
ues of the gain and the phase margins. The Protuner provides differ-
ent controller parameters depending on whether setpoint or load dis-
turbances are considered. Both P, PI, and PID controller parameters
are provided. The setpoint weightings for proportional and derivative
action and the high frequency gain at the derivative part must be
supplied by the user.

Evaluation

It is possible to evaluate the performance of the closed-loop system
in several ways. The combined frequency response, i.e., the frequency
response of the loop transfer function

G
(iω ) = Gp(iω )Gc(iω )

where Gp(iω ) is the process transfer function and Gc(iω ) is the con-
troller transfer function, can be plotted in a Bode diagram, a Nyquist
diagram, or a Nichols diagram. In this way, the phase and amplitude
margins or the Ms value can be checked.
The Protuner also has a simulation facility. It is possible to sim-

ulate the closed-loop response of the process and the suggested con-
troller. To do this, it is necessary to provide some additional controller
parameters, namely setpoint weightings b and c, and derivative gain
limitation factor N. Using the simulation facility, it is also possible
to investigate the effects of noise and to design filters to reduce these
effects.
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6.7 Integrated Tuning and Diagnosis

It is well known that many control loops in the process industry do
not perform satisfactory. Poor controller tuning is one of the major
reasons for this, but there are other problems that are not solved by
adjusting the controller parameters. Examples are nonlinearities in
the valves (stiction, hysteresis, etc) and improperly sized valves and
transmitters. It is important to investigate the control loop carefully
and to discover these problems before initiating the controller tuning.
(Compare with the discussion in Section 6.2.)

Friction in the Valve

A common cause of problems is high friction in the valve. There is, of
course, always static friction (stiction) in the valve, but if the valve
maintenance is insufficient, the friction may be so large that the
control performance degrades. The amount of friction can easily be
measured by making small changes in the control signal and checking
how the process outputs react. To investigate the valve, it is preferable
to use the position of the valve stem as the output. The process output
can also be used, but then we are investigating the complete process.
The experiment will also take a longer time because of the dynamics
involved. The procedure is shown in Figure 6.10. In the figure, the
process output only responds to the control signal when the changes
in the control signal are large enough to overcome the static friction.
Friction in the valve results in stick-slip motion. This phenomena

is shown in Figure 6.11. Because of the static friction, the process
output will oscillate around the setpoint. The valve will only move
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Figure 6.10 Procedure to check the amount of valve friction. The
upper diagram shows process output y and the lower diagram shows
control signal u.
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when the control signal has changed sufficiently since the previous
valve movement. When the valve moves, it moves too much. This
causes the stick-slip motion. The pattern in Figure 6.11, where the
measurement signal is close to a square wave and the control signal
is close to a triangular wave, is typical for stick-slip motion.
Many operators detune the controller when they see oscillations

like the one in Figure 6.11, since they believe that the oscillations
are caused by a bad controller tuning. Unfortunately, most adaptive
controllers do the same. What one should do, when a control loop
starts to oscillate, is to first determine the cause of the oscillation. A
good way to perform this determination is presented in Figure 6.12.
The first problem to determine is whether the oscillations are gen-

erated outside the control loop or generated inside the loop. This can
be done by disconnecting the feedback, e.g., by switching the controller
to manual mode. If the oscillation is still present, the disturbances
must be generated outside the loop, otherwise they were generated
inside the loop.
If the disturbances are generated inside the loop, the cause can

be either friction in the valve or a badly tuned controller. Whether
friction is present or not can be determined by making small changes
in the control signal and checking if the measurement signal follows,
as shown in Figure 6.10. If friction is causing the oscillations, the
solution to the problem is valve maintenance.
If the disturbances are generated outside the control loop, one

should try, of course, to find the source of the disturbances and try to
eliminate it. This is not always possible, even if the source is found.
One can then try to feed the disturbances forward to the controller,
and in this way reduce their effect on the actual control loop.
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Figure 6.11 Stick-slip motion caused by friction in the valve. The
upper diagram shows process output y and the lower diagram shows
control signal u.
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Figure 6.12 Diagnosis procedure to discover the cause of oscilla-
tions, and recommended actions to eliminate them.

Hysteresis in the Valve

Because of wear, there is often hysteresis (backlash) in the valve
or actuator. The amount of hysteresis can be measured as shown
in Figure 6.13. The experiment starts with two step changes in the
control signal in the same direction. The hysteresis gap will close if
the first step is sufficiently large. This means that the second step
is performed without hysteresis. The third step is then made in the
opposite direction. The control signal will then pass the whole gap
before the valve moves. If the last two steps are of the same size,
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Figure 6.13 Procedure to check the amount of valve hysteresis.
The upper diagram shows process output y and the lower diagram
shows control signal u.

we can calculate the hysteresis as ∆y/Kp, where ∆y is the difference
between the process outputs after the first and the third step, see
Figure 6.13, and Kp is the static process gain (also easily obtained
from Figure 6.13). If the control signal is ramped (or moved in small
steps) upwards, and then downwards again, we obtain the result in
Figure 6.14. Here, the hysteresis can easily be determined as the
horizontal distance between the two lines.
Figure 6.15 shows closed-loop control of a process with large hys-

teresis in the valve. The control signal has to travel through the gap
in order to move the valve. Therefore, we get the typical linear drifts
in the control signal as shown in Figure 6.15.
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Figure 6.14 Characteristic of a valve with hysteresis. The dia-
gram shows process output y as function of control signal u.



266 Chapter 6 Automatic Tuning and Adaptation

0 50 100 150
0.4

0.5

0 50 100 150
0.4

0.5

y

u

Figure 6.15 Closed-loop control with valve hysteresis. The up-
per diagram shows process output y and the lower diagram shows
control signal u.

If a relay auto-tuner is applied to a process with hysteresis, the
estimated process gain will be smaller than the true value. This gives
too large a controller gain. An auto-tuner based on a step-response
experiment will work properly if the gap is closed before the step-
response experiment is performed. (Compare with the second step in
Figure 6.13.)

Other Nonlinearities

Even valves with a small static friction and hysteresis often have a
nonlinear characteristic. The total characteristic of the process can
be obtained by checking the static relation between the control signal
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Figure 6.16 A procedure to determine the static process charac-
teristic. The upper diagram shows process output y and the lower
diagram shows control signal u.
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Figure 6.17 The static process characteristic, showing process
output y as function of control signal u.

and the measured signal. See Figure 6.16. The characteristic shown in
Figure 6.16 is obviously nonlinear. It has a higher gain at larger valve
positions. If the stationary values of the measured signal are plotted
against the control signal, we obtain the static process characteristic.
See Figure 6.17. A plot like this reveals whether gain scheduling is
suitable or not.
A nonlinear relation between the control signal and the measure-

ment signal can be obtained for reasons other than nonlinearities in
the valve. For example, there might be nonlinearities in the sensor or
transmitter. As pointed out in Section 6.3, it is important to under-
stand the cause of the nonlinearity in order to determine a suitable
gain-scheduling reference.

Noise

Another important issue to consider before tuning the controller is
the disturbances acting on the control loop. We have pointed out that
it is important to know if the major disturbances are setpoint changes
(the servo problem) or load disturbances (the regulator problem).
It is also important to investigate the level of the measurement

noise and its frequency content. (Compare with Section 2.8.) If the
noise level is high, it might be necessary to filter the measurement
signal before it enters the control algorithm. This is an easy way to
get rid of high-frequency noise. If there are disturbances with a large
frequency content near the ultimate frequency, it is not possible to
use low-pass filtering to remove them. Feedforward is one possibility,
if the disturbances can be measured at their source. Notch filters can
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be used if the noise is concentrated to a narrow frequency range. See
Section 2.8 where noise modeling and measurements were discussed.

Sampling Rates and Prefilters

Selection of sampling rates and the associated prefilter are important
in all digital controllers. For single-loop controllers is is customary
to choose a constant sampling rate, often between 0.1 s and 1 s.
Faster rates are introduced when permitted by the processor speed.
Distributed control systems have somewhat greater flexibility.
The sampling rate should of course be chosen based on the band-

width of the control loop. In process control systems, sampling rates
have as a rule been chosen routinely without the proper considera-
tions of these issues. The reason for this is simply that there is not
much one can do when the bandwidth of the control loop is not known.
There are many new possibilities in this area when auto-tuning is
used. After a tuning it is possible to choose the sampling rate and the
prefilter in a rational way. The control quality can often be increased
significantly by such a procedure. The prefilter should be matched to
the sampling rate. This can easily be achieved by using dual sampling
rates. The process variable is filtered and sampled with a fixed, fast
sampling rate. Digital filtering with a variable bandwidth is then ap-
plied and the filtered signal is sampled at the rate appropriate for
the control loop.

On-Line Detection

We have shown some tests that can be performed manually by the
operator in order to ensure that the control loop is properly designed.
The problems mentioned can also show up after a while, when the
control loop is in automatic mode. On-line detection procedures are,
therefore, of interest, and the research in this area has gained a lot
of interest in recent years. Most controllers have a primitive form of
diagnosis in the use of alarms on limits on the measured signals. The
operator thus gets an alarm when signals exceed certain specified
alarm limits. More sophisticated detection procedures, where alarms
are given when problems like those mentioned above arise, will be
available in industrial products within the next few years.
A common approach to fault detection is shown in Figure 6.18. If

a model of the process is available, the control signal can be fed to the
input of the process model. By comparing the output of the model with
the true process output, one can detect when the process dynamics
change. If the model is good, the difference between the model output
and the process output (e) is small. If the process dynamics change,
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Figure 6.18 Model-based fault detection.

e will no longer be small, since the two responses to the control signal
are different. It is also possible to compare other signals in the process
and the model rather than the output signals. These fault detection
methods are called observer-based methods.
Another fault detection approach is to use a recursive parameter

estimator in the same way as the model-based continuous adaptive
controller, and to base the detection on the changes in the parameter
estimates. These methods are called identification-based methods.

Integrated Tuning and Diagnosis

The diagnosis procedures are related to the adaptive techniques in
several ways. We have pointed out the importance of checking valves
before applying an automatic tuning procedure. If not, the automatic
tuning procedure will not provide the appropriate controller param-
eters. For this reason, it would be desirable to have these checks in-
corporated in the automatic tuning procedures. Such devices are not
yet available, and the appropriate checks, therefore, must be made by
the operator.
The on-line detection methods are related to the continuous adap-

tive controller. The adaptive controller monitors the control loop per-
formance and changes the controller parameters, if the process dy-
namics change. The on-line fault detection procedures also monitor
the control-loop performance. They give an alarm instead of chang-
ing the controller parameters if the process dynamics change. As an
example, in Figure 6.12 we have seen that it is important to deter-
mine why the performance has changed before actions are taken. Most
adaptive controllers applied to a process with stiction will detune the
controller, since they interpret the oscillations as caused by a badly
tuned controller. Consequently, it is desirable to supply the adaptive
controllers with on-line detection methods, so that reasons for bad
control-loop performance, other than poor controller tuning, are de-
tected. The lack of these kinds of detection procedures in adaptive
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controllers are perhaps the major reason for the relatively few appli-
cations of continuous adaptive control available today.

6.8 Conclusions

The adaptive techniques are relatively new. Even though they have
been tried industrially for only a few years, there are currently sev-
eral thousand loops where adaptive techniques are used. This is not
a negligible number, but it is still a very small fraction of all con-
trol loops in operation. It is clear that auto-tuning is useful. It can
certainly help operators and instrument engineers keep the control
loops well tuned. The benefits are even larger for more complex loops.
For example, the derivative action is often switched off in manually
tuned systems because of tuning problems, in spite of the fact that it
improves performance.
Concerning the particular method to use, it is too early to draw

definite conclusions. There are many different ways to determine pro-
cess characteristics, many methods for design of PID controllers, and
many ways of combining such techniques to create auto-tuners. Judg-
ing from the systems that are now on the market, it appears that
many different ideas have been successfully implemented. However,
some patterns do emerge. It appears that more sophisticated meth-
ods require more prior information. This is probably what has led to
the introduction of the pre-tune mode, which often has been an af-
terthought. It would seem that a useful approach to this problem is
to combine several different approaches. It also seems very natural
to combine adaptive techniques with diagnosis and loop assessment.

6.9 References

Controllers with automatic tuning grew out of research on automatic
control. Overviews of adaptive techniques are found in (Dumont,
1986), (Åström, 1987a), and (Bristol, 1970). More detailed treat-
ments are found in the books (Harris and Billings, 1981), (Åström
and Wittenmark, 1989), and (Hang et al., 1993b). Overviews of dif-
ferent approaches and different products are found in (Isermann,
1982), (Gawthrop, 1986), (Kaya and Titus, 1988), (Morris, 1987), (Ya-
mamoto, 1991), and (Åström et al., 1993).
Many different approaches are used in the automatic tuners. The

systems described in (Nishikawa et al., 1984), (Kraus and Myron,
1984), and (Takatsu et al., 1991) are based on transient response tech-
niques. The paper (Hang and Sin, 1991) is based on cross correlation.
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The use of orthonormal series representation of the step response of
the system is proposed in (Zervos et al., 1988). The system in (Åström
and Hägglund, 1984) uses relay feedback. Other ways to use relay
feedback are discussed in (Schei, 1992) and (Leva, 1993). The paper
(Voda and Landau, 1995) describes a technique where the methods
BO and SO are combined with relay tuning. The hysteresis of the
relay is adjusted automatically so that the frequency ω 135, where the
process has a phase lag at 135○, is determined. The paper (Hang et al.,
1993a) discusses effects on load disturbances when relay feedback is
used.
Traditional adaptive techniques based on system identification

and control design have also been used. Identification is often based
on estimation of parameters in a transfer function model. Examples
of this approach are in (Hawk, 1983), (Hoopes et al., 1983), (Yarber,
1984a), (Yarber, 1984b), and (Cameron and Seborg, 1983). There are
also systems where the controller is updated directly as in (Radke and
Isermann, 1987), (Marsik and Strejc, 1989), and (Rad and Gawthrop,
1991).
Gain scheduling is a very powerful technique that was developed

in parallel with adaptation. An example demonstrating the benefits
of gain scheduling is given in (Whatley and Pott, 1984). The paper
(Hägglund and Åström, 1991) describes commercial controllers that
combine gain scheduling with automatic tuning and adaptation. Auto-
matic tuning can be particularly useful for start-up, this is discussed
in (Hess et al., 1987).
Several schemes are based on pattern recognition and attempts

to mimic an experienced operator. Rules in the form of logic or fuzzy
logic are often used. Some examples are found in the papers (Bristol,
1967), (Porter et al., 1987), (Anderson et al., 1988), (Klein et al., 1991),
(Pagano, 1991), and (Swiniarski, 1991).
The information about the commercial systems is very uneven.

Some systems are described in detail in journal publications. Other
systems are only described in manuals and other material from the
manufacturer of the devices. Several tuning aids are implemented
in hand-held computers or as software in PCs where the user is
entering the process information through a keyboard. Some examples
are (Blickley, 1988), (Tyreus, 1987), and (Yamamoto, 1991). A brief
presentation of the PIDWIZ system, which is based on a hand-held
calculator, is given in (Blickley, 1988).
There is much information about the Foxboro EXACT controller.

It is based on early work by Bristol on pattern recognition see, e.g.,
(Bristol, 1967), (Bristol, 1970), (Bristol et al., 1970), (Bristol, 1977),
(Bristol and Kraus, 1984), and (Bristol, 1986). The product is de-
scribed in (Kraus and Myron, 1984), and operational experience is
presented in (Higham, 1985) and (Callaghan et al., 1986).
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The systems based on relay feedback are also well documented.
The principles are presented in (Åström and Hägglund, 1984). Many
details about implementation and applications are given in (Åström
and Hägglund, 1988) and (Hägglund and Åström, 1991). The con-
trollers of this type now include automatic tuning, gain scheduling,
and continuous adaptation of feedback and feedforward gains.
The papers (McMillan et al., 1993b) and (McMillan et al., 1993a)

describe the Fisher Rosemount products for tuning and gain schedul-
ing. The Yokogawa systems are discussed in (Takatsu et al., 1991)
and (Yamamoto, 1991).
We have not found any journal articles describing the Protuner

and Honeywell’s tuners. The interested reader is recommended to
contact the companies directly.
There have been comparisons of different auto-tuners and adap-

tive controllers, but few results from those studies have reached the
public domain. Some papers that deal with the issue are (Nachtigal,
1986a), (Nachtigal, 1986b), (Dumont, 1986), (Dumont et al., 1989).
Fault detection and isolation is discussed in (Frank, 1990), (Is-

ermann, 1984), (Isermann et al., 1990), and (Patton et al., 1989).
The paper (Hägglund, 1993) describes a fault detection technique
that has been incorporated in a commercial controller. More elabo-
rate controllers that combine control and diagnosis are discussed in
(Antsaklis et al., 1991) and (Åström, 1992).



Control Paradigms

7.1 Introduction

So far we have only discussed simple control problems with one control
variable and one measured signal. Typical process control systems
can be much more complex with many control variables and many
measured signals. The bottom-up approach is one way to design such
systems. In this procedure the system is built up from simple com-
ponents. The systems can be implemented in many different ways.
Originally it was done by interconnection of separate boxes built of
pneumatic or electronic components. Today the systems are typically
implemented in distributed control systems consisting of several hi-
erarchically connected computers. The software for the distributed
control system is typically constructed so that programming can be
done by selecting and interconnecting the components. The key com-
ponent, the PID controller, has already been discussed in detail. In
Section 3.5 we showed that integrator windup could be avoided by
introducing nonlinearities in the PID controller. In Chapter 6 it was
demonstrated that controllers could be tuned automatically, also that
the changes in system behavior could be dealt with by gain scheduling
and adaptation. In this chapter, we present some of the other compo-
nents required to build complex automation systems. We also present
some of the key paradigms that guide the construction of complex
systems.
A collection of paradigms for control are used to build complex

systems from simple components. The components are controllers of
the PID type, linear filters, and static nonlinearities. Typical nonlin-
earities are amplitude and rate limiters and signal selectors. Feed-
back is an important paradigm. Simple feedback loops are used to
keep process variables constant or to make them change in speci-
fied ways. (Feedback has been discussed extensively in the previous
chapters.) The key problem is to determine the control variables that
should be chosen to control given process variables. Another problem
is that there may be interaction between different feedback loops. In
this chapter we discuss other paradigms for control. Cascade control
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Figure 7.1 Block diagram of a system with cascade control.

is one way to use several measured signals in a feedback loop. (See
Section 7.2.) Feedback is reactive in the sense that there must be an
error before control actions are taken. Feedforward is another con-
trol concept that is proactive because control actions are taken before
the disturbance has generated any errors. Feedforward control is dis-
cussed in Section 7.3. Model following is a control concept that makes
it possible for a system to respond in a specified way to command
signals. Section 7.4 presents this paradigm, which also can be com-
bined very effectively with feedback and feedforward. Difficulties may
arise when several feedback loops are used. In Section 7.5 we describe
some nonlinear elements and some associated paradigms: surge tank
control, ratio control, split range control, and selector control. In Sec-
tions 7.6 and 7.7 we discuss neural and fuzzy control. These methods
can be viewed as special versions of nonlinear control. In Section 7.8
we discuss some difficulties that may arize in interconnected systems.
Section 7.9 uses an example to illustrate how the different components
and paradigms can be used. Some important observations made in the
chapter are summarized in Section 7.10.

7.2 Cascade Control

Cascade control can be used when there are several measurement
signals and one control variable. It is particularly useful when there
are significant dynamics, e.g., long dead times or long time constants,
between the control variable and the process variable. Tighter control
can then be achieved by using an intermediate measured signal that
responds faster to the control signal. Cascade control is built up by
nesting the control loops, as shown in the block diagram in Figure 7.1.
The system in this figure has two loops. The inner loop is called the
secondary loop; the outer loop is called the primary loop. The reason
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Figure 7.2 Responses to a load disturbance for a system with
(full line) and without (dashed line) cascade control. The upper di-
agram shows process output y and the lower diagram shows control
signal u.

for this terminology is that the outer loop deals with the primary
measured signal. It is also possible to have a cascade control with
more nested loops. The performance of a system can be improved
with a number of measured signals, up to a certain limit. If all state
variables are measured, it is often not worthwhile to introduce other
measured variables. In such a case the cascade control is the same
as state feedback. We will illustrate the benefits of cascade control by
an example.

EXAMPLE 7.1 Improved load disturbance rejection

Consider the system shown in Figure 7.1. Let the transfer functions
be

Gp1 = 1
s+ 1

and

Gp2 = 1
(s+ 1)3

Assume that a load disturbance enters at the input of the process.
There is significant dynamics from the control variable to the pri-
mary output. The secondary output does respond much faster than
the primary output. Thus, cascade control can be expected to give
improvements. With conventional feedback, it is reasonable to use
a PI controller with the parameters K = 0.37 and Ti = 2.2. These
parameters are obtained from the simple tuning rules presented in
Chapter 5. The response of the system to a step change in the load
disturbance is shown in Figure 7.2.
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Since the response of the secondary measured variable to the
control signal is quite fast, it is possible to use high loop gains in
the secondary loop. If the controller in the inner loop is proportional
with gain Ks, the dynamics from the setpoint of Cs to process output
becomes

G(s) = Ks

(s+ 1+ Ks)(s+ 1)3
This is faster than the open loop dynamics, and higher controller
gains can be used in the outer loop. With Ks = 5 in the inner loop and
PI control with K = 0.55 and Ti = 1.9 in the outer loop, the responses
shown in Figure 7.2 are obtained. The PI controller parameters are
obtained from the simple tuning rules presented in Chapter 5. The
figure shows that the disturbance response is improved substantially
by using cascade control. Notice in particular that the control variable
drops very much faster with cascade control. The main reason for this
is the fast inner feedback loop, which detects the disturbance much
faster than the outer loop.
The secondary controller is proportional and the loop gain is 5.

A large part of the disturbance is eliminated by the inner loop. The
remaining error is eliminated at a slower rate through the action
of the outer loop. In this case integral action in the inner loop will
always give an overshoot in the disturbance response.

Choice of Secondary Measured Variables

It is important to be able to judge whether cascade control can give
improvement and to have a methodology for choosing the secondary
measured variable. This is easy to do if we just remember that the
key idea of cascade control is to arrange a tight feedback loop around
a disturbance. In the ideal case the secondary loop can be so tight
so that the secondary loop is a perfect servo wherein the secondary
measured variable responds very quickly to the control signal. The
basic rules for selecting the secondary variable are:

• There should be a well-defined relation between the primary and
secondary measured variables.

• Essential disturbances should act in the inner loop.

• The inner loop should be faster than the outer loop. The typical
rule of thumb is that the average residence times should have a
ratio of at least 5.

• It should be possible to have a high gain in the inner loop.

A common situation is that the inner loop is a feedback around an
actuator. The reference variable in the inner loop can then represent
a physical quantity, like flow, pressure, torque, velocity, etc., while
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Figure 7.3 Examples of different process and measurement con-
figurations.

the control variable of the inner loop could be valve pressure, control
current, etc. This is also a typical example where feedback is used to
make a system behave in a simple predictive way. It is also a very
good way to linearize nonlinear characteristics.
A number of different control systems with one control variable

and two measured signals are shown in Figure 7.3. In the figure the
control variable is represented by u, the primary measured variable
by y, the secondary measured variable by ys, and the essential distur-
bance is v. With the rules given above it is only case A that is suitable
for cascade control.

Choice of Control Modes

When the secondary measured signal is chosen it remains to choose
the appropriate control modes for the primary and secondary con-
trollers and to tune their parameters. The choice is based on the
dynamics of the process and the nature of the disturbances. It is very
difficult to give general rules because the conditions can vary signif-
icantly. In critical cases it is necessary to analyze and simulate. It is,
however, useful to have an intuitive feel for the problems.
Consider the system in Figure 7.1. To have a useful cascade con-

trol, it is necessary that the process P2 be slower than P1 and that
the essential disturbances act on P1. We assume that these conditions
are satisfied. The secondary controller can often be chosen as a pure
proportional controller or a PD controller. In some cases integral ac-
tion can be useful to improve rejection of low-frequency disturbances.
With controllers not having integral action, there may be a static er-
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ror in the secondary loop. This may not be a serious drawback. The
secondary loop, as a rule, is used to eliminate fast disturbances. Slow
disturbances can easily be eliminated by the primary loop, which will
typically have integral action. There are also drawbacks to using in-
tegral control in the secondary loop. With such a system there will
always be an overshoot in the response of the primary control loop.
Integral action is needed if the process P2 contains essential time de-
lays and the process P1 is such that the loop gain in the secondary
loop must be limited.
The special case when the process P2 is a pure integrator is quite

common. In this case integral action in the inner loop is equivalent to
proportional control in the outer loop. If integral action is used in the
inner loop, the proportional action in the outer loop must be reduced.
This is a significant disadvantage for the performance of the system.
A good remedy is to remove the integrator in the inner loop and to
increase the gain in the outer loop.

Tuning and Commissioning

Cascade controllers must be tuned in a correct sequence. The outer
loop should first be put in manual when the inner loop is tuned. The
inner loop should then be put in automatic when tuning the outer
loop. The inner loop is often tuned for critical or overcritical damping
or equivalently for a small sensitivity (Ms). If this is not done there
is little margin for using feedback in the outer loop.
Commissioning of cascade loops also requires some considera-

tions. The following procedure can be used if we start from scratch
with both controllers in manual mode.

1. Adjust the setpoint of the secondary controller to the value of the
secondary process variable.

2. Set the secondary controller in automatic with internal setpoint
selected.

3. Adjust the primary controller so that its setpoint is equal to the
process variable and so that its control signal is equal to the
setpoint of the secondary controller.

4. Switch the secondary controller to external setpoint.

5. Switch the primary controller to automatic mode.

The steps given above are automated to different degrees in different
controllers. If the procedure is not done in the right way there will be
switching transients.
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Integral Windup

If integral action is used in both the secondary and primary control
loops, it is necessary to have a scheme to avoid integral windup. The
inner loop can be handled in the ordinary way, but it is not a trivial
task to avoid windup in the outer loop. There are three situations
that must be covered:

1. The control signal in the inner loop can saturate.

2. The secondary control loop may be switched to internal setpoint.

3. The secondary controller is switched from automatic to manual
mode.

The feedback loop, as viewed from the primary controller, is broken
in all these cases, and it is necessary to make sure that its integral
mode is dealt with properly. This problem is solved automatically in a
number of process controllers that have cascade control capabilities,
but if we build up the cascade control using two independent con-
trollers, we have to solve the problem ourselves. This requires being
able to inject a tracking signal into the primary controller.
If the output signal of the secondary controller is limited, the

process variable of the secondary controller should be chosen as the
tracking signal in the primary controller. This also needs a digital
transfer from the secondary to the primary controller telling it when
the tracking is to take place.
In the case where the secondary controller switches to working

according to its local setpoint instead of the external one from the
primary controller, the local setpoint should be sent back to the pri-
mary controller as a tracking signal. In this way one can avoid both
integrator windup and jumps in the transition to cascade control.
When the secondary controller switches over to manual control,

the process variable from the secondary controller should be sent back
to the primary controller as a tracking signal.

Some Applications

Cascade control is a convenient way to use extra measurements to
improve control performance. The following examples illustrate some
applications.

EXAMPLE 7.2 Valve positioners

Control loops with pneumatic valves is a very common application. In
this case the inner loop is a feedback around the valve itself where
the valve position is measured. The inner loop reduces the influences
of pressure variations and various nonlinearities in the pneumatic
system.
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Figure 7.4 Block diagram of a system for position control. The
system has three cascaded loops with a current controller (CC) with
feedback from current (I), a velocity controller (VC) with feedback
from velocity (v), and a position controller (PC) with feedback from
position (y).

EXAMPLE 7.3 Motor control

Figure 7.4 is a block diagram of a typical motor control system. This
system has three cascaded loops. The innermost loop is a current
loop where the current is measured. The next loop is the velocity
loop, which is based on measurement of the velocity. The outer loop
is a position loop. In this case integral action in the velocity loop is
equivalent to proportional action in the position loop. Furthermore,
it is clear that the derivative action in the position loop is equivalent
with proportional action in the velocity loop. From this it follows
directly that there is no reason to introduce integral action in the
velocity controller or derivative action in the position controller.

EXAMPLE 7.4 Heat exchanger

A schematic diagram of a heat exchanger is shown in Figure 7.5. The
purpose of the control system is to control the outlet temperature
on the secondary side by changing the valve on the primary side.
The control system shown uses cascade control. The secondary loop
is a flow control system around the valve. The control variable of
the primary loop is the setpoint of the flow controller. The effect of
nonlinearities in the valve, as well as flow and pressure disturbances,
are thus reduced by the secondary controller.

Observers

Since cascade control can use many measured signals it is natural
to ask when it is no longer worthwhile to include an extra signal.
An answer to this question has been provided by control theory. The
explanation is based on the notion of state of a system. The state of a
system is the smallest number of variables, that together with future
control signals, describes the future development of a system com-
pletely. The number of state variables is, thus, a natural measure of
the number of measured signals that are worthwhile to include. If all
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Figure 7.5 Schematic diagram of a heat exchanger with cascade
control.

state variables are measured, it is also sufficient to use proportional
feedback from these signals. This is called state feedback and can be
viewed as a natural extension of cascade control.
Use of observers is another helpful idea from control theory. An

observer is based on a mathematical model of a process. It is driven
by the control signals to the process and the measured variables. Its
output is an estimate of the state of the system. An observer offers the
possibility of combining mathematical models with measurements to
obtain signals that can not be measured directly. A combination of
an observer with a state feedback from the estimated states is a very
powerful control strategy.

7.3 Feedforward Control

Disturbances can be eliminated by feedback. With a feedback system
it is, however, necessary that there be an error before the controller
can take actions to eliminate disturbances. In some situations it is
possible to measure disturbances before they have influenced the
processes. It is then natural to try to eliminate the effects of the
disturbances before they have created control errors. This control
paradigm is called feedforward. The principle is simply illustrated
in Figure 7.6. Feedforward can be used for both linear and nonlinear
systems. It requires a mathematical model of the process.
As an illustration we will consider a linear system that has two

inputs, the control variable u and the disturbance v, and one output
y. The transfer function from disturbance to output is Gv, and the
transfer function from the control variable to the output is Gu. The
process can be described by the following equation:

Y(s) = Gu(s)U (s) + Gv(s)V (s) (7.1)
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Figure 7.6 Block diagram of a system with feedforward control
from a measurable disturbance.

where the Laplace transformed variables are denoted by capitals. The
feedforward control law

U (s) = −Gv(s)
Gu(s) V (s) (7.2)

makes the output zero for all disturbances v. The feedforward transfer
function thus should be chosen as:

Gf f (s) = −Gv(s)
Gu(s) (7.3)

The feedforward compensator is, in general, a dynamic system.
The transfer function Gf f must, of course, be stable, which means
that Gv must also be stable. If the processes are modeled as static
systems, the feedforward compensator is also a static system. This is
called static feedforward.
If the transfer functions characterizing the process are given by

Gu = Ku

1+ sTu Gv = Kv

1+ sTv (7.4)

it follows from Equation (7.3) that the feedforward transfer function
is

Gf f = − Kv
Ku

⋅
1+ sTu
1+ sTv (7.5)

In this case the feedforward compensator is a simple dynamic com-
pensator of a lead-lag type.
Since the key idea is to cancel two signals, it is necessary that

the model is reasonably accurate. A modeling error of 20% implies
that only 80% of the disturbance is eliminated. Modeling errors are
directly reflected in control errors. Feedforward is typically much
more sensitive to modeling errors than feedback control.
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Since it requires process models, feedforward is not used as much
as feedback control. There are, however, many cases where a lead-
lag filter, as given in Equation (7.5), or even a constant feedforward
gives excellent results. The availability of adaptive techniques has
drastically increased the range of applicability of feedforward. Certain
standard controllers have a feedforward term. Feedforward is also
easy to include in distributed control systems.
Feedback and feedforward have complementary properties. With

feedback it is possible to reduce the effect of the disturbances with
frequencies lower than the system bandwidth. By using feedforward
we can also reduce the effects of faster disturbances. Feedback is
relatively insensitive to variations in the process model while feed-
forward, which is used directly in a process model, is more sensitive
to parameter variation. Feedback may cause instabilities while feed-
forward does not give rise to any stability problems. To obtain a good
control system, it is desirable to combine feedback and feedforward.

Applications

In many process control applications there are several processes in
series. In such cases it is often easy to measure disturbances and use
feedforward. Typical applications of feedforward control are: drum-
level control in steam boilers, control of distillation columns and
rolling mills. An application of combined feedback and feedforward
control follows.

EXAMPLE 7.5 Drum level control

A simplified diagram of a steam boiler is shown in Figure 7.7. The
water in the raiser is heated by the burners. The steam generated
in the raiser, which is lighter than the water, rises toward the drum.

F F

L Drum

TurbineOil

Air

Feed
water

Steam valve

Raiser Down comer

Figure 7.7 Schematic diagram of a drum boiler with level control.
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This causes a circulation around the loop consisting of the raisers, the
drum, and the down comers. The steam is separated from the water
in the drum. The steam flow to the turbine is controlled by the steam
valve.
It is important to keep the water level in the drum constant.

Too low a water level gives insufficient cooling of the raisers, and
there is a risk of burning. With too high a water level, water may
move into the turbines, which may cause damage. There is a control
system for keeping the level constant. The control problem is difficult
because of the so-called shrink and swell effect. It can be explained
as follows: Assume that the system is in equilibrium with a constant
drum level. If the steam flow is increased by opening the turbine
valve, the pressure in the drum will drop. The decreased pressure
causes generation of extra bubbles in the drum and in the raisers.
As a result the drum level will initially increase. Since more steam is
taken out of the drum, the drum level will of course finally decrease.
This phenomena, which is called the shrink and swell effect, causes
severe difficulties in the control of the drum level. Mathematically it
also gives rise to right half plane zero in the transfer function.
The problem can be solved by introducing the control strategy

shown in Figure 7.7. It consists of a combination of feedback and
feedforward. There is a feedback from the drum level to the controller,
but there is also a feedforward from the difference between steam flow
and feed-water flow so that the feedwater flow is quickly matched to
the steam flow.

7.4 Model Following

When discussing PID-control in Chapter 4 the main emphasis was
on load disturbance response. The setpoint response was shaped by
setpoint weighting. In some cases it is desirable to have more accurate
control of the setpoint response. This can be achieved by using a
reference model that gives the desired response to setpoint changes. A
simple approach is then to use the scheme shown in Figure 7.8 where
the output of the reference model is fed into a simple feedback loop.

u
ΣModel

e   y
Controller

-1

Process  
y spy c

Figure 7.8 Block diagram of a system based on model following.
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Figure 7.9 Block diagram of a system that combines model fol-
lowing and feedforward from the command signal.

The reference model is typically chosen as a dynamic system of first
or second order. In this case we obtain model following by combining
a simple controller with a model. It is necessary that the feedback
loop be very fast relative to the response of the reference model.
The system can be improved considerably by introducing feedfor-

ward as shown in Figure 7.9. In this system we have also feedforward
from the command signal. (Compare with Section 7.3.) The signal uf f
is such that it will produce the desired output if the models are cor-
rect. The error e will differ from zero when the output deviates from
its desired behavior. The feedback path will then generate the ap-
propriate actions. When implementing the system the boxes labeled
model and feedforward are often combined into one unit which has
the command signal yc as input and ysp and uf f as outputs.
The system is called a two-degree-of-freedom system because the

signal paths from setpoint to control and process output to control can
be chosen independently. Use of setpoint weighting (see Section 3.4)
is one way to obtain this to a small degree. The system in Figure 7.9
is the general version. For such systems it is common to design the
feedback so that the system is insensitive to load disturbances and
process uncertainties. The model and the feedforward elements are
then designed to obtain the desired setpoint response. The feedback
controller is often chosen as a PID controller. Model following is used
when precise setpoint following is desired, for example, when several
control loops have to be coordinated.

A General Controller Structure

The system in Figure 7.9 uses feedforward to improve command signal
following. It is possible to combine this with feedforward from mea-
sured disturbances as discussed in Section 7.3. We will then obtain
the general controller structure shown in Figure 7.10. In this case
feedforward is used both to improve setpoint response and to reduce
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Figure 7.10 Block diagram of a system that combines feedback
and feedforward.

the effects of a measurable disturbance.
The properties of the system are analyzed here. If the subsystems

are linear and time invariant, we find that the Laplace transform of
the control error is given by

E(s) = −Gp1(1+ Gp2Gf f2)
1+ GpGfb V (s) + Gm − GpGf f1

1+ GpGfb Yc(s) (7.6)

where Gf f1 and Gf f2 are transfer functions for feedforwards from the
command signal and from the disturbance. Gfb is the transfer function
for the feedback. The process has the transfer function

Gp = Gp1Gp2 (7.7)
It follows from Equation (7.6) that the transfer function from com-
mand signal to error is given by

G(s) = Gm − GpGf f1
1+ GpG fb (7.8)

This transfer function is small if the loop transfer function G
 =
GpGfb is large even without feedforward. The loop transfer function
is typically large for frequencies smaller than the servo bandwidth.
Therefore, the transfer function G is small for low frequencies even
without feedforward. By choosing the feedforward so that

GpGf f1 = Gm (7.9)
we find that the transfer function becomes zero for all frequencies,
irrespective of the feedback used. Since we are combining feedback
and feedforward, we can let the feedback handle the low frequencies
and use feedforward compensation only to deal with the high frequen-
cies. This means that Equation (7.9) need only be satisfied for higher
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frequencies. This makes the feedforward compensator simpler. Sim-
ilarly it follows from Equation (7.6) that the transfer function from
the disturbance to the control error is given by

Gv = −Gp1(1+ Gp2Gf f2)1+ GpGfb
In an analogy with the previous discussion, we find that this transfer
function will be zero if

Gp2Gf f2 = −1
holds. The transfer function will also be small if the loop transfer
function G
 is large.
These simple calculations illustrate the differences between feed-

back and feedforward. In particular they show that feedforward re-
duces disturbances by canceling two terms, while feedback reduces
the disturbances by dividing them by a large number. This clearly
demonstrates why feedforward is more sensitive than feedback.

Tuning Feedforward Controllers

Feedforward controllers must be well tuned. Unfortunately, it is dif-
ficult to tune such controllers. The main difficulty is that it is often
not possible to change the disturbances in order to investigate the
disturbance response. Therefore, it is necessary to wait for a nat-
ural disturbance before the performance of the feedforward can be
observed. This makes tuning very time consuming.

7.5 Nonlinear Elements

Nonlinear elements have been discussed before. In Section 3.5 we used
a limiter to avoid integral windup, in Section 3.4 we discussed the ad-
dition of nonlinearities to obtain “error squared on proportional” and
similar control functions. In Chapter 6 it was shown that performance
could be improved by gain scheduling. In this section we describe
more nonlinear elements and also present some control paradigms
that guide the use of these elements.

Limiters

Since all physical values are limited, it is useful to have limiting
devices in control systems too. A simple amplitude limiter is shown
in Figure 7.11. The limiter can mathematically be described as the
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Figure 7.11 Block diagram of a simple amplitude limiter.

static nonlinearity

y=


u
 if u ≤ u

u if u
 < u < uh
uh if u ≥ uh

It is also useful to limit the rate of change of signals. A system for
doing this is shown in Figure 7.12. This circuit is called a rate limiter
or a ramp unit. The output will attempt to follow the input signals.
Since there is integral action in the system, the inputs and the outputs
will be identical in steady state. Since the output is generated by an
integrator with limited input signal, the rate of change of the output
will be limited to the bounds given by the limiter. Rate limiters are
used, for example, in model-following control of the type shown in
Section 7.4. A more sophisticated limiter is shown in Figure 7.13.
This limiter is called a jump and rate limiter. The output will follow
the input for small changes in the input signal. At large changes
the output will follow the input with a limited rate. The system in
Figure 7.13 can be described by the following equations

dx

dt
= sat(u − x)
y = x + sat(u− x)

where the saturation function is defined as

sat(x) =


−a x ≤ −a
x �x� < a

a x ≥ a

If �u− x� ≤ a it follows from the equations describing the system that
y = u, and if u ≥ x + a it follows that dx/dt = a. Thus, the output

yu
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s
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e

Figure 7.12 Block diagram of a rate limiter or a ramp unit.
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Figure 7.13 Jump and rate limiter.

signal will approach the input signal at the rate a.
Limiters are used in many different ways. They can be used to

limit the command signals so that we are not generating setpoints
that are demanding faster changes than a system can cope with. In
Section 3.5 it was shown how amplitude limiters may be used to avoid
integral windup in PID controllers.

Surge Tank Control

The control problems that were discussed in Chapter 4 were all reg-
ulation problems where the task was to keep a process variable as
close to a given setpoint as possible. There are many other control
problems that also are important. Surge tank control is one example.
The purpose of a surge tank is to act as a buffer between different
production processes. Flow from one process is fed to another via the
surge tank. Variations in production rate can be accommodated by
letting the level in the surge tank vary. Conventional level control,
which attempts to keep the level constant, is clearly not appropriate
in this case. To act as a buffer the level should indeed change. It is,
however, important that the tank neither becomes empty nor overflow.
There are many approaches to surge tank control. A common,

simple solution is to use a proportional controller with a low gain.
Controllers with dead zones or nonlinear PI controllers are also used.
Gain scheduling is a better method. The scheduling variable is chosen
as the tank level. A controller with low gain is chosen when the level is
between 10% and 90%, and a controller with high gain is used outside
the limits. There are also special schemes for surge tank control.
In many cases there are long sequences of surge tanks and pro-

duction units, as illustrated in Figure 7.14. Two different control
structures, control in the direction of the flow or opposite to the flow,
are shown in the figure. Control in the direction opposite to the flow
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A

B

Figure 7.14 Different structures for surge tank control The ma-
terial flow is from the left to the right. The scheme in A is called
control in the direction of the flow. The scheme in B is called control
in the direction opposite to the flow.

is superior, because then all control loops are characterized by first-
order dynamics. With control in the direction of the flow, it is easy to
get oscillations or instabilities because of the feedback from the end
of the chain to the beginning.

Ratio Control

When mixing different substances it is desirable to control the pro-
portions of the different media. In combustion control, for example, it
is desirable to have a specified ratio of fuel to air. Similar situations
occur in many other process control problems. Two possible ways to
solve these problems are shown in Figure 7.15. One of the flows, yk,
is controlled in the normal way, and the other flow y is controlled as
in Figure 7.15A, where the setpoint is desired ratio a and the mea-
sured value is the ratio y/yk. This arrangement makes the control
loop nonlinear, since the gain of the second controller depends on the
signal yk. A better solution is the one shown in Figure 7.15B, where
the signal obtained by multiplying yk by a and adding a bias b is used
as the setpoint to a PI controller. The error signal is

e = a(yk + b) − y
where a is the desired ratio. If the error is zero it follows that

y= ayk + b
Ratio controllers can easily be implemented by combining ordinary
PI and PID controllers with devices for adding and multiplying. The
control paradigm is so common that they are often combined in one
unit called a ratio controller, e.g., a Ratio PI controller (RPI). There
are also PID controllers that can operate in ratio mode.
We illustrate ratio control with an example.
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Figure 7.15 Block diagram of two ratio controllers.

EXAMPLE 7.6 Air-fuel control

Operation of a burner requires that the ratio between fuel flow and
air flow is kept constant. One control system that achieves this can
be constructed from an ordinary PI controller and an RPI controller
as is shown in Figure 7.16. The fuel and the air circuits are provided
with ordinary flow control. Fuel is controlled by a PI controller, the
air flow is controlled with a ratio PI controller where the ratio signal
is the fuel flow. The bias term b is used to make sure that there is
an air flow even if there is no fuel flow. The system in Figure 7.16 is
not symmetric. A consequence of this is that there will be air excess
when the setpoint is decreased suddenly, but air deficiency when the
setpoint is suddenly increased.

Split Range Control

SP

MV
RPI

MV

SP
PI

Oil

Air

Figure 7.16 Block diagram of an air-fuel controller.
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Figure 7.17 Illustration of the concept of split range control.

Cascade control is used when there is one control variable and several
measured signals. The dual situation is used when there is one mea-
sured variable and several control variables. Systems of this type are
common, e.g., in connection with heating and cooling. One physical
device is used for heating and another for cooling. The heating and
cooling systems often have different static and dynamic characteris-
tics. The principle of split range control is illustrated in Figure 7.17,
which shows the static relation between the measured variables and
the control variables. When the temperature is too low, it is neces-
sary to supply heat. The heater, therefore, has its maximum value
when the measured variable is zero. It then decreases linearly until
mid-range, where no heating is supplied. Similarly, there is no cooling
when the measured variable is below mid-range. Cooling, however, is
applied when the process variable is above mid-range, and it then
increases.
There is a critical region when switching from heating to cooling.

To avoid both heating and cooling at the same time, there is often
a small dead zone where neither heating nor cooling is supplied.
Switching between the different control modes may cause difficulties
and oscillations.
Split range control is commonly used in systems for heating and

ventilation. It is also useful applications when the control variable
ranges over a very large range. The flow is then separated into par-
allel paths each controlled with a valve.

Selector Control

Selector control can be viewed as the inverse of split range control.
In split range there is one measured signal and several actuators.
In selector control there are many measured signals and only one
actuator. A selector is a static device with many inputs and one
output. There are two types of selectors: maximum and minimum.
For a maximum selector the output is the largest of the input signals.
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There are situations where there are several controlled process
variables that must be taken into account. One variable is the pri-
mary controlled variable, but it is also required that other process
variables remain within given ranges. Selector control can be used
to achieve this. The idea is to use several controllers and to have a
selector that chooses the controller that is most appropriate. One ex-
ample of use is where the primary controlled variable is temperature
and we must ensure that pressure does not exceed a certain range for
safety reasons.
The principle of selector control is illustrated in Figure 7.18. The

primary controlled variable is the process output y. There is an aux-
iliary measured variable z that should be kept within the limits zmin
and zmax. The primary controller C has process variable y, setpoint
ysp, and output un. There are also secondary controllers with mea-
sured process variables that are the auxiliary variable z and with
setpoints that are bounds of the variable z. The outputs of these con-
trollers are uh and ul . The controller C is an ordinary PI or PID
controller that gives good control under normal circumstances. The
output of the minimum selector is the smallest of the input signals;
the output of the maximum selector is the largest of the inputs.
Under normal circumstances the auxiliary variable is larger than

the minimum value zmin and smaller than the maximum value zmax.
This means that the output uh is large and the output ul is small.
The maximum selector, therefore, selects un and the minimum selec-
tor also selects un. The system acts as if the maximum and minimum
controller were not present. If the variable z reaches its upper limit,
the variable uh becomes small and is selected by the minimum selec-
tor. This means that the control system now attempts to control the
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Figure 7.18 Selector control.
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variable z and drive it towards its limit. A similar situation occurs if
the variable z becomes smaller than zmin.
In a system with selectors, only one control loop at a time is in

operation. The controllers can be tuned in the same way as single-loop
controllers. There may be some difficulties with conditions when the
controller switches. With controllers having integral action, it is also
necessary to track the integral states of those controllers that are not
in operation. Selector control is very common in order to guarantee
that variables remain within constraints. The technique is commonly
used in the power industry for control in boilers, power systems,
and nuclear reactors. The advantage is that it is built up of simple
nonlinear components and PI and PID controllers. An alternative to
selector control is to make a combination of ordinary controllers and
logic. The following example illustrates the use of selector control.

EXAMPLE 7.7 Air-fuel control

In Example 7.6 we discussed air-fuel control. Ratio control has two dis-
advantages. When the power demand is increased, there may be lack
of air because the setpoint of the air controller increases first when
the dual controller has increased the oil flow. The system cannot com-
pensate for perturbations in the air channel. A much improved system
uses selectors, such as is shown in Figure 7.19. The system uses one
minimum and one maximum selector. There is one PI controller for
fuel flow and one PI controller for the air flow. The setpoint for the
air controller is the larger of the command signal and the fuel flow.
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Figure 7.19 Air-fuel controller based on selectors. Compare with
the ratio controller for the same system in Figure 7.16.
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This means that the air flow will increase as soon as more energy is
demanded. Similarly, the setpoint to the fuel flow is the smaller of
the demand signal and the air flow. This means that when demand
is decreased, the setpoint to the dual flow controller will immediately
be decreased, but the setpoint to the air controller will remain high
until the oil flow has actually decreased. The system thus ensures
that there will always be an excess of air. It is important to maintain
good air quality. It is particularly important in ship boilers because
captains may pay heavy penalties if there are smoke puffs coming out
of the stacks when in port.

Median Selectors

A median selector is a device with many inputs and many outputs.
Its output selects the input that represents the current median of
the input signals. A special case is the two-out-of-three selector, com-
monly used for highly sensitive systems. To achieve high reliability
it is possible to use redundant sensors and controllers. By inserting
median selectors it is possible to have a system that will continue to
function even if several components fail.

7.6 Neural Network Control

In the previous section, we have seen that simple nonlinearities can
be used very effectively in control systems. In this and the following
sections, we will discuss some techniques based on nonlinearities,
where the key idea is to use functions of several variables. It is
not easy to characterize such functions in a simple way. The ideas
described have been introduced under the names of neural and fuzzy
control. At first sight these methods may seem quite complicated, but
once we strip off the colorful language used, we will find that they
are nothing but nonlinear functions.

    u1
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Figure 7.20 Schematic diagram of a simple neuron.
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Neural Networks

Neural networks originated in attempts to make simple models for
neural activity in the brain and attempts to make devices that could
recognize patterns and carry out simple learning tasks. A brief de-
scription that captures the essential idea follows.

A Simple Neuron

A schematic diagram of a simple neuron is shown in Figure 7.20. The
system has many inputs and one output. If the output is y and the
inputs are u1, u2, ... , un the input-output relation is described by

y= f (w1u1 +w2u2 + . . .+wnun) = f
(
n∑
k=1
wiui

)
(7.10)

where the numbers wi are called weights. The function f is a so-called
sigmoid function, illustrated in Figure 7.21. Such a function can be
represented as

f (x) = e
α x − e−α x

eα x + e−α x
(7.11)

where α is a parameter. This model of a neuron is thus simply a non-
linear function. Some special classes of functions can be approximated
by Equation (7.10).

Neural Networks

More complicated models can be obtained by connecting neurons to-
gether as shown in Figure 7.22. This system is called a neural network
or a neural net. The adjective feedforward is often added to indicate
that the neurons are connected in a feedforward manner. There are
also other types of neural networks. In the feedforward network, the
input neurons are connected to a layer of neurons, the outputs of the
neurons in the first layer are connected to the neurons in the second

−4 −2 0 2 4

−1

0

1

Figure 7.21 Sigmoid functions.
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Figure 7.22 A feedforward neural network.

layer, etc., until we have the outputs. The intermediate layers in the
net are called hidden layers.
Each neuron is described by Equation (7.10). The input-output re-

lation of a neural net is thus a nonlinear static function. Conversely
we can consider a neural net as one way to construct a nonlinear func-
tion of several variables. The neural network representation implies
that a nonlinear function of several variables is constructed from two
components: a single nonlinear function, the sigmoid function (7.11),
which is a scalar function of one variable; and linear operations. It is
thus a simple way to construct a nonlinearity from simple operations.
One reason why neural networks are interesting is that practically all
continuous functions can be approximated by neural networks hav-
ing one hidden layer. It has been found practical to use more hidden
layers because then fewer weights can be used.

Learning

Notice that there are many parameters (weights) in a neural network.
Assuming that there are n neurons in a layer, if all neurons are con-
nected, n2 parameters are then required to describe the connections
between two layers. Another interesting property of a neural network
is that there are so-called learning procedures. This is an algorithm
that makes it possible to find parameters (weights) so that the func-
tion matches given input-output values. The parameters are typically
obtained recursively by giving an input value to the function and the
desired output value. The weights are then adjusted so that the data
is matched. A new input-output pair is then given and the param-
eters are adjusted again. The procedure is repeated until a good fit
has been obtained for a reasonable data set. This procedure is called
training a network. A popular method for training a feedforward net-
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work is called back propagation. For this reason the feedforward net
is sometimes called a back-propagation network.

Control Applications

A feedforward neural network is nothing but a nonlinear function of
several variables with a training procedure. The function has many
parameters (weights) that can be adjusted by the training procedure
so that the function will match given data. Even if this is an extremely
simplistic model of a real neuron, it is a very useful system compo-
nent. In process control we can often make good use of nonlinear
functions. Sensor calibration is one case. There are many situations
where an instrument has many different sensors, the outputs of which
must be combined nonlinearly to obtain the desired measured value.
Nonlinear functions can also be used for pattern recognition.

7.7 Fuzzy Control

Fuzzy control is an old control paradigm that has received a lot of
attention recently. In this section we will give a brief description of
the key ideas. We will start with fuzzy logic, which has inspired the
development.

Fuzzy Logic

Ordinary Boolean logic deals with quantities that are either true or
false. Fuzzy logic is an attempt to develop a method for logic reasoning
that is less sharp. This is achieved by introducing linguistic variables
and associating them with membership functions, which take values
between 0 and 1. In fuzzy control the logical operations and, or, and
not are operations on linguistic variables. These operations can be
expressed in terms of operations on the membership functions of
the linguistic variables. Consider two linguistic variables with the
membership functions fA(x) and fB(x). The logical operations are
defined by the following operations on the membership functions.

fA and B = min ( fA(x), fB(x))
fA or B = max ( fA(x), fB(x))
fnot A = 1− fA(x)

A linguistic variable, where the membership function is zero every-
where except for one particular value, is called a crisp variable.
Assume for example that we want to reason about temperature.

For this purpose we introduce the linguistic variables cold, moderate,
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Figure 7.23 Illustration of fuzzy logic. The upper diagram shows
the membership functions of cold, moderate, and hot. The middle
diagram shows the membership functions for cold and moderate
the lower diagram shows the membership functions for cold or
moderate.

and hot, and we associate them with the membership functions shown
in Figure 7.23. The membership function for the linguistic variables
cold and moderate and cold or moderate are also shown in the figure.

A Fuzzy Controller

A block diagram of a fuzzy PD controller is shown in Figure 7.24.
The control error, which is a continuous signal, is fed to a linear
system that generates the derivative of the error. The error and its
derivative are converted to so-called “linguistic variables” in a process
called “fuzzification.” This procedure converts continuous variables to
a collection of linguistic variables. The number of linguistic variables
is typically quite small, for example: negative large (NL), negative
medium (NM), negative small (NS), zero (Z), positive small (PS),
positive medium (PM), and positive large (PL). The control strategy
is expressed in terms of a function that maps linguistic variables to
linguistic variables. This function is defined in terms of a set of rules
expressed in fuzzy logic. As an illustration we give the rules for a PD
controller where the error and its derivative are each characterized
by three linguistic variables (N, Z, P) and the control variable is
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Figure 7.24 A fuzzy PD controller.

characterized by five linguistic variables (NL, NM, Z, PM, and PL).
Rule 1: If e is N and de/dt is P then u is Z
Rule 2: If e is N and de/dt is Z then u is NM
Rule 3: If e is N and de/dt is N then u is NL
Rule 4: If e is Z and de/dt is P then u is PM
Rule 5: If e is Z and de/dt is Z then u is Z
Rule 6: If e is Z and de/dt is N then u is NM
Rule 7: If e is P and de/dt is P then u is PL
Rule 8: If e is P and de/dt is Z then u is PM
Rule 9: If e is P and de/dt is N then u is Z

These rules can also be expressed in table form, see Table 7.1.
The membership functions representing the linguistic variables

normally overlap (see Figure 7.23). Due to this, several rules con-
tribute to the control signal. The linguistic variable representing the
control signal is calculated as a weighted sum of the linguistic vari-
ables of the control signal. The linguistic variable representing the
control signal is then mapped into a real number by an operation
called “defuzzification.” More details are given in the following.

Fuzzy Inference

Many different shapes of membership functions can be used. In fuzzy
control it is common practice to use overlapping triangular shapes like
the ones shown in Figure 7.23 for both inputs and control variables.
Typically only a few membership functions are used for the measured
variables.
Fuzzy logic is only used to a moderate extent in fuzzy control. A

key issue is to interprete logic expressions of the type that appears in
the description of the fuzzy controller. Some special methods are used
in fuzzy control. To describe these we assume that fA, fB , and fC are
the membership functions associated with the linguistic variables A,
B, and C. Furthermore let x and y represent measurements. If the
values x0 and y0 are measured, they are considered as crisp values.
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Table 7.1 Representation of the fuzzy PD controller as a table.

de

dt

P Z N

N Z NM NL

e Z PM Z NM

P PL PM Z

The fuzzy statement

If x is A and y is B

is then interpreted as the crisp variable

z0 = min( fA(x0), fB(y0))
where and is equivalent to minimization of the membership functions.
The linguistic variable u defined by

If x is A or y is B then u is C

is interpreted as a linguistic variable with the membership function

fu(x) = z0 fC(x)
If there are several rules, as in the description of the PD controller,
each rule is evaluated individually. The results obtained for each rule
are combined using the or operator. This corresponds to taking the
maximum of the membership functions obtained for each individual
rule.
Figure 7.25 is a graphical illustration for the case of the first two

rules of the PD controller. The figure shows how the linguistic variable
corresponding to each rule is constructed and how the control signal
is obtained by taking the maximum of the membership functions
obtained from all rules.
The inference procedure described is called “product-max.” This

refers to the operations on the membership functions. Other infer-
ence procedures are also used in fuzzy control. The and operation
is sometimes represented by taking the product of two membership
functions and the or operator by taking a saturated sum. Combina-
tions of the schemes are also used. In this way it is possible to obtain
“product-max” and “min-sum” inference.

Defuzzification

Fuzzy inference results in a control variable expressed as a linguis-
tic variable and defined by its membership function. To apply a
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Rule 1:   If  e  is  N and  de/dt  is  P then  u  is  Z

Rule 2:   If  e  is  N and  de/dt  is  Z  then  u  is  NM

N

N

P

Z

Z

NM

e de

dt

Figure 7.25 Illustration of fuzzy inference with two rules using
the min-max rule.

control signal we must have a real variable. Thus, the linguistic vari-
able defining the control signal must be converted to a real number
through the operation of “defuzzification.” This can be done in several
different ways. Consider a linguistic variable A with the membership
function fA(x). Defuzzification by mean values gives the value

x0 =
∫
x fA(x)dx∫
fA(x)dx

Defuzzification by the centroid gives a real variable x0 that satisfies∫ x0

−∞
fA(x)dx =

∫ ∞

x0

fA(x)dx

Nonlinear Control

Having gone through the details, we return to the fuzzy PD controller
in Figure 7.24. We first notice that the operations fuzzification, fuzzy
logic, and defuzzification can be described in a very simple way. Strip-
ping away the vocabulary and considering the final result, a fuzzy con-
troller is nothing but a nonlinear controller. The system in Figure 7.24
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Figure 7.26 Graphic illustration of the nonlinearity of the fuzzy
controller showing control signal u as function of control error e
and its derivative.

can in fact be expressed as

u = F
(
e,
de

dt

)

where F is a nonlinear function of two variables. Thus, the fuzzy
PD controller is a controller where the output is a nonlinear function
of the error e and its derivative de/dt! In Figure 7.26 we give a
graphic illustration of the nonlinearity defined by given rules for the
PD controller with standard triangular membership functions and
product fuzzification. The figure shows that the function is close to
linear. In this particular case the fuzzy controller will behave similarly
to an ordinary linear PD controller.
Fuzzy control may be considered as a way to represent a nonlinear

function. Notice that it is still necessary to deal with generation of
derivatives or integrals, integral windup, and all the other matters
in the same way as for ordinary PID controllers. We may also inquire
as to when it is useful to introduce the nonlinearities and what shape
they should have.
Representation of a nonlinearity by fuzzification, fuzzy logic, and

defuzzification is not very different from representation of a nonlinear
function as a table with an interpolation procedure. Roughly speak-
ing, the function values correspond to the rules; the membership func-
tions and the fuzzification and defuzzification procedures correspond
to the interpolation mechanism. To illustrate this we consider a func-
tion of two variables. Such a function can be visualized as a surface
in two dimensions. A linear function is simply a tilted plane. This
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function can be described completely by three points on a plane, i.e.,
three rules. More complex surfaces or functions are obtained by using
more function values. The smoothness of the surface is expressed by
the interpolation procedures.
From the point of view of control, the key question is understand-

ing when nonlinearities are useful and what shape they should have.
These are matters where much research remains to be done. There
are cases where the nonlinearities can be very beneficial but also
cases where the nonlinearities cause problems. It is also a nontrivial
task to explore what happens. A few simulations of the behavior is
not enough because the response of a nonlinear system is strongly
amplitude dependent.
Let us also point out that the properties of the controller in

Figure 7.24 are strongly influenced by the linear filter used. It is
thus necessary to limit the high-frequency gain of the approximation
of the derivative. It is also useful to take derivatives of the process
output instead of the error, as was discussed in Section 3.4. Other
filters can also be used; by adding an integrator to the output of the
system in Figure 7.24, we obtain a fuzzy PI controller.

Applications

The representation of the control law as a collection of rules for lin-
guistic variables has a strong intuitive appeal. It is easy to explain
heuristically how the control system works. This is useful in commu-
nicating control strategies to persons with little formal training. It is
one reason why fuzzy control is a good tool for automation of tasks
that are normally done by humans. In this approach it is attempted to
model the behavior of an operator in terms of linguistic rules. Fuzzy
control has been used in a number of simple control tasks for ap-
pliances. It has also been used in controllers for processes that are
complicated and poorly known. Control of a cement kiln is one exam-
ple of this type of application. Fuzzy control has also been used for
controller tuning.

7.8 Interacting Loops

An advantage to building a complex system from simple components
by using a few control principles is that complexity is reduced by de-
composition. In normal cases it is also comparatively easy to extrap-
olate the experience of commissioning and tuning single-loop control.
It is also appealing to build up a complex system by gradual refine-
ment. There are, however, also some drawbacks with the approach:
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• Since we have not determined the fundamental limitations, it
is difficult to decide when further refinements do not give any
significant benefits.

• It is easy to get systems that are unnecessarily complicated. We
may get systems where several control loops are fighting each
other.

• There are cases where it is difficult to arrive at a good overall
system by a loop-by-loop approach.

If there are difficulties, it is necessary to use a systematic approach
based on mathematical modeling analysis and simulation. This is,
however, more demanding than the empirical approach. In this section
we illustrate some of the difficulties that may arise.

Parallel Systems

Systems that are connected in parallel are quite common. Typical
examples are motors that are driving the same load, power systems
and networks for steam distribution. Control of such systems require
special consideration. To illustrate the difficulties that may arise we
will consider the situation with two motors driving the same load. A
schematic diagram of the system is shown in Figure 7.27.
Let ω be the angular velocity of the shaft, J the total moment

of inertia, and D the damping coefficient. The system can then be
described by the equation

J
dω

dt
+ Dω = M1 + M2 − ML (7.12)

where M1 and M2 are the torques from the motors and ML is the load
torque.

ω
  
wsp

    A1

    A2    C2

    C1

Gearbox

Figure 7.27 Schematic diagram of two motors that drive the same
load.
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Proportional Control

Assume each motor is provided with a proportional controller. The
control strategies are then

M1 = M10 + K1(ω sp −ω )
M2 = M20 + K2(ω sp −ω ) (7.13)

In these equations the parameters M10 and M20 give the torques pro-
vided by each motor when ω = ω sp and K1 and K2 are the controller
gains. It follows from Equations (7.12) and (7.13) that

J
dω

dt
+ (D + K1 + K2)ω = M10 + M20 − ML + (K1 + K2)ω sp

The closed-loop system is, thus, a dynamical system of first order.
After perturbations the angular velocity reaches its steady state with
a time constant

T = J

D + K1 + K2
The response speed is thus given by the sum of the damping and the
controller gains. The stationary value of the angular velocity is given
by

ω = ω 0 = K1 + K2
D + K1 + K2 ω sp + M10 +M20 − ML

D + K1 + K2
This implies that there normally will be a steady state error. Similarly
we find from Equation (7.13) that

M1 − M10
M2 − M20 =

K1

K2

The ratio of the controller gains will indicate how the load is shared
between the motors.

Proportional and Integral Control

The standard way to eliminate a steady state error is to introduce
integral action. In Figure 7.28 we show a simulation of the system
in which the motors have identical PI controllers. The setpoint is
changed at time 0. A load disturbance in the form of a step in the
load torque is introduced at time 10 and a pulse-like measurement
disturbance in the second motor controller is introduced at time 20.
When the measurement error occurs the balance of the torques is
changed so that the first motor takes up much more of the load after
the disturbance. In this particular case the second motor is actually
breaking. This is highly undesirable, of course.
To understand the phenomena we show the block diagram of the

system in Figure 7.29. The figure shows that there are two parallel
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Figure 7.28 Simulation of a system with two motors with PI
controllers that drive the same load. The figure shows setpoint ω sp,
process output ω , control signals M1 and M2, load disturbance ML,
and measurement disturbance n.

paths in the system that contain integration. This is a standard case
where observability and controllability is lost. Expressed differently,
it is not possible to change the signals M1 and M2 individually from
the error. Since the uncontrollable state is an integrator, it does not
go to zero after disturbance. This means that the torques can take on
arbitrary values after disturbance. For example, it may happen that
one of the motors takes practically all the load, clearly an undesirable
situation.

M1

    M2

PI

PI

Σ
  Ms ω

Motor 2

Motor 1

    

1
s

  
ωsp

Figure 7.29 Block diagram for the system in Figure 7.28.
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Figure 7.30 Block diagram of an improved control system.

How to Avoid the Difficulties

Having understood the reason for the difficulty, it is easy to modify
the controller as shown in Figure 7.30. In this case only one controller
with integral action is used. The output of this drives proportional
controllers for each motor. A simulation of such a system is shown in
Figure 7.31. The difficulties are clearly eliminated.
The difficulties shown in the examples with two motors driving

the same load are even more accentuated if there are more motors.
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Figure 7.31 Simulation of the system with the modified con-
troller. The figure shows setpoint ω sp, process output ω , control
signals M1 and M2, load disturbance ML, and measurement distur-
bance n.
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Good control in this case can be obtained by using one PI controller
and distributing the outputs of this PI controller to the different mo-
tors, each of which has a proportional controller. An alternative is to
provide one motor with a PI controller and let the other have propor-
tional control. To summarize, we have found that there may be diffi-
culties with parallel systems having integral action. The difficulties
are caused by the parallel connection of integrators that produce un-
stable subsystems that are neither controllable nor observable. With
disturbances these modes can change in an arbitrary manner. The
remedy is to change the control strategies so there is only one inte-
grator.

Interaction of Simple Loops

There are processes that have many control variables and many mea-
sured variables. Such systems are called multi-input multi-output
(MIMO) systems. Because of the interaction between the signals, it
may be very difficult to control such systems by a combination of
simple controllers. A reasonably complete treatment of this problem
is far outside the scope of this book. Let it suffice to illustrate some
difficulties that may arise by considering processes with two inputs
and two outputs. A block diagram of such a system is shown in Fig-
ure 7.32. A simple approach to control such a system is to use two
single-loop controllers, one for each loop. To do this we must first de-
cide how the controllers should be connected, i.e., if y1 in the figure
should be controlled by u1 or u2. This is called the pairing problem.
This problem is straightforward if there is little interaction among
the loops, which can be determined from the responses of all outputs
to all inputs (see e.g. Figure 7.33). The single-loop approach will work
well if there is small coupling between the loops. The loops can then
be tuned separately. There may be difficulties, however, when there
is coupling between the loops (as shown in the following example).

Process

    y1

    y2

    C1

C2

    
y sp1

    
y sp2

u2

    u1

Figure 7.32 Block diagram of a system with two inputs and two
outputs.
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EXAMPLE 7.8 Rosenbrock’s system

Consider a system with two inputs and two outputs. Sych a system
can be characterized by giving the transfer functions that relate all
inputs and outputs. These transfer functions can be organized as the
matrix

G(s) =
�11(s) �12(s)�21(s) �22(s)

 =
 1
s+1

2
s+3

1
s+1

1
s+1


The first index refers to the outputs and the second to the inputs.
In the matrix above, the transfer function �12 denotes the transfer
function from the second input to the first output.
The behavior of the system can be illustrated by plotting the

step responses from all inputs, as shown in Figure 7.33. From this
figure we can see that there are significant interactions between
the signals. The dynamics of all responses do, however, appear quite
benign. In this case it is not obvious how the signals should be paired.
Arbitrarily, we use the pattern 1-1, 2-2. It is very easy to design
a controller for the individual loops if there is no interaction. The
transfer function of the process is

G(s) = 1
s+ 1

in both cases. With PI control it is possible to obtain arbitrarily high
gains, if there are no constraints on measurement noise or process
uncertainty. A reasonable choice is to have K = 19, b = 0, and
Ti = 0.19. This gives a system with relative damping ζ = 0.7 and
an undamped natural frequency of 10 rad/s. The responses obtained
with this controller in one loop and the other loop open are shown in

0 2 4 6 8
0

0.5

0 2 4 6 8
0

0.5

0 2 4 6 8
0

0.5

0 2 4 6 8
0

0.5

y1

y2

y1

y2

Figure 7.33 Open-loop step responses of the system. The left
diagrams show responses to a step change in control signal u1,
and the right diagrams show responses to a step change in control
signal u2.



7.8 Interacting Loops 311

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

0 1 2 3
0

0.5

1

y1

y2

y1

y2

Figure 7.34 Step responses with one loop closed and the other
open. The left diagrams show responses to steps in u1 when con-
troller C2 is disconnected, and the right diagrams show responses
to steps in u2 when controller C1 is disconnected.

Figure 7.34. Notice that the desired responses are as expected, but
that there also are strong responses in the other signals. If both loops
are closed with the controllers obtained, the system will be unstable.
In order to have reasonable responses with both loops closed,

it is necessary to detune the loops significantly. In Figure 7.35 we
show responses obtained when the controller in the first loop has
parameters K = 2 and Ti = 0.5 and the other controller has K =
0.8 and Ti = 0.7. The gains are more than an order of magnitude
smaller than the ones obtained with one loop open. A comparison
with Figure 7.34 shows that the responses are significantly slower.

The example clearly demonstrates the deficiencies in loop-by loop
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Figure 7.35 Step responses when both loops are closed. The fig-
ure shows responses to simultaneous setpoint changes in both loops.
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tuning. The example chosen is admittedly somewhat extreme but it
clearly indicates that it is necessary to have other techniques for truly
multivariable systems. The reason for the difficulty is that the seem-
ingly innocent system is actually a non-minimum phase multivariable
system with a zero at s = −1.

Interaction Measures

The example given clearly indicates the need to have some way to
find out if interactions may cause difficulties. There are no simple
universal methods. An indication can be obtained by the relative gain
array (RGA). This can be computed from the static gains in all loops
in a multivariable system. For the a 2 � 2 system like the one in
Example 7.8 the RGA is

R =
 λ 1− λ

1− λ λ


where

λ = �11(0)�22(0)
�11(0)�22(0) − �12(0)�21(0)

The number λ has physical interpretation as the ratio of the gain from
u1 to y1 with the second loop open and with the second loop under
very tight feedback (y2 = 0). There is no interaction if λ = 1. If λ = 0
there is also no interaction, but the loops should be interchanged. The
loops should be interchanged when λ < 0.5. The interaction is most
severe if λ = 0.5.
For a multivariable system the relative gain is a matrix R in

which component ri j is given by

ri j = �i jhji
where �i j is i j-th element of the static gain matrix G of the process
and hij is the i j-th element of the the matrix

H = G−1

Notice that �i j is the static gain from input j to output i.
Bristol’s recommendation for controller pairing is that the mea-

sured values and control variables should be paired so that the corre-
sponding relative gains are positive, and as close to one as possible.
If the gains are outside the interval 0.67 < λ < 1.5, decoupling can
improve the control significantly. Since the relative gain is based on
the static properties of the system, it does not capture all aspects of
the interaction.
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7.9 System Structuring

In this section we illustrate how complex control systems can be built
from simple components by using the paradigms we have discussed.
The problem is quite complex. It involves selection of measured vari-
ables and control variables, and it requires significant physical un-
derstanding of the process.

The Process

The process to consider is a chemical reactor. A schematic diagram
is shown in Figure 7.36. Two substances A and B are mixed in the
reactor. They react to form a product. The reaction is exothermic,
which means that it will generate heat. The heat is dissipated through
water that is circulating in cooling pipes in the reactor. The reaction
is very fast; equilibrium is achieved after a time that is much shorter
than the residence time of the reactor. The flow qA of substance A is
considerably larger than qB . Efficiency of the reaction and the heat
generation is essentially proportional to the flow qB .
A static process model is useful in order to understand the control

problem. Figure 7.37 shows the efficiency and the heat generation as a
function of temperature. In the figure we have drawn a straight line
that corresponds to the cooling power. There are equilibria where
the power generated by the reaction is equal to the cooling power
represented at points P and Q in the figure. The point P corresponds

L

Cooling
pipes

Tv

qA

qB

V3

V4

V5

Tr

Steam

water
Cool

V1

V2

Figure 7.36 Schematic diagram of a chemical reactor.
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Figure 7.37 Static process model for the exothermic reactor.

to an unstable equilibrium. It follows from Figure 7.37 that if the
temperature is increased above P the power generated by the reaction
is larger than the cooling power. Temperature will thus increase. The
catalyst in the reactor may be damaged if the temperature becomes
too high. Similarly if the temperature decreases below point P it will
continue to decrease and the reaction stops. This phenomena is called
“freezing.” Freezing starts at the surface of the cooling tube and will
spread rapidly through the reactor. If this happens the reactor must
be switched off and restarted again.

Design Requirements

There are considerable risks in running an exothermic reactor. The
reactor can explode if the temperature is too high. To reduce the risk
of explosion, the reactors are placed in special buildings far away
from the operator. Because of the risk of explosion, it is not feasible
to experiment with controller tuning. Consequently, it is necessary
to compute controller setting beforehand and verify that the settings
are correct before starting the reactor. Safety is the overriding re-
quirement of the control system. It is important to guarantee that
the reaction temperature will not be too high. It is also important
to make sure that process upsets do not lead to loss of coolant flow,
and that stirring does not lead to an explosion. It is also desirable
to operate the reactor efficiently. This means that freezing must be
avoided. Besides it is desirable to keep the efficiency as high as pos-
sible. Because of the risks, it is also necessary to automate start and
stop as well as normal operation. It is desirable to avoid having to run
the reactor under manual control. In this particular case the operator
can set two variables, the reactor temperature and the ratio between
the flows qA and qB . The reaction efficiency and the product quality
can be influenced by these two variables.
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Controller Structure

The reactor has five valves. Two of them, V1 and V2, influence the
coolant temperature. The flow of the reactor is controlled by V3 and
V4, and the product flow is controlled by the valve V5. In this particu-
lar application the valve V5 is controlled by process steps downstream.
(Compare this with the discussion of surge tanks in Section 7.5.)
There are five measured signals: the reactor temperature Tr, the

level in the reactor tank L, the cooling temperature Tv, and the flows
qA and qB . The physical properties of the process gives a natural
structuring of the control system. A mass balance for the material
in the reactor tank shows that the level is essentially influenced by
the flow qA and the demanded production. It follows from the sto-
chiometry of the reaction that the ratio of the flows qA and qB should
be kept constant for an efficient reaction. The reactor temperature
is strongly influenced by the water temperature, by the temperature
of the coolant flow and the flows qA and qB . Coolant temperature is
influenced by the valve V1 that controls the amount of flow and by
the steam valve V2.
This simple physical discussion leads to the diagram shown in

Figure 7.38, which shows the causality of the variables in the process.
The valve V5 can be regarded as a disturbance because it is set by
downstream process units. Figure 7.38 suggests that there are three
natural control loops:

Tv   Tr

L

    V5

V3

    V1

V2

    V4

qB

qA

Figure 7.38 Causality diagram for the process variable.
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Figure 7.39 Block diagram for the level control through valve V3.

1. Level control: Controlling the tank level with valve V3.

2. Temperature control: Control of the reactor temperature with
valves V1 and V2.

3. Flow ratio control: Control of ratio qB/qA with valve V4.
These control loops are discussed in detail.

Level Control

The block diagram for the level control is shown in Figure 7.39. The
primary function is a proportional feedback from the level to the flow
qA, which is controlled by the valve V3. The reactor is also used as
a surge tank to smooth out the difference between actual production
and commanded production. The level in the tank will vary during
normal operations. Reasonable limits are that the level should be be-
tween 50% and 100%. If the proportional band of the controller is
chosen as 50%, the control variable will be fully closed when the tank
is full and half-open when the tank is half-full. It is important that
the reactor temperature remains within given bounds. The flow qA
is constrained, therefore, by two selectors based on measurements of
the temperature in the reactor tank (Tr) and the coolant tempera-
ture (Tv). When starting the reactor the level is kept at the lower
limit until the coolant temperature becomes sufficiently high. This
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is achieved by combination of limiters, multipliers, and selectors, as
shown in Figure 7.39.

Temperature Control

Figure 7.40 gives a block diagram for controlling the reactor tempera-
ture. Since the chemical reaction is fast compared to temperature and
flow dynamics, the reactor can be viewed as a heat exchanger from
the control point of view. During normal conditions the temperature
is controlled by adjusting the coolant flow through the valve V1. The
primary control function is a feedback from temperature to the valves
V1 and V2. The setpoint in this control loop can be adjusted manu-
ally. The parameters of this control loop can be determined as follows.
The transfer function from coolant flow to the reactor temperature is
approximately given by

G(s) = Kp

(1+ sT1)(1+ sT2) (7.14)

where the time constant typically has values T1 = 300 s and T2 =
50 s. The following rough calculation gives approximate values of the
controller parameter. A proportional controller with gain K gives the
loop transfer function

G0(s) = K Kp

(1+ sT1)(1+ sT2) (7.15)

The characteristic equation of the closed loop becomes

s2 + s
(
1
T1
+ 1
T2

)
+ 1+ K Kp

T1T2
= 0

M
A
X

3-9

9-15

Σ

FF

PID

  V2

    V1

  Tv

  qA

Tr

  
Tsp

Figure 7.40 Block diagram showing temperature control through
valves V1 and V2.
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The closed system is thus of second order. The relative damping ζ
and the the undamped natural frequency ω are given by

2ζ ω = 1
T1
+ 1
T2
	 1
T2

(7.16)

and

2ζ ω 2 = 1+ K Kp
T1T2

(7.17)

The approximation in the first expression is motivated by T1 ≫ T2.
With a relative damping ζ = 0.5 the Equation (7.16) then gives
ω 	 1/T2. Furthermore it follows from Equation (7.17) that

1+ K Kp = T1
T2
= 300
50
= 6

The loop gain is thus essentially determined by the ratio of the time
constants. The controller gain becomes

K = 5
Kp

and the closed-loop system has the undamped natural frequency.

ω = 1/T2 = 0.02 rad/s
If PI control is chosen instead, it is reasonable to choose a value of
the integration time.

T1 	 5T2
Control can be improved by using derivative action. The achievable
improvement depends on the time constant of the temperature sensor.
In typical cases this time constant is between 10 s and 40 s. If it is
as low as 10 s it is indeed possible to obtain improved control by
introducing a derivative action in the controller. The derivative time
can be chosen to eliminate the time constant T2. We then obtain a
system with the time constants 300 s and 10 s. The gain can then be
increased so that

1+ K Kp = 30010 = 30
and the undamped natural frequency of the system then becomes
ω 	 0.1 rad/s. If the time constant of the temperature sensor is
around 40 s, the derivative action gives only marginal improvements.
The heat generated by the chemical reaction is proportional to

the flow qA. To make sure that variations in qA are compensated
rapidly we have also introduced a feedforward from the flow qA. This
feedforward will only operate when the tank level is larger than 50%
in order to avoid freezing when the reactor is started.
To start the reaction the reactor must be heated so that the

temperature in the reaction vessel is larger than Tc (compare with
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Figure 7.37). This is done by using the steam valve V2. Split range
control is used for the steam and water valves (compare Section 7.5).
The water valve is open for low signals (3–9 PSI) and the steam valve
is open for large pressures (9–15 PSI).
To avoid having the reactor freez, it is necessary to make sure

that the reaction temperature is always larger than Tc. This is the
reason for the extra feedback from water temperature to Tv through
a maximum selector. This feedback makes sure that the steam valve
opens if the temperature in the coolant flow becomes too low. Cascade
control would be an alternative to this arrangement.

Flow Ratio Control

The ratio of the flows qA and qB must be kept constant. Figure 7.41
shows how the efficiency of the reaction depends on qB when qA is
kept constant. The flow qB is controlled with a ratio control system (as
shown in Figure 7.42), which is the primary control function. The re-
action rate depends strongly on qB. To diminish the risk of explosion,
there is a nonlinearity in the feedback that increases the gain when
qB/qA is large. The flow loop has several selectors. At startup it is
desirable that substance B is not added until the water temperature
has reached the critical value Tc and the reactor tank is half-full.
To achieve this the feedback from the water temperature and tank
level have been introduced through limiters and a minimum selector.
There are also limiters and a selector that closes valve V4 rapidly if
flow qA is lost. There is also a direct feedback from qA through lim-
iters and selectors and a feedback from the reactor temperature that
closes valve V4, if the reactor temperature becomes too high.

qB

Yield

Figure 7.41 Reaction yield as a function of qB at constant qA.
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Figure 7.42 Block diagram for controlling the mixing ratio qB/qA
through valve V4.

Override Control of the Outlet Valve

The flow out of the reactor is determined by valve V5. This valve is
normally controlled by process steps downstream. The control of the
reactor can be improved by introducing an override, which depends
on the state of the reactor. When starting the reactor, it is desirable to
have the outlet valve closed until the reactor tank is half-full and the
reaction has started. This is achieved by introducing the tank level
and the tank temperature to the setpoint of the valve controller via
limiters and minimum selectors as is shown in Figure 7.43. The valve
V5 is normally controlled by qsp. The minimum selector overrides the
command qsp when the level L or the temperature Tr are too low.

M
I
N

Tr

L

qsp V5

Figure 7.43 Block diagram for controlling the outflow of the re-
actor through valve V5.
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7.10 Conclusions

In this chapter we have illustrated how complex control systems can
be built from simple components such as PID controllers, linear fil-
ters, gain schedules, and simple nonlinear functions. A number of
control paradigms have been introduced to guide system design.
The primary linear control paradigms are feedback by PID con-

trol, and feedforward. Cascade control can be used to enhance con-
trol performance through the use of extra measurements. Observers
can be used in a related way when measurements are not available.
Control by observers and state feedback may be viewed as a natural
extension of cascade control.
Smith predictors (discussed in Section 3.9) can be used to im-

prove control of systems with long dead time, and notch filters and
other filters with complex poles and zeros are useful when controlling
systems with poorly damped oscillatory modes.
We also discussed several nonlinear components and related para-

digms. The nonlinearities used are nonlinear functions, gain sched-
ules, limiters, and selectors. In Section 3.4, how simple PID con-
trollers could be enhanced by simple nonlinear functions was dis-
cussed. This was used to avoid windup and to provide special control
functions like “error squared on integral,” etc. Ratio control is a non-
linear strategy that admits control of two process variables so that
their ratio is constant. In Section 6.3 we discussed how gain schedules
could be used to cope with control of processes with nonlinear charac-
teristics. Gain schedules and nonlinear functions are also useful for
control paradigms such as surge tank control, where the goal is not
to keep process variables constant but to allow them to vary in pre-
scribed ranges. Selector control is another very important paradigm
that is used for constraint control where certain process variables
have to be kept within given constraints. We also showed that con-
trollers based on neural and fuzzy techniques could be interpreted as
nonlinear controllers.
Parameter estimation, discussed in Section 2.7, can be used to es-

timate process parameters. Adaptation and tuning are other paradigms
that were discussed in Chapter 6.
There are many ways to use the different control paradigms. We

have also indicated that there may be difficulties due to interaction
of several loops.

7.11 References

Many aspects on the material of this chapter are found in the classi-
cal textbooks on process control such as (Buckley, 1964), (Shinskey,
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1988), and (Seborg et al., 1989). A more specialized presentation is
given in (Hägglund, 1991). The books (Shinskey, 1981) and (Klefenz,
1986) focus on applications to energy systems.
The methods discussed in this chapter can all be characterized as

bottom-up procedures in the sense that a complex system is built up
by combining simple components. An interesting view of this is pre-
sented in (Bristol, 1980). A top-down approach is another possibility.
A discussion of this, which is outside the scope of this book, is found
in (Seborg et al., 1986).
Cascade and feedforward control are treated in the standard texts

on control. A presentation with many practical aspects is found in
(Tucker and Wills, 1960). Selector control is widely used in practice.
A general presentation is given in (Åström, 1987b). Many applications
are given in the books (Shinskey, 1978) and (Klefenz, 1986). Analysis
of a simple scheme is given in (Foss, 1981). It is difficult to analyse
nonlinear systems. A stability analysis of a system with selectors is
given in (Foss, 1981).
Fuzzy control has been around for a long time, see (Mamdani,

1974), (Mamdani and Assilian, 1974), (King and Mamdani, 1977),
and (Tong, 1977). It has recently received a lot of attention particu-
larly in Japan: see (Zadeh, 1988), (Tong, 1984), (Sugeno, 1985), (Dri-
ankov et al., 1993), and (Wang, 1994). The technique has been used
for automation of complicated processes that have previously been
controlled manually. Control of cement kilns is a typical example, see
(Holmblad and stergaard, 1981). There has been a similar devel-
opment in neural networks, see, for example, (Hecht-Nielsen, 1990),
(Pao, 1990), and (Åström and McAvoy, 1992). There was a lot of activ-
ity in neural networks during the late 1960s, which vanished rapidly.
There was a rapid resurgence of interest in the 1980s. There are a
lot of exaggerations both in fuzzy and neural techniques, and no bal-
anced view of the relevance of the fields for control has yet emerged.
The paper (Willis et al., 1991) gives an overview of possible uses of
neural networks for process control, and the paper (Pottman and Se-
borg, 1993) describes an application to control of pH. The papers (Lee,
1990), (Huang, 1991), and (Swiniarski, 1991) describe applications to
PID controllers and their tuning. There have also been attempts to
merge fuzzy and neural control, see (Passino and Antsaklis, 1992)
and (Brown and Harris, 1994).
Some fundamental issues related to interaction in systems are

treated in (Rijnsdorp, 1965a), (Rijnsdorp, 1965b), and (McAvoy, 1983).
The relative gain array was described in (Bristol, 1966). Control of
systems with strong interaction between many loops require tech-
niques that are very different from those discussed in this chapter,
see, for example, (Cutler and Ramaker, 1980) and (Seborg et al.,
1986). Section 7.9 is based on (Buckley, 1970).
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