Chapter 5

SOBOLEYV SPACES

5.1 Holder spaces

5.2 Sobolev spaces

5.3 Approximation

5.4 Extensions

5.5 Traces

5.6 Sobolev inequalities
5.7 Compactness

5.8 Additional topics
5.9 Other spaces of functions
5.10 Problems

5.11 References

This chapter mostly develops the theory of Sobolev spaces, which turn
out often to be the proper setting in which to apply ideas of functional
analysis to glean information concerning partial differential equations. The
following material is often subtle, and will seem largely unmotivated, but
ultimately will prove extremely useful.

Since we have in mind eventual applications to rather wide classes of
partial differential equations, it is worth sketching out here our overall point
of view. Our intention, broadly put, will be later to take various specific
PDE and to recast them abstractly as operators acting on appropriate linear
spaces. We can symbolically write this as

A: X Y,
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240 5. SOBOLEV SPACES

where the operator A encodes the structure of the partial differential equa-
tions, including possibly boundary conditions, etc., and X, Y are spaces of
functions. The great advantage is that once our PDE problem has been
suitably interpreted in this form, we can often employ the general and ele-
gant principles of functional analysis (Appendix D) to study the solvability
of various equations involving A. We will later see that the really hard work
is not so much the invocation of functional analysis, but rather finding the
“right” spaces X, Y and the “right” abstract operators A. Sobolev spaces
are designed precisely to make all this work out properly, and so these are
usually the proper choices for X, Y.

We will utilize Sobolev spaces for studying linear elliptic, parabolic and
hyperbolic PDE in Chapters 6-7, and for studying nonlinear elliptic and
parabolic equations in Chapters 8-9 .

The reader may wish to look over some of the terminology for functional
analysis in Appendix D before going further.

5.1. HOLDER SPACES

Before turning to Sobolev spaces, we first discuss the simpler Hélder spaces.

Assume U C R" is open and 0 < v < 1. We have previously considered
the class of Lipschitz continuous functions u : U — R, which by definition
satisfy the estimate

(1) u(z) —u(y)| < Cle —y| (z,y €U)

for some constant C. Now (1) of course implies u is continuous, and more
importantly provides a uniformm modulus of continuity. It turns out to be
useful to consider also functions u satisfying a variant of (1), namely

(2) lu(z) —u() < Clz—y" (z,y€U)

for some constant C. Such a function is said to be Holder continuous with
exponent .

DEFINITIONS. (i) Ifu:U — R is bounded and continuous, we write

lullewy = sup lu(z)]-

(ii) The v**-Holder seminorm of u: U — R is

ulonn oy = sup { D=2,

z,yelU |Z‘ - y|7
T#Y
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and the " -Holder norm is

lullgon@y = lulle@) + [Wleor @)

DEFINITION. The Holder space
Ckry([j)
consists of all functions u € C*(U) for which the norm

(3) lllgra@y == Y ID%ulle@) + D (DUl o)

|| <k |a|=k

is finite.

So the space C*7(U) consists of those functions u that are k-times con-
tinuously differentiable and whose k**-partial derivatives are Holder contin-
uous with exponent . Such functions are well-behaved, and furthermore
the space C’k"Y(U ) itself possesses a good mathematical structure:

THEOREM 1 (Hélder spaces as function spaces). The space of functions
CkY(U) is a Banach space.

The proof is left as an exercise (Problem 1), but let us pause here to
make clear what is being asserted. Recall from §D.1 that if X denotes a real
linear space, then a mapping || || : X — [0,00) is called a norm provided

(i) |lw+v| < |lull + |[v| for all u,v € X,

(ii) ||Au| = [Allull for allu € X, A € R,

(iii) ||u|| = 0 if and only if u = 0.
A norm provides us with a notion of convergence: we say a sequence {u}3>,
C X converges to u € X, written ur, — u, if limg_,o ||ug—ul| = 0. A Banach
space is then a normed linear space which is complete, that is, within which
each Cauchy sequence converges.

So in Theorem 1 we are stating that if we take on the linear space
C*Y(U) the norm || - || = || - gk~ (p), defined by (3), then | - || verifies
properties (i)—(iii) above, and in addition each Cauchy sequence converges.

5.2. SOBOLEV SPACES

The Holder spaces introduced in §5.1 are unfortunately not often suitable
settings for elementary PDE theory, as we usually cannot make good enough
analytic estimates to demonstrate that the solutions we construct actually
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belong to such spaces. What are needed rather are some other kinds of
spaces, containing less smooth functions. In practice we must strike a bal-
ance, by designing spaces comprising functions which have some, but not
too great, smoothness properties.

5.2.1. Weak derivatives.
We start off by substantially weakening the notion of partial derivatives.

Notation. Let C2°(U) denote the space of infinitely differentiable functions
¢ : U — R, with compact support in U. We will call a function ¢ belonging
to C°(U) a test function. O

Motivation for definition of weak derivative. Assume we are given a
function v € CY(U). Then if ¢ € C°(U), we see from the integration by
parts formula that

(1) /u¢xid:c=—/uxi¢dz (t=1,...,n).
U U

There are no boundary terms, since ¢ has compact support in U and thus
vanishes near 8U. More generally now, if k is a positive integer, u € C*(U),
and o = (0y,...,0p) is a multiindex of order |a| = oy + - + @, = k, then

(2) /U uD%¢ dx = (—1)* /U D%u¢ dz.

This equality holds since

W e
D76 = e ez ®

and we can apply formula (1) |a| times.

We next examine formula (2), valid for u € C¥(U), and ask whether
some variant of it might still be true even if u is not k times continuously
differentiable. Now the left hand side of (2) makes sense if u is only locally
summable: the problem is rather that if u is not C*, then the expression
“D*u” on the right hand side of (2) has no obvious meaning. We resolve this
difficulty by asking if there exists a locally summable function v for which
formula (2) is valid, with v replacing D%u:

DEFINITION. Suppose u,v € LL _(U), and o is a multiinder. We say
that v is the oth-weak partial derivative of u, written

Dy =,
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provided
o = (—1)lel
(3) /UuD odz = (-1) /chj)da:

for all test functions ¢ € CZ(U).

In other words, if we are given u and if there happens to exist a function
v which verifies (3) for all ¢, we say that D*u = v in the weak sense. If there
does not exist such a function v, then u does not possess a weak atP-partial
derivative.

LEMMA (Uniqueness of weak derivatives). A weak o'"-partial derivative
of u, if it exists, is uniquely defined up to a set of measure zero.

Proof. Assume that v,% € L1 _(U) satisfy

loc

o — (e ] — (— la ~
/U'uD ¢dr = (—1) /Uv¢da: (-1) /Uv¢da:
for all ¢ € C°(U). Then
(4) /U(v—f;)¢dx=o

for all ¢ € C°(U); whence v — v =0 a.e. a

Example 1. Let n =1, U = (0,2), and

()_{m f0<z<1
TN 1 0 ifi<z<2

Define

0 if l<zx<2.
Let us show ¢/ = v in the weak sense. To see this, choose any ¢ € C°(U).

We must demonstrate
2 2
/ u¢' dzr = —/ vé dz.
0 0
But we easily calculate

/02u¢'d:1:=/:x¢'dx+/12¢'d:c
=~ [[oaz+ o -6 =~ [vods

as required. O

1 if 0<z<1
v(:v)={ i T <
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Example 2. Let n =1, U = (0,2), and

z if 0<z<1
u(z) = .
2 if l<z<2.

We assert ' does not exist in the weak sense. To check this, we must show
there does not exist any function v € L, (U) satisfying

(5) ‘/Ozugb'da::—/;'vd)dm

for all ¢ € C°(U). Suppose, to the contrary, (5) were valid for some v and

all . Then
2 2 1 2
—/ v¢dm=/ u¢’dw=/ x¢'d$+2/ ¢ dx
0 0 0 1

(6) 1
= —/0 bz — 4(1).

Choose a sequence {¢p, }5>_; of smooth functions satisfying
0<¢m <1, édm(l)=1, ¢m(z) > 0forallz #1.

Replacing ¢ by ¢, in (6) and sending m — oo, we discover

2 1
1= lim ¢n,(1) = lim [/ V@ dT — / Om dx] =0,

m—0

a contradiction. 0

More sophisticated examples appear in the next section.
5.2.2. Definition of Sobolev spaces.

Fix 1 < p < oo and let k¥ be a nonnegative integer. We define now
certain function spaces, whose members have weak derivatives of various
orders lying in various LP spaces.

DEFINITION. The Sobolev space
Wk’p(U)

consists of all locally summable functions v : U — R such that for each
multiinder o with |a| < k, D% exists in the weak sense and belongs to

P(U).
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Remarks. (i) If p = 2, we usually write
H*U)=WFU) (k=0,1,...).

The letter H is used, since—as we will see—H*(U) is a Hilbert space. Note
that HO(U) = L*(U).
(ii) We henceforth identify functions in W*P(U) which agree a.e. a

DEFINITION. Ifu € W*P(U), we define its norm to be

@ [p 1/p
(Z|a|§k Ju 1Dyl dm) (1<p<o0)
_la|<k €58 supy [ D% (p = 00).

lullwes@y = {

DEFINITIONS. (i) Let {un}%_;, u € W*P(U). We say u,, converges
to u in WFP(U), written

Um —u  in WEP(U),
provided
im fum — ullyrs@) = 0.
(ii) We write
Um —u  in WEP(U),

to mean
Um —u  in WEP(V)

for each V. CCU.
DEFINITION. We denote by

Wyt (U)
the closure of C°(U) in WhP(U).

Thus u € W(f P(U) if and only if there exist functions u,, € C°(U) such that
Um — u in WFP(U). We interpret W: P(U) as comprising those functions
u € WhP(U) such that

“D* =0 on QU for all |a| < k- 1.

This will all be made clearer with the discussion of traces in §5.5.
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Notation. It is customary to write
k2
Hi(U) = W™ (U).

O

We will see in the exercises that if n = 1 and U is an open interval in
R!, then v € WUP(U) if and only if u equals a.e. an absolutely continuous
function whose ordinary derivative (which exists a.e.) belongs to LP(U).
Such a simple characterization is however only available for n = 1. In
general a function can belong to a Sobolev space, and yet be discontinuous
and/or unbounded.

Example 3. Take U = B%(0,1), the open unit ball in R", and
u(z) =z|™* (zeU z#£0).

For which values of & > 0,n,p does u belong to W!P(U)? To answer, note
first u is smooth away from 0, with

un(2) = oy (@ #£0),

and so o]
o
|Du(z)| = P (z #0).

Let ¢ € C°(U) and fix € > 0. Then

/ Uy, AT = — / Ug, P dz +/ ugr' dS,
U-B(0,¢) U-B(0,) 8B(0,¢)

v = (v},...,v") denoting the inward pointing normal on dB(0,¢). Now if
a+1<n, |Du(z)| € LY(U). In this case
/ ugrt dS| < |||z / e7*dS < Ce™ 17 0.
8B(0,¢) 0B(0,¢)

Thus

/U¢m,- dx=—/umi¢da:
U U

for all ¢ € C°(U), provided 0 < @ < n— 1. Furthermore |Du(z)| = FlatT €
LP(U) if and only if (o + 1)p < n. Consequently v € WP (U) if and only if
a < %52, In particular u ¢ WLP(U) for each p > n. )
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Example 4. Let {r;}32, be a countable, dense subset of U = B%(0,1).
Write

o0

1 _
u(z) = Z 2—k]as —re]™* (zeU).
k=1
Then u € WHP(U) if and only if @ < *22. If 0 < a < "3E, we see that u
belongs to W1P(U) and yet is unbounded on each open subset of U. O

This last example illustrates a fundamental fact of life, that although
a function u belonging to a Sobolev space possesses certain smoothness
properties, it can still be rather badly behaved in other ways.

5.2.3. Elementary properties.

Next we verify certain properties of weak derivatives. Note very carefully
that whereas these various rules are obviously true for smooth functions,
functions in Sobolev space are not necessarily smooth: we must always rely
solely upon the definition of weak derivatives.

THEOREM 1 (Properties of weak derivatives). Assume u,v € W*P(U),
la| < k. Then
(i) D%u € WklebP(U) and DP(D*w) = D*(DPu) = D*Pu for all
multiindices o, 8 with |a| + |8] < k.
(ii) For each A\, u € R, Au+ pv € WFP(U) and D*(Mu + pv) = AD%u +
uD%v, |a| < k.
(iii) If V is an open subset of U, then u € W*P(V).
(iv) If { € C(U), then (u € WEP(U) and

(7) I OEDY (g) DP¢D*Pu  (Leibniz’ formula),

BLla
a !
where (3) = gy
Proof. 1. To prove (i), first fix ¢ € C°(U). Then DP¢ € C®(U), and so
/ DuDPB¢dx = (=1)l / uD*P ¢ dx
U U
- (_1)|a|(_1)la+ﬁ|/ Da+'3u¢dx
U

= (—1)|ﬁ|/ D**Pyg dz.
U
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Thus DP(D*u) = DBy in the weak sense.
2. Assertions (ii) and (iii) are easy, and the proofs are omitted.

3. We prove (7) by induction on |a|. Suppose first |a| = 1. Choose any
¢ € CX(U). Then

[ cupegde = [ uD*(c8) — u(@*Qp e
U U

= - / ((D°%u + uD*¢)p dz.
U

Thus D*(¢u) = (D*u + uD®*(, as required.

Next assume [ < k and formula (7) is valid for all || < ! and all functions
¢. Choose a multiindex o with |a| =1+ 1. Then o = 3+ for some |3| =,
|v] = 1. Then for ¢ as above,

/ (uD%¢dz = / CuDP(DV¢) dx
U U

=(_1)|,3|/I;Z

o<p

(’3 ) D°¢DP?uDV¢ dx
ag
(by the induction assumption)

= (—1)1Bl+hl (ﬂ)D'y De¢DB° d
(- [ 5 (o) prorco* o ots
(by the induction assumption again)
= (=1l <ﬂ) DP¢D*Pu+ D°(D*ul$ d
<>/U§a[ (D*Put D7CD*ulp do
(where p =0 +7)

= (=1l /U [Z (i)pagpa—au)} ¢ da,

(1) ()-)

Not only do many of the usual rules of calculus apply to weak derivatives,
but the Sobolev spaces themselves have a good mathematical structure:

since
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THEOREM 2 (Sobolev spaces as function spaces). For each k = 1,...
and 1 < p < oo, the Sobolev space W¥P(U) is a Banach space.

Proof. 1. Let us first of all check that |lu||yx.») is @ norm. (See the
discussion at the end of §5.1, or refer to §D.1, for definitions.) Clearly
IMullwesw) = Mllullwesw),
and
lullwer@y =0 if and only if u =0 a.e.

Next assume u,v € W*P(U). Then if 1 < p < oo, Minkowski’s inequality
(§B.2) implies

1/p
Z | D%u + D"‘U\\ip(u)>

u +vllwrr @y = (
|| <k

1/p
< (Z (D w0 + ||D°‘v||Lp(U)>P)

lal<k
1/p 1/p
< (S ID%ule)  + (3 100l
|a|<k | <k

= Jullwrsqw) + llwesw).

2. It remains to show that W*P(U) is complete. So assume {u,}_,
is a Cauchy sequence in W*P(U). Then for each |a| < k, {D%u,}_; is a
Cauchy sequence in LP(U). Since LP(U) is complete, there exist functions
uo € LP(U) such that

D%*Up, — uy  in LP(U)
for each |a| < k. In particular,
3. We now claim
(8) ue WEP(U), Du=1uq (la| <k).
To verify this assertion, fix ¢ € C°(U). Then

/ uD%dzr = lim un D¢ dx
U m—o0 Jy

= lim (—1)'“'/ D%up, ¢ dx
U

m—0o0

= (—1)‘“‘/ Ug @ dx.
U

Thus (8) is valid. Since therefore D*u,, — D*u in LP(U) for all |o| < k, we
see that u,, — u in W*P(U), as required. ]



