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Summary. Within the framework of quantum statistics, such properties of silicon with 
intrinsic conductivity as thermal conductivity and heat capacity of electron gas in an arbitrary 
degeneracy range in the temperature range from 300K to 2000K were determined. In the 
calculations, approximations of the Fermi-Dirac integrals were used. In modeling the heat 
capacity and thermal conductivity, the influence of bandgap narrowing in the conditions of a 
sufficiently strong heating of the intrinsic semiconductor and carrier degeneracy was taken 
into account. The results of the calculations are compared with the experimental data. 
Numerical and graphical information on the properties obtained and the results of comparison 
with experiment are presented. 
 
 

1 INTRODUCTION 
In connection with the development of technological applications based on laser 

processing of semiconductors with short pulses, the research of fundamental melting 
mechanisms [1] - [5] remains important, for which the properties of semiconductors, 
including heat capacity and thermal conductivity, are of great importance. 

Determination of the heat capacity and thermal conductivity of semiconductors, like 
metals, is carried out in two ways, experimental or theoretical. The experimental approach is 
traditional. The data obtained by measurements are widely used for testing theoretical 
dependencies. The literature [6] - [10] presents experimental values of the equilibrium 
properties of silicon in temperature ranges that do not exceed the melting point. Basically, 
these data characterize the thermal conductivity and electrical conductivity. 

The experimental approach has a number of limitations, primarily on the range of 
measurement conditions, especially in the melting region. As a rule, experimental data are 
obtained under conditions of thermodynamic equilibrium and give values of the equilibrium 
properties of silicon.  

However, in the problems of laser action on semiconductors, the knowledge of equilibrium 
properties is insufficient. Laser heating of semiconductors (silicon), as well as metals, occurs 
at very short time and spatial scales and leads to a violation of the general local 
thermodynamic equilibrium. Therefore, in problems of laser action, silicon can be regarded as 
an object consisting of two interacting subsystems - electron and phonon subsystems [11] - 
[12]. At the same time, for each of the subsystems it is necessary to determine 
thermophysical, optical and thermodynamic characteristics that vary over a wide temperature 
range. In view of the limited possibilities of the experimental approach in determining the 
properties of silicon electron gas, in this paper, we propose to use a theoretical approach based 

99



Olga N. Koroleva, Alaxander V. Mazhukin 

on the application of quantum statistics of an electron gas, i.e. the distribution function and 
Fermi-Dirac integrals [13] - [15]. Of special interest in the problems of laser action is the 
behavior of electron subsystem of silicon under phase transition conditions. Numerous 
experiments [5], [7], [8] have shown that in silicon during the melting the covalent bonds are 
destroyed, with a change in the short-range order, accompanied by a sharp increase in the 
concentration of conduction electrons and leading to the transition of silicon to the metallic 
state. In order to determine the properties of electron subsystem under phase transition 
conditions, together with the temperature dependence of the carrier concentration, an 
important fundamental characteristic of the silicon phase transition, such as the width of 
bandgap is necessary, which narrows with increasing temperature, having a significant effect 
on the increase in carrier concentration reaching high N(T)≈1018 cm-3 values and higher, 
which is confirmed by experimental studies [16], [17].  

In the article, using the theoretical approach based on quantum statistics, such properties of 
the electron subsystem of silicon with intrinsic conductivity as the heat capacity Ce(T,N) and 
the thermal conductivity κe(T,N) are determined. The calculations were carried out taking into 
account the temperature and carrier-density dependences of the bandgap Eg(T,N), Fermi 
energy EF(T,N), temperature dependences of the electron concentration Ne(T), hole 
concentration Nh(t) in an arbitrary degeneracy range of the electron gas at temperature 
changes from 300K to 2000K. The results are compared with the experimental data. 

2 THEORETICAL APPROACH TO DETERMINATION OF SILICON ELECTRON 
SUBSYSTEM PROPERTIES 

To the most important thermophysical and thermodynamic characteristics of silicon 
electron gas within the framework of the heat transfer mechanism of energy transfer are the 
heat capacity Ce(T,N) and thermal conductivity κe(T,N). For their determination, the statistics 
of the electron gas of semiconductors are used. The central place in this approach is occupied 
by the charge carrier distribution function over the energy states. Electrons in the conduction 
band and holes in the valence band of silicon can be regarded as an ideal Fermi gas. For an 
ideal Fermi gas, the probability of an electron filling a state k with energy E at a temperature 
T is found using the Fermi-Dirac distribution [13] - [15]: 

1(E,T)
1 exp F

B

f
E E

k T

=
⎛ ⎞⎛ ⎞−
+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

    (1) 

where EF – is Fermi energy, determined from the electroneutrality condition, kB is Boltzmann 
constant.  

For an electron gas, the value of the Fermi energy is defined as the amount of energy 
necessary to change the number of particles in the system per volume unit and coincides with 
the value of the chemical potential at T=0 K.  

2.1 Carrier concentration. 
An important characteristic of semiconductors, necessary for determining the majority of 

thermophysical properties of silicon, is the concentration of charge carriers. In intrinsic 
semiconductors, unlike metals, the number of charge carriers and their mobility depend on 
temperature. 
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The electron Ne(T) and holes Nh(T) concentrations at the temperature T in the conduction 
band under thermodynamic equilibrium conditions are determined  

( ) (E,T)
C

e C
E

N T N f dE
∞

= ∫   ( ) (E,T)
VE

h VN T N f dE
−∞

= ∫   (2) 

where 
3 2 3 2
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are effective densities of states in the 

conduction band EC and the valence band EV, ћ is the Planck constant, ( )1 32 3 2
e l tm M m m= ⋅ is 

the effective mass of electron state density in the conduction band, taking into account the 
number of equivalent energy minima in the conduction band M (for silicon M = 6) [13] - [15], 
ml, mt are the longitudinal and transverse masses, mh is the effective mass of the density of 
hole states in the valence band, and f(E,T) is the Fermi-Dirac distribution function (1). For an 
intrinsic semiconductor that does not contain impurities, equality of concentrations is 
observed 

Ne(T)=Nh(T)=N(T).     (3) 

The integrals in (2) can be represented in the form  

( ) ( )1 2e C eN T N η= ⋅F   ( ) ( )h V 1 2 hN T N η= F    (4) 

where F1/2(x) is Fermi-Dirac integral of order j=1/2, is representative of the family of integrals 
that play an important role in determining the properties of semiconductors  

( ) ( ) ( )0

1
1 1

j

j c
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d
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εη ε
Γ ε η

∞

=
+ + −∫F     (5) 

where Γ(x) is Gamma function, j is the index of the Fermi-Dirac integral, c=e for electrons 
and c=h for holes, ε is the reduced energy of the electron (hole), ηc is the reduced Fermi 
energy for electrons and holes 
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e e
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where EC(T,N) is energy of the bottom of the conduction band, EV(T,N) is the energy of the 
top of the valence band.  

At low temperatures in semiconductors, the concentration of conduction electrons is so 
small that they behave like a gas of noninteracting particles, the electron gas is nondegenerate. 
In this case, the Fermi level EF(T,N) lies below the bottom of the conduction band (EC-EF>0) 
in bandgap Eg(T,N) and the distribution function (1) reduces easily to the classical Maxwell-
Boltzmann distribution function, and the calculation of carrier concentration (4) reduces to 

( ) ( ) ( ), ,
exp F e C e

e C
B

E T N E T N
N T N

k T
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

 ( ) ( ) ( ), ,
exp V h F h

h V
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= ⎜ ⎟
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 (7) 

Taking into account the intrinsic conductivity N(T) 
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where Eg = Ec - Ev is width of bandgap. 
In the calculation view, the determination of carrier concentrations will not be difficult. As 

the temperature rises, the situation changes. Hot electrons give energy to the lattice, while the 
width of bandgap decreases and the concentration of free charge carriers in the conduction 
band increases. The Fermi level penetrates either to the conduction band (EC-EF<0) or to the 
valence band (EF-EV<0), the electron gas degenerates and the classical statistics become 
unjust, and (7) is not valid. Therefore, it becomes necessary to use quantum statistics and 
expressions (4) for carrier concentrations. This immediately leads to computational 
difficulties, since the integral (5), except for the integral with order j=0, can not be calculated 
analytically. The computational difficulties associated with the use of Fermi-Dirac integrals 
arise not only in determining the carrier concentrations, but also in determining the properties 
of electron gas such as heat capacity, thermal conductivity, and others [39], where Fermi-
Dirac integrals with integer and half-integral indices, as a rule not high, are used 

1/ 2 7 / 2j− ≤ ≤  и 1 3j− ≤ ≤ . In [18], [19] for Fermi-Dirac integrals of orders j = -1/2, 1/2, 1, 
3/2, 2, 5/2, 3 and 7/2 continuous analytical expressions single of each order have been 
obtained in a wide range of degeneracy  

( )
0

exp , , , 5 7
m

i
j i c

i

a c e h mη η
=

⎛ ⎞
= = = ÷⎜ ⎟

⎝ ⎠
∑cF ,   (9) 

which in this paper were used to calculate the properties of an electron gas. To calculate 
integrals with order j = 1/2, an approximating function (9) with m=7 is used. 

 

 
Figure 1. Temperature dependences of carrier concentrations calculated using (1) Fermi-Dirac 
statistics, (2) Maxwell-Boltzmann, Eg=1.12 eV. 

As the temperature in the semiconductor increases, the process of thermal excitation of 
electrons from the valence band to the conduction band proceeds continuously, electrons 
recombine from the conduction band to the valence band. In the intrinsic semiconductor these 
processes are balanced, and electron and hole concentrations are the same. From the 
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electroneutrality condition, we can find the temperature dependence of Fermi energy EF, 
using (4) and (9) for j=1/2, we obtain  

( ) ( )
7 7

0 0

, ,i i
C i e V i h

i i

N exp a T N N exp a T Nη η
= =

⎛ ⎞ ⎛ ⎞
⋅ = ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑   (10) 

Figure 1 shows the temperature dependences of the carrier concentration calculated with 
quantum statistics and the bandgap (12) and the classical Maxwell-Boltzmann statistics and 
the constant value of the bandgap Eg=1.12 eV at 300K. 

2.2 Bandgap 
The bandgap of silicon Eg with increasing temperature and increasing concentration of 

charge carriers tends to narrow [13] - [17].  
Three basic mechanisms cause the narrowing of the bandgap: thermal expansion of the 

lattice, electron-lattice interaction and collective interactions of carriers. The thermal 
expansion with increasing temperature together with the enhancement of the electron-lattice 
interaction causes a displacement of the relative position of the conduction and valence bands. 
The total manifestation of the first two mechanisms of narrowing of the bandgap is described 
by a semiempirical relationship [20] 

( ) ( )2
,0,g gE T N E T Tα β= − + ,    (11) 

where Eg,0 = 1.169 eV is the bandgap at temperature 0°K, α and β are constants, whose 
experimental estimates for silicon are α = 7.021×10-4 eV/T, β = 1108K. 

The third mechanism of narrowing the bandgap is associated with the effects of collective 
interactions of carriers, which become dominant at sufficiently high concentrations. The effect 
of quantum effects becomes noticeable at a carrier concentration of N≈1018 cm-3 and is 
formulated in a complex manner [21]. The most significant contribution to the narrowing of 
the bandgap is made by the exchange interaction estimated by the empirical dependence of 
the form ΔEg(N)~γ×N1/3(T) [22], where γ is the fitting parameter used for combining 
theoretical estimates with experimentally determined values of the narrowing of bandgap in 
various semiconductors. For silicon at a temperature of T≈300K and carrier concentration 
N=1017÷1019 cm-3, the value of the parameter γ is in the range of values (1.0÷3.6)10-8 eV×cm 
[21],[23]. 

The influence of all mechanisms on narrowing the width of Si bandgap at high 
temperatures and carrier concentrations N≈1018÷1021 cm-3 is taken into account in the 
semiempirical dependence [12], [24] 

( ) ( ) ( )TNTTEN,TE 312
0,gg γβα −+−= ,   (12) 

where the value γ=8.35×10-8 eV×cm – was chosen from the condition that the width of 
bandgap should be zero at the equilibrium melting point Eg(Tm,N)=0 [24]. Figure 2 shows the 
temperature dependences of the narrowing of the bandgap Eg(T,N) and the position of Fermi 
energy level EF(T,N), calculated with quantum statistics, relative to the edges of the valence 
EV(T,N) and conduction EC(T,N) bands and intrinsic Fermi level in the middle of the bandgap. 
With increasing temperature, the Fermi energy EF(T,N) deviates from its own level toward the 
edge of the valence band EV(T,N), which is determined by the lower effective mass of the 
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density of states of the valence band (for silicon, mde/mdh=1.89). Because of this, the 
degeneracy of the hole gas (EV-EF<kbT, ηh≈-4) occurs at a temperature below the equilibrium 
melting point (T=1000K), before the degeneracy of the electron gas. 

Figure 2. Temperature dependences of the edges 
of conduction EC(T,N) and valence EV(T,N) bands 
with allowance for: thermal and quantum effects 
(1), (2); thermal effects (3), (4). The Fermi 
energy is EF(T,N) (5).  

Figure 3. Temperature dependences of the 
bandgap with allowance for: thermal and quantum 
effects (1); thermal effects (2). Markers show the 
experimental data [25]. 

Dependences of the bandgap are shown in Fig. 3. Dependence (1) takes into account the 
quantum and thermal (12) effects, in dependence (2) - only thermal (11). In the temperature 
range from 300° K to θ, where the influence of quantum mechanisms is weak, the width of 
bandgap is equally well approximated by both dependences and completely coincide with the 
experiment [25]. Above the Debye temperature, the contribution of collective interaction 
mechanisms to the width of bandgap becomes appreciable, which causes a stronger 
narrowing. 

2.3 Thermal conductivity of electron gas 

Thermal conductivity refers to the most important thermophysical properties of silicon. For 
laser action problems, properties for the electron and phonon subsystems are often necessary, 
and experimental data for thermal conductivity are usually obtained under thermodynamic 
equilibrium conditions and give the values of the total thermal conductivity of silicon. 
Therefore, to determine the thermal conductivity of electrons, we will use the theoretical 
approach.  

Since the transfer of thermal energy is carried out by free charge carriers and phonons, the 
total thermal conductivity κ(T,N) is determined by the lattice thermal conductivity κlat(T) and 
the thermal conductivity of free carriers κe(T,N) (electrons and holes) 

( ) ( ) ( ), ,lat eT N T T Nκ κ κ= +    (13) 

The thermal conductivity of solid-state semiconductors, unlike metals, is determined by the 
lattice (phonon) thermal conductivity κlat(T)>κe(T,N). The determination of the properties of 
phonon subsystem is an object of molecular dynamics modeling. However, in the framework 
of the problem in question, for comparison with the experimental data, the temperature 
dependence of κlat(T) (Fig.5) was estimated in accordance with the semiempirical dependence 
from [12] 
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( ) 1,231585lat T T W cmKκ −= ⋅     (14) 
The thermal conductivity of electrons with allowance for quantum statistics was 

determined 

( ) ( ) ( ) ( )
( )

( )
( )

22
2 1

0 0
,

, , 6 4c cB
c c

c c
c e h

k TT N N T T N
e

η η
κ μ

η η
=

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

F F
F F

  (15) 

where e is electron charge, N(T) is intrinsic concentration of charge carriers (3), F2(ηc), F1(ηc), 
F0(ηc), are Fermi-Dirac integrals of orders j=0,1,2 for electrons and holes, for calculation of 

which were used approximating functions from [18],[19]. ( ) ( ) ( )
( )

00

1 2 ,

, c
c c

c c e h

T N T
η

μ μ
η

=

=
F
F

 is 

charge carriers mobility [26], where ( )0 ,c T Nμ  is carriers mobility for nondegenerate 
semiconductor, F1/2(ηc), is Fermi-Dirac integral of order j=1/2.  

Figures 4-6 show the temperature dependences of the thermal conductivity of silicon: 
electron (15) and phonon (14) subsystems and total (13). Figure 7 shows the temperature 
dependence of the electronic contribution to the total thermal conductivity as a percentage. 

As the temperature increases, the thermal conductivity of electrons increases (Fig. 4), and 
the lattice one decreases (Fig. 5). The obtained dependence of total thermal conductivity (13) 
in the temperature range 300K<T<Tm shows good agreement with experimental data (Fig. 6). 
Because of the low electrical conductivity of silicon, electron fraction of thermal conductivity 
in the solid state is small and before melting does not exceed 4.7% of the total thermal 
conductivity (blue line in Fig. 7). At a temperature exceeding the melting point, the 
equilibrium thermal conductivity abruptly increases (Fig. 6). We have only experimental data 
on the equilibrium thermal conductivity of molten silicon [7]. The fraction of electron thermal 
conductivity in the experimental value of the thermal conductivity at T = 2000K is 4%. 

Figure 4. Temperature dependence of 
thermal conductivity of electrons. 

Figure 5. Temperature dependence of 
phonon thermal conductivity. 
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Figure 6. Temperature dependence of the 
total thermal conductivity (solid line). The 
markers are experimental data: blue [7], black 
[8]. 

Figure 7. Temperature dependence of the 
percentage ratio of electron and total 
thermal conductivities.  

2.4 Heat capacity of electron gas 

The total heat capacity of electron gas is defined as the amount of energy needed to raise 
the temperature by one degree Kelvin in the system per volume unit. Since the transfer of 
thermal energy in a solid is carried out by free charge carriers and phonons, the total heat 
capacity C(T,N) as well as the thermal conductivity, is determined by the heat capacity of the 
lattice Clat(T) and the heat capacity of free carriers Ce(T,N) (electrons and holes).  

( ) ( ) ( ), ,lat eC T N C T C T N= +      (16) 

The determination of the phonon heat capacity is an object of molecular dynamics 
modeling, but for comparison with the experimental data the temperature dependence of 
Clat(T) was estimated in accordance with the Einstein heat capacity formula [15] 

( )
22

3 1T T
latC T R e e

T

θ θθ ⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

,    (17) 

where θ – Debye temperature (for silicon θ = 640K), R - universal gas constant. 
The heat capacity of the electron gas was determined as the temperature derivative of the 

energy density of electron-hole pairs in the system. 

( ) ( ), ,eC T N U T N T= ∂ ∂     (18) 

The total energy density U(T,N) of electron-hole pairs consists of kinetic energy and energy 
of the bandgap per volume unit [12] 
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where Eg(T,N) is bandgap (12), N(T) is intrinsic charge carrier concentration (3), F3/2(ηe), 
F1/2(ηe), F3/2(ηh), F1/2(ηh) are Fermi-Dirac integrals of orders j=1/2 and j=3/2 for electrons and 
holes. In the modeling, approximating functions for these integrals from [18],[19] were used. 

Figure 8 shows the temperature dependences of the heat capacity of electrons (18) and of 
the lattice (17). It is seen that with increasing temperature the electronic component of the heat 
capacity approaches the phonon component, the magnitude of which determines the total heat 
capacity of silicon.  

Figure 8. Temperature dependences of the heat 
capacity of electrons (1) and of the lattice (2). 
 

Figure 9. Temperature dependence of the 
percentage ratio of electron and total heat 
capacity of silicon. 

The contribution of the electronic component to the total heat capacity is small, but 
increases with increasing temperature and at an equilibrium melting temperature is of 1.4% 
and at T=2000K is 1.72% (Fig. 9).  
 

Figure 10. Temperature dependence of the total heat capacity (solid line). Markers indicate the 
experimental data [10]. 
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Figure 10 shows temperature dependence of the total heat capacity and experimental data. 
The obtained temperature dependence agrees well with the experimental data in the 
temperature ranges 300K<T<1000K and Tm<T<2000K. 

4 CONCLUSION 

The thermal conductivity and heat capacity of the electron subsystem of silicon are 
calculated in the framework of the continuum approach, which uses quantum statistics and 
Fermi-Dirac integrals in an arbitrary range of degeneracy of an electron gas with a 
temperature change from 300K to 2000K. In the simulation of electron thermal conductivity 
and heat capacity, the influence of narrowing of the bandgap under conditions of sufficiently 
strong heating of the intrinsic semiconductor and carrier degeneracy is taken into account. 
The results of the calculations are compared with the results of the experiments. Comparison 
of the calculated characteristics of silicon with the experimental data showed an acceptable 
quantitative coincidence of the width of the bandgap, thermal conductivity and heat capacity. 
Numerical and graphical information on obtained properties and comparison results with 
experimental data are presented. 
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