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FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES

S. N. KRUZKOV UDC 517.944

Abstract. In this paper we construct a theory of generalized solutions in the large of Cauchy’s
problem for the equarions

ut+2£?cpi(t, X u) Lyt x, u)=0
i=1

in the class of bounded measurable functions. We define the generalized solution and prove existence,
uniqueness and stability theorems for this solution. To prove the existence theorem we apply the
“‘vanishing viscosity method’’; in this connection, we first study Cauchy’s problem for the correspond-
ing parabolic equation, and we derive a priori estimates of the modulus of continuity in L of the solu-
tion of this problem which do not depend on small viscosity.

Bibliography: 22 items.

$1. Introduction

The central problem of the theory of generalized (discontinuous) solutions of the quasilinear

equations

n
e+ ) iif%(h x, u) (¢, x, u) =0,

i=1 ¢

—d_(P (ll, X, Ll) = Qy + Quly, X= (xp ey xn) E_Em (1.1)

dx;

is to describe the existence and uniqueness classes of the solution in the large (with respect to ¢} of

Cauchy’s problem with the initial condition

U [,y = tp (%) (1.2)

at t = 0. Several papers have been devoted to studying this problem under different assumptions about
the initial function uo(x) and about the structure of equation (1.1). Ever since the first fundamental
paper [1] was published on the theory of generalized solutions of quasilinear equations, the basic

t

‘vanishing viscosity method,”” which is
1

method for investigating these equations has remained the

based on the idea of passing to the limit as ¢ — + 0 in the parabolic equation
d

e+ —— @il xou) g (G oxu) = eAu, &0, (1.3)
i

1) Some equations which are model equations for gas dynamics have the form (1.1) and (1.3); the paramerer
€ in (1.3) corresponds to the gas-dynamic notion of viscosity.
Copyright © 1971, American Mathematical Society
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218 S. N. KRUZKOV

where A is the Laplace operator over the space variables %, -+, x_ (here and below, if two of the
indices i, j, £ are equal in a monomial, then summation is taken from 1 to n). This method, which has
deep physical meaning, not only allows us to prove the existence of a generalized solution of problem
(1.1), (1.2) in the sense of the corresponding integral identity, but also makes it possible to show those
additional conditions on the generalized solutions which characterize the uniqueness class (concern-
ing the necessity of these conditions in the nonlocal theory of Cauchy’s problem and the physical

significance of these conditions, see, for example, [2] or [3]).

Up to now, the case n =1 with the function qbl(t, X, w) in equation (1.1) convex in u is the one
that has been studied most thoroughly; in this case a theory of generalized solutions of problem (1.1},
(1.2) has been constructed for an arbitrary bounded measurable initjal function uo(x) (see [4]-[6],
survey article {21, and others; various methods for constructing generalized solutions with estimates
of speed of convergence are given in [7]). Several results concerning the case of a function ¢>l(t, %, u)
which is not convex in u are obtained in [8]-[11] and elsewhere. In particular, [8] (see also [9]) con-
tains a uniqueness condition for a generalized solution of Cauchy’s problem in the class of piecewise
smooth functions; however, as is well known, it is impossible to construct a nonlocal theory of gen-

eralized solutions in this class.

The class BV of functions with bounded Tonelli-Cesaro variation is a natural generalization of
the class of piecewise smooth functions (at least for the theory of quasilinear equations); one of the
necessary and sufficient conditions for a bounded function w(x) to belong to the class BV(EH) is

that, for any compact ! and any vector Ax € En,

ﬂ\w(x+Ax)*w(x)|dx<const-}Axl, (1.4)
!
where the constant does not depend on Ax. Article [12] contains a proof of the existence of a gener-

alized solution u (¢, x) € BV(E ) of Cauchy’s problem in the large for the equation
e+ (@i (W))x, = 0 (1.5)

with an arbitrary bounded initial function uy(x) in BV(En); on the cross-sections ¢ = const the func-
tion u(t, x) also belongs to BV(En), so that the class BV(E ) has an invariance property. It was
shown in [13] that, for any function u(¢, %) € BV(En,H)’ at every point of discontinuity of this func-
tion, with the possible exception of the points of a set of n-dimensional Hausdorff measure zero, there
is a first order discontinuity and there exists a normal to the set of points of discontinuity (one-sided
limits are understood in the approximate sense), where the uniqueness condition for the generalized
solution of Cauchy’s problem in the class BV(En+1) is written, in principle, in the same way as in
the class of piecewise smooth functions (see inequality (1.3) in §2; this condition can be easily
derived for solutions of equation (1.1) in the class of piecewise smooth functions using the results and
methods of [8] and [°]). Article [13] escablishes the existence and uniqueness of a generalized solu-
tion of problem (1.5), (1.2) in the case when u,(x) € BV(E ). We note that in this proof of uniqueness
we take into account the behavior of the generalized solutions on sets of dimension 7; this procedure
is connected with using a local (pointwise) uniqueness condition and requires us to take into account
rather delicate and complicated results from the theory of BV function classes (it follows from the
results in §3 of this paper that to prove uniqueness it is sufficient to know the generalized solutions

on certain (n + 1)-dimensional sets of full Lebesgue measure)., The vanishing viscosity method was
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justified in [13] only for the case of a sufficiently smooth finite initial function u(x).

The purpose of this paper is to construct a nonlocal theory of generalized solutions of Cauchy’s
problem (1.1), (1.2) in the class of bounded measurable functions. This very broad class of functions
is the most natural class for constructing such a theory (especially when we are interested in ques-
tions of uniqueness and stability of generalized solutions and the question of justifying the vanishing
viscosity method). We note that in the sense of “‘visibility’’ the solutions in the class of bounded
measurable functions are practically equivalent to solutions in the class BV(En+1), since any func-
tion in these classes either is piecewise smooth (to within certain visible singularities) or else has an
essential ‘‘pathology.”’

In §2 we formulate a definition of a generalized solution of problem (1.1), (1.2) and make some

preliminary observations.

In $3 we prove uniqueness and stability theorems for the generalized solutions relative to changes
in the initial data; in proving these theorems, from the theory of functions of a real variable we only
apply Lebesgue’s theorem on passing to the limit under the integral sign, the concept of a Lebesgue
point and the result that almost all points of the open domain of an integrable function are Lebesgue
points of this function (see [14]),

In §$4 we use the vanishing viscosity method tovprove an existence theorem for a generalized solu-
tion of problem (1.1), (1.2); we first consider Cauchy’s problem for the parabolic equation (1.3). In the
vanishing viscosity method convergence is proved for any bounded measurable initial function u,(x).

The author stated the result on existence of a generalized solution of problem (1.5), (1.2) in the
sense of the definition in $2 at the International Congress of Mathematicians in Moscow in August,
1966 in discussing a related report by A. L. Vol'pert; the proof of this result was published in [15],
where the author also announced the uniqueness theorem for the generalized solution of this problem.

Existence theorems for generalized solutions of problem (1.1), (1.2) in the sense of the integral
identity

—+co
\ Wife+ @i % 0) foy— (¢, x, w) fldxdi = 0, (1.6)

R ]

which is valid for any smooth finite function f(¢, x) (without determining uniqueness conditions) are
established in [16].

The fundamental results of this paper were published in our note [17],

$5 contains some remarks and addenda concerning the questions considered in $§2-4. The argu-
ments in subsection 7° occupy a special place here, where we discuss the problem of a generalized
solution of Cauchy’s problem for the quasilinear hyperbolic system
9y (v) 99 (#)

o T = (.7

12

with

u=@ ..., u), @) =W, ..., oY ().
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$2. Statement of Cauchy's problem (1.1), (1.2);

some notation and preliminary observations

We let .. denote the band {(s, x)} = [0, TI x £ . We shall assume that the functions qﬁi(t, %, u)

and l/f(lf, x, u) are defined and are continuously differentiable for (¢, x) €7, and — <y < + = (the

T
assumptions concerning the properties of these functions will be refined in each section).

Let uy(x) be an arbitrary bounded function which is measurable in En: !uo(x)[ < MO.

Definition 1. A bounded measurable function u(t, x) is called a generalized solution of problem
(1.1, (1.2) in the band L if:

1) for any constant % and any smooth function f(¢, ¥} > 0 which is finite in 7 (the support of

[ is strictly contained inside 77T), the following inequality holds:

NSt x)— e Fe - sign (& x) — B (i (s % w (6 X)) — @i (4, %, R)I
T

— sign (@, x) — Y[ ux; (¢ X, k) -9 (¢ %, w(t, X1} dxdt > 0; (2.1)

2) there exists a set & of zero measure on [0, T such that for ¢ € [0, T]\g the function

u(t, x) is defined almost everywhere in £, and for any ball K = flxl <ric En

1}210 \ Ju(t, x) —uy(x)| dx = 0. (2.2)
telo,TINE Kr
Since the smooth function f> 0 is arbitrary, it is obvious that inequality (2.1) for k= T sup|u(s, »)|
implies that the generalized solution ult, x) of problem (1.1), (1.2) satisfies integral identity (1.6).
But Definition 1 also contains a condition which characterizes the permissible discontinuities of the
solutions. This condition is especially easy to visualize when the generalized solution is a piece-
wise smooth function in some neighborhood of the point of discontinuity; in this case, using integra-
tion by parts and the fact that { was chosen arbitrarily, we easily obtain from inequality (2.1) that,

for any constant 4 along the surface of discontinuity,
| —Fk|cos (v, £) -- sign(u" — k) [@: (¢, x, u*) — @i (¢, x, R)]cos (v, x;)
< Jum—kjcos (v, 1) - sign(w” — k) [9: (£, X, u7) — @i (4, x, k)] cos (v, xi), (2.3)

where v is the normal vector to the surface of discontinuity at the point (t, x), and ur+ and u~ are
the one-sided limits of the generalized solution at the point (¢, x) from the positive and negative side
of the surface of discontinuity, respectively. It is easily seen that for n = 1 inequality (2.3) is
equivalent to condition E in [8] (we note that in the case n > 2 inequality (2.3) can be derived from
condition E if the desired solution is approximated by a plane wave in a neighborhood of the point of
discontinuity).

Before proceeding to the proofs of the uniqueness and existence theorems for a generalized solu-
tion of problem (1.1), (1.2} in the sense of Definition 1, we introduce some notation and make some
elementary preliminary observations.

We let 6(o) designate a function which is infinitely differentiable on (~oc, + =) such that
8(o) > 0, 6(0) =0 for ol > 1, and
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-+oo
S 8(d)do = 1.
For any number & > 0 we set
Sn(o)=H""8(h " 0). (2.4)
It is obvious that 5h(0) € C” (-, + ) and
+o0
84(0) >0, 84(0) =0 for |o|>h, ;5h(o)|<°°zst . du(o)do =1 (2.5)

—00

(for b — + 0 the sequence {Sh(O)} is a delta-shaped sequence at the point 0 = 0).

Let the function v(x) be defined and locally integrable in En (we shall assume a function de-

fined only in some region {1 C En to be continued by zero on En\\ Q); we agree to let v*(x) denote

the mean functions!

O e e UL (2.6)
g h
En
with averaging kernel
Mrxy=]]8()>0, 5 M(x)dx = 1. (2.7)
i=1 Ep

We call x) a Lebesgue point of the function v(x) if
lim L S lv(x)— v (x,)]dx = 0.
[x—xol<h
It is easily seen that at any Lebesgue point x, of the function v(x)
limv* (x)) = v (x,).
h—o
Since the set of points which are not Lebesgue points of v(x) has measure zero (see, for example,

[14], Russian p. 396), it follows that v*(x) — v(x) as k -— 0 almost everywhere.
We let w (o) designate modulus of continuity type functions. These functions are defined and
continuous for 0 > 0, are nondecreasing, and take on zero values at 0 = 0.

Lemma 1. Let the function v(x) be integrable in the ball K flxl <r+2pL r>0,p>0,

rt2p =
where
Js (@, Ax) = S v (x 4 Ax)—v{x)|dx < o5 (|Ax]) (2.8)
Ks
for |Ax| < p and s €0, r+ pl. Then for h<p
Jr(@% AY) < 0,50 (]Ax]), (2.9)
\ | fo] —v(signo)* | dx << 20, (h). (2.10)

Kr

Estimate (2.9) follows from the obvicus inequality

1) Concerning mean functions, see {171,
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Jr (B, Ax) < S A(2) S |v(x + Ax — h2) — v (x — h2) | dx de.
Ep Ky

To prove estimate (2.10), it suffices to note that

| o) | —ov(x)signu ()] =1 |v@)|—|v@)]|—lvx)—uv(y)signuv(y)]
<2|vx)—ov(»)|

and consequently

KS | ]vlw—v(signv)h[dx

< § G2 () et —u@signo(s) | dy dr
Ky Epn -
<2 5 ?»(Z)S |u (x) —u (x — h2)| dx dz < 20, (h).
B, K,

Lemma 2. Let the function v(t, x) be bounded and measurable in some cylinder Q =10, T x Kr.
If for some p € (0, minlr, T]) and any number h € (0, p) we set

Vh:hnil | SSSS [u(t, x)— v(%, y)| dx dt dy dv, (2.11)
:;]g*h. < Hlgre, ’

x—=y Xty
S [
then lim, ., Vh = 0.
Proof. After substituting

I+ I— 1 B, x+y xX—y £

we have

e

Vy = 2"t QS Gy (0, M) dn da,
o< T—
Inlsr—e

Gh (ar 71) =

{[1o@+pn+n—0l@a—pn—p|dd

Since almost all points (@, ) of the cylinder Qp = [p, T - p] X Kr‘p are Lebesgue points of the
function v{a, 1), and since
Jo(a+B, n+8)—ov(e—B, n—8) | <|v(a+B, n+E)—ov(a, )]
+ v (@, M) —o(a—B, n—E)],

it follows that Gh(a, 7 — 0 as b — 0 almost everywhere in Q,o' It remains to note that [Gb(a, )| <
c(n) sup |v| and that the assertion of the lemma follows from Lebesgue’s theorem on passing to the
limit under the integral sign ({14], Russian p. 139).

Lemma 3. /f the function F(u) satisfies a Lipschitz condition on the interval [~M, M1 with con-
stant L, then the function H(u, v) = sign{u — v)lF(a) — F(v)] also satisfies the Lipschitz condition

in u and v with the constant L.
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To prove this, it suffices to take into account that Hu(u, v) = F'(u) sign{u - v) for fixed v €
{-M, M1 and almost all u € [—M, M, and that Hv(u, v) = F'(v) signv ~ u) for fixed u € [-M, Y] and
almost all v € [-M, M].

Finally, we introduce notation connected with the concept of a characteristic cone. For any R>0
and M > 0 we set

13 1/3
N=Nu(R)= max [ ;‘-"t,x,u] (2.12)
«(®) (#0060, TIXKR %‘P“( )
julsM

and iet K designate the cone (¢, x): |x| <R - Nt, 0<t < T,= min (T, RN" D} we let 57_ designate
the cross-section of the cone K by the plane t=7,7 € {o, TO].

$3. Uniqueness of the generalized solution of problem (1.1), (1.2);
stability with respect 1o the initial condition

In this section we shall assume that the functions qSi(t, %, u) and ¥ (¢, x, u) are continuously
differentiable in the region (¢, x) € Tpy=—o0<u<+ oo}, while the functions ¢ix _(t, %, ) and
¢”(t, x, u) satisfy the Lipschitz condition in & on any compact set. !

Uniqueness of the generalized solution of problem (1.1), (1.2) follows from the following proposi-
tion concerning stability of the solutions relative to changes in the initial data in the norm of the
space L.

Theorem 1. Let the functions u(t, x) and v(t, x) be generalized solutions of problem (1.1), (1.2)
with initial functions uo(x) and vo(x), respectively, where |u(t, x)| <M and |v(t, x)] <M almost
everywhere in the eylinder [0, T] x KR; let vy = max[—v,/lu(L, x, u)l in the region {(t,2) €K, |u| < M.
Then for almost all ¢ € 10, TO]

S lu(t, x) —o(t, x)|de< et S |ty (x) — v, (x) | dx. (3.1)
St Sy

Proof. Let the smooth function g(t, x; 7, y) > 0 be finite in 7p X 7p. In inequality (2.1) we set

k=wv(r,y) and f=g(s, x;7,y) for a fixed point (7, y) (we note that the function v(r, y) is defined

almost everywhere in ﬂT), and we then integrate over 7, (in the variables (7, y)):

§§§5 et 0 —vim )lg+signt, ) —olx, Diwt x ul, 2)

‘:!TXJTT
— §; (t’ X, 0(17 y))]ng - Sign (Ll(i, X) -—U(T, y)) [(pix,' (tr X, U(’L', y))
+ V(@ xult, x)]grdxdtdydi > 0. (3.2)
In exactly the same way, starting from integral inequality (2.1) for the function v{r, y) written in the
variables (r, y), for k= u(t, x) and f=g(t, x; 7, y) we integrate over 7, (in the variables (£, 2)) to
obtain the inequality
Wl o g —utt, 0| g+ sign@(n y) —alt, e lx, g, 0 (v, 4)
EES N
— ¢ (T’ Y, u (t’ X))] gyg - Sigﬂ (U (T, y) —Uu (t’ X)) {q)l'y[ (T’ Y, u (t’ JC))
(v g v(r, y)lghdy dvdx di > 0. (3.3)

Combining (3.2) and (3.3) and making some elementary identity transformations in the integrand (which
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consist of adding and subtracting identical functions and arranging terms), we find that for any smooth
function g{¢, x; 7, y) > 0 which is finite in 7, x 7. the following inequality is fulfilled:

§8§§ 0 09 —o(w ) l(e+ g9
ApXp
+ sign(u (¢, x) —o (v, Y)[: (¢, x, ut, %) — @i (v, ¥, v (7, Y)I(€x; + &u,)
+siga(u (¢, x) — o (v, ) (9: (v, ¥, v(v, ¥) — @i (¢, x, v (7, Y))]gx,
- (Pixi (ts X, v (T’ y))g + [(P; (T’ Y, u (t’ x))
— @i (t, x, u(t, )18y, + Piy, (v, Y, u (¢, %)) 8)
+sign(u ¢, x) —v (v, Y)W (t, y, v (T, ¥)) —$ ¢ x, u(t, x)]g}dxdtdydr
ESSSS{!1—|-12+[3+l4}dxdtdyd1:>0. (3.4)
Ay Xy
We first go through the later part of the proof for the case of equation (1.5) (then 135 0, 14 = 0),
so that, when we consider the general case, our attention can be focused on the additional difficulties
of a technical character which result when the functions ¢, depend on ¢ and x. In the case of equa-
tion (1.5) inequality (3.4) takes the form
(8§51 09— 0l + 20
Xty
+sign(u (t, x)—v (v ) @i (@ ¢, ) —: (0 (% Y)1&x+8y)} dx dt dy dv >0. (3.5)
Let f(z, x) be an arbitrary test function from Definition 1; we may assume that f(t, x) = 0 outside

some cylinder
(¢, x)} = [0, T—2p]1 X Kr—2p, 2p<<min(T, r).

In (3.5) we set

.g:f<t-{2—1, x-{z—y>6h(z‘—~t) H 6h(ﬂ_”_yL)Ef(...)xh(;), h<o, (3.6)

where

— (t+T x4y N ([t x—y
(= (352, (=55
and the function Bh(a) was defined in (2.4); noting that
gt+ge="e(--)hn, 8x+ 8y =[x ()M
we let & approach zero. We show that as & — 0, (3.5) implies the inequality
($tut n—ott, 9ifit. 2

ar
~+sign(u (t x) — v {t, i, ) — @i (0 XIf (¢ x)} dedt > 0. (3.7)

In fact, for this choice of g each of the two terms in the integrand of (3.5) can be represented in the

form

Puttx, T, ) =F(t, %7, you(t %), v(w u) M (1), (3.8)
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where the function F satisfies a Lipschitz condition in all its variables (here we use Lemma 3),

Ph = 0 outside the region

{t, % T, y)}—{

[{— 1] [x+y) o, %= Y]
— 2, <, P Cr—2p, T <h}

and
SS SSPhdxdtdydr=SSSS{F(t, X, 7, Y, u(t, x), v(t, y))
NYXRP A X agp
—F(t, x, ¢ x,u(t, x), v(t, )1 (: ) dxdt dyde
+SS SSF(! £, %, u(t, x), vit, X)) M ( )dxdtdydr_Jl(h)LJ

Rp XNy

. . . . N . —Cn+ .
Taking into account the obvious estimate [)»h( )| < const-A*"D and the above properties of the

function F, we find that

[nel<clrit e ( S S |0, x)—o (v, y)| drdt dy dr,
I—-— <h, p\—— ST—p
[ [

where the constant C does not depend on . By Lemma 2, fl(h) — 0 as h — 0. The integral J, does
not depend on 4; in fact, after substituting t=a, (¢ ~7)/2=8, x=17, (x = y)/2 = ¢ and taking into

account the obvious equation

{ § menaza=

ZhEy
we find that

h
J2:2n+ISS { Fam, o, m, (), 0 (a ) S { M8, E)d&dﬁ}dﬂda
ap

“hE,

= gt SS F(t, x, ¢, x, u(t, x), v(¢, x)) dx dt.
Tr
Hence

limSS SSPhdxdtdydr = gnti SSF(t, x, b x,ult, %), v(t, x))dxdt.
h~+o ﬂTXJTT ar

Thus (3.5) implies (3.7).

Let K be a characteristic cone, and let gu and (%v be the sets of measure zero on [0, 7] in the
definition of a generalized solution (see requirement 2) for the functions u and v, respectively. We
let g“ designate the set of points on [0, 7] which are not Lebesgue points of the bounded measurable

function

wt) = lut, x)—o(t, x)|dx. (3.9)
St
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Let &,=&, U & 1) &, ; itis clear that mes& = 0. We define
' an(0) = S 8, (0)do (a4 () = 8 (0) > 0)

—c0
and take two numbers p and r € {0, TO)\go, p <r.In(3.7) we set

f=lanlt—p)—as(t—OIX(E, x), h<min(p, T,—1),

where D

X=Xe(t, x) =1 —0g(|x| + Nt—R+¢), >0,
and we note that X (¢, x) = 0 outside the cone X , while for (t, ) € X we have the relations

0= X - N (% | > 1y - T HO

w—u ¢

From (3.7) we obtain the inequality

SS 184 (t — ) — 04 (t — D) Xe (£, X)| (¢, X) — v (¢, x)|dxdt > 0. (3.10)
J’!Tn

Letting € approach zero in (3.10), we find that

78'0 {[6h(t—~p)'—6h(t—r)] g [u(t, x)—o(t, x)[dx}dt,}O.
St

0
Since p and 7 are Lebesgue points of the function u(t) (see (3.9)), it follows that as A — 0
(0= {fu(e, 0—o( x)]dr < (a6, ) —0v(, 5)|dc=p () (3.11)
Sk S,

(for example, by properties (2.5) of the functions 5h(0) for & < min (p, To - p) we have for the point
t=p:

T, T,

S ontt—nu@at—p@|=|{ aC—e b @)—pEnd

0

0
eth
< const. AT S fw(t)—p ()| d,

p—h
where the constant does not depend on #). Taking into account that
Ju(p, x) — 0 (p, )| <Julp, %) — o (%) [+ [0 (0 %) — 24 (%) | 4 ey (%) — 09 (%) |
and letting p approach zero over a sequence of points in go’ we obtain estimate (3.1) from (3.11) in
the case under consideration.

We now proceed to the general case, where we shall follow the same scheme of proof. We show
that, after substituting the function g defined in (3.6) into (3.4), we have (3.4) in the limit as A — 0

implying the following inequality, which is analogous to inequality (3.7):

1) It is easily seen that the function f defined in this way is a permissible test function.
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(et n—vit 0

sy
+sign(u (¢, x) —ov @, X)) [@ 2, x, u(t, X)) — @i (¢, x, v (¢, X)) [y,
—sign@ ¢, x)—v{t, ) x, ult, X)) — ¢ x, v, %) dedt > 0. (3.12)

We first note that as & — 0 the integrals

1§ §§1h+ Lot Ladrdtay ar

r XAy
approach the integral in the left side of inequality (3.12) multiplied by 2**2 since [,,1, and I,
have the form (3.8), and the corresponding functions P, and F have all the properties needed above
to establish the limit as & — 0 of the integrals of expressions of the form (3.8). Thus it suffices to
prove that the integrals of 13 in (3.4) approach zero as h — 0; moreover, since the coefficients of

By, and 8, in 13 vanish for |t~ 7| + |x - y| = 0, it follows by the concrete form of the function

Jh = SS SS]C( ) sign(u(f, x)-—U(I’, y)){[cpi(v, Y, U(":’ y»

Ny X np
— @i (t, x, v (v, N M)y, — @iz (8, % 0 (T, Y)) M
+ (@i (v, yr u(t, X)) — @i (7, x, u (@t X)) (Mn)y, + @iy, (T, Yy 6 (¢, x)) M} dxdt dydv.  (3.13)

Since the first derivatives of the functions qSi(z, x, u) are uniformly continuous on any compact re-

1)

gion,”’ we have the following relations (the index % of the function A will be omitted in the compu-

tations; here 5”. is the Kronecker symbol):
loi (v, 9 v(v, 9)) — @i (¢, x, v (v, ) Ay — Pix; (4, %, v (7, H)) A
= Qe (T ¢, 0 (T, Y) (T 1) M, + 91y (T, 1, 0 (%, 1)) (% — X5) A, — By
4 8 Ay, - g h = Qie (T, Y, U (T, Y)) (T — ) M)y,
+ Qig; (T, ¢, 0(T YY) (4 — ) M, -+ & by, - 86D
similarly, taking into account the identity /\yi =~ /\xi , we obtain that

[9: (% 9, u(t, ¥)) — @u(l, %, w(t, )1y,
+ Qi (v g u(l, DA = @in (7, Y, ult, %) (v— 1) Ay,
+ iy 67, Y, w (t, X)) Y — %) by, 055 M - Bi by,
= Que (T, 4w (t, X)) (0 — 1) N, — Quy; (v, Y, w2, %) (9 — %) M), + Bidy,

where

l%l—%Z (le]+[B|)<de(d), d=[t—r1|+]x—y],

and €(d) > 0 as d— 0. Since A=A, =0 for [t~71| >2h or [x,~7y,|>2h, and

[Ae,| 4 | Ay, [ << const « A2 [ F() —F(r, y) | <Cconst « ([t—T] 4+ |x—y]),

1) We easily see that the integrand in [} equals zero outside the region {o <t<T,0<7<T, 194 <nr, \y\ Snr%.
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it follows that

Iy = Sg SSf(T, y)sign (u (¢, x) —o (7, ) {{9i (. ¥, v (7, ¥))

Ry XAp
- (Pi't (T’ y’ u (t’ x))] ((T — t) ?“)xi + [(Piyj (T’ y’ v (17’ y))
— Qiy; (T, 4, u (8, XD (Y5 — %;) M)} dx di dy dv - B (), (3.14)

where S(h) — 0 as b — 0. We designate the integrand in (3.14) by B,; obviously B, has a repre-
sentation in the form
By = Fi(v,y,u(t, x), v(v, 9))((t — 1) Mf(r, )
+ Gij (17) !/1 u (t’ JC), v (rf y)) ((y]_— xf) th(f’ y))x;"

where, by Lemma 3, the functions Fi and Gij satisfy a Lipschitz condition in u (here we take into
account the assumptions in the beginning of this section concerning ¢“ and ¢ix~)' Since the func-
j

tion A, f(r, y) is finite in 7 X 75, We have

§ 587 (nvuw 9), oo ) (F— O Mf (5, )

apXxap
+ Gy (v, 4, u (%, y), v(v, Y)Y — x) M f (T, )k} dxdidydt =0
and consequently (after subtraéting the last equation in (3.14))
[1n—B(h)] = )SS SS Bhdxdtdydrl
ApXAT

<const - {§ {7 (v ) 1e + ([E =7l + 12— 5] | ()11 -

H;XRT

<Ju(t, x) —u(r, yy|dxdt dy dv

\<;:T1t SS%S |u(t, x) —u(r, y)| dxdt dy dr,
o [ er.
x‘:y" ‘gh, ’”;y ‘Sr—p

which, by Lemma 2, implies that [, - B(k) — 0 as h— 0 (and hence also I, — 0). Inequality (3.12)
is thereby proved.

Further, choosing numbers p and 7 € go, 0 <p <7< T, and substituting the same function fin
(3.12) as in the proof for the case of equation (1.5), we obtain the following analogs of inequalities
(3.10) and (3.11):

W 180 (¢ — ) — 8t — DN Xelt, 1) [ (b, 1) — 0 (4, %)
7,
+ YXe (¢, x)|u(t, x) —v(t, x)|}dxdf >0
and
p(t) = S fu(r, x)—ov(r, x)|dx <

St
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\<S [u(p, x) — v (p, x))dx+7§ S lu (¢, x) —v(t, x)|dxdt.
Sp e St

we find that for 7 € 60

T

b (D) <O +1{n@d,

Letting p approach zero over the set 50,

from which estimate (3.1) follows in an obvious way. Theorem 1 is proved.

To prove the uniqueness theorem for the generalized solution of problem (1.1), (1.2), it is neces-
sary to make certain assumptions concerning the growth of the functions d)iu(t’ %, u) as |x| — oo,
Here we give one of the simplest conditions. Let K be the characteristic cone with base radius R
for |ul <M (see the end of $1), and let N = NM(R) be the number defined in (2.12). We shall assume
that

RNy (R)~—>0 as R— (3.15)

(for any M > 0). It is clear that, when this condition is fulfilled for any point (¢, x) € 7, We can
find a characteristic cone containing the point (for any ¥ > 0), and so Theorem 1 implies

Theorem 2. The generalized solution of problem (1.1), (1.2) in the band r is unique.

We have the following proposition concerning monotonic dependence of the generalized solutions
of problem (1.1), (1.2) on the initial data.

Theorem 3. Let the functions u(z, %) and v(t, x) be the generalized solutions of problem (1.1),
(1.2) with initial functions uy(x) and vyx), respeciively. Let uy(x) < vy(x) almost everywhere in
En. Then u(t, x) < v, x) almost everywhere in e

It obviously suffices to show that the following analog of estimate (3.1) holds for the solutions
u(t, x) and v(¢, x):

j' @ (u(t, x) —v(t, x))dx<e" S @ (4, (x) — v, (%)) dx, (3.16)
St Se
where ®(0) =0 + |o].

Taking inequality (3.4) into account, we note that, since each of the functions u (¢, x) and

v(t, x) satisfies integral identity (1.6), the following identity for the functions g{t, x; 7,y) follow

from inequality (3.4):

(§ §§ e 0—o( o)l + g0

.TETXIT.T
19t x, ult, X)) — @i (v, v, v (v, YN (gx; + &)
— ¢ x ult, X)) —v(t, y, v(v, ¥))l gt drdi dy dv = 0. (3.17)

Adding the integrals (3.4) and (3.17), we obtain the inequality

SS SS{1;+1;+1;+1;}dxdtdydr>o, (3.18)

A Xay

where the integrand 1“'3 coincides with 13 in (3.4), and the expressions 1'1, ]'2 and 1:a are obtained

from the corresponding expressions /., [, and [, in (3.4) by replacing |u(¢, x) — v(r, y)
p g €Xp 12 4 y rep g Y
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and sign(u(z, x) - v(r, y)) by ®(uls, x) — v(r, y)) and ®'(u(s, x) — v(r, y)), respectively. Further,
taking into account that o®'(¢) = ®(0), we derive inequality (3.16) from (3.18) in exactly the same way

as estimate (3.1) was obtained from (3.4) in the proof of Theorem 1.

A proof of Theorem 3 based on Theorem 2 and a method of constructing generalized solutions will
be given at the end of §4 for the case of equation (1.5).

$4. Existence of the generalized solution of problem (1.1), (1.2)

The fundamental result on the existence of a generalized solution of problem (1.1}, (1.2) will be
proved in this section under the following assumptions:

1) The functions ¢i(t’ %, u) are three times continuously differentiable.

2) The functions qSiu(t, x, u) are uniformly boum_i‘ed for (¢, x, u) € DM =m5 X [-M, M (the oum-
bers N = NM(R) in (2.12) are bounded by a constant N which does not depend on R).

3) The function ¥(z, %, u) = (,‘bixi(t, %, u) + (¢, x, u) is twice continuously differentiable and

uniformly bounded in D, , where

sup |W¥ (4, x, 0)] ¢, = const, (4.1)
(t,x)Enp
sup  [— W, (t, x, u)] <c, = const. (4.2)
(tL.xyeny
-—oo<u<+qo

4) uy(x) is an arbitrary bounded measurable function in En (!uo(x)l < MO)‘

The assumptions concerning smoothness of the functions ¢i(t, x, u) and ¥ (¢, x, ) in conditions
1) and 3) were made without taking into account the ‘‘inequivalence’’ of the arguments ¢, x; and u.
Hence, in the context of the methods of this section, conditions 1) and 3) can be refined and weakened
(see subsection 4 in §5); for example, in the case of equation (1.5) it is sufficient to require continui-
ty of only the first derivatives of the functions qﬁi(u). Undoubtably, assumptions (4.1) and (4.2) in
condition 3), which ensure the a priori estimate of the maximum modulus of the generalized solution of
problem (1.1), (1.2), can be replaced by other well-known assumptions of the same type.

To construct the generalized solution of problem (1.1), (1.2), we apply the vanishing viscosity
method. We first investigate Cauchy’s problem for the parabolic equation (1.3) with initial condition
(1.2), where the main object here is to obtain an a priori estimate of the modulus of continuity in Ll
of the solution uf(z, x) of problem (1.3), (1.2) which ensures compactness of the family {u(t, x)} in
the Ll-norm, where this estimate does not depend on small viscosity €. This estimate is established
using similar methods separately in the following two cases A and B:

A. The initial function uy(x) is an arbitrary bounded function in En, but then (in addition to con-
ditions 1)—3) in the beginning of the section) the functions ¢, do not depend on %, and the functions
¢iut(t’ %, u), l/fu( cee), l,bx]( -++) and gllt( .+-) are bounded in DM'

B. The initial function uy(x) is bounded in En and satisfies a Lipschitz condition in the Ll(KR)'

norm for any R > 0:
S [ty (x -+ Ax) — uy (x) | dx < e (R* + 1) [Ax|, ¢ = const > 1, p = const > 0; (4.3)
Kr

the functions ¢>L. can now depend on x, while (in addition to conditions 1)-3)) the derivatives
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¢ixix
in D

t, 2, w), . (00), gbitx]-("')’ ¢. (-..), and also ¢fu(---.), !//x( ), lﬁt(---), are bounded
i i

Luxj it

e

Case A is singled out largely for considerations of method, since in this technically simple but
nevertheless typical case (which essentially corresponds to equation (1.5)) we can emphasize the
fundamental ideas of the proof with special clarity.

The estimate of the modulus of continuity in case B, which is also of independent interest, plays
the role of a preliminary result for obtaining the desired estimate in the general case O. We let the
general case O be characterized by the following conditions: u(x) is an arbitrary bounded measurable
function, while the functions ¢>i and ¢ satisfy the same assumptions as in case B. The fundamental
result used to justify the vanishing viscosity method will be formulated under conditions O (concern-
ing the possibility of weakening these conditions, see subsection 4 in $5).

1. Cauchy’s problem for the parabolic equation (1.3). We first note that, by well-known results
from the theory of second order quasilinear parabolic equations (see, for example, [19] or [20]), under
our assumptions about the functions ¢, and yr problem (1.3), (1.2) has a unique classical solution
u® (¢, %) if the initial function u,(x) is bounded in E’1 along with its derivatives through the third
order, inclusive; here the solution uf(¢, x) is bounded in 7 and has bounded and uniformly Holder
continuous derivatives in equation (1.3).

We first prove several a priori estimates for the classical solution of problem (1.3), (1.2), but we
shall take care that these estimates depend only on the above properties of the functions qSi and ¢,

on MO, and on the function wR(U) such that (see (2.8))
IR (U (%), Ax) < og (]Ax[) YR>0 (4.4)

(for wR(U) we can take the modulus of continuity of the function uy(x) in L 1(KR); in case B by
(4.3) we have (DR(O) = c(R* + 1)0). We agree to let const designate different constants which depend
on the “‘data’ of problem (1.3), (1.2), but not on € € (0, 1].

Equation (1.3) can be written in the form
Ut + Qutie, + ¥ (4, x, 1) = eAu. (4.5)
Since ¥ (¢, x, u) = U(¢, x, 0) + ‘I’u(t, x, &) u, we have by (4.1), (4.2) and the maximum principle that

[u® (¢, x)| < const = (M, + ¢,T) e"" = M. (4.6)

We now prove an estimate of the modulus of continuity in L, for the solution u* (¢, x) in case A.
€ P .
We take a vector z € En and set w(z, x) = uf(t, x + z) ~ u* (¢, x); it is clear that the function w(¢, x)

satisfies the equation

Wt + (@W)x, + cw + ez, = eAw, (4.7)
where

1

a; (t, x) = S Qi (¢, aut (£, x + 2) + (1—a)ut (¢, x)) da,

]

c(t,x)==§wu(t,a(x+z)+(1——a)x, wt t, 1+ 2) +(I—a)uea,x»da-z§wu<...)da,

[} 0
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it ) = 5 ol Yo, ) (@] +ler]) + o] < const,
i=1
and all the functions @ , ¢ and ¢, satisfy a Lipschitz condition on any compact set in 7,. We mul-
tiply equation (4.7) by a function g(¢, ) which is finite in % in the band 7, C 7 and has continuous

derivatives g,, 8, , &, , , and we integrate over m_; integrating by parts, we find that
13 [l }

T 7
{ welims dx— W L@wdrdt=  wglodr— ((zegara, (4.8)
Ey 122 E, Ty
where
£(g) = gt + aigx, —cg + eAg. (4.9)

Lemma 4. Let the function q(t, x) be continuous in m_ and satisfy the inequality £(g) > 0; let
{g(s, )| < ¢° and q(r, x) =0 for |x| > r (¢° and r are constants). Then for

n Y
G RDEQ={(l ) x| >r+H@—l), 0<t<t), where H=1+ sup (2 a?) :

(t,x)Emy —

the following estimate is fulfilled:

g(t, )< qlexple(H(v—8) +r—|x]|)
+rsupfc{—{—(t—r)mfc] Qe (¢, x).

Proof. It is easily verified that £(Qe) <0 in £, and that

Qe ety >4 Qs >0.
[x|2=r

Hence, by the maximum principle, (¢, x) < Qf(t, %) everywhere in Q.
We fix a number r> 1 and define the function ¢,(z, x) as the solution of Cauchy’s problem for
the equation g(qh)= 0 in 7_ with the initial condition qh(r, x) = B (x), where B(x) = signw(r, x) for

|x| <r—h, B(x) =0 for |x| > r— h. Obviously, by the maximum principle, |q,(s, x)| < const. In (4.8)
we set

11

g=g(t, Ynm(|x]). (o) =1— { 8(c—m)do, (4.10)

t

where m is a natural number. Transferring the derivatives in x, from the function ¢, in the integral
of wa(qh) (17 ) o we find that

Eganhnm [imp dX = — §§ [aiﬁﬁ—ﬁ([x[——m)w

L - 6([x[—m)+swAnm }qhdxdt

SS 2€qum dx df + quhnm r, 4. (4.11)

Ty
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We note that, by Lemma 4, for ¢ € [0, 1]
[gn (¢, x) | < const - exp (——l'—;—'-)

and for R27=r+(1+N)T>1

lqh (07 x) | dx < const « .Rnﬂl « exp [E—I (F_ R)]
Ep\Kp

(here Lemma 4 is applied to the functions * q,(¢, %)). First letting m approach + o in (4.11), and
then letting h approach zero, we find that

S |@ (T, x)|de<Cconst - {|z] + @r(|2])

K,
+ R exple™ (r— R} = Az (] 2]).
Consequently for 0<t< T

Jr (@, Ax) < min Ak (|Ax]) = o} (]Ax]), (4.12)
R>T
where the function wi‘ (0) does not depend on €.
To estimate the modulus of continuity in ¢, we use the following interpolation theorem.
Lemma 5. Let the function u(t, x) be measurable in the cylinder {(¢, )} =10, T1 x Kr+p
(0<2p< 1 and |ult, x)] <M= const; for 0<t< T, |Ax| <p let
It %), A9 < 0% (| Ax])

and for any t, t + At € [0, T], At > 0, and any twice smooth function g(x) which is finite in K, let

l S g(X)[u+ At x)—ult, x)]dxl
K,

<erdtmax [ gl + e+ 3 lga |- 613
Thenfor 0<et<et+At<T (,j=1

I (u(t, x), Af) = g lu(t 4+ Af x)—u(t, x)|dx

Kr
< const « min [h + o7 (h) - —i—;:l , (4.14)
o<hge

where the constant depends only on s M, r and n.
Proof. In (4.13) we set g(x) = B*(x), where B(x) = sign(u(t+ At, ) —u(s, %) for |x| <r- 4,
B(x) =0 for |x| > r~ 4k and h < p. Noting that |g(x)] < 1, \gx] < const A1, 1gxixjf < const-h 2,

we obtain the following estimate for the function wlx) =uls+ At, x) ~ u(t, x):

I S w (x) (signw)h dxl \<' S w (x) 8" (x) dx' - const« h
Kreon K,

< const « [h 4 (A7)
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Applying Lemma 1 to the function w(x) in K (see (2.10)), we further find that

2r—h
I, (u (¢, x), Af) < const . {h 4 o7 (h) - —i—:]
for any A € (0, p), and this is equivalent to estimate (4.14).

Lemma 5 allows us to estimate the modulus of continuity in L1 with respect to ¢ for the solution
u® (¢, x) of equation (1.3) in terms of the modulus of continuity wf(a) with respect to the space vari-
ables. In fact, it easily follows directly from equation (1.3) for 0 <€ < 1 that estimate (4.13) holds
for the function u(z, x) with constant ¢, = const-r"* (we may assume that r > 2 and p = 1). Thus

. At
I, (@ (t, %), A) < 0! (Af) = const + min [h+ o (1) + —] . (4.15)
0<h<1 h?
We now prove the analogs of estimates (4.12) and (4.15) in case B. To do this we note that in

the case of a smooth initial function uo(x) inequality (4.3) implies the estimate
g lthor | dx < ]/r?c R +1) (4.16)
Rr

and that the functions v*(z, x) = uzk(t, x) satisfy the parabolic systeml)

ot ‘{“‘gi”.' (Piw (¢ %, 6®) 0¥+ Piur, (- ) O+ Qigye, (- - )
FPul )0 P () =eAve, k=1, ..., n (4.17)

We multiply the kth equation in (4.17) by a sufficiently smooth function gk (¢, x) which is finite in x

in the band 7, integrate over 7_, and then sum over k& from 1 to n; integrating by parts, we find that

T7
{ otgt|, dr—( (Lo (e)or e
En T
- g vkgh |, dx — SS (Pivyr; + ) g dx di, (4.18)
En o
where
g=@g .., &,
L, (8) = gF + @i, — [Ppur; + 01, Vi1 8 + eAZy,

a[:(pfu(t,x,ua), k:]-, A (D

We fix a number 7> 0 and let q,l: (¢, 2y b=1,---, n, designate the solution of Cauchy’s problem for

the parabolic system Ek(qh> =0 in 7, with the initial condition q: (r, x) = (,Bk(x))h , where ,Bk(x) =
signv*(r, x) for x| <r -4, ,Bk(x) =0 for x| > r~ £ (see[21]). Since

0 = 2%, (94) gk < (gh): + a: (gR)x; + const « g + eAgh = L (qa), gk = qhdh,

it follows by the maximum principle that }qZ(L, x)| < q0 = const, and, by Lemma 4, for ¢ € (0, 1]

|9k (¢, x)| < const « exp (_JTxl)

1) Under our smoothness assumptions for the functions ¢; and i the possibility of differentiating equation

(1.3) with respect to xj follows from well-known results for linear equations (see, for example, [19], Chapter 3, §5).
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Substituting gk = q]’; T]m(\x\) in (4.18) (see (4.10)) and, as in case A, first letting m approach *~ and

then letting % approach zero, we obtain the estimate

S é |vk|dx = const - (1 + S e—l—;ﬂ]uox(x)}dx).

Kr ké 1 El‘l

Taking (4.16) into account, we find that

1xl oo
Se 2'u0x|dx=S—{—2 \
E, K m=1 K4 1\Km
© _m
<L2Vn c+Vn ¢ e [l + (m+ 1)"] = const.
m=1

Consequently in case B we have the estimates

Jr(u®, Ax) <const « |Ax| = oF (|Ax]),

I, (®, Aty < comst » |A1]"* = wf (| At]). (4.19)

To derive estimates (4.12) and (4.15) in the general case O we note that the constant ¢ in (4.3)
and (4.16) is a factor in const in estimates (4.19). We let u‘;(z, x) designate the solution of Cauchy’s
problem for equation (1.3) with the initial condition uz (0, x) = ug (x), 0 < A< 1; since I(ué)xl SMoh-l,

and consequently

S ]uf,‘(x +Ax)—u§(x)]dx<const- KR Ax|,
KR

it follows by the above remark that

ol Ax) < °°:“ lAx], I @h AY< C°:S‘ |At]", (4.20)

The function w = u;(t, x) — ue(t, x) satisfies an equation of the form (4.7), where e, = 0G=1,--,n),

and

1
a (¢, x) = S Qi (¢, x, aup + (1 — ) u°) da,

0
c(t, x) = S Py (4, x, auy 4 (1 — ) u®) da.

Estimating the norm of the function w(¢, x) for ¢t=7 in Ll(Kr) in exactly the same way as the norm

of the function w satisfying equation (4.7), we obtain that for 0 <t < T

—lx
S | uh (f, x) —u® (¢, x)| dx < const » Se | ub () —uy (x) | dx.

K, E,

It is well known that for any R > 1
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{ 1o (1) —uy (1) | dx < 0 (h),
Kp '

where wR(O) is the function in inequality (4.4) (for example, the modulus of continuity of the function
uy(x) in L,(K.)). Consequently ‘
S | ufy (t, x) —u® (¢, x)| dx < const - { g (1) + R" exp (- :’;—)] VR>1.  (4.21)
K,
From (4.20) and (4.21) we conclude that for 0 < ¢t < T
Jr (w8, Ax) < const+ min {mR (h) + R""exp (— %) ] Ax]| h"l:l

0<h<s1

I R<H-00
= (Df ( I Ax { )v
I, (ue, Aty <const+ min [mR () + R texp ( — 5) | At]Te h“}
0<ChsL 2
ISR< A+
— of (A¢]).

Thus in each of the cases A, B and O we can find functions wf(a) and wi(o) which do not de-

pend on ¢ such that for 0<¢t< T
Jo (1, Ax) 4+ 1, (@, A < of (| Ax]) + of (|AL]) (4.22)

(however, this estimate was obtained under an additional assumption concerning sufficient smoothness
of the function uo(x)).

Let ®(u) be an arbitrary twice smooth convex downward function on the line ~= <z < +. We
multiply equation (1.3) by the function ®'(x) f(¢, x}, where f(¢, ) > 0 is a twice smooth function
which is finite in 7., and we integrate over 7. Transfetring the derivatives with respect to ¢ and
x, to the test function f and taking into account that ®"(u) uxiuxif > 0, we obtain the inequality

u
W {o@fi+§ O @ u)dufy— O @ ()
wp k

[ §0 0 0 € i — @ @0 ()] F+ 20 @]} drdt 0,

k

where k is a constant. Hence (using an approximation of the function |u ~ k| by twice smooth convex

functions ®(u)) we conclude that this inequality also holds for ® = |u - ki:

\ {le— k1 e+ eap) +sign @ —B) [0 ¢, % w) — @: ¢, =, R)Ify,
“r
— sign (u — k) [@ux, (£, x, k) 4+ ¢ (¢, x, u)1f}dxdit > 0. (4.23)
To free ourselves from the requirement that the function uy(x) be sufficiently smooth, we make
the following observations, which are based on elementary considerations of approximation and com-
pactness. We approximate the bounded measurable function uy(x) by the mean functions ug (%) and
note that the moduli of continuity in L of the functions ug (x) are estimated in terms of the modulus

of continuity of the function uo(x) {see (2.9)). Hence, for the classical solutions u;(t, x) of Cauchy’s
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problem for equation (1.3) with initial functions ug (%), estimates (4.6) and (4.22) hold uniformly for
h € (0, 1] and € € (0, 1]. On the other hand, inner estimates of Schauder type (see [19], Chapter 7

3 and 4) hold for the solutions uf (¢, x) with fixed € > 0 as a result of our smoothness assumptions
for the functions 95 and 1, Usmg these estimates, we can find a subsequence u (t %) which con-
verges uniformly to the function uf(z, %) in any cylinder {(z, x)} = [p, T] x KR’ P > 0 along with the
derivatives in equation (1.3). Obviously for ¢> 0 the twice smooth function u €(¢, x) satisfies equa-
tion (1.3) in the usual sense, estimates (4.6) and (4.22) hold for it, and for any r> 0 and p € [0, T]

§ 142 (o, %) — 5 () | dx < 0f (). (4.24)
K,
It is also clear that the function uf (s, x) satisfies inequality (4.23). We shall henceforth understand
the functions ue(t, %) to be the solutions of problem (1.3), (1.2) constructed in this way.
2. Justification of the vanishing viscosity method. Existence theorem for a generalized solution
of problem (1.1), (1.2).
Theorem 4. Let the assumptions of the general case O be fulfilled. Then the solutions u‘(t, %)
of problem (1.3), (1.2) converge as € — 0 almost everywhere in T, toa function u{t, %) which is a
generalized solution of problem (1.1), (1.2).
Proof. By the estimates in subsection 1 of this section, the family {uf (s, 0} is compact in the
Ll

sequence u ™ (¢, x) which converges almost everywhere in 7. to a bounded function u (¢, x). Passing

-norm in any cylinder lo, 71 x K ,r=1,2,3,.--, Using the diagonal process, we can find a sub-

to the limit as € — 0 in inequality (4.23), where u = u’m | we find that the function u (¢, %) satisfies
requirement 1) of the definition of a generalized solution of problem (1.1), (1.2) (here we take into
account that only the first derivatives of the function f appear in the integrand in inequality (2.1) and
that the smooth finite function f(f, x) > 0 can be uniformly approximated along with its first deriva-
tives using twice smooth finite nonnegative functions). We can obviously find a set & of measure
zero on L0, T) such that if ¢ € [0, TI\ &, then the sequence um (2, x) converges to u(z, x) almost
everywhere in £ . Passing to the limit as € = ¢ — 0 in inequality (4.24), where p € [0, TI\ &, we
conclude that the function u (¢, x) satisfies requirement 2) of the definition of a generalized solution
of problem (1.1), (1.2).

The function u(t, x) is hence a generalized solution of problem (1.1}, (1.2). By the uniqueness
theorem for the generalized solution of this problem that was proved in §3, the sequence uf (¢, %)
converges to the function u(t, x) as € approaches zero in any way.

Theorem 5. A generalized solution of problem (1.1), (1.2) exists if conditions 1)~4) in the begin-
ning of this section are fulfilled.

Proof. In case O, the existence of a generalized solution was proved in Theorem 4. Using the
finiteness property of the domain of dependence of the generalized solution on the initial condition,
we discard superfluous assumptions concerning boundedness of cerrain derivatives of ¢ and ¥ (see

condition B). Along with equation (1.1) we consider the sequence of equations

ut+£'j[ﬂm(lxl)¢i(f, X, u)]_(nm)xiq)i(l‘, X, u)—[—nmw(t, X, u)_____O,

Nm (@) =1— { 8(c—m)do, nm =nm (x]).

—Co



238 S. N. KRUZKOV

Since for the mth equation the corresponding function ‘Pm = T]m‘P(t, %, u) and the corresponding func-
tions ¢im and !ﬁm are finite in x, this equation satisfies all the requirements of case O. We let

u (¢, x) designate the generalized solution of Cauchy’s problem for the mth equation with initial con-
dition (1.2). Noting that Ktﬁim)ul < |¢>iu|, we fix a number r > 0. By Theorem 1, all the fimctions
um(t, %) will coincide almost everywhere in the cylinder [0, 71 x Kr for m>7+1=r+NT+1 (we
note that nm(lx[) =1 for {x| <m ~'1). Hence the sequence u, (¢, x) converges almost everywhere in
", toa bounded measurable function u (¢, x); since in any cylinder [0, T] x Kr the function u (¢, x)
coincides with the solution u, (¢, x) where m, =2+ [7], it follows that the function u(t, x) is a

generalized solution of problem (1.1), (1.2).

3. Proof of Theorem 3 for the case of equation (1.5). By Theorem 4, any generalized solution of
problem (1.5), (1.2) can be obtained as the limit as ¢ — 0 of solutions u‘(¢, x) of Cauchy’s problem

for the parabolic equation
Ut + (@i (), = & Au (4.25)

with initial condition (1.2). Since for any classical solutions u, (e, x) and uz(t, x) of equation (4.25),
where u,(0, ) > u,(0, %), the maximum principle implies that the inequality u, (¢, %) > u,(¢, x) holds
everywhere in 7 p, it follows from the construction of the functions uf(t, %) and vf(t, x) which ap-
proximate the functions u (¢, x) and v(¢, x) considered in Theorem 3 that ue(t, %) > ve(t, x) in 7

T

for any € € (0, 1], Consequently u(z, x) > v(¢, x) almost everywhere in 7

§5. Remarks and additions

1°. All the results of this paper can easily be carried over to the case of the following equation,

which is more general than (1.1):

d d
E;(Po(f, X, U)*E—E'q?i(l‘, X, w)+ P, x, u)y=0, (5.1)

Pou (£, x, u)==0.

In particular, the corresponding results concerning stability and uniqueness of the generalized solu-
tion of problem (5.1), (1.2) are valid under the same conditions on the functions ¢i(t, % u), Q=
0,1,---,n and ¥{t, x, u) as in the beginning of §3. However, in the case qbo(t, %, u) = u, con-
sidered in $3, we can use a slight modification of the proof of Theorem 1 to weaken the assumptions

concerning smoothness of these functions in t.

2° The requirement that the generalized solution of problem (1.1), (1.2) be bounded in 7. can

T
be replaced by a boundedness condition on any compact set; a uniqueness theorem holds for such a

solution, for example in the class of functions z(¢, x) such that as R — o

n 2
sup <2 9% (t, % v)> = 0(R).

(t. %) € [0, TIXK
ol <Ksup lu s, %)
(¢, x)€lo, TIXKR

=1

3°. From Theorem 1 we can obviously derive a proposition on compactness of the family of
generalized solutions of problem (1.1), (1.2) in the Ll-norm, assuming that the corresponding initial

functions are uniformly bounded in C and are equicontinuous in Ll on any compact set.
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4°. The smoothness requirements on the functions ¢i(t, %, u) and ¥ (¢, %, u) under which the
existence of a generalized solution was proved (see the beginning of $4) are certainly excessive even
with the methods of $4. But it is not hard to discard the superfluous requirements. In fact, it follows
from the proof of Theorem 4 that to construct a generalized solution of problem (1.1), (1.2) using the
vanishing viscosity method it suffices to prove the existence of a solution uf(t, x) of problem (1.3),
(1.2) which is continuous for > 0 and satisfies inequality (4.23) as well as estimates (4.6) and (4.22)
which do not depend on € € (0, 1]. Estimate (4.6) is ensured by assumptions (4.1) and (4.2); a quick
analysis of the derivation of estimate (4.22) in case O shows that this estimate depends (if we are
interested in the smoothness assumption for the functions ¢>i and i) only on the least upper bound of
the moduli of the derivatives ¢, , qSiuxj, qﬁixixl_, o t//xk in D,. Using elementary methods for ap-
proximating the functions <75i and Y by sufficiently smooth functions, making use of estimates of
Schauder type for fixed ¢ (see [19], Chapter 7, 3, 4), and taking into account the method of proof of
Theorem B, we conclude that a generalized solution of problem (1.1), (1.2) exists when the following
requirements on the functions ¢, and ¢ are fulfilled: these functions are continuous, they have con-
tinuous derivatives ¢~w, ¢iuxj, ¢ixixj’ xﬂu, x/ka, and the functions ngiu(t, %, u) and ¥(s, x, u) are
bounded in the regions DM; inequalities (4.1) and (4.2) are fulfilled. In particular, in the case of
equation (1.5) we only need continuous differentiability of the functions c}ﬁi () (see also [15]).

5°. It is easily seen that the derivation of the estimates of the moduli of continuity in case B is

still suitable when the following inequality is fulfilled instead of (4.3):

f \to (x 4 Ax) — uy (x) | dx < ¢ - exp (const R) |Ax|.
KR
6°. The method of obtaining the norm estimate for the function w = 0t x + Ax) - u€(¢, x) in L1
in case A (see §4, subsection 1) is also applicable to prove uniqueness and stability in Ll of the
bounded solutions u°{z, x) of problem (1.3), (1.2) constructed at the end of subsection 1 of $4 in the

sense of the integral identity

SS {uft -+ @i (t, x, u)fx, — V(& x, w)f - eulf)dx dt

nr

+§ 70, 0up(xydx =0.
Eﬂ
An analogous investigation of the difference of the two solutions z°(¢, x) and (¢, ) of this problem

with initial functions uo(x) and vo(x), respectively, leads to the following estimate (for 0 <€ < 1):

S |ue(t, x)—uve(t, x)|dx < const- S e uy (x) —ug (x) | dx.
K, E,

We note that these results (like the LI estimates in §4) are based on the elementary fact (see
Lemma 4) of the decrease as |x| — % of the solutions of Cauchy’s problem with finite initial func-
tions for the equation £ () = 0), which is conjugate to the variation of the nonlinear parabolic equa-
tion under consideration.

7°. Cauchy’s problem for quasilinear hyperbolic systems. The approach to defining a generalized

solution of equation (1.1) used in this article permits a natural generalization to the case of
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quasilinear hyperbolic systems (here we only consider systems of the form (1.7)). We first note that
requirement 1) of the definition of a generalized solution of problem (1.1), (1.2) (see $2, Definition 1)
generalizes to the case of a system in the following (equivalent) form: for an arbitrary convex down-

ward function ®(x) and any smooth function f(z, x) > 0 which is finite in 7, we have the inequality

59 ewh (0@ 9t 5, )iy~ @) il )

nT °

u
+ [ @) gy (- ) du— @ () (.. .)]f} dx dt > 0. (5.2)
0
For @ = |u — k| inequality (5.2) coincides with (2.1). We easily see that, conversely, inequality (2.1)
(for any k!) implies (5.2). In fact, as we noted in §2, if the function u (¢, x) satisfies inequality (2.1),
then it also satisfies identity (1.6), and hence inequality (5.2) with the function (I)k(u) = max(u~£,0);
it remains to note that any function ®(u) which is convex downward on [-M, M] can be approximated
by “‘inscribed broken lines’’, i.e. functions of the form ®(~M) + ®'(~¥) (u + M) + Z’Z;lalq)kl(u),
y=const2 0, =M<k, <k, <M

We now consider the quasilinear hyperbolic system

where «

ago (1) , 99 (W) _
ot + ax; 0. (5.3)

i

where u={ul, -+, M), N > 2, ¢L(u) = (¢: (W), -, ¢tiv(u)), i=0,1,---, n. We introduce the simple
viscosity €Au, € = const > 0 in system (5.3) and assume that the generalized solution which interests

us of Cauchy’s problem for the system (5.3) with the initial condition
Ul = ty(x) (5.4

can be obtained as the limit as € — + 0 (for example, in L) of solutions u¢(z, x) of Cauchy’s prob-
lem for the system
dgo | 90 ()

Au .
o ox & (5.5)

i

with the initial condition (5.4), where
T
sup \ut| +- S S {uiildxdt<const
T o K

uniformly in € (the integral estimate assumption can be weakened, and in many cases can be entirely
removed). Let the components H* () of the vector function H(u) = (H (), -, H¥ (u)) be smooth
functions, and let the matrix H'(x) = HHkl!} be nonnegative. For any real vector & = (&1, ..., &V)

u

(A" (wE 5 >0 (5.6)

(for any values of u under consideration). We multiply the system (5.5) by the vector H(u) using
scalar multiplication, and we require that the expressions (H# (u), ¢;)”z) and (H(u), qS: ux2

(925: = H(ﬁfulH) be total derivatives with respect to ¢ and %' of certain functions ®(u) and ‘I’i(u) re-
spectively; the latter requirement means that H (1) must satisfy the following system of linear equa-

tions, which is generally overdetermined:
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* .
rot (¢! (W)H ) =0, i=0,1,...,n, (5.7)

. . . . * . . 1
(this system is not overdetermined only if n =1, N = 2; here <75: is the transpose matrix of ¢i)'

Taking (5.6) into account, we have

a0 (u) , 9Y; (u) _a_( )
ot d
— e (H' (u) s, uxl.) <s 5;[_ (H (), 5;1) (5.8)

Multiplying inequality (5.8) by the test function f(¢, x) > 0, integrating over 7. (interchanging the
first derivatives with respect to ¢ and x, using integration by parts on f) and passing to the limit as

€ — + 0, we find that the limit function u(¢, x) satisfies the inequality

S S (@ @) fe + ¥i(u) fyldx dt>0 (5.9)
s
for any smooth finite function f> 0.

Thus we arrive at the following notion of a generalized solution.

Definition 2. A bounded measurable vector function u(t, x) is called a generalized solution of
problem (5.3), (5.4) in the band 7. if the following conditions are satisfied.

1) Any smooth function f(¢, ) > 0 which is finite in m satisfies inequality (5.9), where @ (u)
and ‘Pi(u) are the functions constructed as above for an arbitrary solution H (u) of system (5.7) so as
to satisfy condition (5.6).

2) Requirement 2) of Definition 1 in $2 is fulfilled.

We note that the functions H = +(0,--.,0, 1, 0, .-, 0), which clearly satisfy condition (5.6),

TR
correspond to the functions @ = + ¢§(u) and ‘Pi = iqﬁf (u); hence our generalized solution is also a

generalized solution in the sense of the usual integral identity

§§ 16k ) fe + oF @ Fd drat = 0.

ar
But the arbitrariness in the choice of the function H(u) (and hence in the choice of ® and ‘Pi) as-
sumed in requirement 1) of the definition of a generalized solution certainly also takes into account
the ‘‘entropy’’ relations at the discontinuities.

Here we have considered the simplest situation connected with an implicit ‘‘equivalence’’ rela-
tion for all the equations of system (5.3) (this is reflected in the choice of a viscosity of the form
€Au). However, an analogous approach is applicable in more general situations, in particular, for gas
dynamic systems.

We conclude by noting that the problem of a generalized solution in the theory of quasilinear

equations and in gas dynamics is discussed in [22].

Received 23 APR 69



242

[1]
[2]

[3]

(4]

[s]

(6]

[7]

[8]

[10]

f11]

{12
[13]
(14]
{1s]
[16]

[17]

S. N. KRUZKOV

BIBLIOGRAPHY

E. Hopf, The partial differential equation u, + uu = pu_ , Comm. Pure Appl. Math. 3 (1950),
201-230. MR 13, 846.

O. A. Oleinik, Discontinuous solutions of non-linear differential equations, Uspehi Mat. Nauk
12 (1957), no. 3 (75), 3~73; English transl,, Amer. Math. Soc. Transl. (2) 26 (1963), 95—172.

MR 20 #1055; 27 #1721.

L. D. Landau and E. M. Lifsic, Mechanics of continuous media, 2nd ed., GITTL, Moscow, 1953;
English transl., Course of Theoretical Physics, vols. 6, 7, Pergamon Press, New York; Addison-
Wesley, Reading, Mass., 1959. MR 16, 412; 21 #6839.

0. A. Oleinik, Cauchy’s problem for nonlinear equations in a class of discontinuous functions,
Dokl. Akad. Nauk SSSR 95 (1954), 451—545; English transl., Amer. Math. Soc. Transl. (2) 42
(1964), 7-12. MR 16, 253.

A. N. Tihonov and A. A. Samarskii, Discontinuous solutions of quasilinear equations of the first
order, Dokl. Akad. Nauk SSSR 99 (1954), 27—30; English transl., Amer. Math. Soc. Transl. (2)
42 (1964), 1-6. MR 16, 704.

P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,
Comm. Pure Appl. Math. 7 (1954), 159-193. MR 16, 524.

S. N. KruZkov, Methods for constructing generalized solutions for the Cauchy problem for a
quasilinear equation of the first order, Uspehi Mat. Nauk 20 (1965), no. 6 (126), 112—118.
(Russian) MR 33 #391.

O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a
quasi-linear equation, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 165—170; English transl., Amer.
Math. Soc. Transl. (2) 33 (1963), 285-290. MR 22 #8187.

I. M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk 14
(1959), no. 2 (86), 87-158; English transl., Amer. Math. Soc. Transl. (2) 29 (1963), 295-381.
MR 22 #1736; 27 #3921.

A. S. Kaladnikov, Construction of generalized solitions of quasi-linear equations of first order
without convexity conditions as limits of solutions of parabolic equations with a small parameser,
Dokl. Akad. Nauk SSSR 127 (1959), 27-30. (Russian) MR 21 #7366.

Wu Cho-chiin, On the existence and uniqueness of the generalized solutions of the Cauchy prob-
lem for quasilinear equations of first order without convexity conditions, Acta Math. Sinica 13
(1963), 515530 = Chinese Math.—Acta 4 (1964), 561-577. MR 29 #6146,

E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasi-linear first-order
equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95-105. MR 33 #388.
A. L. Vol'pert, The spaces BV and quasilinear equations, Mat. Sb. 73 (115) (1967), 255-302 =
Math. USSR Sb. 2 (1967), 225-267. MR 35 #7172,

I. P. Natanson, Theory of functions of a real variable, 2nd rev. ed., GITTL, Moscow, 1957;
English transl., Ungar, New York, 1955, 1961. MR 16, 804; 26 #6309.

S. N. KruZkov, Results on the nature of the continuity of solutions of parabolic equations, and
certain applications thereof, Mat. Zametki 6 (1969), 97~108. (Russian) MR 40 #3073,

N. N. Kuznecov, The weak solution of the Cauchy problem for a multi-dimensional quasilinear
equation, Mat. Zametki 2 (1967), 401~410. (Russian) MR 36 #6781.

S. N. Kru¥kov, Generalized solutions of the Cauchy problem in the large for first order nonlinear
equations, Dokl. Akad. Nauk SSSR 187 (1969), 29—-32 = Soviet Math. Dokl. 10 (1969), 785--788.
MR 40 #3046.



FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES 243

(18] S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad.
Gos. Univ., Leningrad, 1950; Epglish transl., Transl. Math. Monographs, vol. 7, Amer. Math.
Soc., Providence, R. I., 1963, MR 14, 565; 29 #2624.

{191 A. Friedman, Partial differential equations of the parabolic type, Prentice-Hall, Englewood
Cliffs, N. J., 1964; Russian transl., ‘*Mir’’, Moscow, 1968. MR 31 #6062.

[20] 0. A. Oleinik and S. N. Kru¥kov, Quasi-linear parabolic second-order equations with several
independent variables, Uspehi Mat. Nauk 16 (1961), no. 5 (101), 115~155 = Russian Math.
Surveys 16 (1961), no. 5, 105—-146. MR 25 #5289.

[21] s. p. Eidel’man, Parabolic systems, ‘‘Nauka’’, Moscow, 1964; English transl., Noordhoff,
Groningen; North-Holland, Amsterdam, 1969. MR 29 #4998.

[22] s. K. Godunov, The problem of a generalized solution in the theory of quasi-linear equations
and in gas dynamics, Uspehi Mat, Nauk 17 (1962), no. 3 (105), 147—158 = Russian Math. Sut-
veys 17 (1962), no. 3, 145156, MR 27 #5445,

Translated by:
N. Koblitz



