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Summary. The estimation of the discretization error via the Richardson extrapolation (RE) is 
considered for problems with discontinuities (shock waves and contact lines) having the 
variable order of accuracy. The computation of the local order of convergence is addressed. 
The numerical tests for the supersonic flows, governed by two dimensional Euler equations, 
demonstrate the feasibility and troubles for discretization error estimation via the Richardson 
extrapolation. The need for the great number of grid space levels is the main obstacle for 
practical applications of RE for compressible flows that may be partly relaxed by the mixed 
order RE. 
 
1 INTRODUCTION 

The grid convergence strategy, based on heuristic rule by C. Runge [1] is the foundation of 
significant part of modern numerical methods (excluding finite element p-refinement). From 
this standpoint, if the difference between two approximate solutions on coarse grid hT  with 
step h  and on the fine grid finehT ,  with step fineh  is small, then finehu ,  and hu  are close to exact 
solution. However, from a practical needs perspective one should desire the quantitative 
estimate of the form δ≤− uuh

~  with computable δ . The Richardson extrapolation (RE) 
method [2-11] enables us to determine the refined solution and the discretization error 
estimate using a set of solutions computed on different meshes. Formally, two meshes are 
necessary for the Richardson method application, if the solution is in the asymptotic range of 
the convergence. The check of this condition requires one or more additional levels of mesh 
refinement.  

RE achieves most success for elliptic and parabolic problems with smooth enough 
solutions. However, the significant current interest exists in the application of RE to CFD 
problems of hyperbolic or mixed types. The Ref. [4] describes calculation of the observed 
order of accuracy for the solution of RANS (subsonic and supersonic) for smooth enough 
flows. The paper [5] considers the multi-dimensional advection equation under the condition 
that the coefficients before the spatial derivatives are continuously differentiable. The paper 
[6] states, that behavior of Richardson extrapolation error estimates for simulations of 
solutions with jumps, such as shock and contact lines for fluid mechanics, is known to be 
problematic. One of the reasons is caused by the fact that the error order is local and depends 
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on the type of flow structure for CFD problems of inviscid compressible fluid containing 
shock waves and contact lines [6, 10, 12-15]. 

Since the value of the convergence order on different flow structures varies, the RE should 
be modified to estimate the local order of convergence in the flowfield. This problem requires 
at least three consequent meshes in the asymptotic range of the convergence. The check for 
this condition causes the need for additional grid, so, four consequent meshes are necessary as 
a minimum. Thus, the Richardson method requires rather high computer resources if applied 
in the CFD domain. The additional computational problems are related to the instabilities at 
the local order estimation. To circumvent this problem, some part of publications [6] concerns 
the averaged order of convergence. The work [10] compare the generalized RE (accounting 
for the local order of convergence) and mixed-order RE. The mixed-order analysis [10] 
provides the best results for inviscid problems with strong shocks if the nonmonotonic 
convergence is manifested. Formally, nonmonotoniticy should disappear in the asymptotic 
range (where the minor order term governs the error), however, it may require so fine grids, 
which are prohibitive from the computer memory standpoint. 

The present paper is addressed to the application of Richardson method for two 
dimensional compressible Euler equations with discontinuities (shock waves and contact 
lines). The emphasis is made on the estimation of the local order of convergence in 
comparison with the mixed-order RE, the single grid postprocessor by [22], and exact error 
(obtained by comparison with analytic solutions). 

2 TEST PROBLEM 
The results of the a posteriori error estimation are presented below for test flows governed 

by two dimensional unsteady Euler equations. 
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1 22 VUeE  are enthalpies and energies, RTP ρ= is the state equation and 

vp CC /=γ  is the specific heat ratio. 
The interactions of shock waves of VI kind according to Edney classification [16] were 

used as the test problems. Only steady-state flows were considered, so only the spatial 
discretization error is addressed. The analytical solution was constructed for this problem.  
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3 ESTIMATION OF LOCAL ORDER OF CONVERGENCE (GENERALIZED RE) 
Let's consider the RE approach for estimation of the local order of convergence. The 

results of computation for three meshes of different steps ih  (related to nodes of most coarse 
grid) may be presented as ( k  is the grid point index): 

khCuu kkk
α
1

)1( ~ +=      
khCuu kkk

α
2

)2( ~ +=      
khCuu kkk

α
3

)3( ~ += . 

 
 
(4)

These relations are valid if kC  is independent on h  and higher order terms may be 
neglected, that is the solution is in the asymptotic range. The system (4) can be solved by 
several formally very close variants. For example, one may obtain expression 

)/()( 32
)3()2( kk hhuuC kkk

αα −−= , (5)

that engender the relation 
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In order to determine kα  we should resolve (6) at every grid cell k . This expression 
contains small values that diverges at 0→h  , so, it is not convenient from the numerical 
viewpoint. For grid relation by factor 2 ( 4/,2/ 32 hhhh == ) one may transfer (6) to the 
expression without small values 
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The function )12/()14()(1 −−= kk
k

αααϕ  has the asymptotic kααϕ 2~)(1  at great kα . There 
are three simplest options for estimation of kα  in dependence on data combinations: 
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The functions )(1 αϕ , 32 ,ϕϕ  are presented in Fig. 1. The solution of (9) ( 3ϕ ) corresponds to 

expression 
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=α  used by [4, 10]. The function )(3 kαϕ has the asymptotic 
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k
k

ααϕ )2/1(~)(3 . The low sensitivity of )(3 kαϕ  visible in Fig.1 at the great kα  may be one of 
reasons for high level of kα  oscillations observed in [10]. 

 
Fig. 1. Sensitivity functions in dependence on the order kα  

One may see in Fig. 1 that  the sensitivity of 32 ,ϕϕ  decreases as kα  increases that should 
cause the oscillations for high kα . From this viewpoint, 1ϕ  is the best choice and it is used in 
presented tests. 

Solving the equation (7) is equivalent to the search of the minimum of the functional 
2)2()3()1()3( )}12/()14()(){()( −−⋅−−−= kk

kkkkk uuuu αααε . (10) 

Due to observed oscillations, we consider herein the regularized version of (10) 
22)2()3()1()3( )}12/()14()(){()( kkkkkk reguuuu kk ααε αα ⋅+−−⋅−−−= .  (11) 

The one dimensional minimization problem was solved by sorting for every cell, the 
regularization coefficient value 410−=reg  provides the regularization without a visible 
distortion of the solution. 

The estimation of the real local convergence order may provide the additional information 
on the generation and transfer of the discretization error. 

The approximation error may be provided as 
khCuuu kkkk

α
1

)1( ~ =−=Δ . (12) 

Herein, the approximation error is defined for coarse grid. The approach by [11] enables 
the estimation of the error for the fine grid, however it requires the interpolation from the 
coarse to fine meshes that engender an additional error, which complicates the analysis. 
Herein, we avoid this procedure for brevity and lucidity. 
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It should be noted, that all expressions (7-9) demonstrate singularity at 0→kα . The paper 
[4] recommends restriction for the minimum values of kα . The main problem with small 
values of kα  occurs for undisturbed domains of flow (before shock waves, for example), 
where no convergence exists. In these domains the estimation of error via RE is not limited. 

4 MIXED-ORDER ANALYSIS 
The problem under the consideration contains errors of several different orders emerged at 

different flow structures. In the standard RE, the asymptotic grid convergence range is 
considered as the condition that permits neglecting all Taylor expansion terms of higher order. 
In mixed order analysis [10], the asymptotic range means saving two different low orders and 
dropping higher terms. It is useful for the nonmomotonic convergence caused by the different 
signs of two leading terms of expansion. 

The influence of the shock wave (first order error) engender the series 
...~ 211 n

kkkk hChCuu ++= ( n  is the formal order for the considered numerical method). The 
availability of both shock waves and contact lines causes the form of expansion 

...~ 322/11 n
kkkkk hChChCuu +++= . The asymptotic range means, herein, the small influence of 

higher order terms and one may obtain the form, which seems to be most suitable for 
compressible flows: 

n
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(13) 

This system is potentially suitable for extraction of the main sources of errors, including 
shock waves, contact lines and undisturbed field. However, this statement needs four grid 
levels at the asymptotic range (considered herein, as the absence of influence from the higher 
orders of error). We consider several simplified versions of the system (13). The expressions 
for error on the coarse grid are presented. The notation )()( m

k
i

kim uu −=ε  is used. 
The first order component of error is related with the shock wave and (for the first order 

scheme) with the nominal error in the total flowfield. In order to account for first order we 
consider the RE version that follows:  

1
1)1( ~ hCuu kkk +=      

2
1)2( ~ hCuu kkk +=      

 

(14) 

and 

)(2~ )2()1()1(
kkkkk uuuuu −=−=Δ  . (15) 

In order to account for contact discontinuity we consider another RE version:  
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Assuming according [10]  12 =h  for finest grid 
1)1( 2~
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1)2( ~
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(17) 

The expression for error 

    )12/()(2~ )2()1()1( −−=−=Δ kkkkk uuuuu . 
(18) 

In order to account for both shock wave and contact discontinuity we consider the RE:  
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Assuming 13 =h  for finest grid and binary relations between grid levels, one obtains 
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The error is: 

)234/()}(2))(245{(2~ )2()3()1()3()1( −−−−−=−=Δ kkkkkkk uuuuuuu . 
(21) 

Another set of expressions may be obtained for the second order scheme if the contact 
discontinuity effect is neglected: 
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The corresponding error is:  
)2()3()2()3()1()3(

3231
)1( 3/223/8)(2)(3/223/2~
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(23) 

The general form for the second order scheme and solution, containing shock wave and 
contact discontinuity is 
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The coefficients may be expressed as: 
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And the error has the appearance: 
321)1( 64822~
kkkkkk CCCuuu ++=−=Δ . 

(28) 

The mixed-order RE expressions (15), (18), (21), (23), (28) provide results of acceptable 
quality if the order of the error is known a priori. The results of the error norm computation 
performed using artificially generated data with the error order 2/1  are presented in the Table 
1 in comparison with the results by generalized Richardson (12) and the exact error norm. The 
mixed-order RE provides acceptable results only if terms with h1/2 are available. Since the 
order at such flow structures as shock waves and shear layers is not known precisely [6,15], 
the uncertainty of the results may be significant.  

  
2LkρΔ  

1 generalized Richardson (12) 1.000026 
2 2/11~ hCuu kkk +=  1.000021 

3 11~ hCuu kkk +=  0.5857704 

4 hChCuu kkkk
22/11~ ++= 1.050285 

5 221~ hChCuu kkkk ++=  0.7475487 

6 2322/11~ hChChCuu kkkkk +++= 1.000028 

7 Exact error norm 1 

Table 1. The results of the error norm computation 

5 NUMERICAL TESTS 

Values jk ,α  и jkC ,  were calculated for Edney VI flow pattern. The first order method 
[17,18], second order method [19], and third order method [20,21] were used in tests. The 
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mesh is uniform ( 100100× , 200200× , 400400× , 800800×  nodes) and it is not aligned to 
the shock wave, so the errors at the shock exhibit an oscillatory behavior. 
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Fig. 2. The density isolines 

Fig. 2 presents the density distribution for Edney-IV flow structure ( 4=M , two 
consequent flow deflection angles o101 =α , o152 =α ) computed using [19]. The flow is 
determined by the merging shock waves, the contact line and the expansion fan. 

The distribution of jk ,α  is presented in Fig. 3 in three dimensional form. The order 
10~, jkα  at the shock wave and at some points is visible, contamination error order 

( 2/1~,1~ ,, jkjk αα )  past shock wave is visible also.  
One may compare RE error and true error (the difference between the exact (analytic) and 

numerical solutions) in Figs. 4,5. The oscillations in RE are visible, this may be a trouble for 
the error analysis even if the comparison of the error norms demonstrate the asymptotic range. 

The results of mixed-order analysis [10] are presented for the first order scheme [17], the 
second order scheme [19], and the third order scheme [20,21]. The comparison of the 
Richardson method and the single grid ensemble based approach [22] is conducted. The set of 
solutions obtained by different solvers [17-21] are used for this purpose. The feasibility for 
the estimations of the discretization error norm without mesh refinement is the significant 
merit of approach [22]. This is another way if compare with the standard mesh refinement 
approach, the Richardson extrapolation and a multigrid approach, presented, for example, by 
[23]. 
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Fig. 3 The distribution of jk ,α . 
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Fig. 4 ρΔ  computed by Generalized Richardson 
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Fig. 5. The difference of densities ρΔ  between numerical and analytical solutions. 

The estimations of the error norm via generalized Richardson extrapolation, the mixed-
order RE, and by [22] in comparison with the true error are presented in Table 2 for Edney-VI 
test. The norms of errors corresponding expressions (12), (15), (18), (21), (23), (28) are 
computed and presented below. The order of convergence evaluated by the norms of 
difference between numerical and analytical solutions was about 1/2. The mixed-order RE, 
governed by the orders, specific for the shock wave and contact discontinuities, also provides 
the acceptable estimation of the error norm. 

 First order 
scheme [17] 

Second order 
scheme [19] 

Third order scheme 
[20,21] 

 
1LkρΔ  

2LkρΔ
 

1LkρΔ  
2LkρΔ  

1LkρΔ  
2LkρΔ  

generalized Richardson  0.0672 0.226 0.0394 0.139 0.0398 0.137 

2/11~ hCuu kkk +=  0.1271  0.320 0.0585 0.192 0.0627 0.234 
11~ hCuu kkk +=  0.0748 0.187 0.0348 0.113 0.0365 0.135 

hChCuu kkkk
22/11~ ++=  

0.1224  0.387 0.0470 0.215 0.0611 0.281 
221~ hChCuu kkkk ++=  0.0834 0.229 0.0355 0.134 0.0360 0.159 

2322/11~ hChChCuu kkkkk +++=  
0.0969 0.287 0.0926 0.481 0.0389 0.195 

Error norm bound by [22] - - 0.0563 0.146 0.0585 0.157 
Exact error norm 0.0876 0.216 0.0391 0.126 0.0392 0.137 

Table 2. Comparative estimations of the error norm 
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The Table 2 demonstrates that generalized Richardson extrapolation provides estimation of 
the error norm, which is closest to the exact error norm. The approach by [2] provides 
reasonable estimation of the error norm with minor requirement to computer resources 
(several runs of solvers on the coarse grid). 

6 DISCUSSION 
The present numerical tests illustrate the Richardson method application for two 

dimensional compressible Euler equations with discontinuities (shock waves and contact 
lines). 

Three consequent grids enable the discretization error and the local order kα  estimation in 
the asymptotic range. 

The estimation of the local error order kα  demonstrates the oscillations. The great values 
10~kα  are observed in vicinity of shocks and may be caused by the misalignment of grid 

and shocks or an accidental compensation of errors [10] of different signs at nonasymptotic 
mode. The high kα  produces relatively small impact to error kuΔ  and especially to its norm 
estimation. 

The small values limit 0→kα  contains singularity that causes the divergence of the error 
estimation. So, GRE needs for a posteriori information regarding minimal order of 
convergence, it does not operate in the domains of non-monotonic convergence and in 
domains of undisturbed flow. 

The non-monotonic behaviour is generic for discontinuous solutions away the asymptotic 

range (for example, for S-shape solutions, the terms 3

3
2

2

2

x
uh

x
uh

∂
∂

+
∂
∂  in truncation error 

demonstrates the feasibility for error cancellation). 
The estimation of the asymptotic range by the error norm analysis [6] may not coincide 

with the local error analysis. 
The verification of the order requires that all three grid solutions be in the asymptotic grid 

convergence range. The additional grid levels are necessary to check the asymptotic range. 
For example, the paper [10] used eight grid levels for complete RE analysis. So, the 
Richardson extrapolation for flows with discontinuities requires the extremely high computer 
memory. The need for the asymptotic grid convergence range may be partly relaxed using the 
mixed-order approach [10]. However, the mixed-order RE requires the precise a priori 
information on the order of convergence.  

The estimation of the error norm by RE provides results close to approach by [22] and the 
true error. The RE provides more detailed information, if compare with [22], however, it 
require much more computer resources. 

 

7 CONCLUSIONS 
The estimation of the discretization error using generalized Richardson extrapolation is 

feasible for the problems with local variable error order, such as compressible fluid flows, 
containing shocks and contact discontinuities.  
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The correct choice of the sensitivity function is important for the local error order 
estimation. 

The Richardson extrapolation for flows with discontinuities needs for abundant computer 
resources. The local error order should be estimated that demands three consequent grids. The 
additional grid levels are necessary to verify the asymptotic range correctness. 
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