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Chapter 1

Introduction

Insurance Mathematics might be divided into

• life insurance,

• health insurance,

• non-life insurance.

Life insurance includes for instance life insurance contracts and pensions,
where long terms are covered. Non-life insurance comprises insurances
against fire, water damage, earthquake, industrial catastrophes or car insur-
ance, for example. Non-life insurances cover in general a year or other fixed
time periods. Health insurance is special because it is differently organized
in each country.

The course material is based on the textbook Non-Life Insurance Mathemat-
ics by Thomas Mikosch [7].

1.1 The ruin of an insurance company

1.1.1 Solvency II Directive

In the following we concentrate ourselves on non-life insurance. There is a
the Solvency II Directive of the European Union.

• Published: 2009

• Taken into effect: 01/01/2016

5



6 CHAPTER 1. INTRODUCTION

• Contents: Defines requirements for insurance companies.

One of these requirements is the amount of capital an insurer should hold,
or in other words, the Minimum Capital Requirement (MCR):

• The probability that the assets of an insurer are greater or equal to its
liabilities (in other words, to avoid the ruin) has to be larger or equal
than 99,5 %.

In the lecture we will treat exactly this problem. Here we slightly simplify
the problem by only looking at one particular insurance contract instead of
looking at the overall company (this is a common approach in research as
well). What are the key parameters for a non-life insurance contract for a
certain class of claims?

1. How often does this event occur?

• Significant weather catastrophes in Europe: 2 per year

• Accidents in public transportation in Berlin in 2016: 141.155

2. Amount of loss or the typical claim size:

• Hurricane Niklas, 2015, Europe: 750 Mio Euro

• Storm Ela, 2014, Europe, 650 Mio Euro

• Damage on a parking area: 500-1500 Euro

Opposite to the Solvency II Directive an insurance company needs to have
reasonable low premiums and fees to attract customers. So there has to be
a balance between the Minimum Capital Requirement and the premiums.

1.1.2 Idea of the mathematical model

We will consider the following situation:

(1) Insurance contracts (or policies) are sold. The resulting premium
(yearly or monthly payments of the customers for the contract) form
the income of the insurance company.

(2) At times Ti, 0 ≤ T1 ≤ T2 ≤ . . . claims happen. The times Ti are called
the claim arrival times.
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(3) The i-th claim arriving at time Ti causes the claim size Xi.

Mathematical problem: Find a stochastic model for the Ti’s and Xi’s to
compute or estimate how much an insurance company should demand for its
contracts and how much initial capital of the insurance company is required
to keep the probability of ruin below a certain level.

1.2 Some facts about probability

We shortly recall some definitions and facts from probability theory which
we need in this course. For more information see [12], or [2] and [3], for
example.

(1) A probability space is a triple (Ω,F,P), where

• Ω is a non-empty set,

• F is a σ-algebra consisting of subsets of Ω, and

• P is a probability measure on (Ω,F).

(2) A function f : Ω→ R is called a random variable if and only if for all
intervals (a, b), −∞ < a < b <∞ we have that

f−1((a, b)) := {ω ∈ Ω : a < f(ω) < b} ∈ F.

(3) By B(R) we denote the Borel σ-algebra. It is the smallest σ-algebra on
R which contains all open intervals. The σ-algebra B(Rn) is the Borel σ-
algebra, which is the smallest σ-algebra containing all the open rectangles
(a1, b1)× ...× (an, bn).

(4) The random variables f1, ..., fn are independent if and only if

P(f1 ∈ B1, ..., fn ∈ Bn) = P(f1 ∈ B1) · · ·P(fn ∈ Bn)

for all Bk ∈ B(R), k = 1, ..., n. If the fi’s have discrete values, i.e. fi : Ω→
{x1, x2, x3, . . .}, then the random variables f1, ..., fn are independent if and
only if

P(f1 = k1, ..., fn = kn) = P(f1 = k1) · · ·P(fn = kn)

for all ki ∈ {x1, x2, x3 . . .}.
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(5) If f1, . . . , fn are independent random variables such that fi has the den-

sity function hi(x), i.e. P(fi ∈ (a, b)) =
∫ b
a
hi(x)dx, then

P((f1, ..., fn) ∈ B) =

∫
Rn

1IB(x1, ..., xn)h1(x) · · ·hn(xn)dx1 · · · dxn

for all B ∈ B(Rn)..

(6) The function 1IB(x) is the indicator function for the set B, which is
defined as

1IB(x) =

{
1 if x ∈ B
0 if x 6∈ B.

(7) A random variable f : Ω → {0, 1, 2, ...} is Poisson distributed with
parameter λ > 0 if and only if

P(f = k) = e−λ
λk

k!
.

This is often written as f ∼ Pois(λ).

(8) A random variable g : Ω→ [0,∞) is exponentially distributed with
parameter λ > 0 if and only if for all a < b

P(g ∈ (a, b)) = λ

∫ b

a

1I[0,∞)(x)e−λxdx.

The picture below shows the density λ1I[0,∞)(x)e−λx for λ = 3.

0 1 2 3 40.
0

1.
0

2.
0

3.
0

x

y

density for lambda=3
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(9) How to characterize distributions?

We briefly recall how to describe the distribution of a random variable.
Let (Ω,F,P) be a probability space.

(a) The distribution of a random variable f : Ω → R can be uniquely
described by its distribution function F : R→ [0, 1],

F (x) := P({ω ∈ Ω : f(ω) ≤ x}), x ∈ R.

(b) Especially, it holds for g : R→ R, such that g−1(B) ∈ B(R) for all
B ∈ B(R), that

Eg(f) =

∫
R
g(x)dF (x)

in the sense that, if either side of this expression exists, so does the
other, and then they are equal, see [8], pp. 168-169.

(c) The distribution of f can also be determined by its characteristic
function (see [12])

ϕf (u) := Eeiuf , u ∈ R,

or by its moment-generating function

mf (h) := Eehf , h ∈ (−h0, h0)

provided that Eeh0f < ∞ for some h0 > 0. We also recall that for
independent random variables f and g it holds that

ϕf+g(u) = ϕf (u)ϕg(u).



10 CHAPTER 1. INTRODUCTION



Chapter 2

The Models for the claim
number process N(t)

In the following we will introduce three processes which are used as claim
number processes: the Poisson process, the renewal process and the inhomo-
geneous Poisson process.

2.1 The homogeneous Poisson process with

parameter λ > 0

Definition 2.1.1 (homogeneous Poisson process). A stochastic process N =
(N(t))t∈[0,∞) is a Poisson process if the following conditions are fulfilled:

(P1) N(0) = 0 a.s. (almost surely), i.e. P({ω ∈ Ω : N(0, ω) = 0}) = 1.

(P2) The process N has independent increments, i.e. for all n ≥ 1 and 0 =
t0 < t1 < ... < tn <∞ the random variables N(tn)−N(tn−1), N(tn−1)−
N(tn−2), ..., N(t1)−N(t0) are independent.

(P3) For any s ≥ 0 and t > 0 the random variable N(t+s)−N(s) is Poisson
distributed, i.e.

P(N(t+ s)−N(s) = m) = e−λt
(λt)m

m!
, m = 0, 1, 2, ...

(P4) The paths of N , i.e. the functions (N(t, ω))t∈[0,∞) for fixed ω, are
almost surely right continuous and have left limits. One says N has
càdlàg (continue à droite, limite à gauche) paths.

11
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Remark 2.1.2. One can show that the definition implies the following: there
is a set Ω0 ∈ F with P(Ω0) = 1 such that for all ω ∈ Ω0 one has that

(1) N(0, ω) = 1,

(2) the paths t → N(t, ω) are càdlàg, take values in {0, 1, 2, . . .}, are non-
decreasing,

(3) all jumps have the size 1.

In the following we prove that the Poisson process does exist.

Lemma 2.1.3. Assume W1,W2, ... are independent and exponentially dis-
tributed with parameter λ > 0. Then, for any t > 0 we have

P(W1 + · · ·+Wn ≤ t) = 1− e−λt
n−1∑
k=0

(λt)k

k!
.

Consequently, the sum of independent exponentially distributed random vari-
ables is a Gamma distributed random variable.

The proof is subject to an Exercise.

Definition 2.1.4. Let W1,W2, ... be independent and exponentially dis-
tributed with parameter λ > 0. Define

Tn := W1 + ...+Wn,

N̂(t, ω) := #{i ≥ 1 : Ti(ω) ≤ t}, t ≥ 0.

Lemma 2.1.5. For each n = 0, 1, 2, ... and for all t > 0 it holds

P({ω ∈ Ω : N̂(t, ω) = n}) = e−λt
(λt)n

n!
,

i.e. N̂(t) is Poisson distributed with parameter λt.

Proof. From the definition of N̂ it can be concluded that

{ω ∈ Ω : N̂(t, ω) = n} = {ω ∈ Ω : Tn(ω) ≤ t < Tn+1(ω)}
= {ω ∈ Ω : Tn(ω) ≤ t} \ {ω ∈ Ω : Tn+1(ω) ≤ t}.
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Because of Tn ≤ Tn+1 we have the inclusion {Tn+1 ≤ t} ⊆ {Tn ≤ t}. This
implies

P(N̂(t) = n) = P(Tn ≤ t)− P(Tn+1 ≤ t)

= 1− e−λt
n−1∑
k=0

(λt)k

k!
− 1 + e−λt

n∑
k=0

(λt)k

k!

= e−λt
(λt)n

n!
.

Theorem 2.1.6. (1) N̂(t)t∈[0,∞) is a Poisson process with parameter λ > 0.

(2) Any Poisson process N(t) with parameter λ > 0 can be written as

N(t) = #{i ≥ 1, Ti ≤ t}, t ≥ 0,

where Tn = W1 + ... + Wn, n ≥ 1, and W1,W2, ... are independent and
exponentially distributed with λ > 0.

Proof. (1) We check the properties of the Definition 2.1.1.

(P1) From (8) of Section 1.2 we get that

P(W1 > 0) = P(W1 ∈ (0,∞))

= λ

∫ ∞
0

1I[0,∞)(y)e−λydy = 1.

This implies that N̂(0, ω) = 0 if only 0 < T1(ω) = W1(ω) but W1 > 0 holds
almost surely. Hence N̂(0, ω) = 0 a.s.

(P2) We only show that N̂(s) and N̂(t)− N̂(s) are independent, i.e.

P(N̂(s) = l, N̂(t)− N̂(s) = m)=P(N̂(s) = l)P(N̂(t)− N̂(s) = m) (1)

for l,m ≥ 0. The independence of arbitrary many increments can be shown
similarly. It holds for l ≥ 0 and m ≥ 1 that

P(N̂(s) = l, N̂(t)− N̂(s) = m) = P(N̂(s) = l, N̂(t) = m+ l)

= P(Tl ≤ s < Tl+1, Tl+m ≤ t < Tl+m+1).

By defining functions f1, f2, f3 and f4 as

f1 := Tl
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f2 := Wl+1

f3 := Wl+2 + ...+Wl+m

f4 := Wl+m+1,

and h1, ..., h4 as the corresponding densities, it follows that

P(Tl ≤ s < Tl+1, Tl+m ≤ t < Tl+m+1)

= P(f1 ≤ s < f1 + f2, f1 + f2 + f3 ≤ t < f1 + f2 + f3 + f4)

= P(0 ≤ f1 < s, s− f1 < f2 <∞, 0 ≤ f3 < t− f1 − f2,

t− (f1 + f2 + f3) < f4 <∞)

=

s∫
0

∞∫
s−x1

t−x1−x2∫
0

∞∫
t−x1−x2−x3

h4(x4)dx4

︸ ︷︷ ︸
I4(x1,x2,x3)

h3(x3)dx3

︸ ︷︷ ︸
I3(x1,x2)

h2(x2)dx2

︸ ︷︷ ︸
I2(x1)

h1(x1)dx1

=: I1

By direct computation and rewriting the density function of f4 = Wl+m+1,

I4(x1, x2, x3) =

∫ ∞
t−x1−x2−x3

λe−λx41I[0,∞)(x4)dx4 = e−λ(t−x1−x2−x3).

Here we used t−x1−x2−x3 ≥ 0. This is true because the integration w.r.t.
x3 implies 0 ≤ x3 ≤ t− x1 − x2. The density of f3 = Wl+2 + ...+Wl+m is

h3(x3) = λm−1 xm−2
3

(m− 2)!
1I[0,∞)(x3)e−λx3 .

Therefore,

I3(x1, x2) =

t−x1−x2∫
0

λm−1 xm−2
3

(m− 2)!
e−λx3e−λ(t−x1−x2−x3)dx3

= 1I[0,t−x1)(x2)e−λ(t−x1−x2)λm−1 (t− x1 − x2)m−1

(m− 1)!
.
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The density of f2 = Wl+1 is

h2(x2) = 1I[0,∞)(x2)λe−λx2 .

This implies

I2(x1) =

∞∫
s−x1

1I[0,t−x1)(x2)e−λ(t−x1−x2)λm−1 (t−x1−x2)m−1

(m−1)!
λe−λx2dx2

= λme−λ(t−x1) (t− s)m

m!
.

Finally, from Lemma 2.1.5 we conclude

I1 =

∫ s

0

λme−λ(t−x1) (t− s)m

m!
λl

xl−1
1

(l − 1)!
1I[0,∞)(x1)e−λx1dx1

= λmλle−λt
(t− s)m

m!

sl

l!

=

(
(λs)l

l!
e−λs

)(
(λ(t− s))m

m!
e−λ(t−s)

)
= P(N̂(s) = l)P(N̂(t− s) = m).

If we sum

P(N̂(s) = l, N̂(t)− N̂(s) = m) = P(N̂(s) = l)P(N̂(t− s) = m)

over l ∈ N we get

P(N̂(t)− N̂(s) = m) = P(N̂(t− s) = m) (2)

and hence (1) for l ≥ 0 and m ≥ 1. The case m = 0 can deduced from that
above by exploiting

P(N̂(s) = l, N̂(t)− N̂(s) = 0)

= P(N̂(s) = l)−
∞∑
m=1

P(N̂(s) = l, N̂(t)− N̂(s) = m)

and

P(N̂(t− s) = 0) = 1−
∞∑
m=1

P(N̂(t− s) = m).
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(P3) follows from Lemma 2.1.5 and (2) and (P4) follows from the construc-
tion.

(2) This part is subject to an exercise.
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2.2 A generalization of the Poisson process:

the renewal process

To model windstorm claims, for example, it is not appropriate to use the Pois-
son process because windstorm claims happen rarely, sometimes with years
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in between. The Pareto distribution, for example, which has the distribution
function

F (x) = 1−
(

κ

κ+ x

)α
for x ≥ 0

with parameters α, κ > 0 will fit better when we use this as distribution for
the waitig times, i.e.

P(Wi ≥ x) =

(
κ

κ+ x

)α
for x ≥ 0.

For a Pareto distributed random variable it is more likely to have large values
than for an exponential distributed random variable.

Definition 2.2.1 (Renewal process). Assume that W1,W2, ... are i.i.d. (inde-
pendent and identically distributed) random variables such that Wn(ω) > 0
for all n ≥ 1 and ω ∈ Ω. Then{

T0 := 0
Tn := W1 + ...+Wn, n ≥ 1

is a renewal sequence and

N(t) := #{i ≥ 1 : Ti ≤ t}, t ≥ 0,

is the corresponding renewal process.

In order to study the limit behavior of N we need the Strong Law of Large
Numbers (SLLN):

Theorem 2.2.2 (SLLN). If the random variables X1, X2, ... are i.i.d. with
E|X1| <∞, then

X1 +X2 + ...+Xn

n
−→
n→∞

EX1 a.s.

Theorem 2.2.3 (SLLN for renewal processes). Assume N(t) is a renewal
process. If EW1 <∞, then

lim
t→∞

N(t)

t
=

1

EW1

a.s.
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Proof. Because of

{ω ∈ Ω : N(t, ω) = n} = {ω ∈ Ω : Tn(ω) ≤ t < Tn+1(ω)} for n ∈ N

we have for N(t)(ω) > 0 that

TN(t,ω)(ω)

N(t, ω)
≤ t

N(t, ω)
<
TN(t,ω)+1(ω)

N(t, ω)
=
TN(t,ω)+1(ω)

N(t, ω) + 1

N(t, ω) + 1

N(t, ω)
. (3)

Note that

Ω = {ω ∈ Ω : T1(ω) <∞} = {ω ∈ Ω : sup
t≥0

N(t) > 0}.

Theorem 2.2.2 implies that

Tn
n
→ EW1 (4)

holds on a set Ω0 with P(Ω0) = 1. Hence limn→∞ Tn → ∞ on Ω0 and by
definition of N also limt→∞N(t)→∞ on Ω0. From (4) we get

lim
t→∞

N(t,ω)>0

TN(t,ω)

N(t, ω)
= EW1 for ω ∈ Ω0.

Finally (3) implies that

lim
t→∞

N(t,ω)>0

t

N(t, ω)
= EW1 for ω ∈ Ω0.

In the following we will investigate the behavior of EN(t) as t→∞.

Theorem 2.2.4 (Elementary renewal theorem). Assume that (N(t))t≥0 is a
renewal process and that 0 < EW1 <∞. Then

lim
t→∞

EN(t)

t
=

1

EW1

. (5)

Remark 2.2.5. If the Wi’s are exponentially distributed with parameter λ >
0, Wi ∼ Exp(λ), i ≥ 1, then N(t) is a Poisson process and

EN(t) = λt.
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Since EWi = 1
λ
, it follows that for all t > 0 that

EN(t)

t
=

1

EW1

. (6)

If the Wi’s are not exponentially distributed, then the equation (6) holds
only for the limit t→∞.
In order to prove Theorem 2.2.4 we formulate the following Lemma of Fatou
type:

Lemma 2.2.6. Let Z = (Zt)t∈[0,∞) be a stochastic process such that

Zt : Ω→ [0,∞) for all t ≥ 0

and infs≥t Zs : Ω→ [0,∞) is measurable for all t ≥ 0. Then

E lim inf
t→∞

Zt ≤ lim inf
t→∞

EZt.

Proof. By monotone convergence, since t 7→ infs≥t Zs is non-decreasing, we
have

E lim
t→∞

inf
s≥t

Zs = lim
t→∞

E inf
s≥t

Zs.

Obviously, E infs≥t Zs ≤ EZu for all u ≥ t which allows us to write

E inf
s≥t

Zs ≤ inf
u≥t

EZu.

This implies the assertion.

Proof of Theorem 2.2.4. Let λ = 1
EW1

. From Theorem 2.2.3 we conclude

λ = lim
t→∞

N(t)

t
= lim

t→∞
inf
s≥t

N(s)

s
a.s.

Since Zt := N(t)
t

for t > 0 and Z0 := 0 fulfills the requirements of Lemma
2.2.6 we have

λ = E lim
t→∞

inf
s≥t

N(s)

s
≤ lim inf

t→∞
E
N(t)

t
.

So, we only have to verify that lim supt→∞ EN(t)
t
≤ λ. Let t > 0. Recall that

N(t) = #{i ≥ 1 : Ti ≤ t}. We introduce the filtration (Fn)n≥0 given by

Fn := σ(W1, ...,Wn), n ≥ 1, F0 := {∅,Ω}.
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Then the random variable τt := N(t) + 1 is a stopping time w.r.t. (Fn)n≥0

i.e. it holds
{τt = n} ∈ Fn, n ≥ 0.

Let us verify this.

n = 0 yields to {τt = 0} = {N(t) = −1} = ∅ ∈ F0,
n = 1 yields to {τt = 1} = {N(t) = 0} = {t < W1} ∈ F1, and for
n ≥ 2 we have

{τt = n} = {Tn−1 ≤ t < Tn} = {W1 + ...+Wn−1 ≤ t < W1 + ...+Wn} ∈ Fn.

By definition of N(t) we have that TN(t) ≤ t. Hence we get

ETN(t)+1 = E(TN(t) +WN(t)+1) ≤ t+ EW1 <∞. (7)

On the other hand it holds

ETN(t)+1 = E
τt∑
i=1

Wi = lim
K→∞

E
τt∧K∑
i=1

Wi

by monotone convergence. Since Eτt ∧ K < ∞ and the W ′
is are i.i.d with

EW1 <∞ we may apply Wald’s identity

E
τt∧K∑
i=1

Wi = E(τt ∧K)EW1.

This implies

∞ > ETN(t)+1 = lim
K→∞

E(τt ∧K)EW1 = Eτt EW1.

This relation is used in the following computation to substitute Eτt =
EN(t) + 1:

lim sup
t→∞

EN(t)

t
= lim sup

t→∞

EN(t) + 1

t

= lim sup
t→∞

Eτt
t

= lim sup
t→∞

ETN(t)+1

tEW1
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≤ lim sup
t→∞

t+ EW1

tEW1

=
1

EW1

,

where (7) was used for the last estimate.

2.3 The inhomogeneous Poisson process and

the mixed Poisson process

Definition 2.3.1. Let µ : [0,∞)→ [0,∞) be a function such that

(1) µ(0) = 0

(2) µ is non-decreasing, i.e. 0 ≤ s ≤ t⇒ µ(s) ≤ µ(t)

(3) µ is càdlàg.

Then the function µ is called a mean-value function.
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Definition 2.3.2 (Inhomogeneous Poisson process). A stochastic process
N = N(t)t∈[0,∞) is an inhomogeneous Poisson process if and only if it
has the following properties:

(P1) N(0) = 0 a.s.

(P2) N has independent increments, i.e. if 0 = t0 < t1 < ... < tn, (n ≥ 1),
it holds that N(tn)−N(tn−1), N(tn−1)−N(tn−2), ..., N(t1)−N(t0) are
independent.

(Pinh.3) There exists a mean-value function µ such that for 0 ≤ s < t

P(N(t)−N(s) = m) = e−(µ(t)−µ(s)) (µ(t)− µ(s))m

m!
,

where m = 0, 1, 2, ..., and t > 0.

(P4) The paths of N are càdlàg a.s.

Theorem 2.3.3 (Time change for the Poisson process). If µ denotes the
mean-value function of an inhomogeneous Poisson process N and Ñ is a
homogeneous Poisson process with λ = 1, then

(1)

(N(t))t∈[0,∞)
d
= (Ñ(µ(t)))t∈[0,∞)

(2) If µ is continuous, increasing and limt→∞ µ(t) =∞, then

N(µ−1(t))t∈[0,∞)
d
= (Ñ(t))t∈[0,∞).
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Here µ−1(t) denotes the inverse function of µ and f
d
= g means that the

two random variables f and g have the same distribution (but one can not
conclude that f(ω) = g(ω) for ω ∈ Ω).

Definition 2.3.4 (Mixed Poisson process). Let N̂ be a homogeneous Poisson
process with intensity λ = 1 and µ be a mean-value function. Let θ : Ω→ R
be a random variable such that θ > 0 a.s., and θ is independent of N̂ . Then

N(t) := N̂(θµ(t)), t ≥ 0

is a mixed Poisson process with mixing variable θ.

Proposition 2.3.5. It holds

var(N̂(θµ(t))) = EN̂(θµ(t))

(
1 +

var(θ)

Eθ
µ(t)

)
.

Proof. We recall that EN̂(t) = var(N̂(t)) = t and therefore EN̂(t)2 = t+ t2.
We conclude

var(N̂(θµ(t))) = EN̂(θµ(t))2 −
[
EN̂(θµ(t))

]2
= E

(
θµ(t) + θ2µ(t)2

)
− (Eθµ(t))2

= µ(t) (Eθ + varθµ(t)) .

The property var(N(t)) > EN(t) is called over-dispersion. If N is an
inhomogeneous Poisson process, then

var(N(t)) = EN(t).
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Chapter 3

The total claim amount process
S(t)

3.1 The renewal model and the Cramér-

Lundberg-model

Definition 3.1.1. The renewal model (or Sparre-Anderson-model) con-
siders the following setting:

(1) Claims happen at the claim arrival times 0 ≤ T1 ≤ T2 ≤ ... of a renewal
process

N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0.

(2) At time Ti the claim size Xi happens and it holds that the sequence
(Xi)

∞
i=1 is i.i.d., Xi ≥ 0.

(3) The processes (Ti)
∞
i=1 and (Xi)

∞
i=1 are independent.

The renewal model is called Cramér-Lundberg-model if the claims hap-
pen at the claim arrival times 0 < T1 < T2 < ... of a Poisson process

25
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3.2 Properties of the total claim amount pro-

cess S(t)

Definition 3.2.1. The total claim amount process is defined as

S(t) :=

N(t)∑
i=1

Xi, t ≥ 0.

The insurance company needs information about S(t) in order to determine
a premium which covers the losses represented by S(t). In general, the
distribution of S(t), i.e.

P({ω ∈ Ω : S(t, ω) ≤ x}), x ≥ 0,

can only be approximated by numerical methods or simulations while ES(t)
and var(S(t)) are easy to compute exactly. One can establish principles which
use only ES(t) and var(S(t)) to calculate the premium. This will be done in
chapter 4.

Proposition 3.2.2. One has that

ES(t) = EX1EN(t),

var(S(t)) = var(X1)EN(t) + var(N(t)(EX1)2.

Consequently, one obtains the following relations:

(1) Cramér-Lundberg-model: It holds

(i) ES(t) = λtEX1,

(ii) var(S(t)) = λtEX2
1 .

(2) Renewal model: Let EW1 = 1
λ
∈ (0,∞) and EX1 <∞.

(i) Then limt→∞
ES(t)
t

= λEX1.

(ii) If var(W1) <∞ and var(X1) <∞, then

lim
t→∞

var(S(t))

t
= λ

(
var(X1) + var(W1)λ2(EX1)2

)
.
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Proof. (a) Since

1 = 1IΩ(ω) =
∞∑
k=0

1I{N(t)=k},

by a direct computation,

ES(t) = E
N(t)∑
i=1

Xi

= E
∞∑
k=0

(
(
k∑
i=1

Xi)1I{N(t)=k}

)
=

∞∑
k=0

E(X1 + ...+Xk)︸ ︷︷ ︸
=kEX1

E1I{N(t)=k}︸ ︷︷ ︸
=P(N(t)=k)

= EX1

∞∑
k=0

kP(N(t) = k)

= EX1EN(t).

In the Cramér-Lundberg-model we have EN(t) = λt. For the general case we
use the Elementary Renewal Theorem (Thereom 2.2.4) to get the assertion.

(b) We continue with

ES(t)2 = E

N(t)∑
i=1

Xi

2

= E

(
∞∑
k=0

(
k∑
i=1

Xi

)
1I{N(t)=k}

)2

= E
∞∑
k=0

(
k∑
i=1

Xi

)2

1I{N(t)=k}

=
∞∑
k=0

k∑
i,j=1

E
(
XiXj1I{N(t)=k}

)
= EX2

1

∞∑
k=0

kP(N(t) = k) + (EX1)2

∞∑
k=1

k(k − 1)P(N(t) = k)

= EX2
1 EN(t) + (EX1)2(EN(t)2 − EN(t))

= var(X1)EN(t) + (EX1)2EN(t)2.



28 CHAPTER 3. THE TOTAL CLAIM AMOUNT PROCESS S(T )

It follows that

var(S(t)) = ES(t)2 − (ES(t))2

= ES(t)2 − (EX1)2(EN(t))2

= var(X1)EN(t) + (EX1)2var(N(t)).

For the Cramér-Lundberg-model it holds EN(t) = var(N(t)) = λt, hence we
have var(S(t)) = λt(var(X1) + (EX1)2) = λtEX2

1 . For the renewal model we
get

lim
t→∞

var(X1)EN(t)

t
= var(X1)λ.

The relation

lim
t→∞

var(N(t))

t
=

var(W1)

(EW1)3
.

is shown in [6, Theorem 2.5.2].

Theorem 3.2.3 (SLLN and CLT for renewal model).

(1) SLLN for (S(t)): If EW1 = 1
λ
<∞ and EX1 <∞, then

lim
t→∞

S(t)

t
= λEX1 a.s.

(2) CLT for (S(t)): If var(W1) <∞, and var(X1) <∞, then

sup
x∈R

∣∣∣∣∣P
(
S(t)− ES(t)√

var(S(t))
≤ x

)
− Φ(x)

∣∣∣∣∣ t→∞→ 0,

where Φ is the distribution function of the standard normal distribution,

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy.

Proof. (1) We follow the proof of [7, Theorem 3.1.5 ]. We have shown that

lim
t→∞

N(t)

t
= λ a.s.
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and therefore it holds
lim
t→∞

N(t) =∞ a.s.

Because of S(t) = X1 +X2 + ...+XN(t) and, by the SSLN

lim
n→∞

X1 + ...+Xn

n
= EX1 a.s.,

we get

lim
t→∞

S(t)

t
= lim

t→∞

N(t)

t
lim
t→∞

S(t)

N(t)
= λEX1 a.s.

(2) See [5, Theorem 2.5.16].
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Chapter 4

Premium calculation principles

The standard problem in insurance is to determine that amount of premium
such that the losses S(t) are covered. On the other hand, the price of the
premiums should be low enough to be competitive and attract customers. In
the following we let

ρ(t) ∈ [0,∞) be the cumulative premium income up to time t ∈ [0,∞)

in our stochastic model. Below we review some premium calculation princi-
ples.

4.1 Classical premium calculation principles

First approximations of S(t) are given by ES(t) and var(S(t)), and the clas-
sical principles are based on these quantities. Intuitively, we have:

ρ(t) < ES(t) ⇒ insurance company loses on average
ρ(t) > ES(t) ⇒ insurance company gains on average

4.1.1 Net principle

The Net Principle

ρNET(t) = ES(t)

defines the premium to be a fair market premium. However, this usually
leads to the ruin for the company as we will see later.

31
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4.1.2 Expected value principle

In the Expected Value Principle the premium is calculated by

pEV(t) = (1 + ρ)ES(t)

where ρ > 0 is called the safety loading.

4.1.3 The variance principle

The Variance Principle is given by

pVAR(t) = ES(t) + αvar(S(t)), α > 0.

This principle is in the renewal model asymptotically the same as pEV (t),
since by Proposition 3.2.2 we have that

lim
t→∞

pEV(t)

pVAR(t)
= lim

t→∞

(1 + ρ)ES(t)

ES(t) + αvar(S(t))
=

(1 + ρ)

1 + α limt→∞
var(S(t))
ES(t)

is a constant. This means that α plays the role of the safety loading ρ.

4.1.4 The standard deviation principle

This principle is given by

pSD(t) = ES(t) + α
√

var(S(t)), α > 0.

4.1.5 The constant income principle

Here we simply
ρconst(t) := ct, c > 0.

In the case of the Cramér-Lundberg-modelthis principle coincides with the
expected value principle by setting

c := (1 + ρ)λEX1.

In the case of the renewal model it is asymptotically the expected value prin-
ciple as by Proposition 3.2.2 we have

ES(t) ∼ [λEX1]t.

In Definition 5.1.4 we introduce the Net Profit Condition that gives the nec-
essary range for c (or ρ).
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4.2 Modern premium calculation principles

In the following principles the expected value E(g(S(t)) needs to be computed
for certain functions g(x) in order to compute ρ(t). This means it is not
enough to know ES(t) and var(S(t)), the distribution of S(t) is needed as
well.

4.2.1 The Exponential Principle

The Exponential Principle is defined as

ρexp(t) :=
1

δ
logEeδS(t),

for some δ > 0, where δ is the risk aversion constant. The function pexp(t) is
motivated by the so-called utility theory. By Jensen’s inequality one checks
that

ρexp(t) =
1

δ
logEeδS(t) ≥ ES(t)

as the function x 7→ ex is convex.

4.2.2 The Esscher Principle

The Esscher principle is defined as

ρEss(t) :=
ES(t)eδS(t)

Eeδ(S(t))
, δ > 0.

As a homework we show that

ρEss(t) =
ES(t)eδS(t)

Eeδ(S(t))
≥ ES(t)

.

4.2.3 The Quantile Principle

Denote by Ft(x) := P({ω : S(t, ω) ≤ x}), x ∈ R, the distribution function of
S(t). Given 0 < ε < 1, we let

ρquant(t) := min{x ≥ 0 : P({ω ∈ Ω : S(t, ω) ≤ x}) ≥ 1− ε}.
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This principle is called (1− ε)−quantile principle. Note that

P(S(t) > ρquant(t)) ≤ ε.

This setting is related to the theory of Value at Risk.

4.3 Reinsurance treaties

Reinsurance treaties are mutual agreements between different insurance com-
panies to reduce the risk in a particular insurance portfolio. Reinsurances can
be considered as insurance for the insurance company. Reinsurances are used
if there is a risk of rare but huge claims. Examples of these usually involve
a catastrophe such as earthquake, nuclear power station disaster, industrial
fire, war, tanker accident, etc.

According to Wikipedia, the world’s largest reinsurance company in 2009 is
Munich Re, based in Germany, with gross written premiums worth over $31.4
billion, followed by Swiss Re (Switzerland), General Re (USA) and Hannover
Re (Germany).

There are two different types of reinsurance:

4.3.1 Random walk type reinsurance

1. Proportional reinsurance: The reinsurer pays an agreed proportion p of
the claims,

Rprop(t) := pS(t).

2. Stop-loss reinsurance: The reinsurer covers the losses that exceed an
agreed amount of K,

RSL(t) := (S(t)−K)+,

where x+ = max{x, 0}.

3. Excess-of-loss reinsurance: The reinsurer covers the losses that exceed
an agreed amount of D for each claim separately,

RExL :=

N(t)∑
i=1

(Xi −D)+,

where D is the deductible.
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4.3.2 Extreme value type reinsurance

Extreme value type reinsurances cover the largest claims in a portfolio. Math-
ematically, these contracts are investigated with extreme value theory tech-
niques. The ordering of the claims X1, ..., XN(t) is denoted by

X(1) ≤ ... ≤ X(N(t)).

1. Largest claims reinsurance: The largest claims reinsurance covers the k
largest claims arriving within time frame [0, t],

RLC(t) :=
k∑
i=1

X(N(t)−i+1).

2. ECOMOR reinsurance: (Excédent du coût moyen relatif means excess

of the average cost). Define k = bN(t)+1
2
c. Then

RECOMOR(t) =

N(t)∑
i=1

(X(N(t)−i+1) −X(N(t)−k+1))
+

=
k−1∑
i=1

X(N(t)−i+1) − (k − 1)X(N(t)−k+1)

Treaties of random walk type can be handled like before. For example,

P( RSL(t)︸ ︷︷ ︸
(S(t)−K)+

≤ x) = P(S(t) ≤ K) + P(K < S(t) ≤ x+K),

so if FS(t) is known, so is FRSL(t).
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Chapter 5

Probability of ruin: small claim
sizes

5.1 The risk process

In this chapter, if not stated differently, we use the following assumptions
and notation:

• The renewal model is assumed.

• Total claim amount process: S(t) :=
∑N(t)

i=1 Xi with t ≥ 0.

• Premium income function: ρ(t) = ct where c > 0 is the premium
rate.

• The risk process or surplus process is given by

U(t) := u+ ρ(t)− S(t), t ≥ 0,

where U(t) is the insurer’s capital balance at time t and u is the initial
capital.
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Definition 5.1.1 (Ruin, ruin time, ruin probability). We let

ruin(u) := {ω ∈ Ω : U(t, ω) < 0 for some t > 0}
= the event that U ever falls below zero,

Ruin time T := inf{t > 0 : U(t) < 0}
= the time when the process falls below zero

for the first time.

The ruin probability is given by

ψ(u) = P(ruin(u)) = P(T <∞).
Remark 5.1.2.

(1) T : Ω → R ∪ {∞} is an extended random variable (i.e. T can also
take the value ∞).

(2) In the literature ψ(u) is often written as

ψ(u) = P(ruin|U(0) = u)

to indicate the dependence on the initial capital u.

(3) Ruin can only occur at the times t = Tn, n ≥ 1. This implies

ruin(u) = {ω ∈ Ω : T (ω) <∞}
= {ω ∈ Ω : inf

t>0
U(t, ω) < 0}
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= {ω ∈ Ω : inf
n≥1

U(Tn(ω), ω) < 0}

= {ω ∈ Ω : inf
n≥1

(u+ cTn − S(Tn)) < 0},

where the last equation yields from the fact that U(t) = u + ct − S(t).
Since in the renewal model it was assumed that Wi > 0, it follows that

N(Tn) = #{i ≥ 1 : Ti ≤ Tn} = n

and

S(Tn) =

N(Tn)∑
i=1

Xi =
n∑
i=1

Xi,

where
Tn = W1 + ...+Wn,

which imply that {
ω ∈ Ω : inf

n≥1

(
u+ cTn − S(Tn)

)
< 0

}
=

{
ω ∈ Ω : inf

n≥1

(
u+ cTn −

n∑
i=1

Xi

)
< 0

}
.

By setting
Zn := Xn − cWn, n ≥ 1

and
Gn := Z1 + ...+ Zn, n ≥ 1, G0 := 0,

it follows that

{ω ∈ Ω : T (ω) <∞} =
{
ω ∈ Ω : inf

n≥1
(−Gn) < −u

}
=

{
ω ∈ Ω : sup

n≥1
Gn > u

}
and for the ruin probability the equality it holds that

ψ(u) = P
(

sup
n≥1

Gn(ω) > u
)
.

First we state the theorem that justifies the Net Profit Condition introduced
below:
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Theorem 5.1.3. If EW1 <∞, EX1 <∞, and

EZ1 = EX1 − cEW1 ≥ 0,

then ψ(u) = 1 for all u > 0, i.e. ruin occurs with probability one independent
from the initial capital u.

Proof. (a) EZ1 > 0: By the Strong Law of Large Numbers,

lim
n→∞

Gn

n
= EZ1 almost surely.

Because we assumed EZ1 > 0, one gets that

Gn
a.s.→ ∞, n→∞,

because Gn ≈ nEZ1 for large n. This means ruin probability ψ(u) = 1 for
all u > 0.

(b) The case EZ1 = 0 we show under the additional assumption that EZ2
1 <

∞. Let

Ām :=

{
lim sup
n→∞

Z1 + ...+ Zn√
n

≥ m

}
.

Notice that for fixed ω ∈ Ω and n0 ≥ 1 we have

lim sup
n→∞

Z1(ω) + ...+ Zn(ω)√
n

≥ m

iff

lim sup
n≥n0

Zn0(ω) + ...+ Zn(ω)√
n

≥ m.

Hence

Ām ⊆
∞⋂

n0=1

σ(Zn0 , Zn0+1, ...).

The sequence (Zn)n≥1 consists of independent random variables. By the 0−1
law of Kolmogorov (see [4, Proposition 2.1.6]) we conclude that

P(Ām) ∈ {0, 1}.

Since

P
(

lim sup
n→∞

Z1 + ...+ Zn√
n

=∞
)

= lim
m→∞

P(Ām)
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it suffices to show P(Ām) > 0. We have

Ām =

{
lim sup
n→∞

Z1 + ...+ Zn√
n

≥ m

}
⊇

∞⋂
n=1

∞⋃
k=n

{
Z1 + ...+ Zk√

k
≥ m

}
.

By Fatou’s Lemma and the Central Limit Theorem,

P(Ām) ≥ lim sup
k→∞

P
(
Z1 + ...+ Zk√

k
≥ m

)
=

∫ ∞
m

e−
x2

2σ2
dx√
2πσ2

> 0

where σ2 = EZ2
1 .

Definition 5.1.4 (Net profit condition). The renewal model satisfies the net
profit condition (NPC) if and only if

EZ1 = EX1 − cEW1 < 0. (NPC)

The consequence of (NPC) is that on average more premium flows into the
portfolio of the company than claim sizes flow out: We have

Gn = −ρ(Tn) + S(Tn)

= −c(W1 + ...+Wn) +X1 + ...+Xn

which implies
EGn = nEZ1 < 0.

Theorem 5.1.3 implies that any insurance company should choose the pre-
mium ρ(t) = ct in such a way that EZ1 < 0. In that case there is hope that
the ruin probability is less than 1.

5.2 Lundberg inequality and Cramér’s ruin

bound

In this section it is assumed, that the renewal model is used and the net
profit condition holds, that means

EX1 − cEW1 < 0.
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Definition 5.2.1. For a random variable f : Ω → R on some probability
space (Ω,F,P) the function

mf (h) = Eehf ,

is called the moment-generating function if it is finite for h ∈ (−h0, h0)
for some h0 > 0.

Remark 5.2.2. (1) The map
h 7→ Ee−hf

is called two-sided Laplace transform.

(2) If E|f |kehf < ∞ on (−h0, h0) for all k = 0, . . . ,m, then mf (h) exists, is
m-times differentiable, and one has

dm

dhm
mf (h) = Efmehf .

Therefore
dm

dhm
mf (0) = Efm.

Definition 5.2.3 (Small claim size condition). We say that the small claim
size condition with paramer h0 > 0 is satisfied if

mX1(h) = EehX1 and mcW1(h) = EehcW1 exist for h < h0.

Theorem 5.2.4 (Lundberg inequality). Assume that the small claim size
condition with paramer h0 > 0 is satisfied. If there is an r ∈ (0, h0) with

mZ1(r) = Eer(X1−cW1) = 1,

then
ψ(u) ≤ e−ru for all u > 0.

Definition 5.2.5. The exponent r in Theorem 5.2.4 is called Lundberg
coefficient.

The result implies, that if the small claim condition holds and the initial
capital u is large, there is ’in principal’ no danger of ruin.
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Remark 5.2.6. (1) If mZ1 exists in (−h0, h0) for some h0 > 0, then

P(Z1 ≥ λ) = P(eεZ1 ≥ eελ) ≤ e−ελmZ1(ε)

and
P(−Z1 ≥ λ) ≤ e−ελm−Z1(ε) = e−ελmZ1(−ε)

for all ε ∈ (−h0, h0). This implies

P(|Z1| ≥ λ) ≤ e−ελ[mZ1(ε) +mZ1(−ε)].

(2) If the Lundberg coefficient r exists, then it is unique. First we observe
that which follows from the fact that mZ1 is convex: We have

e(1−θ)r0Z1+θr1Z1 ≤ (1− θ)er0Z1 + θer1Z1 .

Moreover, mZ1(0) = 1 and by Jensen’s inequality,

mZ1(h) = EeZ1h ≥ eEZ1h

such that (assuming (NPC) holds) we get

lim
h→−∞

mZ1(h) ≥ lim
h→−∞

e−EZ1(−h) =∞.

If mZ1 exists in (−ε, ε) and mZ1(h) = 1 for some h ∈ {r, s} ⊆ (0, ε] then,
by convexity,

mZ1(h) = 1 ∀h ∈ [0, r ∨ s].

From (1) we have

P(|Z1| > λ) ≤ ce−
λ
c for some c > 0

and it holds

E|Z1|n =

∫ ∞
0

P(|Z1|n > λ)dλ = n

∫ ∞
0

P(|Z1| > λ)λn−1dλ

≤ n

∫ ∞
0

ce−λ/cλn−1dλ

≤ ncn
∫ ∞

0

e−λ/c
(
λ

c

)n−1

dλ
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≤ ncn+1

∫ ∞
0

e−λλn−1dλ

= n!cn+1.

Because of
∞∑
n=0

hn

n!
E|Z1|n ≤

∞∑
n=0

hn

n!
n!cn+1 <∞

for |hc| < 1, the function

mZ1(h) = EehZ1 = E
∞∑
n=0

(hZ1)n

n!

is infinitely often differentiable for |h| < 1/c. Moreover the function is
constant on [0, r ∨ s] so that, for 0 < h < min{1/c, r ∨ s}, one has

0 =
d2

dh2
mZ1(h) = EZ2

1e
hZ1 .

This implies EZ2
1e
hZ1 = 0 and Z1 = 0 a.s.

(3) In practice, r is hard to compute from the distributions of X1 and W1.
Therefore it is often approximated numerically or by Monte Carlo meth-
ods.

Proof of Theorem 5.2.4. We use Zn = Xn− cWn and set Gk := Z1 + ...+Zk.
We consider

ψn(u) := P
(

max
1≤k≤n

Gk > u
)
, u > 0.

Because of ψn(u) ↑ ψ(u) for n→∞ it is sufficient to show

ψn(u) ≤ e−ru, n ≥ 1, u > 0.

For n = 1 we get the inequality by

ψ1(u) = P(Z1 > u) = P(erZ1 > eru) ≤ e−ruEerZ1 = e−ru.

Now we assume that the assertion holds for n. We have

ψn+1(u) = P
(

max
1≤k≤n+1

Gk > u
)
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= P(Z1 > u) + P
(

max
1≤k≤n+1

Gk > u,Z1 ≤ u
)

= P(Z1 > u) + P
(

max
2≤k≤n+1

(Gk − Z1) > u− Z1, Z1 ≤ u
)

= P(Z1 > u) +

∫ u

−∞
P
(

max
1≤k≤n

Gk > u− x
)
dFZ1(x)

where we have used for the last line that max2≤k≤n+1(Gk − Z1) and Z1 are
independent. We estimate the first term

P(Z1 > u) =

∫
(u,∞)

dFZ1(x) ≤
∫

(u,∞)

er(x−u)dFZ1(x),

and proceed with the second term as follows:∫
(−∞,u]

P
(

max
1≤k≤n

Gk > u− x
)
dFZ1(x) =

∫
(−∞,u]

ψn(u− x)dFZ1(x)

≤
∫

(−∞,u]

e−r(u−x)dFZ1(x).

Consequently,

ψn+1(u) ≤
∫

(u,∞)

er(x−u)dFZ1(x) +

∫
(−∞,u]

e−r(u−x)dFZ1(x) = e−ru.

We consider an example where it is possible to compute the Lundberg coef-
ficient:

Example 5.2.7. Let X1, X2, ... ∼ Exp(γ) and W1,W2, ... ∼ Exp(λ). Then

mZ1(h) = Eeh(X1−cW1) = EehX1Ee−hcW1 =
γ

γ − h
λ

λ+ ch

for −λ
c
< h < γ since

EehX1 =

∫ ∞
0

ehxγe−γxdx =
γ

γ − h
.
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The (NPC) condition reads as

0 > EZ1 = EX1 − cEW1 =
1

γ
− c

λ
or cγ > λ.

Hence mZ1 exists on (−λ
c
, γ) and for r > 0 we get

γ

γ − r
λ

λ+ cr
= 1

⇐⇒ γλ = γλ+ γcr − λr − cr2

⇐⇒ r = γ − λ

c
.

Consequently,

ψ(u) ≤ e−ru = e−(γ−λ
c

)u.

Applying the expected value principle ρ(t) = (1 + ρ)ES(t) = (1 + ρ)λEX1t
we get

γ − λ

c
= γ − λ

(1 + ρ)λ
γ

= γ
ρ

1 + ρ
.

This implies

ψ(u) ≤ e−ru = e−uγ
ρ

1+ρ ,

where one should notice that even ρ → ∞ does not change the ruin proba-
bility considerably!

The following theorem considers the special case, the Cramér-Lundberg-
model:

Theorem 5.2.8 (Cramér’s ruin bound). Assume the Cramér-Lundberg-
model with the net profit condition (NPC) and with ρ(t) = ct = (1+ρ)ES(t).
Suppose that the distribution of X1 has a density, that mX1(h) exists in a
neighborhood (−h0, h0) of the origin, and that r ∈ (0, h0) is the Lundberg
coefficient. Then one has

lim
u→∞

eruψ(u) = c,

with c := ρEX1

r

(∫∞
0
yery(1− FX1(y))dy

)−1

.

To prove this theorem introduce in the next section the fundamental integral
equation for the survival probability.
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5.3 Fundamental integral equation for the

survival probability

We introduce the survival probability

ϕ(u) = 1− ψ(u).

Theorem 5.3.1 (Fundamental integral equation for the survival probabil-
ity). Assume that for the Cramér-Lundberg-model (NPC) holds and EX1 <
∞. Suppose that ρ(t) = ct = (1 + ρ)ES(t). Then

ϕ(u) = ϕ(0) +
1

(1 + ρ)EX1

∫ u

0

F̄X1(y)ϕ(u− y)dy (1)

with F̄X1(y) = P(X1 > y).

Remark 5.3.2. Let the assumptions of Theorem 5.3.1 hold.

(1) The assertion can be reformulated as follows. Let

FX1,I(y) :=
1

EX1

∫ y

0

F̄X1(z)dz, y ≥ 0.

The function FX1,I(y) is a distribution function since

lim
y→∞

FX1,I(y) =
1

EX1

∫ ∞
0

F̄X1(z)dz

=
1

EX1

∫ ∞
0

P(X1 > z)dz = 1.

Hence equation (1) can be written as

ϕ(u) = ϕ(0) +
1

1 + ρ

∫ u

0

ϕ(u− y)dFX1,I(y).

(2) It holds that limu→∞ ϕ(u) = 1. This can be seen as follows:

lim
u→∞

ϕ(u) = lim
u→∞

(1− ψ(u))

= lim
u→∞

(
1− P

(
sup
k≥1

Gk > u

))
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= lim
u→∞

P
(

sup
k≥1

Gk ≤ u

)
where Gk = Z1 + ...+ Zk. Since EZ1 < 0 the SLLN implies

lim
k→∞

Gk = −∞ a.s.

Therefore we have supk≥1Gk <∞ a.s. and

lim
u→∞

P
(

sup
k≥1

Gk ≤ u

)
= 1.

(3) It holds that ϕ(0) = ρ
1+ρ
→ 1 for ρ ↑ ∞. Indeed, because of (1), and (2),

and Theorem 5.3.1 we may conclude that

1 = ϕ(0) +
1

1 + ρ
lim
u→∞

∫ ∞
0

1I[0,u](y)ϕ(u− y)dFX1,I(y)

= ϕ(0) +
1

1 + ρ

∫ ∞
0

lim
u→∞

(
1I[0,u](y)ϕ(u− y)

)
dFX1,I(y)

= ϕ(0) +
1

1 + ρ

∫ ∞
0

dFX1,I(y)

= ϕ(0) +
1

1 + ρ
.

The interpretation of ϕ(0) is the survival probability when starting with
0 Euro initial capital.

Proof of Theorem 5.3.1. (a) We first show that

ϕ(u) =
λ

c
e
λu
c

∫
[u,∞)

e
−λy
c

∫
[0,y]

ϕ(y − x)dFX1(x)dy. (2)

To do this, we consider

ϕ(u)

= P
(

sup
n≥1

Gn ≤ u

)
= P

(
Z1 ≤ u,Gn − Z1 ≤ u− Z1 for n ≥ 2

)
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=

∫
[0,∞)

∫
[0,u+cw]

P
(
Gn − Z1 ≤ u− (x− cw) for n ≥ 2

)
dFX1(x)dFW1(w)

where we used for the last line that

x− cw ≤ u and x ≥ 0 ⇐⇒ 0 ≤ x ≤ u+ cw.

We use that Gn − Z1 ∼ Z1 + ... + Zn−1 and substitute y := u + cw in order
to obtain

ϕ(u) =

∫
[0,∞)

∫
[0,u+cw]

P
(
Gn ≤ u− (x− cw) for n ≥ 1

)
dFX1(x)λe−λwdw

=

∫
[0,∞)

∫
[0,u+cw]

ϕ(u− x+ cw)dFX1(x)λe−λwdw

=

∫
[u,∞)

∫
[0,y]

ϕ(y − x)dFX1(x)λe−λ
y−u
c d

y

c
.

(b) Differentiation of (2) leads to

ϕ′(u) =
λ

c
ϕ(u)−

∫
[0,y]

ϕ(y − x)dFX1(x)
λ

c
e−λ

y−u
c

∣∣∣∣
y=u

=
λ

c
ϕ(u)− λ

c

∫
[0,u]

ϕ(u− x)dFX1(x),

so that

ϕ(t)− ϕ(0)− λ

c

∫ t

0

ϕ(u)du

= −λ
c

∫ t

0

∫
[0,u]

ϕ(u− x)dFX1(x)du

= −λ
c

∫ t

0

[
ϕ(u− x)FX1(x)

∣∣∣∣u
0

+

∫
[0,u]

ϕ′(u− x)FX1(x)dx

]
du

= −λ
c

∫ t

0

[
ϕ(0)FX1(u)− ϕ(u)FX1(0) +

∫
[0,u]

ϕ′(u− x)FX1(x)dx

]
du

= −λ
c
ϕ(0)

∫ t

0

FX1(u)du− λ

c

∫ t

0

∫
[x,t]

ϕ′(u− x)FX1(x)dudx

= −λ
c

∫ t

0

ϕ(t− x)FX1(x)dx.
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This implies

ϕ(t)− ϕ(0) =
λ

c

∫ t

0

ϕ(t− x)(1− FX1(x))dx.

Using that

ES(t) = λtEX1 and ct = (1 + ρ)ES(t) = (1 + ρ)λtEX1

gives λ
c

= 1
(1+ρ)EX1

which yields the assertion.

Now we can deduce a representation of the survival probability:

Theorem 5.3.3. Assume the Cramér-Lunberg model with the NPC-
condition. Assume for the claim size distribution X1 : Ω → (0,∞) that
EX1 <∞, let (XI,k)k≥1 be i.i.d. random variables with the distribution func-
tion FX1,I , and define

ϕ(u) :=
ρ

1 + ρ

[
1 +

∞∑
n=1

(1 + ρ)−nP(XI,1 + ...+XI,n ≤ u)

]
for u ∈ R.

Then ϕ is the unique solution to

ϕ(u) = ϕ(0) +
1

1 + ρ

∫ u

0

ϕ(u− y)dFX1,I(y)

in the class

G :=

{
g : R→ [0,∞) : non-decreasing, bounded,

right-continuous with g(x) =

{
0 for x < 0
ρ

1+ρ
for x = 0

}
.

Proof. Uniqueness: Assume ϕ1, ϕ2 are solutions and ∆ϕ = ϕ1 − ϕ2. Then

∆ϕ(u) =
1

1 + ρ

∫ u

0

∆ϕ(u− y)dFX1,I(y)

=
1

1 + ρ

∫ u

0

∆ϕ(u− y)
FX1(y)

EX1

dy
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=
1

(1 + ρ)EX1

∫ u

0

∆ϕ(y)FX1(u− y)dy

and

|∆ϕ(u)| ≤ 1

(1 + ρ)EX1

∫ u

0

|∆ϕ(y)|dy.

Gronwall’s Lemma implies that|∆ϕ(u)| = 0 for u ∈ R.

Verification that ϕ is a solution: Here we get

ϕ(0) =
ρ

1 + ρ

[
1 +

∞∑
n=1

(1 + ρ)−nP(XI,1 + ...+XI,n ≤ 0)

]
=

ρ

1 + ρ

and

ϕ(0) +
1

1 + ρ

∫ u

0

ϕ(u− y)dFX1,I(y)

=
ρ

1 + ρ
+

1

1 + ρ

∫ u

0

ϕ(u− y)dFX1,I(y)

=
ρ

1 + ρ
+

1

1 + ρ∫ u

0

ρ

1 + ρ

[
1 +

∞∑
n=1

(1 + ρ)−nP (XI,1 + ...+XI,n ≤ u− y)

]
dFX1,I(y)

=
ρ

1 + ρ
+

1

1 + ρ

ρ

1 + ρ

[
FX1,I(u) +

∞∑
n=1

(1 + ρ)−n
∫ u

0

P (XI,1 + ...+XI,n + y ≤ u) dFX1,I(y)

]
=

ρ

1 + ρ
+

1

1 + ρ

ρ

1 + ρ

[
FX1,I(u) +

∞∑
n=1

(1 + ρ)−nP (XI,1 + ...+XI,n+1 ≤ u)

]
=

ρ

1 + ρ
+

1

1 + ρ

ρ

[
(1 + ρ)−1P(XI,1 ≤ u) +

∞∑
n=1

(1 + ρ)−(n+1)P (XI,1 + ...+XI,n+1 ≤ u)

]

=
ρ

1 + ρ

[
1 +

∞∑
n=1

(1 + ρ)−(n+1)P (XI,1 + ...+XI,n ≤ u)

]
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= ϕ(u).

5.4 Proof of Cramér’s ruin bound

Lemma 5.4.1 (Smith’s renewal equation). It holds

eruψ(u) = qeruF̄X1,I(u) +

∫ u

0

er(u−x)ψ(u− x)dF
(r)
X1

(x)

where q := 1
1+ρ

, r is the Lundberg coefficient, and

F
(r)
X1

(x) :=
q

EX1

∫ x

0

eryF̄X1(y)dy.

Definition 5.4.2. The function F
(r)
X1

is called the Esscher transform of
FX1 .

Proof of Lemma 5.4.1. (a) We first show that F
(r)
X1

is a distribution function.
In fact, we have

lim
x→∞

F
(r)
X1

(x) =
q

EX1

∫ ∞
0

eryF̄X1(y)dy

=
q

EX1

1

r
(EerX1 − 1),

since

EerX1 =

∫ ∞
0

P(erX1 > t)dt

=

∫ ∞
−∞

P(erX1 > ery)rerydy

=

∫ 0

−∞
rerydy +

∫ ∞
0

P(X1 > y)rerydy

= 1 + r

∫ ∞
0

F̄X1(y)erydy.
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From Eer(X1−cW1) = 1 we conclude

lim
x→∞

F
(r)
X1

(x) =
q

EX1

1

r

(
1

Ee−rcW1
− 1

)
=

q

EX1

1

r

(
rc+ λ

λ
− 1

)
=

qc

EX1

1

λ
=

c

(1 + ρ)EX1

1

λ
= 1.

(b) From Theorem 5.3.1 we conclude that

ψ(u) = qF̄X1,I(u) +

∫ u

0

ψ(u− y)d(qFX1,I)(y).

Indeed, by equation (1) and Remark 5.3.2 we have

ϕ(u) =
ρ

1 + ρ
+

1

1 + ρ

∫ u

0

ϕ(u− y)
F̄X1(y)

EX1

dy.

Hence

ψ(u) = 1− ϕ(u) =
1

1 + ρ
− 1

1 + ρ

∫ u

0

ϕ(u− y)
F̄X1(y)

EX1

dy

= q − q
∫ u

0

F̄X1(y)

EX1

dy + q

∫ u

0

ψ(u− y)
F̄X1(y)

EX1

dy

= qF̄X1,I(u) +

∫ u

0

ψ(u− y)d(qFX1,I)(y).

This equation would have the structure of a renewal equation (see the
renewal equation (3) below) only if q = 1. Therefore we consider

eruψ(u) = eruqF̄X1,I(u) +

∫ u

0

er(u−y)ψ(u− y)eryd(qF̄X1,I)(y)

= eruqFX1,I(u) +

∫ u

0

er(u−y)ψ(u− y)dF
(r)
X1

(y).

Since F (r) is a distribution function, we have indeed a renewal equation.

The following assertion is a generalization of the Blackwell Renewal Lemma.
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Lemma 5.4.3 (Smith’s key renewal lemma). Let H : R→ R be a continuous
distribution function such that H(x) = 0 for x ≤ 0 and

0 <

∫
R
xdH(x) <∞.

Let

(1) k : R→ [0,∞) be Riemann integrable such that k(x) = 0 for x < 0,

(2) limx→∞ k(x) = 0.

Then

R(u) =

∫ u

0

k(u− y)dH(y)

is in the class of all functions on (0,∞) which are bounded on finite intervals
the only solution to the renewal equation

R(u) = k(u) +

∫ u

0

R(u− y)dH(y) (3)

and it holds

lim
u→∞

R(u) =
1∫

R xdH(x)

∫ ∞
0

k(u)du.

The proof can be found in [9, pp. 202].

Proof of Theorem 5.2.8. We apply Lemma 5.4.3 for

R(u) := eruψ(u),

k(u) := qeruF̄X1,I(u),

H(x) := F (r)(x).

For α := 1∫
R xdF

(r)(x)
we get

lim
u→∞

eruψ(u) = α

∫ ∞
0

qeryF̄X1,I(y)dy

= α

∫ ∞
0

qery
[
1− 1

EX1

∫ y

0

F̄X1(z)dz

]
dy

= α

∫ ∞
0

qery
1

EX1

∫ ∞
y

F̄X1(z)dzdy



5.4. PROOF OF CRAMÉR’S RUIN BOUND 55

= α

∫ ∞
0

q

EX1

∫ z

0

erydyF̄X1(z)dz

=
α

r

[
q

EX1

∫ ∞
0

erzF̄X1(z)dz − q

EX1

∫ ∞
0

F̄X1(z)dz

]
=

α

r
[1− q] =

α

r

ρ

1 + ρ
.

Finally

1

α
=

∫
R
xdF (r)(x)

=
q

EX1

∫ ∞
0

xerxF̄X1(x)dx

=
1

(1 + ρ)EX1

∫ ∞
0

xerxF̄X1(x)dx.

implies

lim
u→∞

eruψ(u) =
ρEX1

r

1∫∞
0
xerxF̄X1(x)dx

.
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Chapter 6

Probability of ruin: large claim
sizes

6.1 Tails of claim size distributions

So far we did not discuss how to separate small and large claim sizes, and how
to choose the distributions to model the claim sizes (Xi)? If one analyzes data
of claim sizes that have happened in the past, for example by a histogram
or a QQ-plot (see Chapter 7), it turns out that the distribution is either
light-tailed or heavy-tailed, the latter case is more often the case.

Definition 6.1.1. LetX : Ω → R be a random variable with X(ω) ≥ 0 for
all ω ∈ Ω with distribution function F , i.e.

F (x) = P({ω ∈ Ω : X1(ω) ≤ x}).

(1) The distribution function F or the random variable X is called light-
tailed if and only if there is some λ > 0 such that one has

sup
x≥0

eλxP(X > x) = sup
x≥0

eλx[1− F (x)] <∞.

(2) The distribution function F or the random variable X is called heavy-
tailed if and only if for all λ > 0 one has

inf
x≥0

eλxP(X > x) = inf
x≥0

eλx[1− F (x)] > 0.

57
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Example 6.1.2. (1) The exponential distribution Exp(α) is light-tailed for all
α > 0, since the distribution function is F (x) = 1− e−αx, x > 0, and

1− F (x)

e−λx
=
e−αx

e−λx
= e(λ−α)x,

and by choosing 0 < λ < α,

sup
x≥n≥0

e(λ−α)x = e(λ−α)n → 0, as n→∞.

(2) The Pareto distribution is heavy-tailed. The distribution function is

F (x) = 1− κα

(κ+ x)α
for x ≥ 0, α > 0, κ > 0,

or

F (x) = 1− ba

xa
for x ≥ b > 0, a > 0.

Proposition 6.1.3. If X : Ω → R is light-tailed, then there is an h0 > 0,
such that the moment generating function

h→ EehX

is finite on (−h0, h0).

Proof. It is sufficient to find an h0 > 0 such that Eeh0X <∞. We get

Eeh0X =

∫ ∞
0

P(eh0X > x)dx

= 1 +

∫
(1,∞)

P(eh0X > x)dx

= 1 +

∫
(1,∞)

P
(
X >

1

h0

log(x)

)
dx

= 1 +

∫
(1,∞)

[
1− F

(
1

h0

log(x)

)]
dx

≤ 1 + C

∫
(1,∞)

[
e
−λ0

(
1
h0

log(x)
)]
dx

≤ 1 + C

∫
(1,∞)

[
x
−λ0
h0

]
dx

< ∞

for 0 < h0 < λ0.
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6.2 Subexponential distributions

6.2.1 Definition and basic properties

In Theorem 6.3.1 below we need subexponential distributions:

Definition 6.2.1. A distribution function F : R→ [0, 1] such that F (0) = 0
and F (x) < 1 for all x > 0 is called subexponential if and only if for i.i.d.
(Xi)

∞
i=1 and P(Xi ≤ u) = F (u), u ∈ R, it holds that

lim
x→∞

P(X1 + · · ·+Xn > x)

P(max1≤k≤nXk > x)
= 1 for all n ≥ 2.

We denote the class of subexponential distribution functions by S.

We start with an equivalence that can be used to define S as well.

Proposition 6.2.2 (Equivalent conditions for S, part I). Assume i.i.d.
(Xi)

∞
i=1 with P(Xi ≤ u) = F (u), u ∈ R. Then F ∈ S if and only if

lim
x→∞

P(X1 + · · ·+Xn > x)

P(X1 > x)
= n for all n ≥ 1.

Proof. It holds for Sn = X1 + · · ·+Xn that

P(Sn > x)

P(max1≤k≤nXk > x)
=

P(Sn > x)

1− P(max1≤k≤nXk ≤ x)

=
P(Sn > x)

1− P(X1 ≤ x)n

=
P(Sn > x)

1− (1− P(X1 > x))n

=
P(Sn > x)

P(X1 > x)n(1 + o(1))
.

Next we continue with properties of subexponential distributions that moti-
vate the name subexponential:

Proposition 6.2.3. Assume i.i.d. random variables (Xi)
∞
i=1 and a random

variable X with P(X ≤ u) = P(Xi ≤ u) = F (u), u ∈ R. Then one has the
following assertions:
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(1) For F ∈ S it holds

lim
x→∞

F (x− y)

F (x)
= 1 for all y > 0.

(2) If F ∈ S, then for all ε > 0 it holds

eεxP(X > x)→∞ for x→∞.

(3) If F ∈ S, then for all ε > 0 there exists a K > 0 such that

P(Sn > x)

P(X1 > x)
≤ K(1 + ε)n ∀n ≥ 2 and x ≥ 0.

For the proof we need the concept of slowly varying functions:

Definition 6.2.4 (Slowly varying functions). A measurable function L :
[0,∞)→ (0,∞) is called slowly varying if

lim
ξ→∞

L(cξ)

L(ξ)
= 1 for all c > 0.

Proposition 6.2.5 (Karamata’s representation). Any slowly varying func-
tion can be represented as

L(ξ) = c0(ξ) exp

(∫ ξ

ξ0

ε(t)

t
dt

)
for all ξ ≥ ξ0

for some ξ0 > 0 where c0, ε : [ξ0,∞)→ R are measurable functions with

lim
ξ→∞

c0(ξ) = c0 > 0 and lim
t→∞

ε(t) = 0.

Corollary 6.2.6. For any slowly varying function L it holds

lim
ξ→∞

ξδL(ξ) =∞ for all δ > 0.

Proof. We can enlarge ξ0 such that supt≥ξ0 |ε(t)| < δ. With this choice we
get

lim
ξ→∞

ξδc0(ξ) exp

(∫ ξ

ξ0

ε(t)

t
dt

)
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= lim
ξ→∞

c0(ξ) exp

(
δ log ξ +

∫ ξ

ξ0

ε(t)

t
dt

)
≥ lim

ξ→∞
c0(ξ) exp

(
δ log ξ − sup

t≥ξ0
|ε(t)|

∫ ξ

ξ0

dt

t

)
≥ lim

ξ→∞
c0(ξ) exp

(
δ log ξ − (log ξ − log ξ0) sup

t≥ξ0
|ε(t)|

)
= ∞.

Proof of Proposition 6.2.3. (1) For 0 ≤ y ≤ x <∞ we have

P(X1 +X2 > x)

P(X1 > x)
=

∫
R P(t+X > x)dF (t)

P(X1 > x)

=
P(X1 > x) +

∫
(−∞,y]

P(t+X > x)dF (t)

P(X1 > x)

+

∫
(y,x]

P(t+X > x)dF (t)

P(X1 > x)

≥ 1 + F (y) +
F (x− y)

F (x)
(F (x)− F (y)).

We choose x large enough such that F (x)− F (y) > 0 and observe that

1 ≤ F (x− y)

F (x)
≤
(
P(X1 +X2 > x)

P(X1 > x)
− 1− F (y)

)
1

F (x)− F (y)
→ 1

as x→∞.
(2) Let L(ξ) := F (log ξ). It follows from (1) that for all c > 0 one has

lim
ξ→∞

L(cξ)

L(ξ)
= lim

ξ→∞

F (log c+ log ξ)

F (log ξ)
= 1.

By definition, L is slowly varying. Therefore,

lim
ξ→∞

ξδF (log ξ) = lim
x→∞

eδxF (x) =∞

where we use Corollary 6.2.6.

(3) The proof can be found in [5][Lemma 1.3.5].
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6.2.2 Examples

In order to consider fundamental examples we need the next lemma:

Lemma 6.2.7. Let X1, X2 be independent positive random variables such
that for some α > 0

FXi(x) =
Li(x)

xα

where L1, L2 are slowly varying. Then

FX1+X2(x) = x−α(L1(x) + L2(x))(1 + o(1)).

Proof. For 0 < δ < 1
2

we have

{X1 +X2 > x} ⊆ {X1 > (1− δ)x} ∪ {X2 > (1− δ)x}
∪{X1 > δx,X2 > δx}

and hence

P(X1 +X2 > x)

≤ FX1((1− δ)x) + FX2((1− δ)x) + FX1(δx)FX2(δx)

≤ [FX1((1− δ)x) + FX2((1− δ)x)][1 + FX1(δx)]

= [FX1((1− δ)x) + FX2((1− δ)x)][1 + o(1)]

=

[
L1((1− δ)x)

((1− δ)x)α
+
L2((1− δ)x)

((1− δ)x)α

]
[1 + o(1)]

=

[
FX1(x)

L1((1− δ)x)

L1(x)
+ FX2(x)

L2((1− δ)x)

L2(x)

]
[1 + o(1)](1− δ)−α.

From this we get

lim sup
x→∞

P(X1 +X2 > x)

FX1(x) + FX1(x)
= lim sup

x→∞

P(X1 +X2 > x)

FX1(x)L1((1−δ)x)
L1(x)

+ FX2(x)L2((1−δ)x)
L2(x)

≤ (1− δ)−α.

As this is true for all 0 < δ < 1
2
, we may conclude

lim sup
x→∞

P(X1 +X2 > x)

FX1(x) + FX1(x)
≤ 1.



6.2. SUBEXPONENTIAL DISTRIBUTIONS 63

On the other hand,

P(X1 +X2 > x) ≥ P({X1 > x} ∪ {X2 > x})
= P(X1 > x) + P(X2 > x)− P(X1 > x)P(X2 > x)

= FX1(x) + FX2(x)− FX1(x)FX2(x)

≥
[
FX1(x) + FX2(x)

][
1− FX1(x)

]
and hence

lim inf
x→∞

P(X1 +X2 > x)

FX1(x) + FX2(x)
≥ 1.

Consequently,

lim
x→∞

P(X1 +X2 > x)

FX1(x) + FX2(x)
= 1.

Definition 6.2.8. If there exists a slowly varying function L and some α > 0
such that for a positive random variable X it holds

FX(x) =
L(x)

xα
,

then FX is called regularly varying with index α or of Pareto type with
exponent α.

Proposition 6.2.9. If FX is regularly varying with index α, then FX is
subexponential.

Proof. An iteration of Lemma 6.2.7 implies

FX1+...+Xn(x)

FX(x)
∼ L(x) + ...+ L(x)

L(x)
= n.

Example 6.2.10. (1) The exponential distribution with parameter λ > 0 is
not subexponential.



64 CHAPTER 6. PROBABILITY OF RUIN: LARGE CLAIM SIZES

(2) The Pareto distribution

F (x) = 1− κα

(κ+ x)α
, x ≥ 0, α > 0, κ > 0

is subexponential.

(3) The Weibull distribution

F (x) = 1− e−cxr , 0 < r < 1, x ≥ 0,

is subexponential.

Proof. (1) The relation (1) of Proposition 6.2.3 is not satisfied.

(2) We define L(x) by

P(X > x) =
1

xα
(xκ)α

(κ+ x)α
=:

1

xα
L(x)

and conclude

L(cx)

L(x)
=

(
cxκ

κ+ cx

x+ κ)

κx

)α
=

(
c
x+ κ

κ+ cx

)α
→ 1 for x→∞.

Now we apply Proposition 6.2.9.

(3) See [5, Sections 1.4.1 and A3.2].

6.2.3 Another characterization of subexponential dis-
tributions

There is the following extension Proposition 6.2.2:

Proposition 6.2.11. Assume independent positive random variables
X1, X2 : Ω→ (0,∞) such that

P(X1 ≤ u) = P(X2 ≤ u) = F (u) for all u ∈ R.

Then the following assertions are equivalent:
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(1) F ∈ S.

(2) limx→∞
P(X1+X1>x)

P(max{X1,X2}>x)
= 1.

(3) limx→∞
P(X1+X1>x)

P(X1>x)
= 2.

Proof. We only show (1)⇐⇒ (3). The implication (1)⇐⇒ (3) follows from
Proposition 6.2.2. To check the implication (3)⇐⇒ (1) we show by induction
that

lim
x→∞

P(X1 + · · ·+Xn > x)

P(X1 > n)
= n

implies

lim
x→∞

P(X1 + · · ·+Xn+1 > x)

P(X1 > n)
= n+ 1.

Then we start with n = 2, which is true according to Proposition 6.2.2, and
get the assertion for all n ≥ 2. So we assume that

lim
x→∞

P(X1 + · · ·+Xn > x)

P(X1 > n)
= n.

Hence there exists for all ε ∈ (0, n) an x0 > 0 such that

(n− ε)P(X1 > x) ≤ P(X1 + · · ·+Xn > x) ≤ (n+ ε)P(X1 > x)

for x ≥ x0. For the following computation we remark that for y ≥ 0 one has
x− y ≥ x0 if and only if 0 ≤ y ≤ x− x0. We estimate

P(X1 + · · ·+Xn +Xn+1 > x)

P(X1 > x)

= 1 +

∫ x
0
P(X1 + · · ·+Xn > x− y)dFX(y)

P(X1 > x)

= 1 +

∫ x−x0
0

P(X1 + · · ·+Xn > x− y)dFX(y)

P(X1 > x)

+

∫ x
x−x0 P(X1 + · · ·+Xn > x− y)dFX(y)

P(X1 > x)

≤ 1 + (n+ ε)

∫ x−x0
0

P(X1 > x− y)dFX(y)

P(X1 > x)
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+

∫ x
x−x0 dFX(y)

P(X1 > x)

One can show that (see Proposition 6.2.3) that

lim
x→∞

∫ x
x−x0 dFX(y)

P(X1 > x)
= lim

x→∞

P(X1 > x)− P(X1 > x− x0)

P(X1 > x)
= 0.

Moreover,

lim
x→∞

∫ x
0
P(X1 > x− y)dFX(y)

P(X1 > x)
= lim

x→∞

P(X1 +X2 > x)

P(X1 > x)
− 1

= 2− 1 = 1

which implies

lim
x→∞

P(X1 + · · ·+Xn +Xn+1 > x)

P(X1 > x)
≤ n+ 1.

The other inequality can be shown similarly.

6.3 An asymptotics for the ruin probability

for large claim sizes

We proceed with the main result of this chapter.

Theorem 6.3.1. Assume the Cramér-Lunberg model and that the NP con-
dition holds. Let X1 : Ω → R be a non-negative random variable with
0 < EX1 < ∞. Assume that X1 has a density and that the distribution
function

FX1,I(y) :=
1

EX1

∫ y

0

FX1(x)dx with y ≥ 0

is subexponential. Then

lim
u→∞

ψ(u)

1− FX1,I(u)
=

1

ρ
.
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Remark 6.3.2. (1) The left-hand side of the assertion of Theorem 6.3.1 can
be written more explicitly as

lim
u→∞

ψ(u)

1− FX1,I(u)
= lim

u→∞

ψ(u)∫∞
u

P(X1 > x)dx
.

(2) The right-hand side of the assertion of Theorem 6.3.1 relates to the NP
condition as follows: As we use the Cramér-Lunberg model and as pre-
mium principle the expected value principle, we have (using Proposition
3.2.2)

ρ(t) = (1 + ρ)ESt = (1 + ρ)EN(t)EX1 = (1 + ρ)λtEX1 = (1 + ρ)
EX1

EW1

t.

so that p(t) = ct with

c = (1 + ρ)
EX1

EW1

.

On the other hand the NP condition holds if and only if

EX1 − cEW1 < 0.

Now we get

ρ = c
EW1

EX1

− 1 =
cEW1 − EX1

EX1

and
1

ρ
=

EX1

cEW1 − EX1

.

This means, the larger the ’overshoot’ cEW1 − EX1 is, the smaller gets
the factor 1

ρ
in Theorem 6.3.1.

(3) Summarizing, one can also write

lim
u→∞

ψ(u)∫∞
u

P(X1 > x)dx
=

EX1

cEW1 − EX1

if the premium rate is ρ(t) = ct.

Proof of Theorem 6.3.1. From Theorem 5.3.1 we know that the survival
probability solves

ϕ(u) = ϕ(0) +
1

(1 + ρ)EX1

∫ u

0

ϕ(u− y)dFX1,I(y)
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The function ϕ is bounded, non-decreasing and right-continuous, since

ϕ(u) = P(sup
k≥1

Gk ≤ u).

Therefore we can apply Theorem 5.3.3 and get

ϕ(u) =
ρ

1 + ρ

[
1 +

∞∑
n=1

(1 + ρ)−nP(XI,1 + ...+XI,n ≤ u)

]
and

ψ(u) =
ρ

1 + ρ

∞∑
n=1

(1 + ρ)−nP(XI,1 + ...+XI,n > u)

since

ρ

1 + ρ

∞∑
n=0

(1 + ρ)−n = 1.

Hence

ψ(u)

FX1,I(u)
=

ρ

1 + ρ

∞∑
n=1

(1 + ρ)−n
P(XI,1 + ...+XI,n > u)

FX1,I(u)

By assumption,

lim
n→∞

P(XI,1 + ...+XI,n > u)

FX1,I(u)
= n.

In order to be able to exchange summation and limit, we will use the estimate
of Proposition 6.2.3

P(XI,1 + ...+XI,n > u)

FX1,I(u)
≤ K(1 + ε)n.

For ε ∈ (0, ρ) we have

ρ

1 + ρ

∞∑
n=0

(1 + ρ)−nK(1 + ε)n = K
ρ

1 + ρ

∞∑
n=0

(
1 + ε

1 + ρ

)n
<∞.
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Therefore we obtain by dominated convergence, that

lim
u→∞

ψ(u)

FX1,I(u)
=

ρ

1 + ρ

∞∑
n=1

(1 + ρ)−n lim
u→∞

P(XI,1 + ...+XI,n > u)

FX1,I(u)

=
ρ

1 + ρ

∞∑
n=1

(1 + ρ)−nn =
1

ρ
.

6.4 Conditions for FX,I ∈ S

The main condition in Theorem 6.3.1 consists in FX,I ∈ S. For this reason
we introduce the class S∗ and show that F ∈ S∗ implies that FX,I ∈ S.

Definition 6.4.1. A positive random variable X with distribution function
F belongs to S∗ if and only if

(1) EX = µ ∈ (0,∞),

(2) limx→∞
∫ x

0
F (x−y)

F (x)
F (y)dy = 2µ.

Proposition 6.4.2. If X ∈ S∗, then X ∈ S and FX,I ∈ S.

Proof. We only prove FX,I ∈ S: From the definition we conclude that for all
ε > 0 there exists a constant x0 > 0 such that, for t > x0,

2µ(1− ε)F (t) ≤
∫ t

0

F (t− y)F (y)dy ≤ 2µ(1 + ε)F (t)

Therefore, for any x > x0,

2µ(1− ε)
∫ ∞
x

F (t)dt ≤
∫ ∞
x

∫ t

0

F (t− y)F (y)dy ≤ 2µ(1 + ε)

∫ ∞
x

F (t)dt

and

2(1− ε) ≤
∫∞
x

∫ t
0
F (t− y)F (y)dy/µ2∫∞
x
F (t)dt/µ

≤ 2(1 + ε)
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or, in another notation,

2(1− ε) ≤ FI,X ∗ FI,X(x)

F I,X(x)
≤ 2(1 + ε).

Proposition 6.2.11 implies that FX,I ∈ S∗.

Proposition 6.4.3. The Weibull distribution

P(X > x) = e−cx
r

for x ≥ 0,

with fixed c > 0 and r ∈ (0, 1) belongs to S∗.

Proof. Let M(x) := cxr. We show∫ x

0

F (x− y)

F (x)
F (y)dy = 2

∫ x/2

0

eM(x)−M(x−y)−M(y)dy → 2µ

for x→∞ where we use that∫ x/2

0

eM(x)−M(x−y)−M(y)dy =

∫ x

x/2

eM(x)−M(x−y)−M(y)dy

because of the symmetry of y 7→M(x)−M(x− y)−M(y) around x/2. For
0 < y < x

2
we have

1 ≤ eyM
′(x) ≤ eM(x)−M(x−y) ≤ eyM

′(x/2)

and hence∫ x/2

0

e−M(y)dy ≤
∫ x/2

0

eM(x)−M(x−y)−M(y)dy ≤
∫ x/2

0

eyM
′(x/2)e−M(y)dy.

For the left-hand side we have

lim
x→∞

∫ x/2

0

e−M(y)dy = lim
x→∞

∫ x/2

0

P(X > y)dy =

∫ ∞
0

P(X > y)dy = EX = µ.

For the right-hand side and 0 ≤ y ≤ x/2 we observe that

yM ′(x/2) = cry
∣∣∣x
2

∣∣∣r−1

→ 0 as x→∞
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for all y ≥ 0. Therefore, we can use dominated convergence on the right-hand
side to derive

lim
x→∞

∫ x/2

0

eyM
′(x/2)e−M(y)dy = µ

as for the left-hand side. Since the left-hand side and the right-hand side of
the inequality, both converge to µ as x→∞ we get

lim
x→∞

∫ x/2

0

eM(x)−M(x−y)−M(y)dy = µ.

Corollary 6.4.4. Assume the Cramér-Lundberg-model and that the claim
size distribution is Weibull distributed, i.e.

P(X > u) = e−cu
r

for u ≥ 0,

where c > 0 and r ∈ (0, 1) are fixed. Assume that the NP condition is fulfilled.
Then

lim
u→∞

ψ(u)∫∞
u
e−cxrdx

=
1

ρ
∫∞

0
e−cxrdx

.
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6.5 Summary

Heavy-tailed

Class S

∗ Pareto type with exponent α > 0

∗ Pareto with parameters α, κ > 0

Class S∗

∗ Pareto with parameters α > 1 and κ > 0

∗ Weibull with parameters 0 < r < 1

and c > 0

Light-tailed

∗ Exponential distribtion with parameter λ > 0

∗ Weibull with parameters r ≥ 1 and c > 0



Chapter 7

More facts on claim size
distributions and distributions
of the total claim amount

7.1 QQ-Plot

A quantile is ”the inverse of the distribution function”. We take the ”left
inverse” if the distribution function is not strictly increasing and continuous
which is is defined by

F←(t) := inf{x ∈ R, F (x) ≥ t}, 0 < t < 1,

and the empirical distribution function of the data X1, ...Xn as

Fn(x) :=
1

n

n∑
i=1

1I(−∞,x](Xi), x ∈ R.

It can be shown that if X1 ∼ F , (Xi)
∞
i=1 i.i.d., then

lim
n→∞

F←n (t)→ F←(t),

almost surely for all continuity points t of F←. Hence, if X1 ∼ F , then the
plot of (F←n (t), F←(t)) should give almost the straight line y = x.

73
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7.2 The distribution of the total claim

amount S(t)

7.2.1 Compound Poisson random variables

The following mixture distributions will be used to show that an independent
sum of compound Poisson random variables, introduced in Definition 7.2.3
below, is a compound Poisson random variable.

Definition 7.2.1 (Mixture distributions). Let Fk, k = 1, ..., n be distribu-
tion functions and pk ∈ [0, 1] such that

∑n
k=1 pk = 1. Then

G(x) = p1F1(x) + ...+ pnFn(x), x ∈ R,

is called the mixture distribution of F1, ..., Fn.

Lemma 7.2.2. Let f1, ..., fn be random variables with distribution function
F1, ..., Fn, respectively. Assume that J : Ω → {1, ..., n} is independent from
f1, ..., fn and P(J = k) = pk. Then the random variable

g = 1I{J=1}f1 + ...+ 1I{J=n}fn

has the mixture distribution function G.
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Definition 7.2.3 (Compound Poisson random variable). Let Nλ ∼ Pois(λ)
and (Xi)

∞
i=1 i.i.d. random variables, independent from Nλ. Then

Y :=

Nλ∑
i=1

Xi

is called a compound Poisson random variable.

Proposition 7.2.4. The sum of independent compound Poisson random
variables is a compound Poisson random variable: Let S1, . . . , Sn given by

Sk =

N
(k)
λk∑
i=1

X
(k)
i , k = 1, ..., n,

be independent compound Poisson random variables such that λk > 0,

N
(k)
λk
∼ Pois(λk), and (X

(k)
i )i≥1 i.i.d.,

and Nk is independent from (X
(k)
i )i≥1 for all k = 1, ..., n. Then S := S1 +

...+ Sn is a compound Poisson random variable with representation

S
d
=

Nλ∑
i=1

Yi, Nλ ∼ Pois(λ), λ = λ1 + ...+ λn,

and (Yi)i≥1 is an i.i.d. sequence, independent from Nλ, and such that

Y1
d
=

n∑
k=1

1I{J=k}X
(k)
1 , with P(J = k) =

λk
λ
,

and J is independent of (X
(k)
1 )nk=1.

Proof. From Section 9 we know that it is sufficient to show that S and
∑Nλ

i=1 Yi
have the same characteristic function. We start with the characteristic func-
tion of Sk and get that

ϕSk(u) = EeiuSk = Eeiu
∑N

[(k)
λk

j=1 X
(k)
j

= E
∞∑
m=0

eiu
∑m
j=1X

(k)
j 1I{N(k)

λk
=m}
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= E
∞∑
m=0

eiuX
(k)
1 × ...× eiuX

(k)
m 1I{N(k)

λk
=m}︸ ︷︷ ︸

all of these are independent

=
∞∑
m=0

(
EeiuX

(k)
1

)m
P(N

λ
(k)
λk

= m)

=
∞∑
m=0

(
ϕ
X

(k)
1

(u)
)m

P(N
(k)
λk

= m)

=
∞∑
m=0

(
ϕ
X

(k)
1

(u)
)m λmk

m!
e−λk = e

−λk(1−ϕ
X

(k)
1

(u))
.

Then

ϕS(u) = Eeiu(S1+...+Sn)

= EeiuS1 × ...× EeiuSn

= ϕS1(u)× ...× ϕSn(u)

= e
−λ1(1−ϕ

X
(1)
1

(u))
× ...× e

−λn(1−ϕ
X

(n)
1

(u))

= exp

(
− λ
(

1−
n∑
k=1

λk
λ
ϕ
X

(k)
1

(u)

))
.

Now we compute the characteristic function of ξ :=
∑Nλ

l=1 Yl. Then by the
same computation, as we have done for ϕSk(u), we get

ϕξ(u) = Eeiuξ = e−λ(1−ϕY1 (u)).

Finally,

ϕY1(u) = Eeiu
∑n
k=1 1I{J=k}X

(k)
1

= E
n∑
l=1

(
eiu

∑n
k=1 1I{J=k}X

(k)
1 1I{J=l}

)
=

n∑
k=1

E
(
eiuX

(k)
1 1I{J=k}

)
=

n∑
k=1

ϕ
X

(k)
1 (u))

λk
λ
.
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7.2.2 Applications in insurance

First application

Assume that the claims arrive according to an inhomogeneous Poisson pro-
cess, i.e.

N(t)−N(s) ∼ Pois(µ(t)− µ(s)).

The total claim amount in year l is

Sl =

N(l)∑
j=N(l−1)+1

X
(l)
j , l = 1, ..., n.

Now, it can be seen, that

Sl
d
=

N(l)−N(l−1)∑
j=1

X
(l)
j , l = 1, ..., n

and Sl is compound Poisson distributed. Proposition 7.2.4 implies that the
total claim amount of the first n years is again compound Poisson distributed,
where

S(n) := S1 + ...+ Sn
d
=

Nλ∑
i=1

Yi

Nλ ∼ Pois(µ(n))

Yi
d
= 1I{J=1}X

(1)
1 + ...+ 1I{J=n}X

(n)
1

P(J = i) =
µ(i)− µ(i− 1)

µ(n)
.

Hence the total claim amount S(n) in the first n years (with possibly different
claim size distributions in each year) has a representation as a compound
Poisson random variable.

Second application

We can interpret the random variables

Si =

Ni∑
j=1

X
(i)
j , Ni ∼ Pois(λi), i = 1, . . . , n,
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as the total claim amounts of n independent portfolios for the same fixed pe-
riod of time. The (X

(i)
j )j≥1 in the i-th portfolio are i.i.d, but the distributions

may differ from portfolio to portfolio (one particular type of car insurance,
for example). Then

S(n) = S1 + ...+ Sn
d
=

Nλ∑
i=1

Yi

is again compound Poisson distributed with

Nλ = Pois(λ1 + ...+ λn)

Yi
d
= 1I{J=1}X

(1)
1 + ...+ 1I{J=n}X

(n)
1

and P(J = l) = λl
λ

.

7.2.3 The Panjer recursion: an exact numerical proce-
dure to calculate FS(t)

Let

S =
N∑
i=1

Xi,

N : Ω→ {0, 1, ...} and (Xi)i≥1 i.i.d, N and (Xi) independent. Then, setting
S0 := 0, Sn := X1 + ...+Xn, n ≥ 1 yields

P(S ≤ x) =
∞∑
n=0

P(S ≤ x,N = n)

=
∞∑
n=0

P(S ≤ x|N = n)P(N = n)

=
∞∑
n=0

P(Sn ≤ x)P(N = n)

=
∞∑
n=0

F n∗
X1

(x)P(N = n),

where F n∗
X1

(x) is the n-th convolution of FX1 , i.e.

F 2∗
X1

(x) = P(X1 +X2 ≤ x) = E1I{X1+X2≤x}
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X1,X2 independent
=

∫
R

∫
R

1I{x1+x2≤x}(x1, x2)dFX1(x1)dFX2(x2)

=

∫
R

∫
R

1I{x1≤x−x2}(x1, x2)dFX1(x1)dFX2(x2)

=

∫
R
FX1(x− x2)dFX2(x2)

and by recursion using FX1 = FX2 ,

F
(n+1)∗
X1

(x) :=

∫
R
F n∗
X1

(x− y)dFX1(y).

But the computation of F n∗
X1

(x) is numerically difficult. However, there is a
recursion formula for P(S ≤ x) that holds under certain conditions:

Theorem 7.2.5 (Panjer recursion scheme). Assume the following conditions:

(C1) Xi : Ω→ {0, 1, ...}

(C2) for N it holds that

qn = P(N = n) =

(
a+

b

n

)
qn−1, n = 1, 2, ...

for some a, b ∈ R.

Then for pn := P(S = n), n = 0, 1, 2, . . . one has

p0 =

{
q0 : P(X1 = 0) = 0

EP(X1 = 0)N : otherwise
, (1)

pn =
1

1− aP(X1 = 0)

n∑
i=1

(
a+

bi

n

)
P(X1 = i)pn−i, n ≥ 1. (2)

Proof. First we observe

p0 = P(S = 0) = P(S = 0, N = 0) + P(S = 0, N > 0)

= P(S0 = 0)︸ ︷︷ ︸
=1

P(N = 0) + P(S = 0, N > 0)

= P(N = 0)︸ ︷︷ ︸
=q0

+P(S = 0, N > 0)
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= q0︸︷︷︸
P(X1=0)0P(N=0)

+
∞∑
k=1

P(X1 + ...+Xk = 0, N = k)︸ ︷︷ ︸
P(X1=0)kP(N = k)︸ ︷︷ ︸

qk

= EP(X1 = 0)N

which implies (1). For pn, n ≥ 1,

pn = P(S = n) =
∞∑
k=1

P(Sk = n)qk

(C2)
=

∞∑
k=1

P(Sk = n)(a+
b

k
)qk−1. (3)

Assume P(Sk = n) > 0. Now, because Q = P(·|Sk = n) is a probability
measure the following holds.

n∑
l=0

(
a+

bl

n

)
P(X1 = l|Sk = n)︸ ︷︷ ︸

Q(X1=l)

= a+
b

n
EQX1

= a+
b

nk
EQ(X1 + ...+Xk)

= a+
b

nk
EQSk︸ ︷︷ ︸

=n

= a+
b

k
, (4)

where the last equation yields from the fact that Q(Sk = n) = 1. On the
other hand, we can express the term a+ b

k
also by

n∑
l=0

(
a+

bl

n

)
P(X1 = l|Sk = n)

=
n∑
l=0

(a+
bl

n
)
P(X1 = l, Sk −X1 = n− l)

P(Sk = n)

=
n∑
l=0

(a+
bl

n
)
P(X1 = l)P(Sk−1 = n− l)

P(Sk = n)
. (5)
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Thanks to (4) we can now replace the term a + b
k

in (3) by the RHS of (5)
which yields

pn =
∞∑
k=1

n∑
l=0

(
a+

bl

n

)
P(X1 = l)P(Sk−1 = n− l)qk−1

=
n∑
l=0

(
a+

bl

n

)
P(X1 = l)

∞∑
k=1

P(Sk−1 = n− l)qk−1︸ ︷︷ ︸
P(S=n−l)

= aP(X1 = 0)P(S = n) +
n∑
l=1

(
a+

bl

n

)
P(X1 = l)P(S = n− l)

= aP(X1 = 0)pn +
n∑
l=1

(
a+

bl

n

)
P(X1 = l)pn−l,

which will give the equation (2)

pn =
1

1− aP(X1 = 0)

n∑
l=1

(
a+

bl

n

)
P(X1 = l)pn−l.

Remark 7.2.6.

(1) The Panjer recursion only works for distributions of Xi on {0, 1, 2, ...}
i.e.

∑∞
k=0 PXi(k) = 1 (or, by scaling, on a lattice {0, d, 2d, ...} for d > 0

fixed).

(2) Traditionally, the distributions used to model Xi have a density, and∫
{0,1,2,...} hxi(x)dx = 0. But on the other hand, claim sizes are expressed

in terms of prices, so they take values on a lattice. The density hXi(x)
could be approximated to have a distribution on a lattice, but how large
would the approximation error then be?

(3) N can only be Poisson, binomially or negative binomially distributed.
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7.2.4 Approximation of FS(t) using the Central Limit
Theorem

Assume, that the renewal model is used, and that

S(t) =

N(t)∑
i=1

Xi, t ≥ 0.

In Theorem 3.2.3 the Central Limit Theorem is used to state that if
var(W1) <∞ and var(X1) <∞, then

sup
x∈R

∣∣∣∣∣P
(
S(t)− ES(t)√

var(S(t))
≤ x

)
− Φ(x)

∣∣∣∣∣ t→∞→ 0.

Now, by setting

x :=
y − ES(t)√

var(S(t))
,

for large t the approximation

P(S(t) ≤ y) ≈ Φ

(
y − ES(t)√

var(S(t))

)
can be used.

Warning: This approximation is not good enough to estimate P(S(t) > y)
for large y, see [7], Section 3.3.4.

7.2.5 Monte Carlo approximations of FS(t)

a) The Monte Carlo method

If the distributions of N(t) and X1 are known, then an i.i.d. sample of

N1, ..., Nm, (Nk ∼ N(t), k = 1, ...,m)

and i.i.d. samples of

X
(1)
1 , ..., X

(1)
N1

. . .

X
(n)
1 , ..., X

(n)
Nm

 X
(j)
i ∼ X1, i = 1, ..., Nj, j = 1, ...,m
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can be simulated on a computer and the sums

S1 =

N1∑
i=1

X1
i , ..., Sm =

Nm∑
i=1

Xm
i

calculated. Then it follows that Si ∼ S(t), and the Si’s are independent. By
the Strong Law of Large Numbers,

ρ̂m :=
1

m

m∑
i=1

1IA(Si)
a.s.→ P(S(t) ∈ A) = p, as m→∞.

It can be shown that this does not work well for small values of p (see [7],
section 3.3.5 for details).

b) The bootstrap method

The bootstrap method is a statistical simulation technique, that doesn’t
require the distribution of Xi’s. The term ”bootstrap” is a reference to
Münchhausen’s tale, where the baron escaped from a swamp by pulling him-
self up by his own bootstraps. Similarly, the bootstrap method only uses the
given data.
Assume, there’s a sample, i.e. for some fixed ω ∈ Ω we have the real numbers

x1 = X1(ω), ..., xn = Xn(ω),

of the random variables X1, ..., Xn, which are supposed to be i.i.d. Then,
a draw with replacement can be made as illustrated in the following
example:
Assume n = 3 and x1 = 4, x2 = 1, x3 = 10 for example. Drawing with
replacement means we choose a sequence of triples were each triple consists
of the randomly out of {1,4,10} chosen numbers. For example, we could get:

x1 x2 x3�������������9

����������)

�
���

����

�
���

����

�
�
���

�
�
���

x2 x1 x1 x3 x1 x2 x3 x2 x2 . . .

We denote the k-th triple by X∗(k) = (X∗1 (k), X∗2 (k), X∗3 (k)), k ∈ {1, 2, ...}.
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Then, for example, the sample mean of the k-th triple

X̄∗(k) :=
X∗1 (k) +X∗2 (k) +X∗3 (k)

3

has values between min{x1, x2, x3} = 1 and max{x1, x2, x3} = 10, but the
values near x1+x2+x3

3
= 5 are more likely than the minimum or the maximum,

and it holds the SLLN

lim
N→∞

1

N

N∑
i=1

X̄∗(i)→ x1 + x2 + x3

3
a.s.

Moreover, it holds in general

var(X̄∗(i)) =
var(X1)

n
.

Verifying this is left as an exercise.
In insurance, the sum of the claim sizes X1 + ...+Xn = nX̄n is the target of
interest and with this, the total claim amount

S(t) =

N(t)∑
i=1

Xi =
∞∑
n=0

(
n∑
i=1

Xi

)
1I{N(t)=n}.

Here, the bootstrap method is used to calculate confidence bands for (the
parameters of) the distributions of the Xi’s and N(t).

Warning

The bootstrap method doesn’t always work! In general, simulation should
only be used, if everything else fails. Often better approximation results can
be obtained by using the Central Limit Theorem.
So all the methods represented should be used with great care, as each of
them has advantages and disadvantages. After all, ”nobody is perfect” also
applies to approximation methods.
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