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Summary. In this work, the effect of magnetic field on water impurities is studied. The 
impurities include iron ions and iron oxides. To remove them, magneto-hydrodynamic model 
is proposed. The problem is considered for the two-dimensional plane-parallel flow. The 
isothermal laminar flow of fluid is tested. The drift-diffusion approximation is used to show 
the behavior of the finely dispersed impurities. 
 

1 INTRODUCTION 

Water as a natural resource has been a primary concern of man throughout his existence. 
Total water reserves on Earth are 1386 million cubic kilometers, including water in liquid and 
frozen forms. But 97.5% of the planet's water resources are saltwater. Freshwater accounts for 
only 2.5%. Of this fresh water, 99.7% is in the form of ice and permanent snow or in the form 
of fresh groundwater. Only 0.3% of the fresh water on Earth is in easily accessible. Brazil has 
more freshwater than any other country. 

The growth of the world's population, economic, social and cultural activities of man, the 
development of industry and new technologies - all these factors negatively affect the 
environment. The modern producing form of the economy repeatedly "more efficiently" 
destroys the environment than the historically preceded forms of human life.  

Freshwater sustains human life and is vital for human health. In the future, only the world 
ocean will be the available source to satisfy the human needs with drinking water. To obtain 
drinking water, clean water for medicine or industrial needs, it is not enough only to 
desalinate water, it is necessary to purify water from various impurities.  

Mathematical modeling of water treatment presents a special challenge because it demands 
integration of many disciplines. It is dependent on physics, chemistry, mathematics and 
numerical realization on computer systems to describe the movement of water and the 
processes of purification. It requires knowledge of the interrelationships of quality water, 
chemical processes, an understanding of aquatic ecology and medicine. It is important not just 
to create mathematical models that take into account different physical factors, but to 
elaborate of technology can be used as a practical tool. 

The different aspects of the water treatment by the magnetic field will be proposed in a 
lot of works (see for example [1-10]). However, there are not much works that connected to 
the numerical simulation of these processes. This paper concerning with numerical modeling 
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of water purification by magnetic field in technical systems. For example, we chose the 
problem of purification of water with iron impurities. Treatment is carried out in a flow tank 
with non-magnetic walls. For modeling purposes, the hydrodynamic model has been 
supplemented with the electrostatic equations. The numerical realization is based on standard 
methods of the theory of finite-difference schemes [11, 12] and on original exponential 
schemes [13-15]. The implementation of the proposed numerical schemes on spaced grids is 
performed by iterative methods based on the conjugate gradient scheme [16]. Parallel 
realization of the numerical procedure based on domain decomposition technique was 
elaborated in the work [17]. Our previous results on this topic were presented in [18]. In this 
paper we discuss the results of a more detailed study. 

This paper has the following structure. In Section 2, we describe formulation and 
mathematical description of the problem. In Section 3, we introduce numerical algorithm and 
parallelization. some details of the numerical algorithm. In Section 4, we propose test 
calculations. In Section 5 we show results obtained on parallel computer systems, including 
distribution of stream parameters, distribution of impurity concentration, and distribution of 
electrical field. In Section 6, we sum up the results and list some topics for future research. 

2 PROBLEM FORMULATION AND MATHEMATICAL DESCRIPTION 

We discuss the problem of water purification in reservoirs. Real area is shown in Figure 1. 
Such area can be a part of technical system. It has three holes: one hole is for inlet stream and 
two holes are for outlet streams. 

 

Figure 1. Real 3D domain. 

In this work, we study the model problem with real 2D computational domain. It is 
displayed in Figure 2. Here L=L1+L2+L3+L4+L5 is length of the area that has size from 5 cm 
up to 100 cm, H=H1+H2= H3+H4 is height of area that has size from 1 cm up to 10 cm; H1 is 
height of the inlet hole, L3 and H4 are length and height of the outlet holes. The range of the 
Reynolds number is 10-100. 
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Figure 2. 2D computational area. 

The basic equations describe the motion of water with impurities in the incompressible 
fluid approximation taking into account the presence of an electromagnetic field in the 
computational domain  . It is a section 0z   of the original three-dimensional area. It has size 
L H  and in the dimensional variables have the form: 

 
1

, 0,p div
t



 


        



u
u u u g u   (1) 

     , , ,
C

div D C C C
t




       


F u F E u B   (2) 

   0 , ,div q C C    E E  (3) 

Where  0w F T        is the water density with iron ions at the specified 

temperature T , w  is the water density, F  is the density of iron ions,  , ,0
T

x yu uu  is 

velocity vector of water stream, p  is pressure of water stream,  0 T    and 





  are 

coefficients of dynamic and kinematic viscosity of water stream at the specified temperature, 

C  и 0C  are concentrations of impurity ions and its equilibrium value under conditions of 

electro neutrality of the flow,  0, ,0
T

g g  is gravity vector (directed contrarily to the 

coordinate y ), g  is gravitational acceleration in the aquatic environment,  0D D D T  and 

 0 T    are diffusion coefficient and coefficient of ion mobility, q  is ion charge in 

relative units, F  is the total vector field acting on the ions, E  и   are strength and potential 

of the electric field,  00,0,
T

BB  is magnetic induction vector, div  и   are operators of 

divergence and gradient in the spatial coordinates  ,x y ,   is permittivity of water. 

Equations (1)-(3) remain valid and refer to a region  , bounded by any closed contour 
 , for example shown on Figure 2. The contour   is defined by a set of control points 
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 , , , , , , , , , , ,A B C D E F G H I J K LP P P P P P P P P P P P  and a set of straight line segments that connect 

these points. It is also understood that the sizes of the computational domain satisfy the 
relations: 1 2 3 4 5 6 7 8L L L L L L L L L        , 1 2 3 4H H H H H    . The points: KP  

and JP  are the boundaries of the action of the magnetic field. 

The initial conditions in the case of the real geometry have the form: 

   

        

0 0

2

,0 0 1

, , , 0, , ;

0, 1 4 / 0.5 , , .x n A L

x y C C t x y

u y u y u y H y y y

   

       

u u
 (4') 

The boundary conditions in the case of the real geometry take the view: 

   

 

 

        

0, 0, , 0, ( , ) , ;

0, 0, 0, 0, ( , ) , ;

0, 0, 0, 0, ( , ) , ;

0, 0, 0, 0, ( , ) , , , , , , , , , ;

0, 0, 0,

x n y A L

yx
H I

yx
D E

x y A B C D E F G H I L

x y

u u y u C C x y P P
x

uu C
x y P P

x x x x

uu C
x y P P

y y y y

C
u u x y P P P P P P P P P P

y y

C
u u

x












    



  
    

   

  
    

   

 
    

 

 
  

 
   0, ( , ) , , , .B C F Gx y P P P P

x
 

(5') 

At moderate velocities, at the entrance to the medium, the flow is rapidly established, and 
it can be regarded as stationary. To calculate the stationary flow, it is convenient to go from 
equation (1) to a system of equations in variables   (stream function) and   (vorticity). If 

we assume that the flow is irrotational and do not take into account gravity, then the water 
flow can be calculated on the basis of the following Laplace equation: 

 
2 2

2 2
0, , , ,x yu u x y

x y y x

   


   
       

   
 (6) 

The boundary conditions for the stream function in the case of a simple rectangular 
geometry are as follows: 

     

   
0

0, ; , 0;

,0 ; , .

y

n

A B

y u y dy L y
x

x const x H const




   


 



   

  (7) 

Here 0A   is an arbitrary constant and the constant B  satisfies the condition. 

 
0

H

B A nu y dy     (8) 

In the case of the real geometry, the boundary conditions for the stream function will have 
the form: 
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     

   

     

 

     

, ( , ) , ;

0, ( , ) , ; 0, ( , ) , ;

, ( , ) , , , ;

, ( , ) , ;

, ( , ) , , , .

A

y

n A L

y

H I D E

A A B B C C D

B I L

C E F F G G H

y u y dy x y P P

x y P P x y P P
x y

const x y P P P P P P

const x y P P

const x y P P P P P P



 

 

 

 

 

 
   

 

  

  

  



 

 

 

(7′) 

Here the constants: B and C  satisfy the conditions: 

     0, ; ,0 , .
L E I

A D H

y x y

B A x C A y B x

y x y

u y dy u x dx u L y dy             (8′) 

In a more general case, the flow can not be considered as irrotational, and for its 
description the equations for the stream function and vorticity are used: 

2 2

2 2
, , , ,y x

x y

u u
u u

x y x y y x

   
 

    
       

     
 

   , , .div x y
t


  


   


u  

(9) 

The vorticity equation will be used in the stationary variant. The boundary conditions for 
vorticity on solid surfaces are set as follows: 

 , , .
u

x y
n



  


 (10) 

Here u  is the tangential velocity component, n  is the outer normal to the boundary. 

It is convenient to represent the equation for concentration in the following equivalent 
form: 

 , ,
C

div QC
t


  


W R W  (11) 

   1 1 1, , , , .D C C q D D Q q D        W P P F R u u F  (12) 

In conclusion, we turn to dimensionless variables: 

   0

0 0 0 0 0 0

2
0 0 0 0 0 0

' / , ' / , ' / , ' 0, 0,1 ;

' / , ' / , ' / , ' / , ' / , ' / ;

/ , / , / .

x x H y y H t t t L

u u u C C C E

t H u qn H E H

      

  

     

     

  

u u E E  (13) 
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Then the final formulation takes the form: 

   

   

, Re 0, , , , ;

,

1 , , , , 0;

x y

yx
x x y y

div u u x y
y x

WWC
R W R W QC

t x y

C x y t

 
   

 

 
         

 


    

  

       

u

E

 
(14) 

 

       

 

1 1

1

1
0 0 0 0 0 0

1 1 1
0 0 0 0 0 0 0 0

, , ,

, , , , ;

Re / , / , ,

, , .

n n

n n

n n

n n

D D C C P D D

Q Q D B D D T T

Hu D D Hu P q E u

Q q E HD B u B E E H



  

 

 

 





  

    

     

  

  

W P P F R u

u F F E u B
 (15) 

In the future, we will be neglect the dependences of the diffusion coefficients and mobility 

on temperature:   1D T  ,   1T  . Then the main dimensionless parameters of the problem 

will be L , nD , nP , nQ , nB . 

Initial conditions take the view: 

    

   

0

2

1,0 , 1, 0, , ;

1 4 0.5 .

T

n

n

u y C t x y

u y y

    

  

u u
 (16) 

Boundary conditions takes the view: 

   
0

2

2

0 : , 0, , 0, 1, 0;

: 0, 0, 0, 0, 0, 0;

0,1: 0, , 0, 0, 0, 0.

y

n x n y

yx

x
y

x u y dy u u y u C
x

uu C
x L

x x x x x x

u C
y u

x x y y y


 

  

  



      



   
      

     

   
       

    



 (17) 

 

3 NUMERICAL ALGORITHM AND PARALLELIZATION 

To solve the problem, it is proposed to use the finite difference method. For this, we 

introduce in the domain   a uniform space grids h x y    , h x y     and grid on 

time  , 0,...,t k tt k k N     . The space grids are multiplication of the following one-

dimensional grids: 

 , 0,..., , /x i x x x xx h i i N h L N      , |  , 0,..., , 1 /y j y y y yy h j j N h N      , 

  1/2 10.5 , 1,...,x i i i xx x x i N      ,   1/2 10.5 , 1,...,y j j j yy y y j N      . 
(18) 
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Here xN , yN  are numbers of grid segments on x  and y ,   is step on time, tN  is number of 

steps. For setting of real geometry we use the markers of cells. 
The stream function is defined on the grid h  (i.e. nodes), and the rest functions are 

defined on the grid h  (i.e., in the cell centers). For the stream function, the velocity vector, 

and the potential of the electric field, we write the following standard difference equations 
[11, 12], supplementing them, if necessary, with the boundary conditions: 

     

     

       
, , , , , ,

, , ;

0.5 , 0.5 , , ;

1 , , .

h h h h h hxx yy

x h h y h y y h h x h x h

h h h h h hxx yy

x y

u u x y

C x y

   

   

  

     

     

      

 (19) 

To approximate the equation for a vortex, we write it in the form by applying a single 
integral transformation: 

   ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0

0,

1 1
, ,

exp Re ' , exp Re ' .

x y

x x y y

x y

yx

x x y y

W W
x y

W e W e
e x x e y y

e u dx e u dy

 

   

 

 

 

 
 

 

     
    

      

  
     

   
 

 (20) 

Then the exponential scheme for the given equation in accordance with [13-15] is as 
follows: 

( ) ( ) ( )
, , 0,h h h x h h y h

          (21) 

     
  

     
  

     

  
     

  

( ) ( )
( )

, ( ) ( )

( ) ( )

( )
, ( )( )

1
,

0.5 1 0.5 1

1
,

0.5 10.5 1

x x h x h x h h x
h x h

x x x x x x

y y h y h y h h y

h y h

y y yy y y

e x h x h x e x x x h

e x h h e x h

e y h y h y e y y y h

e y he y h h

 


 

 





   


   


      
   

    

      
   

   

 

  

 

 

 (22) 

 
 

 
 

 
 

 
 

( )
( )

( )

( )
( )

( )

exp Re ' exp Re 0.5 ,

exp Re ' exp Re 0.5 ,

x

x

x h

x x
x x x x x x

x x

x
x

x x x x x

x x x h

e x h
e x h u dx h u x h

e x

e x
e x u dx h u x h

e x h















 
          

  

 
            









 (23) 
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







 (23') 

To approximate the equation for the concentration, we write it in the transformed form, 
applying the double integral transformation [13-15]: 

   1 1
,x x y y

x y

C
g W g W QC

t g x g y

  
  

  
 (24) 
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  
       

   
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 (25) 

For it we write the following explicitly - implicit difference scheme, supplemented by the 
corresponding boundary conditions: 

0

ˆ
ˆ ˆ , 1,h h

h h h h h t

C C
C Q C C

 


     (26) 

Here operator h  is defined as follows: 

   , , , ,

, ,

, , , ,
0 ' 0 '

1 1
, ,

exp , exp .

x h n x h h y h n y h hx y
x h y h

x h x h x y h y h y
x x y y

W D e C W D e C
e e

e P h e P h
   

 

  
     

   
 

 (27) 

The realization of the constructed schemes is performed using iterative algorithms based 
on conjugate gradients scheme [16]. Parallel implementation of the algorithm is based on the 
domain decomposition technique elaborated in [17] and shown on Fig. 3. Also we used 
parallel versions of iterative procedures [16]. Computer implementation is performed using 
MPI and OpenMP technologies. 
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Figure 3. Domain decomposition technique for distribution of calculations 
on CPUs and threads of CPU. 

 

4 TESTING OF NUMERICAL METHOD 

The testing of the proposed numerical procedure was carried out for the case of simplified 
rectangular geometry (see Fig. 4). For testing, the calculation option was chosen without 
taking into account the vorticity of the water flow ( 0  ). In tests the following parameters 

were used: 6L  , 1nD  , 1nP  , 1nQ  , 1nB  . Grid parameters were: 300xN  , 50yN  , 

0.02x yh h  , 410  . 

 

Figure 4. Plane computational area. 
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The results of the calculations are shown in Fig. 5-8. They are respectively represented by 
distributions of the current function, the velocity modulus, and also the stationary 
distributions of the electric field potential and the impurity concentration. The analysis of the 
obtained data shows the following. In the case of positive values of nB , parameter of the 

magnetic field influence leads to decrease of the ion concentration in the upper part of the 
region and the formation of increased concentration of ions in the lower layer. Thus, the 
general expected physical effect is realized, namely, cleaning of the upper layer of water from 
the impurity. 

 
Figure 5. Distribution of flow function. 

 
Figure 6. Distribution of velocity modulus. 

 
Figure 7. Steady state distribution of electrical field potential. 
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Figure 8. Steady state distribution of impurity concentration. 

The degree of cleaning depends on the parameter nB . Purification becomes noticeable, 

when the Lorentz force is comparable to the hydrodynamic pressure, that is ~ 1nB . The 

performed calculations show that the decrease of the impurity concentration in the upper layer 
of the liquid reaches approximately 2 times for 1nB  . If 2nB  , then the decreasing of the 

impurity concentration achieves to 3.5 times (see Fig. 9). 

 
Figure 9. Steady state distribution of impurity concentration for 2nB  . 

The spatially localized effect of the magnetic field is realized in industrial cleaning 
systems. In this paper, we have introduced the dependence on the parameter nB  on the 

longitudinal coordinate x . For an example, we considered the localization of a magnetic field 

in the region  1.5, 4.5x  and 1nB  . The results of the calculations are presented in Fig. 10, 

11. They show that the layer of purified water is located in the upper part of the localized 
area, that is, also localized. 

Calculations on the sequence of grids have shown that the obtained distributions of all 
unknown functions are reproduced with an error proportional to the error in the approximation 

of the finite-difference schemes  2 2
x yO h h   . Thus, the presented numerical procedure is 

correct. 
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Figure 10. Steady state distribution of impurity concentration 

for case of localized magnetic field with amplitude 1nB  . 

 

Figure 11. Steady state distribution of electric field potential 

for case of localized magnetic field with amplitude 1nB  . 

5 REAL GEOMETRY CASE 

In the case of a real two-dimensional geometry, calculations were performed on grids with 

parameters 600xN  , 100yN  , 0.01x yh h  , 55 10   . The results of calculations are 

considered for case of the symmetric computational domain with parameters 6L  , 

1 5 1.5L L  , 2 3 4 1.0L L L   , 2H  , 1 2 3 4 1H H H H     (see Fig. 12). Other task 

parameters were equal 1nD  , 1nP  , 1nQ  , 3nB  . The magnetic field was localized in the 

area of the discharge hopper ( 6 8 1.5L L  , 7 3L  ). The calculations were carried out both in 

the irrotational approximation ( 0  ) and with vorticity for the Reynolds number Re 10 . 
Calculations without the vorticity and with it are presented in Fig. 13-16. They show that 

the vorticity consideration gives a more accurate physical picture. With this geometric 
configuration, the impurity is concentrated in the lower left corner of the discharge hopper . 
The cleaning effect is localized in the upper part of the discharge hopper. 
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Figure 12. Distribution of markers defining of real geometry. 

 

 

Figure 13. Distribution of flow function for two cases: 
0   (top figure) and 0   (bottom figure). 
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Figure 14. Distributions of velocity modulus for two cases: 

0   (top figure) and 0   (bottom figure). 

 

 
Figure 15. Steady state distributions of impurity concentration for two cases: 

0   (top figure) and 0   (bottom figure). 
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Figure 16. Steady state distributions of electrical field potential for two cases: 
0   (top figure) and 0   (bottom figure). 

Also, calculations were made for the case of an asymmetric design of a magnetic 
purification system (Fig. 17). The outlet channel was 2 times as wide as the inlet channel, and 

the drainage hole from the hopper was shifted to the right: 1 5 1.5L L  , 2 1.9L  , 3 1.0L  , 

4 0.1L  , 1 2 1H H  , 3 1.5H  , 4 0.5H  . The results of the calculations are presented in 

Fig. 18-20. They show that with this design of the magnetic purification system, the purified 
water is discharged through the right output with a purification degree of about 50%. Thus, 
the cleaning control can be performed both by increasing the magnetic field value and by 
optimizing the geometric parameters. 

 

Figure 17. Distribution of markers that determines the real non-symmetrical geometry. 
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Figure 18. Distribution of flow function. 

 
Figure 19. Distribution of velocity modulus. 

 
Figure 20. Steady state distribution of impurity concentration. 

6 CONCLUSIONS 

In the work the actual problem of water purification from iron impurities with the help of 
electro-magnetic methods is considered. For the model problem, the numerical method and 
parallel algorithm for computer experiments are proposed. Testing the program on parameter 
sets confirmed the operability of the proposed computational approach. With the help of the 
developed technique, some details of the cleaning process were considered. In the future it is 
proposed to analyze the full three-dimensional model and take into account the chemical 
transformations. 
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