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Summary. Quantum effects may change form of equilibrium momentum distribution func-

tion making it non-maxwellian due to Heisenberg uncertainty principle in scattering. In strongly

coupled Coulomb systems “quantum tails” at high momenta are expected. In this paper, equilib-

rium momentum distributions in non-degenerate hydrogen plasma were calculated numerically.

It was shown that electronic distributions have “quantum tails” when protons are maxwellian.

1 INTRODUCTION

It is well known that in classical statistics momenta of interacting particles at thermodynam-

ical equilibrium have Maxwellian distribution. Quantum effects may change the equilibrium

distributions of momenta, making them non-maxwellian. For instance exchange effects in elec-

tronic systems leads to Fermi–Dirac distribution instead of maxwellian. However even without

exchange the distribution function of interacting particles can be non-maxwellian due to Heisen-

berg uncertainty principle in scattering of particles.

For a Coulomb system in [1] it was shown that momentum distribution takes “quantum tail”

with power law 1/p8. Later this problem was studied in [2–5] where the form of “quantum

tail” was corrected. Such quantum effects may play a big role in the study of combustion,

detonation, vibration relaxation, chemical reactions and even low-temperature nuclear fusion.

They are also important in the study of kinetic properties of many-particle systems. However

under corresponding conditions particles usually are strongly coupled and perturbative methods

can not be applied. Therefore for studies of momentum distributions in such systems numerical

ab initio approaches are required.

Computer simulation is one of the main tools in studies of thermodynamic properties of

many-particle strongly coupled Coulomb systems. Some of the most powerful numerical meth-

ods for simulation of quantum systems are Monte Carlo methods, based on path integral (PIMC)

formulation of quantum mechanics [6]. This methods use path integral representation for par-

tition function and thermodynamic values such as average energy, pressure, heat capacitance

etc. PIMC methods are widely used for studying dense hydrogen plasma [7], electron gas in
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metal [8–10], electron–hole plasma [11] in semiconductors, superfluidity [12–14] and even

quark–gluon plasma [15–17].

Unfortunately usual PIMC methods cannot cope with problem of calculation of average val-

ues of arbitrary quantum operators in phase space or momentum distribution function, while

this problem may be central in studies of kinetic properties of matter. The Wigner formulation

of quantum mechanics in phase space allows more naturally to consider not only thermodynam-

ical values but also kinetic properties. Methods for phase space treatment of the single-particle

quantum dynamics in Wigner approach in microcanonical ensemble were proposed in [18–22].

Recently a generalization of these virtual particle one-body Wigner Monte Carlo methods to the

many-body distinguishable particles has been done in [23]. Wigner dynamics of a relativistic

particle was studied in [24].

In this paper we apply the ab initio phase space Monte Carlo approach developed in [25,

26] to non-degenerate hydrogen plasma. We calculated momentum distribution functions of

electronic and protonic components for strongly coupled (Γ ≈ 1) plasma. Preliminary results

for “quantum tails” in electronic distribution was obtained.

2 WIGNER FUNCTION OF COULOMB SYSTEM

In this paper we consider a two-component system of charged particles with Coulomb inter-

action. Hamiltonian is

H(p,q) =
N

∑
a=1

p2
ea

2me

+
N

∑
a=1

p2
ha

2mp

+
N

∑
a=1

N

∑
b=a+1

(−e)(−e)

|qea −qeb|
+

N

∑
a=1

N

∑
b=a

(−e)(+e)

|qea −qpb|

+
N

∑
a=1

N

∑
b=a+1

(+e)(+e)

|qpa −qpb|
, (1)

where pea and qea are momentum and position of a-th particle with mass me and electrical

charge −e, and pha and qha—the same for a-th particle with mass mp and electrical charge +e.

We will call the negative-charged particles as “electron” and the positive-charged particles as

“proton” meaning applications to hydrogen plasma. Numbers of electrons Ne and protons Np

we consider equal (Ne = Np = N) so system is quasineutral.

We focus on canonical ensemble of system (1) with fixed numbers of particles N, volume V

and temperature T . Density matrix in q-representation in this case is

ρ(q,q′;β ) = 〈q|e−β Ĥ|q′〉, (2)

where β = 1/kT is reciprocal temperature, and |q〉 is quantum state of N particles with deter-

mined positions. We will consider a non-degenerate system, when states |q〉 and density matrix

56



A. S. Larkin and V. S. Filinov

(2) are not (anti)symmetrized. In fact, we consider Boltzmann statistics instead of Fermi–Dirac

(Bose–Einstein) statistics. It is reasonable when neλ 3
e 6 1, npλ 3

p 6 1 i.e. average distance be-

tween particles n
−1/3
e is less than De Broglie thermal wavelength

λe =

√

2π h̄2

mkT
.

Herein we do not taking into account quantum exchange effects, only quantum interference and

nonlocality.

2.1 Wigner function: path integral representation

An average value of some operator Â can be written as a Weyl symbol A(p,q), averaged over

phase space of 2N particles with the Wigner function W (p,q;β ,V) [27]:

〈Â〉=
∫

d6N pd6Nq

(2π h̄)6N
A(p,q)W(p,q;β ,V). (3)

Here we use a symbol p for momenta of 2N particles: p = (pe1, . . . ,peN,pp1, . . . ,ppN). So we

deal with other variables. Here the Weyl symbol of operator Â is:

A(p,q) =

∫

d6Ns

(2π h̄)6N
eisq/h̄〈p+ s/2|Â|p− s2〉. (4)

Weyl symbols for common operators like p̂, q̂, Ĥ, etc can be easily calculated directly from

definition (4). The Wigner function of the 2N-particle system in canonical ensemble is defined

as a Fourier transform of the off-diagonal element of density matrix (2) in q-representation:

W (p,q;β ,V) = Z(β ,V )−1
∫

d6Nξ ei〈p,ξ 〉/h̄ρ(q−ξ/2,q+ξ/2;β ), (5)

where Z(β ,V ) is partition function of canonical ensemble of N particles and designation 〈p,q〉=
∑N

a=1(peaqea +ppaqpa) is the sum over all particles. The Wigner function W (p,q;β ,V) corre-

sponds to the classical distribution function in the phase space, and the Weyl symbol—to the

classical observing quantity.

Since operators of kinetic and potential energy in Hamiltonian (1) do not commutate, the

exact explicit analytical expression for Wigner function does not in exist. To overcome this dif-

ficulty we represent the Wigner function similarly to path integral representation of the partition

function [6,28]. Exactly we represent the statistical operator e−β Ĥ as a product of large number

(M) of high-temperature operators e−εĤ and write the Wigner function in the form of a multiple
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integral of the product of the high temperature density matrices:

W (p,q;β ,V) = Z(β ,V )−1
∫

d6Nξ ei〈p,ξ 〉/h̄
∫

d6Nq1 . . .d6NqM−1

×
[

M−1

∏
m=0

〈qm|e−εĤ |qm+1〉
]
∣

∣

∣

∣

∣

qM=q+ξ/2

q0=q−ξ/2

. (6)

If ε → 0 the high temperature density matrices can be calculated with accuracy up to O(ε2) [6]:

〈qm|e−εĤ |qm+1〉 ≈ λ−1
ε exp

[

−πλ−2
ε 〈qm+1 −qm〉2 − εU(qm;ε)

]

, (7)

where we use designation 〈qm+1 −qm〉2 = ∑N
a=1[(q

m+1
ea −qm

ea)
2 +(qm+1

pa −qm
pa)

2], and λε is the

De Broglie thermal wavelength at high temperature MT ,

λε =

√

2π h̄2ε

m
.

Also here the Kelbg pseudopotential is introduced instead of Coulomb potential [29]:

U(q;ε) =
N

∑
a=1

N

∑
b=a+1

(−e)(−e)

|qea −qeb|
φε(qea −qeb)+

N

∑
a=1

N

∑
b=a

(−e)(+e)

|qea −qpb|
φε(qea −qpb)

+
N

∑
a=1

N

∑
b=a+1

(+e)(+e)

|qpa −qpb|
φε(qpa −qpb), (8)

φ(rab)β = 1− e−r2
ab/λ 2

εab +
√

π
rab

λεab

[1− er f (rab/λεab)] (9)

where λ 2
εab =

h̄2β
2µab

, µ−1
ab = m−1

a +m−1
b .

Thus expression for Wigner function takes the form:

W (p,q;β ,V) = Z(β ,V )−1
∫

d6Nξ ei〈p,ξ 〉/h̄
∫

d6Nq1 . . .d6NqM−1

×exp

{

− 1

M

M−1

∑
m=0

[

π
M2

λ 2
〈qm+1 −qm〉2 +βU(qm)

]

}
∣

∣

∣

∣

∣

qM=q+ξ/2

q0=q−ξ/2

, (10)

where λ =
√

2π h̄2β/m is the thermal wavelength at temperature T .

In continuous limit M → ∞ expression (10) turns into path integral over trajectories q(τ)

starting at point q−ξ/2 and ending at q+ξ/2, where τ is a dimensionless parameter that can
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be interpreted as “imaginary time” [6]:

W (p,q;β ,V) = Z(β ,V )−1
∫

d6Nξ ei〈p,ξ 〉/h̄
∫ q(1)=q+ξ/2

q(0)=q−ξ/2
D6Nq(τ)

×exp

{

−π

∫ 1

0
dτ

[〈q̇(τ)〉2

λ 2
+

β

π
U (q(τ))

]}

. (11)

Measure of path integral (11) depends on Fourier variables ξ and positions q. To avoid this we

change variables from trajectories q(τ) to closed dimensionless trajectories z(τ):

q(τ) = λ z(τ)+(1− τ)(q−ξ/2)+ τ(q+ξ/2). (12)

Taking into account the new boundary conditions z(0) = z(1) = 0 we obtain the path integral

representation of Wigner function:

W (p,q;β ,V) = Z(β ,V )−1
∫

d6Nξ ei〈p,ξ 〉/h̄ ∑
P

(±1)Pe
− π

λ2 〈ξ 〉2

×
∫

z(0)=z(1)=0
D6Nz(τ)e

−π
∫ 1

0 dτ
[

〈ż〉2(τ)+ β
π U(q(τ))

]

, (13)

where q(τ) is given by (12).

2.2 Harmonic approximation

Momenta p in expression (13) for the Wigner function are connected with other variables

through 6N-dimensional Fourier transform, which is not integrable analytically or numerically

in general case. Exclusions are only linear or harmonic potentials, when order of variable ξ̄ is

less than two. In harmonic approximation we expand potential energy into Taylor series up to

second order in ξ̄ :

U (λ z(τ)+q+ξ (τ −1/2))≈U (λ z(τ)+q)+(τ −1/2)ξa,i
∂U (λ z(τ)+q)

∂qa,i

+
1

2
(τ −1/2)2ξa,iξb, j

∂ 2U (λ z(τ)+q)

∂qa,i∂qb, j
, (14)

where we mean summation over repeated indices a,b over all particles from 1 to 2N and i, j

over dimensions from 1 to 3.

After that the expression for Wigner function (13) takes form of generalized gaussian integral

over variable ξ̄ . Finally, harmonic approximation for the Wigner function can be written in the
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following form:

W (p,q;β ,V) = Z(β ,V )−1
∫

z(0)=z(1)=0
D6Nz(τ)exp{−πK[z(τ)]−πP[q,z(τ)]}

×exp

{

− λ 2

4π h̄2
pa,iχai,b j[q,z(τ)]pb, j +πJa,i[q,z(τ)]χai,b j[q,z(τ)]Jb, j[q,z(τ)]

}

×det
∣

∣χai,b j[q,z(τ)]
∣

∣

1/2
cos

{

λ

h̄
pa,iχai,b j[q,z(τ)]Jb, j[q,z(τ)]

}

. (15)

Here we introduced scalar functionals K and P, 6N-vector functional Ja,i and matrix functional

χai,b j. They depends on trajectories z(τ) and positions q:

K[z(τ)] =
∫ 1

0
dτ ż2(τ),

P[q,z(τ)] =
β

π

∫ 1

0
dτU (q+λ z(τ)) ,

Ja,i[q,z(τ)] =
βλ

2π

∫ 1

0
dτ(τ −1/2)

∂U

∂qa,i
(q+λ z(τ)) ,

χai,b j[q,z(τ)] =

[

δabδij +
βλ 2

2π

∫ β

0
dτ(τ −1/2)2 ∂ 2U

∂qa,i∂qb, j

]−1

.

Note that the first term in exponent (15) looks similarly to Maxwell distribution in classical

statistics. The main differences are matrix χai,b j[q,z(τ)] and cosine. This matrix and cosine

provide correlation of particle momenta with each other and with their positions and turn into

units in case of non-interacting particles.

The expression for Wigner function (15) is obtained under assumption that potential energy

U is expandable in Taylor series of second order ξ with a good accuracy. Note that the exponent

(13) contains variable ξ in three places. The first one is in the Fourier term (ipξ/h̄), which makes

momenta correlated with other dynamical variables. The second one is in the gaussian-like term

(−πξ 2/λ 2). The third one is in the integral term, where ξ is argument of potential:

1
∫

0

dτβU(q+λ z(τ)+ξ (τ −1/2)).

The gaussian term provides fast decaying when ξ increases, so the main contribution comes

from ξ near π−1/2 ≈ 0.6. Argument of potential function contains ξ̄ multiplied by τ − 1/2,

which is modulo less than 0.5. Using the mean value theorem, we can roughly get symbolic
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estimation of these integrals in exponent (13) as

1

n!

∂ nU(q0)

∂qn

1
∫

0

dτ

(

τ − 1

2

)n

=
1

n!

(1+(−1)n)

(n+1)2n+1

∂ nU(q0)

∂qn
, (16)

where x0 is a certain point of trajectory. Numerical value of this integral rapidly decreases: when

n = 2, 4, 6 it equals 1/24, 1/1920 and 1/322560 correspondingly. Thus we expect negligible

contribution of high order Taylor terms in potential expansion. Numerical calculations for some

model of non-trivial potentials, done in [25, 26], confirm this assumption.

2.3 Monte-Carlo method

For calculation of 〈Â〉 in harmonic approximation (15) we use Monte Carlo method (MC)

from [25, 26], generalized on two-component system of many particles in three spatial dimen-

sions. Foremost one has to represent path integrals in discrete form of multiple integrals like

(10). As a result we obtain expressions for MC calculations in the following form:

〈Â〉=
〈

A(p,q) f (p,q,z1, . . . ,zM−1)h(p,q,z1, . . . ,zM−1)
〉

w

〈 f (p,q,z1, . . . ,zM−1)h(p,q,z1, . . . ,zM−1)〉w

. (17)

Here brackets
〈

g(p,q,z1, . . . ,zM−1)
〉

w
denote averaging of any function g(p,q,z1, . . . ,zM−1)

with a positive weight w(p,q,z1, . . . ,zM−1):

〈

g(p,q,z1, . . . ,zM−1)
〉

w
=

∫

d3N pd3Nq

∫

dz1 . . .dzM−1g(p,q,z1, . . . ,zM−1)

×w(p,q,z1, . . . ,zM−1), (18)

while

w(p,q,z1, . . . ,zM−1) = exp

{

− λ 2

4π h̄2
pa,iχai,b j pb, j +πJa,iχai,b jJb, j −πK −πP

}

,

f (p,q,z1, . . . ,zM−1) = cos

{

λ

h̄
pa,iχai,b jJb, j

}

,

h(p,q,z1, . . . ,zM−1) = det
∣

∣χai,b j

∣

∣

1/2
. (19)

To construct Metropolis algorithm we introduce three types of MC steps:

1. Variation of momentum of some particle: pa → pa +δpa.

2. Variation of overall position of some particle: qa → qa +δqa.

3. Variation of trajectory representing some particle: zm
a → zm

a +δzm
a .
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In our calculations probability of the first-type step is 0.1. Probability of the second-type step

is also 0.1. Probability of the third-type step is 0.8, because each trajectory is represented by

several dozens of variables zm. Such choice allows the algorythm to find an ”equilibrium" con-

figuration much faster than choice of equal probabilities of each type of step. Acceptance prob-

ability of the steps is defined by positive function w(p,q,z1, . . . ,zM−1) according to standard

Metropolis procedure. I.e. we calculate w for old configuration C, for probe configuration C′.

Then aceptance probability is min(1,w(C′)/w(C)). The first thousands of steps should be re-

jected during the calculation to “forget” initial configuration. We also use periodic boundary

conditions only for overall positions q while trajectories q(τ) representing particles are able to

leave the periodical cell.

3 NUMERICAL RESULTS

In this section, we present and discuss some numerical results, obtained by the developed

Monte Carlo method for the Wigner function. We have been applied it to a two-component

non-degenerate Coulomb system with fixed number of particles and temperature. Particles of

the first type are of negative charge −e and mass me, particles of the second type are of positive

charge +e and greater mass mp. When me is electron mass and mp = 1836me then this system

is a model of hydrogen plasma. Let us consider specific thermodynamical parameters of the

system.

Firstly, temperature T characterizes average kinetic energy of particles in equilibrium till

system is non-degenerate. It means that Fermi energy of the electronic subsystem eF should be

much less than temperature: kT ≪ EF . This criterion of non-degeneracy may be rewritten in a

convenient form:

neλ 3
e ≪ 1, (20)

where ne is electronic partial density, λe—De Broglie wavelength at temperature T . I.e. average

distance between particles is much greater than De Broglie wavelength. In this case system of

particles obeys Boltzmann statistics rather than Fermi–Dirac.

Secondly, the relation between temperature and average energy of interaction characterizes

non-ideality of the system. Convenient parameter is so-called coupling strength:

Γ = e2/(kTd), d = [3/(4πne)]
1/3, (21)

with Wigner–Seitz radius d being average distance between electrons. We use Brueckner pa-

rameter rs = d/aB. When parameter Γ ≪ 1 then Coulomb plasma is almost ideal. In other case

it is strongly coupled and interaction can not be considered as a perturbation.
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Figure 1: Momentum distributions of electrons in non-degenerate hydrogen plasma. Solid line refers to maxwellian

distribution. Other lines from bottom to top correspond to Γ = 0.4, 0.9, 1.1 and 1.2. Corresponding temperatures

are given in text. All distribution functions are normalized to unit area under the curves.

In this paper, we consider the range of Γ from 0.4 up to 1.2 for low densities to avoid the

violation of condition neλ 3
e 6 0.3. In this case usage of Boltzmann statistics is quite justified.

Consideration of such effects will lead to additional deformation of momentum distribution into

Fermi function. However they does not have essential influence on expected quantum “tails” due

to the uncertainty principle.

Under these conditions (weak degeneracy and moderate coupling strength) it is able to use

the following set of parameters. Number of particles was taken Ne = Np = 10, number of “inner

quantum coordinates" M = 20, number of Monte Carlo steps—5×107. Increase of these param-

eters leads to great increase in the calculation time but does not affect on results significantly.

Momentum distribution functions for electronic component of hydrogen plasma are pre-

sented in figures 1 and 2. The black solid line shows the maxwellian distribution. Other lines

refers to equilibrium distributions for non-ideal hydrogen plasma with coupling strength Γ =

0.4, 0.9, 1.1, 1.2 at fixed neλ 3 = 0.3. Corresponding temperatures kT are 1.16, 0.23, 0.15,

0.13 Ha while Brueckner parameters rs are 2.16, 4.87, 5.94 and 6.47. Meaning parts of all

distributions in pλe/h̄ units are the same. However “quantum tails” at high momentum values

appear. With increasing of non-ideality Γ the “tail” becomes more distinct. For instance when

Γ = 1.2 electronic momentum distribution at p = 10h̄/λe is four times larger than maxwellian

one.
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Figure 2: The same as in figure 1 but at high values of pλe (in units of h̄).
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Figure 3: Momentum distributions of protons in non-degenerate hydrogen plasma. Solid line refers to maxwellian

distribution. Other lines from bottom to top correspond to Γ = 0.4, 0.9, 1.1 and 1.2. Corresponding temperatures

are given in text. All distribution functions are normalized to unit area under the curves.
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Figure 4: The same as in figure 3 but at high values of pλe (in units of h̄).

Note that the distribution functions are normalized to unit area under the curves. In logarith-

mic scale it may be difficult to see that, however the normalization is correct.

Momentum distribution functions for protonic component are presented in figures 3 and 4.

The black solid line shows the maxwellian distribution, the other lines refer to the conditions

mentioned above. Note that the units of momentum are pλ 3
p . All distributions are maxwellian

under given parameters. The reason is that de Broglie wavelength of proton is much shorter than

electronic one—λp ≈ 0.02λe; under given conditions the protonic component is quite classical

although the electronic one is essentially a quantum system.

Note that exchange corrections to electronic momentum distributions at neλ = 0.3 are quite

significant. However they affect only the mean part of distribution making it Fermi instead of

Maxwell. Quantum tales are results of dynamical scattering effect not depending on exchange.

4 CONCLUSIONS

In this paper formalism proposed and developed in [25, 26] is applied to non-degenerate hy-

drogen plasma. Path integral representation of Wigner function in harmonic approximation was

used for studying of two-component Coulomb system. Problem of Coulomb singularity was

overcome by using of Kelbg pseudopotential, which in path integral representation gives pre-

cise result. Suitable Monte-Carlo method was developed and embedded in software. Momentum

distribution functions of non-degenerate hydrogen plasma with coupling strength Γ from 0.4 to
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1.2 was calculated. Protons are maxwellian under considered conditions. On the contrary, elec-

tronic distribution functions have “quantum tails” at high momenta, that agrees qualitatively

with theoretical predictions of [4]. In further papers we plan to compare our results with theo-

retical predictions quantitatively and improve precision of our numerical method.
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