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FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL IN DEPEN DEN T VARIABLES

S. N. KRUZKOV UDC 517.944

Abst rac t . In t h is paper we co n st ru c t a theory of gen e ra l ized so lu t io n s in th e la rge of C a u c h y' s
problem for t h e equ a t io n s

" dU t +  "Υ, φι (t, X, «) +  Ψ (U X, U) — 0
UiX 1

i= 1 '

in the class of bounded measurable functions. We define the generalized solution and prove existence,
uniqueness and stability theorems for this solution. To prove the existence theorem we apply the
"vanishing viscosity method"; in this connection, we first study Cauchy's problem for the correspond 

ing parabolic equation, and we derive a priori estimates of the modulus of continuity in L ι of the solu 
tion of this problem which do not depend on small viscosity.

Bibliography: 22 items.

§1. Introduction

The central problem of the theory of generalized (discontinuous) solutions of the quasilinear
equations

η ,
Ut +  Σ φί V' X' ") +  Ψ V' X' ") =  0>

i= 1 dXi

— ψ (t, X, U) = ψΧί + <P« Ux., X =  (Xv . . ., Xn) £En, (1.1)

is to describe the existence and uniqueness classes of the solution in the large (with respect to t) of
Cauchy's problem with the initial condition

"Ιί= ο =  "ο(*) ( 1 · 2 )

at f =  0. Several papers have been devoted to studying this problem under different assumptions about
the initial function uQ(x) and about the structure of equation (1.1). Ever since the first fundamental
paper t 1] was published on the theory of generalized solutions of quasilinear equations, the basic
method for investigating these equations has remained the "vanishing viscosity method," which is
based on the idea of passing to the limit as (  > +  0 in the parabolic equation

ί {t, x, u) +  ψ (t, x, u) =  εΜ, ε> 0 , (1.3)

1) Some equ a t io n s which are m odel equ a t ion s for gas dyn am ics h ave the form ( l . l ) a n d ( 1 . 3 ) ; th e param et er
f in (1.3) co r resp o n d s to th e gas dyn am ic not ion of visco sit y.

Copyright © 1971, American Mathematics! Society
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where Δ is the Laplace operator over the space variables x^, •  •  · , χ (here and below, if two of the
indices i, j, k are equal in a monomial, then summation is taken from 1 to n). This method, which has
deep physical meaning, not only allows us to prove the existence of a generalized solution of problem
(1.1), (1.2) in the sense of the corresponding integral identity, but also makes it possible to show those
additional conditions on the generalized solutions which characterize the uniqueness class (concern 
ing the necessity of these conditions in the nonlocal theory of Cauchy's problem and the physical
significance of these conditions, see, for example, L2J or L'J).

Up to now, the case n=1 with the function φ ^t, x, u) in equation (1.1) convex in u is the one
that has been studied most thoroughly; in this case a theory of generalized solutions of problem (1.1),
(1.2) has been constructed for an arbitrary bounded measurable initial function uQ(x) (see L4]— [6] ,
survey article [ 2] , and others; various methods for constructing generalized solutions with estimates
of speed of convergence are given in L7J). Several results concerning the case of a function φ.(ί, χ, u)
which is not convex in u are obtained in L8J—I11] and elsewhere. In particular, I 8] (see also L9j) con 
tains a uniqueness condition for a generalized solution of Cauchy's problem in the class of piecewise
smooth functions; however, as is well known, it is impossible to construct a nonlocal theory of gen 
eralized solutions in this class.

The class BV of functions with bounded Tonelli Cesaro variation is a natural generalization of
the class of piecewise smooth functions (at least for the theory of quasilinear equations); one of the
necessary and sufficient conditions for a bounded function w{x) to belong to the class BV(E ) is
that, for any compact Ω and any vector Ax € Ε ,

{ \  w (x +  Δ*) — w (x) I dx < const · | Δχ |, (1.4)
Ω

where the c o n st a n t does not depen d on Δχ. Art icle L 1 2J con ta in s a proof of th e exist en c e of a gener 
a lized so lu t ion u(t, x) C BV{E +.) of C a u c h y' s problem in the large for the equat ion

ut + (<fi(u))X[ = 0 (1.5)

with an arbitrary bounded initial function uQ(x) in BViE^); on the cross sections i=  const the func 
tion u(t, x) also belongs to BV{E ), so that the class BV(E ) has an invariance property. It was
shown in [131 that, for any function u{t, χ) £  BV{E + 1)> at every point of discontinuity of this func 
tion, with the possible exception of the points of a set of ra dimensional Hausdorff measure zero, there
is a first order discontinuity and there exists a normal to the set of points of discontinuity (one sided
limits are understood in the approximate sense), where the uniqueness condition for the generalized
solution of Cauchy's problem in the class BV{E + 1 ) is written, in principle, in the same way as in

the class of piecewise smooth functions (see inequality (1.3) in §2; this condition can be easily
derived for solutions of equation (1.1) in the class of piecewise smooth functions using the results and
methods of [8J and I 9]) . Article L* 3J establishes the existence and uniqueness of a generalized solu 
tion of problem (1.5), (1.2) in the case when uQ{x) € BV{E^i. We note that in this proof of uniqueness
we take into account the behavior of the generalized solutions on sets of dimension n; this procedure
is connected with using a local (pointwise) uniqueness condition and requires us to take into account
rather delicate and complicated results from the theory of BV function classes (it follows from the
results in §3 of this paper that to prove uniqueness it is sufficient to know the generalized solutions
on certain (n + l)-dimensional sets of full Lebesgue measure). The vanishing viscosity method was
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justified in [ * 3] only for the case of a sufficiently smooth finite in itial function uQ(x).

The purpose of this paper is to construct a nonlocal theory of generalized solutions of Cauchy's
problem (1.1), (1.2) in the class of bounded measurable functions. This very broad class of functions
is the most natural class for constructing such a theory (especially when we are in terested in ques 
tions of uniqueness and stability of generalized solutions and the question of justifying the vanishing
viscosity method). We note that in the sense of "visibility" the solutions in the class of bounded
measurable functions are practically equivalent to solutions in the class BViE + . ) , since any func 
tion in these c lasses either is piecewise smooth (to within certain visible singularities) or else has an
essen t ial "pathology."

In §2 we formulate a definition of a generalized solution of problem (1.1), (1.2) and make some
preliminary observations.

In §3 we prove uniqueness and stability theorems for the generalized solutions relative to changes
in the in it ial data; in proving these theorems, from the theory of functions of a real variable we only
apply Lebesgue's theorem on passing to the limit under the integral sign, the concept of a Lebesgue
point and the result that almost all points of the open domain of an integrable function are Lebesgue
points of this function (see [ 1 4 ] ) .

In 94 we use the vanishing viscosity method to prove an existence theorem for a generalized solu 
tion of problem (1.1), (1.2); we first consider Cauchy's problem for the parabolic equation (1.3). In the
vanishing viscosity method convergence is proved for any bounded measurable in itial function uAx).

The author stated the result on existence of a generalized solution of problem (1.5), (1.2) in the
sense of the definition in §2 at the International Congress of Mathematicians in Moscow in August,
1966 in discussing a related report by A. I . Vol'pert; the proof of this result was published in L 1 5] ,
where the author also announced the uniqueness theorem for the generalized solution of this problem.

Existence theorems for generalized solutions of problem (1.1), (1.2) in the sense of the integral
identity

Τ +co
\  { [uft τ <P< {t, x, u) fx — ψ (t, x, u) f]dxdt = 0, (1.6)
ο —oo

which is valid for any smooth finite function fit, x) (without determining uniqueness conditions) are
established in [ 1 6 L

The fundamental results of this paper were published in our note L17J.
5 contains some remarks and addenda concerning the questions considered in §§2—4. The argu 

ments in subsection 7° occupy a special place here, where we discuss the problem of a generalized
solution of Cauchy's problem for the quasilinear hyperbolic system

<*po(«) ^ J ^ _ L = O j ( L 7 )

dt
with

u = (u\  . . . , u N ) ,  φ ,  ( Μ ) = ( φ ϊ ( « ) , . . . , c p f ( u ) ) .



220 S. N. KRUZKOV

§2. Statement of Cauchy's problem (1.1), (1.2);
some notation and preliminary observations

We let  τ denote the band Ki, x)\  = [θ, Τ] χ Εn. We shall assume that the functions φΜ, χ, u)
and ψ{ί, χ, u) ate defined and are continuously differentiable for (i, x) £  π and — « < u < +  °° (the
assumptions concerning the properties of these functions will be refined in each section).

Let UQ(X) be an arbitrary bounded function which is measurable in Ε : uoix)\  < MQ.
Definition 1. A bounded measurable function u(t, x) is called a generalized solution of problem

(1.1), (1.2) in the band πτ if:
1) for any constant k and any smooth function fit, x) > 0 which is finite in π (the support of

f is strictly contained inside π ) , the following inequality holds:

^ { j u (t, x) — k I f t  I  sign (u (t, x) — k) [φ,· (t, x, u (t, x)) — ψ /  (t, χ, k)\  fXl

• Kγ

— sign (u (t, x) — k) [xfix. (t, x, k) + ψ it, x, u (t, x))\  f} dx at > 0; (2.1)

2) there exists a set & of zero measure on LO, T] such that for ί C [θ, Γ ] \ δ the function
u{t, x) is defined almost everywhere in Ε , and for any ball K^ = \ \x\  < r\  C Ε

lim [ I u (t, x) — u0 (x) I dx = 0. (2.2)

Since the smooth function / > 0 is arbitrary, it is obvious that inequality (2.1) for k= ±  sup|u(i, x)\
implies that the generalized solution uit, x) of problem (1.1), (1.2) satisfies integral identity (1.6).
But Definition 1 also contains a condition which characterizes the permissible discontinuities of the
solutions. This condition is especially easy to visualize when the generalized solution is a piece 
wise smooth function in some neighborhood of the point of discontinuity; in this case, using integra 
tion by parts and the fact that /  was chosen arbitrarily, we easily obtain from inequality (2.1) that,
for any constant k along the surface of discontinuity,

i r —fe|cos(v, /) ^ sign(a+ — k)[<fi(t, x, u+) — yi(t,x, k)]cos(y, xL)

< \u" — k |cos(v, t)  \   sign er — k)[<fi(t, x, u~) — φ£(ί, χ, fe)]cos(v, χι), (2.3)

where ν is the normal vector to the surface of discontinuity at the point (i, x), and u and u are
the one sided limits of the generalized solution at the point \ t, x) from the positive and negative side
of the surface of discontinuity, respectively. I t is easily seen that for η =  1 inequality (2.3) is
equivalent to condition Ε in [8] (we note that in the case n > 2 inequality (2.3) can be derived from
condition Ε if the desired solution is approximated by a plane wave in a neighborhood of the point of
discontinuity).

Before proceeding to the proofs of the uniqueness and existence theorems for a generalized solu 
tion of problem (1.1), (1.2) in the sense of Definition 1, we introduce some notation and make some
elementary preliminary observations.

We let δ (σ) designate a function which is infinitely differeptiable on ( — «>,  *  °°) such that
δ (σ) > 0, δ (σ) ΕΞ 0 for |σΙ > 1, and
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+ 00
C δ(σ)άσ= 1.

—0 0

F o r a n y numbe r h>0 w e s e t

δ;, (σ) Ξ h~16(h~1 σ). (2.4)

It is obvious that ^,(σ) £ C ( — «>, + °o) and

—CO

(for h —* +  0 the sequence \ 8h{a)\  is a delta shaped sequence at the point σ =  0).

Let the function v(x) be defined and locally integrable in Ε (we shall assume a function de 
fined only in some region Ω C E  ̂ to be continued by zero on Ε \Ω); we agree to let vh{x) denote
the mean functions

vh(x) = Γ  i %(x ^l)v{y)dy, h>0, (2.6)
J hn \  h J
En

with averaging kernel
η

Mv\  — 1 Γ Λ / t  \  ̂ \  C\  i ^ iv\  Av 1 / τ *7\

We call xQ a Lebesgue point of the function v(*) if

lim— C  \ v(x) — v
ft >o hn J

It is easily seen that at any Lebesgue point xQ of the function v(x)

Since the set of points which are not Lebesgue points of v(x) has measure zero ( see, for example,
L1 4] , Russian p. 396), it follows that ν (χ) —> v(x) as h — > 0 almost everywhere.

We let ω (σ) designate modulus of continuity type functions. These functions are defined and
continuous for σ > 0, are nondecreasing, and take on zero values at σ =  0.

Lemma 1. Let the function v(x) be integrable in the ball Κ + 2 =  \ \ x\  < r + 2p\ , r > 0, ρ > 0,
where

Js (v, Ax)~  C \ v(x + Ax) — v(x)\  dx < ω5 ( | Ax |) (2.8)
• J

for \Ax\  < ρ and s € [θ, r + pi. Then for h < ρ

Jr(v
h,Ax)<;(ur+il(\Ax\ ), (2.9)

I I \ v\  — v(signvf\dx<:2a>r(h). (2.10)

Estimate (2.9) follows from the obvious inequality

1) Concerning mean functions, see 1.1'J.
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λ (ζ) ^ \ v{x + Ax — hz) — v(x — hz)\dxdz.

To prove estimate (2.10), it suffices to note that

I \ v(x)\~v(x)s\gnv{y)\  = \  \v(x)\  — \v(y)\  — [v(x) — v(y)\ signv(y)\
<2\v(x) v(y)\

and consequently

J I \ v\  v(signv)h\dx

K, En

<2 \u(x) — u(x — hz)\dxdz<^2<£>r(h).
Kr

Lemma 2. Let the function v(t, x) be bounded and measurable in some cylinder Q =  [θ, Τ] χ Κ .
If for some ρ C (0, min[r, Γ]) and any number h €, (θ, p) we set

\v(t,x) — v(x,y)\dxdtdydx, (2.11)

2
ι*—, x+y\ \ <r—9

then lim,^0 V, =  0.

Proof. After substituting

t + τ

we have

ϋ(α —β , η

Since almost all points (α, 17) of the cylinder Q =  [ρ, Τ   ρ] χ Kf_ are Lebesgue points of the
function ν (α, 17), and since

|ο(α+ β, η Κ) —ο(α—β, η—ξ) |< |ο(α+ β , η+ ξ) — ο (α, η) |

+  | ν (α, η) — ν (α—β, η—ξ) | ,

it follows that GAa, η) —* 0 as h —* 0 almost everywhere in (? . It remains to note that |G, ( a , 77)! <
c( re)sup|f| and that the assertion of the lemma follows from Lebesgue's theorem on passing to the
limit under the integral sign (L14J, Russian p. 139).

Lemma 3. If the function F(u) satisfies a Lipschitz condition on the interval [~M, U] with con 
stant L, then the function / / (it, v) =  sign(u   v)[F(u)   F(v)] also satisfies the Lipschitz condition
in u and υ with the constant L.
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To prove th is, it suffices to take into account that Η (u, v) =  F'(u) sign (u   v) for fixed ν €
[-M, Μ] and almost all u C i M, M], and that Ηy{u, v) =  F'(v) sign d;   a) for fixed u C [ M, M\  and
almost all » € t -M, Ml.

Finally, we introduce notation connected with the concept of a characteristic cone. For any R>0
and M > 0 we set

= m a x Γ j ; <p?B (t, x,u)] * ( 2 . 12)
' 1

and let Κ designate the cone \ (t, x): \x\  < R   Nt, 0 < t < TQ =  min(T, ftV"1)}; we let S designate
the cross section of the cone Κ by the plane t =  τ, τ £ [θ, Γ01.

§ 3 . U niqueness of the generalized solution of problem (1.1), (1.2);
stability with respect to the initial condition

In this section we shall assume that the functions φ At, x, u) and ifrit, x, u) ate continuously
differentiable in the region \ (t, x) € TJT , —°° < u < + <*>}, while the functions φί (t, x, u) and
Φί!:(ί, x, u) satisfy the Lipschitz condition in u on any compact set .

U niqueness of the generalized solution of problem (1.1), (1.2) follows from the following proposi 
tion concerning stability of the solutions relative to changes in the initial data in the norm of the
space Ly

Theorem. 1. Let the functions u(t, x) and v(t, x) be generalized solutions of problem (1.1), (1.2)
with initial functions uo(x) and v^ix), respectively, where \u(t, x)\  <  Μ and \v{t, x)\  <M almost
everywhere in the cylinder [θ, Τ] χ KR; let y=  m a xf  ^ f i , *, u)] in the region lit, x) e K , \u\  < Ml.
Then for almost all t € [θ,  Τ Λ

jj Iu(t, x) — ν(t, x)  J dx<e^ ξ j«0(*) — vo(x)\ dx. (3.1)
st sa

P r o o f. L e t t h e sm o o t h fu n c t io n g(t, χ; τ, y) > 0 be fin i t e in πτ χ n^. I n i n e q u a l i t y ( 2 . 1) we se t
k =  v(r, y) a n d f = g(t, x; r, y) for a fixed p o i n t (τ, y) ( we n o t e t h a t t h e fu n c t io n v(r, y) i s d e fin e d
a l m o s t e ve r ywh e r e in π γ ) , an d we t h e n i n t e gr a t e o ve r nT ( in t h e va r i a b l e s (τ, γ)):

{ i.«(t, x) — ν (τ, y) I gt 4  sign (u (t, x) — o (x, y)) [φ, (t, x, u (t, x))

— φ; (t, χ, υ (χ, y))] gx. — sign (u (t, χ) —ν (χ, y)) [φίχ. (έ, χ, υ (τ, y))

+  ψ (έ, χ, u (t, χ))} g} dx dt dy dx > 0. (3.2)

In exactly the same way, starting from integral inequality (2.1) for the function v(r, y) written in the
variables (τ, y), for k= u(t, x) and f= g{t, x; r, y) we integrate over πT (in the variables (i, x)) to
obtain the inequality

\ {\v(x,y)—u (t, x)\gt + sign (u (x, y)~u (t, χ)) [φ,· (t , y, ν (τ, y))

— φ,· (τ, y, u (t, χ))] gy. — sign (ν (x, y) — u (t, x)) [q>iy. (x, y, u (t, x))
+  ψ( ΐ, y, v(x, y))}g}dydxdxdt>Q. (3.3)

Combining (3.2) and (3.3) and making some elementary identity transformations in the integrand (which
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consist of adding and subtracting identical functions and arranging terms), we find that for any smooth
function g(t, χ; τ , γ) > Q which is finite in πτ χ n^  the following inequality is fulfilled:

+  sign (u(t, x) — v (x, y)) [φ, (ί, χ, u (t, χ)) — φ, (τ, y, ν (χ, y))] (gXl + gyi)

+ sign (u (f, *) — α (τ, */)) ([φ,  (t , y, ν (χ, y)) — φ ; (t, χ, υ ( t , y))] gx.

— ψίΧ[ (t, χ, υ (χ, y)) g + [φι (τ, y, u {ί, χ))

— φ, (t, χ, u {t, x))]gy. + ψίϋι (χ, y, u (t, x))g)

 Η sign (Μ (t, χ) —ν (χ, y)) [ψ (χ, y, υ {χ, y)) — ψ (ί, χ, Μ (ί, χ))] g} άχ at ay άχ

0. (3.4)

We first go through the later part of the proof for the case of equation (1.5) (then / } =  0, 74 =  0),
so that, when we consider the general case, our attention can be focused on the additional difficulties
of a technical character which result when the functions φ. depend on ί and x. In the case of equa 
tion (1.5) inequality (3.4) takes the form

+ sign (u (t, χ)—υ (x, y)) [φ,· (w (t, χ))—ψι (ν (χ, y))]{gXi+gUl)} dx dt dy dx > 0 . (3.5)

Let f\ t, x) be an arbitrary test function from Definition 1; we may assume that fit, x) = 0 outside
some cylinder

{(*, x)} = [?> T—2p] X /Cr »p, 2 P < min (Γ, r).

In (3.5) we set

where

c\  — (t~x x~y

and the function δ^(σ) was defined in (2.4); noting that

gt +  gx =  ft (•  •  • ) λΑ, gH + gVi =  / , , ( . . . ) K,

we let h approach Eero. We show that as h —> 0, (3.5) implies the inequality

^{\u(t,x) v(t,x)\ ft(t,x)

+sign(a(/ , x) — v(t, x))[%(u{t,x) — (fi(v(t,x))]fx.{t, x)}dxdt^0: (3.7)

In fact, for this choice of g each of the two terms in the integrand of (3 5) can be represented in the
form

PH. (t, x ; x , y ) = F (t, x , x , y , u ( t , χ), υ (χ, y)) λ ή [ [ ) , ( 3 . 8)
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where the function F sat isfies a Lipschitz condition in all it s variables (here we use Lemma 3),
P j s O outside the region

and

5J ^ ^ ^ t , x, x, y,u(t, x),v(r, y))

— F (t, x , t, x, u (t, x), v (t, x))] h { : . ) dx dt dy dx

* X' tf X' U ( / > x)'

Taking into account the obvious estimate \ \ h( •  )| < const · h and the above properties of the
function F, we find that

pi J J J J \u{t,x) v{x,y)\dxdidydx,

where the constant C does not depend on h. By Lemma 2, / j(A) —* 0 as A —* 0. The integral / 2 does
not depend on h; in fact, after substituting t = a, (t ~ τ)/ 2 = β, χ = η, (χ   γ)/ 2 =  ξ and taking into
account the obvious equation

I s λ Λ ( β '
 hEn

we find that

h =  2"+ 1 β /  f (α, η, α, η, u (α, η), υ (α, η)) J J λ, (β, ξ) ώξ dp} ά  da

= 2n+1 JJ F (ί, Λ:, /, χ, α (/, χ), υ (ί, χ)) dx dt.

H ence

lim J J J J P ft dx dt dy dx =  2n+1 ^F(t, x, t, x, u (t, χ), υ (t, x)) dx dt.

Thus (3.5) implies (3.7).

Let Κ be a characteristic cone, and let & and &> be the sets of measure zero on [θ, T] in the
definition of a generalized solution (see requirement 2) for the functions u and i>, respectively. We
let &µ designate the set of points on [θ, T] which are not Lebesgue points of the bounded measurable
function

µ(/ )=  [ \ u(t,x)—v(t,x)\ dx. (3.9)



226 S. N. KRUZKOV

Let S>0 =  &u I) &v I) & ; it is clear that m es&0 =  0. We define

αή (σ) ==  $ 6ft (σ) da (a'h (a) = bh (σ) > 0)

and take two numbers ρ and r € (0, T0)\&0, ρ < r . In (3.7) we set

ρ) αΑ(ί τ)]χ(ί,* ), A<min(p, Τ0 τ),

where

and we note that χ{ί, χ) =  0 outside the cone Κ , while for (f, x) C Κ we have the relations

Π    ι MIY I S Y ι Φ̂  (»)   <Pf (0)
υ =  λί +  Ν \χχ >Λ;  j A^.

ti — V
From (3.7) we obtain the inequality

fih(t — p) — δΛ(f — τ)]Χε(ί, x)\u(t, x) — v(t, x)\dxdt>0. (3.10)

Letting f approach zero in (3.10), we find that
Τ
$ ' { & ( * —Ρ)'—δΑ(ί —τ) ] ^ [ «(ί, JC) — ο(ί, x) I djcj di > 0.
0 Sf

Since ρ and r are Lebesgue points of the function µ( ί) (see (3.9)), it follows that as h —> 0

µ ( τ ) =  {\u(x, x) — v(t, χ)\άχ*ζ [\u (p, x) — v (p, x) j d x =  µ (ρ) ( 3 . 11 )

(for example, by properties (2.5) of the functions δ. (σ) for Λ < min(p, TQ — p) we have for the point
i= p:

ο ο
p+h

< const · h~l J Ι µ (/) — µ (ρ) | at,
P~h

where the constant does not depend on h). Taking into account that

|ίί(ρ, χ) — υ(ρ, A : ) | < | U ( P , Α;) — «0(Λ;) | +  |u(p, x) — uo(x)\  + \un(x) — v0(x)\^

and letting ρ approach zero over a sequence of points in lbQ,  we obtain estimate (3.1) from (3.11) in
the case under consideration.

We now proceed to the general case, where we shall follow the same scheme of proof. We show
that, after substituting the function g defined in (3.6) into (3 4), we have (3.4) in the limit as h —» 0
implying the following inequality, which is analogous to inequality (3.7):

1) It is easily seen that the function /  defined in this way is a permissible test function.
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^{\u(t,x) v(t,x)\ ft

+ sign (u (t, x) — v (i, χ)) [φ ,·(/, χ, a (t, x)) — φ,  (t, χ, ν (t, χ)) fH

— sign (u (t, x) — v (t, χ)) [ψ (t, x, u (t, χ)) — ψ (t, χ, ν (t, x))] f) dx dt > 0.

We first note that as h —> 0 the in tegrals
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(3.12)

approach the integral in the left side of inequality (3.12) multiplied by 2n , since / . , / , and I,
have the form (3.8), and the corresponding functions Ρ, and F have all the properties needed above
to establish the limit as h —» 0 of the in tegrals of expressions of the form (3.8). Thus it suffices to
prove that the in tegrals of l^  in (3.4) approach zero as h —* 0; moreover, since the coefficients of
gx and g in / j vanish for 11   τ\  + \x   y\  =  0, it follows by the concrete form of the function

h =  J J J J / ( . . . ) sign (u (t, x) — v (t, y)) {[φ; (χ, y, ν (χ, y))
πτχπτ

— φ, (t, χ, υ (χ, y))\  (λή) , . — ψίχ. (ί, χ, ν (χ, y)) %h

+ Ιψί (x, y, u (i, χ)) — φ(  (t, χ, u (ί, χ))] (Xh)yi +  (fiyi (τ, y, u (t, χ)) Xh} dx dt dy dx. (3.13)

Since the first derivatives of the functions φ At, x, u) are uniformly continuous on any compact re 
gion, we have the following relations (the index h of the function λ will be omitted in the compu 
tations; here δ is the Kronecker symbol):

[φ,· ( t , y, ν ( t , y)) — φ;· (/ , χ, υ (χ, y))] λχ. — ψίχ. (ί, χ, υ (χ, y)) λ

=  φ ί τ (τ, y, ν (Χ, ι/)) (χ — / ) λχ. +  ffiy. (Χ, y, ν (χ, y)) [(yf — xj) λχ. — δ/ ;λ]

+  ε,  λχ. +  εολ ΞΞ (fit (χ, y, υ (χ, y)) ((τ — t) %)x.

 r Ψίη (T> y, ν {χ, y)) ((y,  — Xj) %)Xi +  ε; λχ. + εολ;

similarly, taking into account the identity λ = — λ , we obtain that
y ι x i

[φζ ( t , y, u (t, x)) — φ(· (ί, χ, u (ί, χ))] λΰ[

+ (fiyi (x, y, u (t, χ)) λ =  φ,·τ (χ, y, u (ί, χ)) (x—t) lUi

 Γ ψίη ^> y,u(t, Χ)) [(«//  — Χ,) ly. + δΐ 7 λ] +  β ; λν.
=  φ/τ (τ, y, u (/, χ)) ((t — χ) λ)Χ( — φ ; > /  (τ, y, u (t, χ)) ((ys — xj) λ)Χ{ +  ${ky.,

where

and f(cO  * 0 as d ~* 0. Since λ =  λ^ Ξ 0 for | ί   r] > 2h or |x   y | > 2h, and

J λ,. I +  I %y. \  < co n st . h {n+2), |/ ( . ..) —f(x,y)\<const. (| t x\  + |* y |) ,

1) We e a s i l y s e e t h a t t h e i n t e g r a n d i n l^  e q u a l s z e r o o u t s i d e t h e r egio n (0 < £ < Γ, 0 < r < T, \x\  <,nr, \y\  < nr\ .
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Ih ==  5 ϋ s i g n ~ v y> υ

— φ;τ (f. ί/. w (t, x))] ((τ — 0 λ)^. +  [φ,·^ ( t , y, ν (χ, y))

— q>^ (x,y,u(t, x))] ((yj   xj) λ)^} dx at dydx + $ {h), (3.14)

where β\η) —> 0 as /ι —» 0. We designate the integrand in (3.14) by B,; obviously β, has a repre 
sentation in the form

Bh = Ft (τ, y, u (t, χ), ν (τ, y)) ((/    τ) λΛ/=  (t , y))X{

+  G/y (τ, y, u (/, χ), ο (τ, y)) ((y,  — Xj) λή/  (t, y))x.,

where, by Lemma 3, the functions F and G satisfy a Lipschitz condition in u (here we take into
account the assumptions in the beginning of th is section concerning <f>i( and <f>ix.). Since the func 
tion khf(r, y) is finite in π^,χ πτ, we have

Fi (t , y, u (r, y), ν (χ, y)) ((x  1 ) %hf(x, y))x.

+ Gt] (τ, y, u ( t , y), υ (χ, y)) (((//    χ,) Xh f ( t , y))Xl} dx dt dydx^O

and consequently (after subtracting the last equation in (3 14))

=  155 ^Bhdxdtdydx

π j· χ it j 

const
hn+ i

u (t, x) — u (τ, y) I dx dt dy dx

I u (t, x) — u (τ, y) \  dx dt dy dx,

1  2

which, by Lemma 2, implies that / ft   β ih) —» 0 as h —•  0 (and hence also / ft ~* 0). Inequality (3.12)
is thereby proved.

Further, choosing numbers ρ and τ € SQ, 0 < ρ < r < Γο, and substituting the same function / in
(3.12) as in the proof for the case of equation (1.5), we obtain the following analogs of inequalities
(3.10) and (3.11):

\ \  {fih (t ?)  δΛ (t   t ) l Χε (/ , x) \u(t,x) v (t, x) I

+  γΧε (t, x) j u (t, x) — v(i, x) I } dx dt > 0
and

µ (τ) =  [ \u(x,x) — v (χ, χ) | dx <
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χ

|«(p, x)~ v(p, x)\dx + γ^ 5 \u{t,x) — v{t,x)\dxdt.
f> st

Letting ρ approach zero over the set &Q, we find that for τ C 6>0

ο
from which estimate (3.1) follows in an obvious way. Theorem 1 is proved.

To prove the uniqueness theorem for the generalized solution of problem (1.1), (1.2), it is neces 
sary to make certain assumptions concerning the growth of the functions φ. it, x, u) as \ x\  —* «>.
H ere we give one of the simplest conditions. Let Κ be the characterist ic cone with base radius R
for \u\  <M (see the end of §1) , and let Ν =  N tf(/ ?) be the number defined in (2.12). We shall assume
that

IT1 NM (R) T^ 0 as R >oo α ι 5 )

(for any Μ > 0). It is clear that, when this condition is fulfilled for any point (t, x) C nT, we can
find a characterist ic cone containing the point (for any Μ > 0), and so Theorem 1 implies

Theorem 2. The generalized solution of problem (1.1), (1.2) in the band π is unique.
We have the following proposition concerning monotonic dependence of the generalized solutions

of problem (1.1), (1.2) on the in it ial data.

Theorem 3. Let the functions u(t, x) and v{t, x) be the generalized solutions of problem (1.1),
(1.2) with initial functions uQ{x) and vQ{x), respectively. Let uQ(x) < vQ{%) almost everywhere in
E^. Then uit, x) < v(t, x) almost everywhere in π .

I t obviously suffices to show that the following analog of estimate (3 1) holds for the solutions
u(t, x) and v(t, x):

J Φ (u (t, x) — v (t, x)) dx < e^  J Φ (u0 (χ) — υ0 (χ)) dx, (3.16)

where Φ (σ) =  σ + \σ\ .

Taking inequality (3.4) into account, we note that, since each of the functions u(t, x) and
v(t, x) sat isfies integral identity (1.6), the following identity for the functions git, χ; τ ,y) follow
from inequality (3.4):

itj Xltj 

+  [φ,· (t, x, u (t, x)) — φ,  (τ, y, υ (χ, y))] (gx. +  gy.)

— [ψ (t, x, u (t, x)) — ψ (t, y, ν (r, y))] g} dx at dy dx =  0. (3.17)

Adding the integrals (3.4) and (3.17), we obtain the inequality

h + l't + l's+hydxdtdydx^O,  (3.18)

where the integrand / '3 coincides with I} in (3.4), and the expressions l'v I'2 and l'A are obtained
from the corresponding expressions 11, I2 and / 4 in (3.4) by replacing \u(t, x) — v(r, y)\
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and sign(w(i, x) — v{r, y)) by Φ ( ίί( ί, χ)   v(r, y)) and Φ '(ιι(ί, χ) — ν(τ, y)), respectively. F urther,
taking into account that σΦ '(σ) Ξ Φ(σ), we derive inequality (3.16) from (3 18) in exactly the same way
as estimate (3 1) was obtained from (3.4) in the proof of Theorem 1.

A proof of Theorem 3 based on Theorem 2 and a method of constructing generalized solutions will
be given at the end of § 4 for the case of equation (1.5).

§4. Existence of the generalized solution of problem (1.1), (1.2)

The fundamental result on the existence of a generalized solution of problem (1.1), (1.2) will be
proved in this section under the following assumptions:

1) The functions φ At, x, u) are three times continuously differentiable.

2) The functions φ (ί, χ, u) are uniformly bounded for (i, x, u) € DM = η τ χ [ M, Μ] (the num 
bers Ν = Νy(R) in (2.12) are bounded by a constant Ν which does not depend on R).

3) The function Ψ( ί, χ, u) = φ. (ί, χ, u) + φ it, χ, u) is twice continuously differentiable and
uniformly bounded in DM , where

sup ΙΨ (t, x, 0) | < c0 =  const, (4. l)
( f ) 6

sup [—Ψα (t, x, u)] < cl =  const. (4.2)

4) uQ(x) is an arbitrary bounded measurable function in En {\uQ{x)\  < MQ).

The assumptions concerning smoothness of the functions φ. it, x, u) and φ it, x, u) in conditions
1) and 3) were made without taking into account the "in equivalen ce" of the arguments t, x. and u.
H ence, in the context of the methods of th is section, conditions 1) and 3) can be refined and weakened
(see subsection 4 in §5) ; for example, in the case of equation (1.5) it is sufficient to require continui 
ty of only the first derivatives of the functions φ . (υ) . Undoubtably, assumptions (4.1) and (4.2) in
condition 3), which ensure the a priori estimate of the maximum modulus of the generalized solution of
problem (1.1), (1 2), can be replaced by other well known assumptions of the same type.

To construct the generalized solution of problem (1.1), (1.2), we apply the vanishing viscosity
method. We first investigate Cauchy's problem for the parabolic equation (1.3) with in it ial condition
(1.2), where the main object here is to obtain an a priori estimate of the modulus of continuity in L  χ

of the solution ue (i, x) of problem (1.3), (1.2) which ensures compactness of the family \ if (t, x)\  in
the L  . norm, where this estimate does not depend on small viscosity e. This estimate is established
using similar methods separately in the following two cases A and B:

A. The in it ial function uQ(x) is an arbitrary bounded function in E^, but then (in addition to con 
ditions 1)—3) in the beginning of the section) the functions φί do not depend on x, and the functions
φ. (ί, χ, u), φ ( • · · ) , φ ( · • · ) and φ ( •  · · ) are bounded in D...
r iut ' ' ~ u   χ j r t Μ

Β. The in it ial function υ,Λχ) is bounded in Ε and satisfies a Lipschitz condition in the LAKR) 
norm for any R > 0:

\uo(x + Ax) — u0(x) I dx<c(# µ +  1) \Ax\ , c =  con st> 1, µ =  const > 0 ; (4.3)

the functions φ. can now depend on x, while (in addition to conditions 1)—3)) the derivatives
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φ i t , χ , u),  < £ , . „ ( •  · • ) , φ ( · · · ) , φ ( · • · ) , a n d a l s o ψ ( · · • ) , ψ ( · • · · ) , ψ ( · · · ) , a r e b o u n d e d
l * j * •  III λ, j L IX • . III Ζ li X j ' J

i n Z V
C ase A is singled out largely for considerations of method, since in th is technically simple but

nevertheless typical case (which essen t ially corresponds to equation (1.5)) we can emphasize the
fundamental ideas of the proof with special clarity.

The estimate of the modulus of continuity in case B, which is also of independent in terest , plays
the role of a preliminary result for obtaining the desired estimate in the general case 0 . We let the
general case Ο be characterized by the following conditions: uQ(x) is an arbitrary bounded measurable
function, while the functions φ. and ψ satisfy the same assumptions as in case B. The fundamental
result used to justify the vanishing viscosity method will be formulated under conditions Ο (concern 
ing the possibility of weakening these conditions, see subsection 4 in §5) .

1. Cauchy's problem for the parabolic equation (1.3). We first note that, by well known results
from the theory of second order quasilinear parabolic equations (see, for example, [ 1 9] or t 2 0 ] ) , under
our assumptions about the functions φί and iff problem (1.3), (1.2) has a unique classical solution
u it, x) if the in it ial function uQ(x) is bounded in Ε along with it s derivatives through the third
order, inclusive; here the solution ue(t, x) is bounded in ηT and has bounded and uniformly Holder
continuous derivatives in equation (1.3).

We first prove several a priori estimates for the classical solution of problem (1.3), (1.2), but we
shall take care that these estimates depend only on the above properties of the functions φ. and ψ,
on MQ, and on the function ωR(a) such that (see (2.8))

Jα (u0 (χ), Δ * )< ω« (I Ax \ ) VR > 0 (4.4)

(for ωR{a) we can take the modulus of continuity of the function uQ(x) in L^K^); in case Β by
(4.3) we have ω

β ( σ ) Ξ c(/ ?M +  ΐ )σ) . We agree to let const designate different constan ts which depend
on the "d a t a " of problem (1.3), (1.2), but not on f £ (θ, l ] .

Equation (1.3) can be written in the form

ut +  <f>wUXi +  Ψ (t, x, u) =  ε ΔΗ. (4.5)

Sin ce Ψ( ί , χ, u) =  Ψ( ί , χ, θ) +  Ψ (*, x, u)u, we h ave by (4.1) , (4.2) and th e maximum p r in c ip le th a t

Iue (t, χ) J < const =  (Mo +  cj) eCiT = M. (4.6)

We now prove an estimate of the modulus of continuity in L, for the solution ueit, x) in case A.
We take a vector ζ € Εn and set w{t, x) = u (t, χ + ζ)   u (t, x); it is clear that the function w(t, x)
satisfies the equation

wt 4 
where

at (t, x) = J φ / Β (/, au* (t, χ +  z)  f  ( I  α ) «* (/, x)) da,
β

1 1

c(t, x) = ^%{t, a(x + z) + (l— a) x, au* (t, χ + z) + (1 — a)u*(t, x))da Ξ ξ ψΒ ( . . . ) da,
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t = 1

and all the functions α., c and e. satisfy a Lipschitz condition on any compact set in π . We mul 
tiply equation (4.7) by a function g(2, χ) which is finite in χ in the band ny C n·^ and has continuous
derivatives gf, gx , gx.x., and we integrate over ny; integrating by parts, we find that

wg \ t=x dx—^X(g)wdxdt = ^ wg|i= 0dx — ^ztetgdxdt, (4.8)
E

where

% (S) = gt + α&Η — cg+ M g. (4.9)

Lemma 4. Let the function q(t, x) be continuous in nT and satisfy the inequality £ ( τ) > 0; let
\q(t, x)\  < q and q{r, x) = 0 for \x\  > r (q° and r are constants). Then for

(t, x)eQ = {{t,x):\x\>r + H(x—t), 0 < i < t }, where Η =  1 +  sup

the following estimate is fulfilled:

q(t, *)<q»exp[ε 1 (Η(t — ή + r — |χ \ )

ι n \ u

( V α? ] ,

Proof. I t is easily verified that £  iQ() < 0 in Ω, and that

• 0.i= r

H ence, by the maximum principle, q{t, x) < Qe(t, x) everywhere in Ω.

We fix a number r > 1 and define the function qAt, x) a s the solution of Cauchy's problem for
the equation £ ( gf t ) =  0 in πτ with the initial condition gft(r, x) = β (χ), where β {χ) = sign u> {τ , χ) for
\χ\  < r — h, β (χ) = 0 for |AS| > r — h. Obviously, by the maximum principle, \qh(t, x)\  < const. In (4.8)

we set
σ

=  1— [ δ (σ — m)do, (4.ιο)
1 '

—oo

where m is a natural number. Transferring the derivatives in %i from the function qh in the integral
of 2ew{q.) (η ) , we find that

  ft χι 'm χ,· '

— 2ε^Λ(. —η  δ (Ι χ I — m) +  εα> Δη™ \qhdxdt

dx dt +  ^ ^η™ | ί = β dx. (4.11)
« t



FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES

We note that, by Lemma 4, for e 6 [θ, l]

I q>i (t, x) I < const · exp (—  L|U

and for R > 7 =  τ + ( l +  Ν) Τ > 1

I qh (0, x)\dx<, const. R^1 •  exp [ε"1 (r — # )]
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(here Lemma 4 is applied to the functions ± qh(t, x)). F irst letting m approach +  » in (4.11), and
then letting h approach zero, we find that

I ay (τ, JC) | rfx < const · {\ z\  +ωΗ(\ζ\ )

 1 exp [ε"1 {r   / ?)]} =  λ^ (J z |

Consequently for 0 < t < Τ

where the function ωχ (σ) does not depend on f .

To estimate the modulus of continuity in t, we use the following interpolation theorem.
Lemma 5. Let the {unction u(t, x) be measurable in the cylinder {(t, x)\  =  [θ, Τ] χ Κ +

(0 <2p < r) and \u(t, x)\  < Μ =  const; for 0 < t < Τ, \Δχ\  < ρ let

(4.12)

and for any t, t + Δί C [θ, Τ], Δί > 0, and any twice smooth function g(x) which is finite in Κ let

g (x) [U (t + At, X) — U (t, x)]dx

crAt max Μ g I +  \gx I +  V \gxx (4.13)

Then for 0 < ί < t + At < Τ

Ir{u(t,x),At)~ u(t,x)\dx

< const, min \h  f ω*(/ι)  f —λ , (4.14)

where the constant depends only on c , U, r and re.

Proof. In (4.13) we set g(x) =  βΗ(χ), where /3 (x) =  sign U ( i +  Δί, χ)   u{t, χ)) for \ x\  < r   h,
β(χ) =  0 for \ x\  > r   h and h < p. Noting that \g(x)\  < 1, \g \  < con st · re"1 , |.
we obtain the following estimate for the function w{x) = u(t + At, x)   u(t, x):

< const·re ,

w (x) (sign wf dx < I C w (x) f (x) dx const · h

< const. [h +  (Δ/) hT%
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Applying Lemma 1 to the function w(x) in ^2r ft * s e e (2.10)), we further find that

/ , (u {t, x), M) < const · |  +  ω* (A) +   λ

for any h C (0, p), an d t h is i s equ iva len t to est im a t e (4.14) .

Lem m a 5 a llows u s to est im ate th e m odulus of con t in u ity in L  j with r e sp ec t to t for t h e so lu t ion
it ( i, x) of equat ion (1.3) in term s of the m odulus of con t in u ity ωχ (σ) with r e sp ec t to the sp a c e vari 
a b le s. In fact , it ea si ly follows d irec t ly from equat ion (1.3) for 0 < e < 1 th at est im a t e (4.13) h o ld s
for the function u (t, x) with co n st an t CT =  con st · r" (we may a ssu m e t h a t r > 2 and ρ =  1). T h u s

Ir («ε (/, χ), Δ/) < ωί (Μ) = const · min Γ A +  ω* (A) +  — 1. (4.15)
o<7Ki L Λ J

We now prove the analogs of estimates (4.12) and (4.15) in case B. To do this we note that in
the case of a smooth in it ial function uQ(x) inequality (4.3) implies the estimate

\ Y c ( I ^ + l) (4.16)

and that the functions vk{t, χ) Ξ Ζ/  (t, χ) satisfy the parabolic system
xk

Vkt + — [fPm (t, X, U s) ϋ*] +  ψίαχ,, (· •  • ) V': + (flxx (. . .)
+  ψι ( · · · ) » * + Ψ * * ( · • · ) =  βΔσ*. k = 1 η. (4.17)

We multiply the fcth equation in (4.17) by a sufficiently smooth function g {t, x) which is finite in χ
in the band πΓ, integrate over πτ, and then sum over k from 1 to n; integrating by parts, we find that

ξ *g* \ f=0 dx   jj (φ, v . +  ψ,6) gft dx dt, (4.18)

where

cti =  cpiu (^, x, «ε) , ^ =  1, · . . , η.

We fix a number r > 0 an d le t q1^ (t, x), A; =  1, · · •  , n, d e sign a t e the so lu t ion of C a u c h y' s problem for
the parabo lic system X..(q,) =  0 in πτ with the in it ia l con dit ion q, (r , χ) = (β Ax)) , where β^x) =
sign ν M r , x) for U | < r   A, jS^x) ~0 for |x;| > r  A ( see [2 l] ) . Sin ce

0 =  2Xk (qh) q\  <  (ql)t + a, {ql)Xi +  const · ql +  sAql = X (ql), q\  =  qlqt

i t follows by t h e maximum pr in c ip le t h a t \q, {t, x)\  < q = co n st , an d, by Lemma 4, for e C (θ, l ]

9ft (̂  x) I < c°n s* · e x P
A /

1) Under our smoothness assumptions for the functions φ£ and φ the possibility of differentiating equation
(1.3) with respect to x^  follows from well known results for linear equations (see, for example, [19], Chapter 3, §>).
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Substituting gk = I^ Vm^\ x\ ^  i*1 (4.18) ( see (4.10)) and, as in case A, first letting m approach °° and
then let t ing h approach zero, we obtain the estimate

„ » , _j£l ν

\  2 Ι ο* Ι Λ? =  const   (1 +  \  e * \ uox(x)\ dx ) .

Taking (4.1.6) into account, we find that

_ !fL °°

oo

<2γη c+γή c jj e~ r[l +(m+ 1)µ] =  const.
m= 1

Consequently in case Β we have the estimates
Jr (ue, Ax) < const · I Ax \ =  ω* (I Ax |) ,

/ , (us, At) < const · I At | v · =  ω/  ( | Δ/ 1). (4.19)

To derive est imates (4.12) and (4.15) in the general case Ο we note that the constant c in (4.3)
and (4.16) is a factor in const in est imates (4.19). We let ue

h(t, x) designate the solution of Cauchy's
problem for equation (1.3) with the in it ial condition u, (θ, x) =  uQ (x), 0 < h < 1; since |(wQ) I <MQh ,
and consequently

— ut (x) \ dx < const h'1 J^l Ax \ ,

it follows by the above remark that

Jr(ul Αχ)Κ̂ ψ \Αχ\ , Ir (ul At)< ~Ξΐ JΔί Γ'·. (4.20)
ft Λ

T h e f u n c t i o n w =  « ( i , x ) — u { t , x ) s a t i s f i e s a n e q u a t i o n o f t h e f o r m ( 4 . 7 ) , w h e r e e = 0 ( ί =  1 , · · · , η ) ,

a n d

Φ<« (̂ > ^> auft +  (1 — α) «ε) da ,
ο
I

c (t, x) =  J ψ« (ί, Λ;, α«εή +  (1 — a) ue) da.
ο

Estimating the norm of the function w(t, x) for t = τ in L^xK) in exactly the same way as the norm
of the function w satisfying equation (4.7), we obtain that for 0 < t < Τ

 Μ
u£(f, x) —u e ( i , x) id x< c o n st . \ e 2 j «o

ft (x) — u0 (x) \ dx.

I t is well known that for any Λ > 1
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uh
a(x)—uo(x)\dx^a>R(h),

where ω
κ*> σ^ is the function in inequality (4.4) (for example, the modulus of continuity of the function

uQ(x) in LjiKjj)). Consequently

ul(t,x)~ue(t, *) | d* < const. Γ ω« (/ι) +  # "~ χ exp (   ^Λ   V/ ?> 1. (4.21)

From (4.20) and (4.21) we conclude that for 0 < t < Τ

Jr(u% Δ*)<const · min \wR(h) + fl^exp (——) + \Ax\h~1~\
ο<ή< ι L V 2 /  J

= ax
r(\Ax\ ),

Ir (uE, At) < const. min Γu>R (h) +  fl^exp ( —  ) + \  At |V a h"1]
ο<Λ<ι L \  2 /  J

=  ω* (Ι Δί 1).

Thus in each of the cases Α, Β and Ο we can find functions ωχ(σ) and ω1 (σ) which do not de 
pend on £ such that for 0 < t < Τ

Jr (uE, Ax) + Ir (u\  At) < ω? (I A* I) +  ωί (1 Δί I) (4.22)

(however, th is estimate was obtained under an additional assumption concerning sufficient smoothness
of the function uQ(x)).

Let Φ(ΐί) be an arbitrary twice smooth convex downward function on the line — °° < u < + °°. We
multiply equation (1.3) by the function Φ '(ΐί)/ (ί, χ), where fit, x) > 0 is a twice smooth function
which is finite in η , and we integrate over η . Transferring the derivatives with respect to t and
*. to the test function /  and taking into account that Φ '\u)u u f > 0, we obtain the inequality

ί φ (u) ft+^Φ' («) Win (t, x, u) da fH — Φ ' (µ) φίΧ( ( . . . ) f

+  Γ \  Φ ' (u) <fiuXi (...) du — Φ ' (u) ψ ( . . . ) ! f + εφ (α) Δ/ j dx dt > 0,
k

where A: i s a c o n st an t . H en ce (usin g an approxim at ion of the function \u — k\  by twice smooth convex
fun ct ion s Φ (ϋ) ) we con clude th at t h is in equality a lso h o ld s for Φ =  \u — k\ :

g { \u   k  I (ft + eAf) + sign (u — k) [φ, (t, x, u) — ̂  (t, x, k)]fXi

— sign(u — k)[qiXi(t,x, k) + y(t,x, u)}f}dxdt>0. (4.23)

To free ourselves from the requirement that the function uQ(x) be sufficiently smooth, we make
the following observations, which are based on elementary considerations of approximation and com 
pactness. We approximate the bounded measurable function uQ{x) by the mean functions uQ (x) and
note that the moduli of continuity in L1 of the functions u^ (x) are estimated in terms of the modulus
of continuity of the function uo(x) (see (2.9)). H ence, for the classical solutions "·Λ' ί , x> of Cauchy's
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problem for equat ion (1.3) with in i t ia l fun ct ion s u^ (x), e st im a t es (4.6) and (4.22) hold uniformly for
h £ (θ, l ] an d f 6 (0, lL On th e o th er h an d , in n er e st im a t e s of Sch auder type ( se e [ 1 9 1 , C h ap ter 7,
3 an d 4) h o ld for t h e so lu t io n s u€h (t, x) with fixed f > 0 a s a result of our smoothness assumptions
for the functions φί an d φ. U sin g t h e se e st im a t e s, we can find a su bseq u en c e u, (t, x) which con 
verges uniformly to th e funct ion ue(t, x) in any cylin der lit, x)\  =  t p , 7  χ KR, p>0 a lon g with the
d er iva t ives in equat ion ( 1.3) . Obviously for i > 0 th e twice smooth funct ion u (t, x) sa t i sfie s equa 
t ion (1.3) in the u su a l se n se , e st im a t e s (4.6) and (4.22) hold for it , and for any r > 0 an d ρ € [θ, Τ]

«· (p, x)  uo(x)\dx^ 4 (p). (4.24)

It is also clear that the function u(it, x) sat isfies inequality (4.23). We shall henceforth understand
the functions u \ t, x) to be the solutions of problem (1.3), (1.2) constructed in this way.

2. Justification of the vanishing viscosity method. Existence theorem for a generalized solution
of problem (1.1), (1.2).

Theorem 4. Let the assumptions of the general case Ο be fulfilled. Then the solutions ue(t, x)
of problem (1.3), (1.2) converge as e —> 0 almost everywhere in π to a function u(t, x) which is a
generalized solution of problem (1.1), (1.2).

Proof. By the estimates in subsection 1 of this section, the family \u it, x)\  is compact in the
Lj norm in any cylinder [θ, Τ] χ Κ , r =  1, 2, 3, · · · . U sing the diagonal process, we can find a sub 
sequence u m (t, x) which converges almost everywhere in πT to a bounded function u(t, x). P assin g
to the limit as f —> 0 in inequality (4.23), where u =  u m , we find that the function u(t, x) sat isfies
requirement: 1) of the definition of a generalized solution of problem (1.1), (1.2) (here we take into
account that only the first derivatives of the function /  appear in the integrand in inequality (2.1) and
that the smooth finite function fit, x) > 0 can be uniformly approximated along with it s first deriva 
tives using twice smooth finite nonnegative functions). We can obviously find a set & of measure
zero on L0, Tl such that if t C [θ, 7j\ fe , then the sequence u m it, x) converges to u(t, x) almost
everywhere in Ε . P assing to the limit as ( =  f —> 0 in inequality (4.24), where ρ C LO, T] \  ©, we
conclude that the function u(t, x) sat isfies requirement 2) of the definition of a generalized solution
of problem (1.1), (1.2).

The function u(t, x) is hence a generalized solution of problem (1.1), (1.2). By the uniqueness
theorem for the generalized solution of this problem that was proved in § 3 , the sequence u it, x)
converges to the function u(t, x) as f approaches zero in any way.

Theorem 5. A generalized solution of problem (1.1), (1.2) exists if conditions 1)—4) in the begin 
ning of this section are fulfilled.

Proof. In case O, the existence of a generalized solution was proved in Theorem 4. U sing the
fin iteness property of the domain of dependence of the generalized solution on the in itial condition,
we discard superfluous assumptions concerning boundedness of certain derivatives of φ. and ψ (see
condition B). Along with equation (1.1) we consider the sequence of equations

«f +  — h m (I X I ) φ,  (t, x, «)] — (r\ m)Xi φ ; (t, X, u) + r\ m ψ (t, X, u) = 0,
σ

η« (σ) =  1 — <j δ (σ — m) da, r\ m = r\ m ( | χ \ ).
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Since for the mth equation the corresponding function Wm =  η^ψ( ί , χ; u) and the corresponding func 
tions φ•  and ψ̂  are finite in x, th is equation satisfies all the requirements of case O. We let
u (i, x) designate the generalized solution of Cauchy's problem for the mth equation with in it ial con 
dition (1.2). Noting that \ (Φίπι\ \  S I ^ J » w e ^ x a number r > 0 . By Theorem 1, all the functions
itm(i, x) will coincide almost everywhere in the cylinder [θ, Γ ] χ Ι ; for m > Τ + 1 =  r +  NT + 1 (we
note that ηη(\χ\ ) = 1 for \ x\  < m   l ) . H ence the sequence "m ( £ , x) converges almost everywhere in
π to abounded measurable function u(t, x); since in any cylinder [θ, Τ] χ Κ the function u(t, x)
coincides with the solution u (i, x) where mr= 2 + [ ?] , it follows that the function u(t, x) is a
generalized solution of problem (1.1), (1.2).

3. Proof of Theorem 3 for the case of equation (1.5). By Theorem 4, any generalized solution of
problem (1.5), (1.2) can be obtained as the limit as £ —> 0 of solutions ueit, x) of Cauchy's problem
for the parabolic equation

«i +  (<Pi («))*£ =  ε Δα (4.25)

with in itial condition (1.2). Since for any classical solutions Uj(i, x) and uJt, x) of equation (4.25),
where Uj(0, x) > ί*2(0,  χ), the maximum principle implies that the inequality u. (t, x) > uJt, x) holds
everywhere in n ^ , it follows from the construction of the functions ue(t, x) and ve it, x) which ap 
proximate the functions u(t, x) and v(t, x) considered in Theorem 3 that u (t, x) > ν (t, x) in π
for any e £ (θ, l j. Consequently u( i, x) > ν(i, x) almost everywhere in η .

§5 . Remarks and additions

1°. All the results of this paper can easily be carried over to the case of the following equation,
which is more general than (1.1):

^ <Po(t Χ, ") + ^Γ (Ρ ' ( ί> *· «) +  ψ(*. *, ") =  0, (5.1)

<fou(t, x, u)=f=0.

In particular, the corresponding results concerning stability and uniqueness of the generalized solu 
tion of problem (5.1), (1.2) are valid under the same conditions on the functions φ it, x, u), i =
0, 1, · · · , η and φ(ΐ, χ, u) as in the beginning of §3. However, in the case Φ 0( ί, *, u) = u, con 
sidered in §3, we can use a slight modification of the proof of Theorem 1 to weaken the assumptions
concerning smoothness of these functions in t.

2°. The requirement that the generalized solution of problem (1.1), (1.2) be bounded in πτ can
be replaced by a boundedness condition on any compact set ; a uniqueness theorem holds for such a
solution, for example in the c lass of functions u(t, x) such that as R —> »

sup (y q4(V χ,  v)\  =o(R).

I o |< su p I « (i, x) I

3°. From Theorem 1 we can obviously derive a proposition on compactness of the family of
generalized solutions of problem (1.1), (1.2) in the L  j norm, assuming that the corresponding in itial
functions are uniformly bounded in C and are equicontinuous in L. on any compact set .
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4°. The smoothness requirements on the functions φ At, x, u) and φ(ί, χ, u) under which the
existence of a generalized solution was proved (see the beginning of §4) are certainly excessive even
with the methods of §4. But it is not hard to discard the superfluous requirements. In fact, it follows
from the proof of Theorem 4 that to construct a generalized solution of problem (1.1), (1.2) using the
vanishing viscosity method it suffices to prove the existence of a solution ue(t, x) of problem (1.3),
(1.2) which is continuous for i > 0 and sat isfies inequality (4.23) as well as estimates (4.6) and (4.22)
which do not depend on f € (θ, 1J. Estimate (4.6) is ensured by assumptions (4.1) and (4.2); a quick
analysis of the derivation of estimate (4.22) in case Ο shows that this estimate depends (if we are
in terested in the smoothness assumption for the functions φί and φ) only on the least upper bound of
the moduli of the derivatives φ. , φ. , φ. , φ , φ in D... U sing elementary methods for ap 

IU lliX,' IX j^Χ ν II Xf^ In ^ ^  r

proximating the functions φ. and φ by sufficiently smooth functions, making use of estimates of
Schauder type for fixed £ (see L19J, C h apter 7, 3, 4), and taking into account the method of proof of
Theorem B, we conclude that a generalized solution of problem (1.1), (1.2) exists when the following
requirements on the functions φί and φ ace fulfilled: these functions are continuous, they have con 
tinuous derivatives φ. , φ , φ. , φ , φ , and the functions φ. (t, χ, u) and Ψ( ί, χ, u) are

lit III Χ , tX {X j W Χ    III

bounded in the regions D^; inequalit ies (4.1) and (4.2) are fulfilled. In particular, in the case of
equation (1.5) we only need continuous differentiability of the functions φ.(ιι) (see also t 1 5 ] ) .

5°. I t is easily seen that the derivation of the estimates of the moduli of continuity in case Β is
st ill suitable when the following inequality is fulfilled instead of (4.3):

) \  «o (x +  ΔΑ:) — u0 (x) \  dx «< c •  exp (const R) | Ax |.

6°. The method of obtaining the norm estimate for the function w= u it, χ + Ax) — u (t, x) in L
in case A (see §4, subsection 1) is also applicable to prove uniqueness and stability in Lj of the
bounded solutions ueit, x) of problem (1.3), (1.2) constructed at the end of subsection 1 of § 4 in the
sense of the integral identity

{uft + q>i(t, χ, u)fXi — ty(t, x, u) f  f  euAf) dx dt

/ (O, x)uo(x)dx =  0.

An analogous investigation of the difference of the two solutions ueit, x) and ve(t, x) of this problem
with in it ial functions uQ(x) and vQ(x), respectively, leads to the following estimate (for 0 < ( < 1):

J \uB{t, χ) — νε(ί, χ) I dx< const · \  e W\uo(x) — vo(x)\dx.
Kr En

We note that these results (like the L^  estimates in §4) are based on the elementary fact (see
Lemma 4) of the decrease as \ x\  —> °° of the solutions of Cauchy's problem with finite in itial func 
tions for the equation (L (g) =  θ), which is conjugate to the variation of the nonlinear parabolic equa 
tion under consideration.

7°. Cauchy's problem for quasilinear hyperbolic systems. The approach to defining a generalized
solution of equattion (1.1) used in this article permits a natural generalization to the case of
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quasilinear hyperbolic systems (here we only consider systems of the form (1.7)). We first note that
requirement 1) of the definition of a generalized solution of problem (1.1), (1.2) (see §2, Definition 1)
generalizes to the case of a system in the following (equivalent) form: for an arbitrary convex down 
ward function Φ(α) and any smooth function fit, x) > 0 which is finite in rrT we have the inequality

 ̂( Φ (") f*+  \ & (") Φ'« V. x>

φ ' ( ) ) Ί ] (5.2)

For Φ = \u — k\  inequality (5.2) coincides with (2.1). We easily see that, conversely, inequality (2.1)
(for any A;!) implies (5.2). In fact, as we noted in §2, if the function u(t, x) sat isfies inequality (2.1),
then it also sat isfies identity (1.6), and hence inequality (5.2) with the function Φ ^ ) =  max(u A;,0);
it remains to note that any function Φ(ϋ) which is convex downward on [— M, Ml can be approximated
by "in scribed broken l in es", i.e. functions of the form Φ (  Μ ) +  Φ '(  Μ)( ίί +  Μ) + Σ ^ α ^ (u),
where α ; =  const > 0,  Μ < kl < kl + l <  Μ.

We now consider the quasilinear hyperbolic system

+ o. ( 5 3 )
where u =  iu1 , •  •  •  , uN), Ν > 2, φΧυ) =  (.φ\  (it), · · •  , φΗιϊΐ), i =  0, 1, · · · , η. We introduce the simple
viscosity (Au, e =  const > 0 in system (5.3) and assume that the generalized solution which in terests
us of Cauchy's problem for the system (5.3) with the in itial condition

«| i=o = «o(*) (5 ·4 )

can be obtained as the limit as e —•  +  0 (for example, in L^) of solutions ii (i, x) of Cauchy's prob 
lem for the system

+  ( 5 . 5 )

dt dxt

with the in it ial condition (5.4), where
τ

sup \ «εI +  C <\  \uB
Xl\dxdt^const

uniformly in e (the integral estimate assumption can be weakened, and in many cases can be entirely
removed). Let the components Η iu) of the vector function Ηiu) =  {H iu), •  •  · , Η (it)) be smooth
functions, and let the matrix H'iu) = \ \H , || be nonnegative. For any real vector ζ =  (ζ , •  •  •  , ζ )

(H'(u)l, | )>0 (5.6)

(for any values of u under consideration). We multiply the system (5.5) by the vector H{u) using
scalar multiplication, and we require that the expressions {Hiu), φ^^  and (H(u), Φ\ ιιχ)
(φ1. = ||(£ fc ;||) be total derivatives with respect to t and xl of certain functions Φ(ϋ) and Ψ.(u) re 
spectively; the latter requirement means that Η (u) must satisfy the following system of linear equa 
tions, which is generally overdetennined:
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Tot(<p!* (u)H(u)) = 0, i = 0 . 1 , . . . , « , (5.7)

(this system is not overdetermined only if η =  1, Ν =  2; here <£'.* is the transpose matrix of φ'.).
Taking (5.6) into account, we have

dt dxt d:

• e(H'(u)uXi, ux.)^8 Z lH(u), — ). (5.8)

Multiplying inequality (5.8) by the test function fit, x) > 0, integrating over n^  (interchanging the
first derivatives with respect to t and x. using integration by parts on / ) and passing to the limit as
e —> +  0, we find that the limit function u(t, x) satisfies the inequality

S S [Φ («) //  +  Ψ* («)/ ,,] dx di>0 (5.9)

for any smooth finite function f>0.

Thus we arrive at the following notion of a generalized solution.

Definition 2. A bounded measurable vector function u(t, x) is called a generalized solution of
problem (5.3), (5.4) in the band n^  if the following conditions are satisfied.

1) Any smooth function fit, x) > 0 which is finite in ηT satisfies inequality (5.9), where Φ(α)
and Ψ.(«) are the functions constructed as above for an arbitrary solution Ηiu) of system (5.7) so as
to satisfy condition (5.6).

2) Requirement 2) of Definition 1 in § 2 is fulfilled.

We note that the functions Η = ± (θ, · · •  , 0, 1, 0, •  · · , θ), which clearly satisfy condition (5.6),

correspond to the functions Φ =  ± 0Q ( M ) and Ψ. =  ± (f>k iu); hence our generalized solution is also a
generalized solution in the sense of the usual integral identity

But the arbitrariness in the choice of the function Η iu) (and hence in the choice of Φ and Ψ.) as 
l

sumed in requirement 1) of the definition of a generalized solution certainly also takes into account
the "entropy" relations at the discontinuities.

Here we have considered the simplest situation connected with an implicit "equivalence" rela 
tion for all the equations of system (5.3) (this is reflected in the choice of a viscosity of the form
eAu). However, an analogous approach is applicable in more general situations, in particular, for gas
dynamic systems.

We conclude by noting that the problem of a generalized solution in the theory of quasilinear
equations and in gas dynamics is discussed in [ 2 2 ] .

Received 23 APR 69



242 S. N . KRUZKOV

BIBLIOGRAPHY

[ l ] E. Hopf, The partial differential equation ut + ιιΐιχ   VLU
XX ,  Comm. Pure Appl. Math. 3 (1950),

201 230. MR 13, 846.
[ 2 ] O. A. Oleinik, Discontinuous solutions of non linear differential equations, U spehi Mat. Nauk

12 (1957), no. 3 (75), 3 73; English transl., Amer. Math. Soc. Transl. (2) 26 (1963), 95 172.
MR 20 # 1055; 27 # 1721.

[ 3 ] L. D . Landau and E. M. Lifsic, Mechanics of continuous media, 2nd ed., G ITTL, Moscow, 1953;
English transl. , Course of Theoretical P hysics, vols. 6, 7, Pergamon P ress, New York; Addison 
Wesley, Reading, Mass., 1959. MR l6, 412; 21 # 6839.

14] O. A. Oleinik, Cauchy's problem for nonlinear equations in a class of discontinuous functions,
D okl. Akad. Nauk SSSR 95 (1954), 451 545; English transl., Amer. Math. Soc. Transl. (2) 42
(1964), 7 12. MR l6, 253.

L 5 J A. N . Tihonov and A. A. Samarskii, Discontinuous solutions of quasilinear equations of the first
order, D okl. Akad. Nauk SSSR 99 (1954), 27 30; English transl., Amer. Math. Soc. Transl. (2)
42(1964), 1 6. MR 16, 704.

[ 6] P . D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation,
Comm. Pure Appl. Math. 7 (1954), 159 193. MR 16, 524.

[7] S. N . Kruzkov, Methods for constructing generalized solutions for the Cauchy problem for a
quasilinear equation of the first order, U spehi Mat. Nauk 20 (1965), no. 6 (126), 112—118.
(Russian) MR 33 # 391.

[8] O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a
quasi linear equation, U spehi Mat. Nauk 14 (1959), no. 2 (86), 165—170; English transl., Amer.
Math. Soc. Transl. (2) 33 (1963), 285 290. MR 22 # 8187.

L 9J I . M. G el'fand, Some problems in the theory of quasi linear equations, U spehi Mat. Nauk 14
(1959), no. 2 (86), 87 158; English transl., Amer. Math. Soc. Transl. (2) 29 (1963), 295 381.
MR 22 # 1736; 27 # 3921.

[lOJ A. S. Kalasnikov, Construction of generalized solutions of quasi linear equations of first order
without convexity conditions as limits of solutions of parabolic equations with a small parameter,
D okl. Akad. Nauk SSSR 127 (1959), 27 30. (Russian) MR 21 # 7366.

[ l l ] Wu Cho chiin, On the existence and uniqueness of the generalized solutions of the Cauchy prob 
lem for quasilinear equations of first order without convexity conditions, Acta Math. Sinica 13
(1963), 515 530 =  Chinese M ath. Acta 4 (1964), 561 577. MR 29 # 6146.

[l2] E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasi linear first order
equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95—105. MR 33 # 388.

[l3] A. I. Vol'pert, The spaces BV and quasilinear equations, Mat. Sb. 73 (115) (1967), 255 302 =
Math. USSR Sb. 2 (1967), 225 267. MR 35 # 7172.

[l4] I. P . N atanson, Theory of functions of a real variable, 2nd rev. ed., G ITTL, Moscow, 1957;
English transl., Ungar, New York, 1955, 1961. MR 16, 804; 26 # 6309.

[l5] S. N . Kruzkov, Results on the nature of the continuity of solutions of parabolic equations, and
certain applications thereof, Mat. Zametki 6 (1969), 97 108. (Russian) MR 40 # 3073.

[l6] N . N . Kuznecov, The weak solution of the Cauchy problem for a multi dimensional quasilinear
equation, Mat. Zametki 2 (1967), 401 410. (Russian) MR 36 # 6781.

[l7] S. N . Kruzkov, Generalized solutions of the Cauchy problem in the large for first order nonlinear
equations, Dokl. Akad. Nauk SSSR 187 (1969), 29 32 =  Soviet Math. Dokl. 10 (1969), 785 788.
MR 40 # 3046.



FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES 243

L18J S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad.
Gos. Univ., Leningrad, 1950; English transl., Transl. Math. Monographs, vol. 7, Amer. Math.
Soc , Providence, R. I., 1963. MR 14, 565; 29 #2624.

L19J A. Friedman, Partial differential equations of the parabolic type, Prentice-Hall, Englewood
Cliffs, N. J., 1964; Russian transl., "Mir", Moscow, 1968. MR 31 #6062.

L2OJ O. A. Oleinik and S. N. Kruzkov, Quasi-linear parabolic second-order equations with several
independent variables, Uspehi Mat. Nauk 16 (1961), no. 5 (101), 115-155 = Russian Math.
Surveys 16 (1961), no. 5, 105-146. MR 25 #5289.

[2l] S. D. Eidel'man, Parabolic systems, "Nauka", Moscow, 1964; English transl., Noordhoff,
Groningen; North-Holland, Amsterdam, 1969. MR 29 #4998.

L22J S. K. Godunov, The problem of a generalized solution in the theory of quasi-linear equations
and in gas dynamics, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 147-158 = Russian Math. Sur-
veys 17 (1962), no. 3, 145-156. MR 27 #5445.

Translated by:
N. Koblitz


