FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1970 Math. USSR Sb. 10217
(http://iopscience.iop.org/0025-5734/10/2/A06)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.177.138.111
The article was downloaded on 03/08/2010 at 06:59

Please note that terms and conditions apply.

FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES

S. N. KRUŽKOV

Abstract

In this paper we construct a theory of generalized solutions in the large of Cauchy's problem for the equations $$
u_{t}+\sum_{i=1}^{n} \frac{d}{d x_{i}} \varphi_{i}(t, x, u)+\psi(t, x, u)=0
$$ in the class of bounded measurable functions. We define the generalized solution and prove existence, uniqueness and stability theorems for this solution. To prove the existence theorem we apply the "vanishing viscosity method"; in this connection, we first study Cauchy's problem for the corresponding parabolic equation, and we derive a priori estimates of the modulus of continuity in L_{1} of the solution of this problem which do not depend on small viscosity.

Bibliography: 22 items.

§1. Introduction

The central problem of the theory of generalized (discontinuous) solutions of the quasilinear equations

$$
\begin{gather*}
u_{t}+\sum_{i=1}^{n} \frac{d}{d x_{i}} \varphi_{i}(t, x, u)+\psi(t, x, u)=0, \\
\frac{d}{d x_{i}} \varphi(t, x, u) \equiv \varphi_{x_{i}}+\varphi_{u k} u_{x_{i}}, \quad x=\left(x_{1}, \ldots, x_{n}\right) \in E_{n}, \tag{1.1}
\end{gather*}
$$

is to describe the existence and uniqueness classes of the solution in the large (with respect to t) of Cauchy's problem with the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0}(x) \tag{1.2}
\end{equation*}
$$

at $t=0$. Several papers have been devoted to studying this problem under different assumptions about the initial function $u_{0}(x)$ and about the structure of equation (1.1). Ever since the first fundamental paper [1] was published on the theory of generalized solutions of quasilinear equations, the basic method for investigating these equations has remained the "vanishing viscosity method," which is based on the idea of passing to the Iimit as $\epsilon \rightarrow+0$ in the parabolic equation ${ }^{1)}$

$$
\begin{equation*}
u_{t}+\frac{d}{d x_{i}} \varphi_{i}(t, x, u)+\psi(t, x, u)=\varepsilon \Delta u, \quad \varepsilon>0 \tag{1.3}
\end{equation*}
$$

[^0]where Δ is the Laplace operator over the space variables x_{1}, \cdots, x_{n} (here and below, if two of the indices i, j, k are equal in a monomial, then summation is taken from 1 to n). This method, which has deep physical meaning, not only allows us to prove the existence of a generalized solution of problem (1.1), (1.2) in the sense of the corresponding integral identity, but also makes it possible to show those additional conditions on the generalized solutions which characterize the uniqueness class (concerning the necessity of these conditions in the nonlocal theory of Cauchy's problem and the physical significance of these conditions, see, for example, [2] or [3]).

Up to now, the case $n=1$ with the function $\phi_{1}(t, x, u)$ in equation (1.1) convex in u is the one that has been studied most thoroughly; in this case a theory of generalized solutions of problem (1.1), (1.2) has been constructed for an arbitrary bounded measurable initial function $u_{0}(x)$ (see [4] -[6], survey article [2], and others; various methods for constructing generalized solutions with estimates of speed of convergence are given in [7]). Several results concerning the case of a function $\phi_{1}(t, x, u)$ which is not convex in u are obtained in [8]-[11] and elsewhere. In particular, [8] (see also [9]) contains a uniqueness condition for a generalized solution of Cauchy's problem in the class of piecewise smooth functions; however, as is well known, it is impossible to construct a nonlocal theory of generalized solutions in this class.

The class $B V$ of functions with bounded Tonelli-Cesaro variation is a natural generalization of the class of piecewise smooth functions (at least for the theory of quasilinear equations); one of the necessary and sufficient conditions for a bounded function $w(x)$ to belong to the class $B V\left(E_{n}\right)$ is that, for any compact Ω and any vector $\Delta x \in E_{n}$,

$$
\begin{equation*}
\int_{\Omega}|w(x+\Delta x)-w(x)| d x \leqslant \text { const } \cdot|\Delta x|, \tag{1.4}
\end{equation*}
$$

where the constant does not depend on Δx. Article [12] contains a proof of the existence of a generalized solution $u(t, x) \in B V\left(E_{n+1}\right)$ of Cauchy's problem in the large for the equation

$$
\begin{equation*}
u_{t}+\left(\varphi_{i}(u)\right)_{x_{i}}=0 \tag{1.5}
\end{equation*}
$$

with an arbitrary bounded initial function $u_{0}(x)$ in $B V\left(E_{n}\right)$; on the cross-sections $t=$ const the function $u(t, x)$ also belongs to $B V\left(E_{n}\right)$, so that the class $B V\left(E_{n}\right)$ has an invariance property. It was shown in [13] that, for any function $u(t, x) \in B V\left(E_{n+1}\right)$, at every point of discontinuity of this function, with the possible exception of the points of a set of n-dimensional Hausdorff measure zero, there is a first order discontinuity and there exists a normal to the set of points of discontinuity (one-sided limits are understood in the approximate sense), where the uniqueness condition for the generalized solution of Cauchy's problem in the class $B V\left(E_{n+1}\right)$ is written, in principle, in the same way as in the class of piecewise smooth functions (see inequality (1.3) in § 2; this condition can be easily derived for solutions of equation (1.1) in the class of piecewise smooth functions using the results and methods of [8] and [9]). Article [13] establishes the existence and uniqueness of a generalized solution of problem (1.5), (1.2) in the case when $u_{0}(x) \in B V\left(E_{n}\right)$. We note that in this proof of uniqueness we take into account the behavior of the generalized solutions on sets of dimension n; this procedure is connected with using a local (pointwise) uniqueness condition and requires us to take into account rather delicate and complicated results from the theory of $B V$ function classes (it follows from the results in $\S 3$ of this paper that to prove uniqueness it is sufficient to know the generalized solutions on certain ($n+1$)-dimensional sets of full Lebesgue measure). The vanishing viscosity method was
justified in [13] only for the case of a sufficiently smooth finite initial function $u_{0}(x)$.
The purpose of this paper is to construct a nonlocal theory of generalized solutions of Cauchy's problem (1.1), (1.2) in the class of bounded measurable functions. This very broad class of functions is the most natural class for constructing such a theory (especially when we are interested in questions of uniqueness and stability of generalized solutions and the question of justifying the vanishing viscosity method). We note that in the sense of "visibility" the solutions in the class of bounded measurable functions are practically equivalent to solutions in the class $B V\left(E_{n+1}\right)$, since any function in these classes either is piecewise smooth (to within certain visible singularities) or else has an essential "pathology."

In $\$ 2$ we formulate a definition of a generalized solution of problem (1.1), (1.2) and make some preliminary observations.

In $\mathcal{S}^{3} 3$ we prove uniqueness and stability theorems for the generalized solutions relative to changes in the initial data; in proving these theorems, from the theory of functions of a real variable we only apply Lebesgue's theorem on passing to the limit under the integral sign, the concept of a Lebesgue point and the result that almost all points of the open domain of an integrable function are Lebesgue points of this function (see [14]).

In δ_{4} we use the vanishing viscosity method to prove an existence theorem for a generalized solution of problem (1.1), (1.2); we first consider Cauchy's problem for the parabolic equation (1.3). In the vanishing viscosity method convergence is proved for any bounded measurable initial function $u_{0}(x)$.

The author stated the result on existence of a generalized solution of problem (1.5), (1.2) in the sense of the definition in $\$ 2$ at the International Congress of Mathematicians in Moscow in August, 1966 in discussing a related report by A. I. Vol'pert; the proof of this result was published ia [15], where the author also announced the uniqueness theorem for the generalized solution of this problem.

Existence theorems for generalized solutions of problem (1.1), (1.2) in the sense of the integral identity

$$
\begin{equation*}
\int_{0}^{T} \int_{-\infty}^{+\infty}\left[u f_{t}+\varphi_{i}(t, x, u) f_{x_{i}}-\psi(t, x, u) f\right] d x d t=0 \tag{1.6}
\end{equation*}
$$

which is valid for any smooth finite function $f(t, x)$ (without determining uniqueness conditions) are established in [16].

The fundamental results of this paper were published in our note [17].
$\oint 5$ contains some remarks and addenda concerning the questions considered in $\S \S 2-4$. The arguments in subsection 7° occupy a special place here, where we discuss the problem of a generalized solution of Cauchy's problem for the quasilinear hyperbolic system

$$
\begin{equation*}
\frac{\partial \varphi_{0}(u)}{\partial t}+\frac{\partial \varphi_{i}(u)}{\partial x_{i}}=0 \tag{1.7}
\end{equation*}
$$

with

$$
u=\left(u^{1}, \ldots, u^{N}\right), \quad \varphi_{i}(u)=\left(\varphi_{i}^{1}(u), \ldots, \varphi_{i}^{N}(u)\right)
$$

§2. Statement of Cauchy's problem (1.1), (1.2); some notation and preliminary observations

We let π_{T} denote the band $\{(t, x)\} \equiv[0, T] \times E_{n}$. We shall assume that the functions $\phi_{i}(t, x, u)$ and $\psi(t, x, u)$ are defined and are continuously differentiable for ($t, x) \in \pi_{T}$ and $-\infty<u<+\infty$ (the assumptions concerning the properties of these functions will be refined in each section).

Let $u_{0}(x)$ be an arbitrary bounded function which is measurable in $E_{n}:\left|u_{0}(x)\right| \leq M_{0}$.
Definition 1. A bounded measurable function $u(t, x)$ is called a generalized solution of problem (1.1), (1.2) in the band π_{T} if:

1) for any constant k and any smooth function $f(t, x) \geq 0$ which is finite in π_{T} (the support of f is strictly contained inside π_{T}), the following inequality holds:

$$
\begin{gather*}
\iint_{\pi_{T}}\left\{|u(t, x)-k| f_{t}+\operatorname{sign}(u(t, x)-k)\left[\varphi_{i}(t, x, u(t, x))-\varphi_{i}(t, x, k)\right] f_{x_{i}}\right. \\
\left.-\operatorname{sign}(u(t, x)-k)\left[\varphi_{i x_{i}}(t, x, k)+\psi(t, x, u(t, x))\right] f\right\} d x d t \geqslant 0 \tag{2.1}
\end{gather*}
$$

2) there exists a set \tilde{G} of zero measure on $[0, T]$ such that for $t \in[0, T] \backslash \mathcal{E}$ the function $u(t, x)$ is defined almost everywhere in E_{n}, and for any ball $K_{r}=\{|x| \leq r\} \subset E_{n}$

$$
\begin{equation*}
\lim _{\substack{t \rightarrow 0 \\ t \in[0, T] \backslash}} \int_{\dot{K}_{r}}\left|u(t, x)-u_{0}(x)\right| d x=0 \tag{2.2}
\end{equation*}
$$

Since the smooth function $f \geq 0$ is arbitrary, it is obvious that inequality (2.1) for $k= \pm \sup |u(t, x)|$ implies that the generalized solution $u(t, x)$ of problem (1.1), (1.2) satisfies integral identity (1.6). But Definition 1 also contains a condition which characterizes the permissible discontinuities of the solutions. This condition is especially easy to visualize when the generalized solution is a piecewise smooth function in some neighborhood of the point of discontinuity; in this case, using integration by parts and the fact that f was chosen arbitrarily, we easily obtain from inequality (2.1) that, for any constant k along the surface of discontinuity,

$$
\begin{align*}
& \left|u^{+}-k\right| \cos (v, t)-\operatorname{sign}\left(u^{+}-k\right)\left[\varphi_{i}\left(t, x, u^{+}\right)-\varphi_{i}(t, x, k)\right] \cos \left(v, x_{i}\right) \\
\preccurlyeq & \left|u^{-}-k\right| \cos (v, t)+\operatorname{sign}\left(u^{-}-k\right)\left[\varphi_{i}\left(t, x, u^{-}\right)-\varphi_{i}(t, x, k)\right] \cos \left(v, x_{i}\right), \tag{2.3}
\end{align*}
$$

where v is the normal vector to the surface of discontinuity at the point (t, x), and u^{+}and u^{-}are the onesided limits of the generalized solution at the point (t, x) from the positive and negative side of the surface of discontinuity, respectively. It is easily seen that for $n=1$ inequality (2.3) is equivalent to condition E in [8] (we note that in the case $n \geq 2$ inequality (2.3) can be derived from condition E if the desired solution is approximated by a plane wave in a neighborhood of the point of discontinuity).

Before proceeding to the proofs of the uniqueness and existence theorems for a generalized solution of problem (1.1), (1.2) in the sense of Definition 1, we introduce some notation and make some elementary preliminary observations.

We let $\delta(\sigma)$ designate a function which is infinitely differentiable on $(-\infty,+\infty)$ such that $\delta(\sigma) \geq 0, \delta(\sigma) \equiv 0$ for $|\sigma| \geq 1$, and

$$
\int_{-\infty}^{+\infty} \delta(\sigma) d \sigma=1
$$

For any number $h>0$ we set

$$
\begin{equation*}
\delta_{h}(\sigma) \equiv h^{-1} \delta\left(h^{-1} \sigma\right) \tag{2.4}
\end{equation*}
$$

It is obvious that $\delta_{h}(\sigma) \in C^{\infty}(-\infty,+\infty)$ and

$$
\begin{equation*}
\delta_{h}(\sigma) \geqslant 0, \delta_{h}(\sigma) \equiv 0 \text { for }|\sigma| \geqslant h, \quad\left|\delta_{h}(\sigma)\right| \leqslant \frac{\text { const }}{h}, \quad \int_{-\infty}^{+\infty} \delta_{h}(\sigma) d \sigma=1 \tag{2.5}
\end{equation*}
$$

(for $h \rightarrow+0$ the sequence $\left\{\delta_{h}(\sigma)\right\}$ is a delta-shaped sequence at the point $\sigma=0$).
Let the function $v(x)$ be defined and locally integrable in E_{n} (we shall assume a function defined oniy in some region $\Omega \subset E_{n}$ to be continued by zero on $E_{n}{ }^{n} \Omega$); we agree to let $v^{h}(x)$ denote the mean functions ${ }^{1)}$

$$
\begin{equation*}
v^{h}(x) \equiv \int_{E_{n}} \frac{1}{h^{n}} \lambda\left(\frac{x-y}{h}\right) v(y) d y, \quad h>0 \tag{2.6}
\end{equation*}
$$

with averaging kernel

$$
\begin{equation*}
\lambda(x) \equiv \prod_{i=1}^{n} \delta\left(x_{i}\right) \geqslant 0, \int_{E_{n}} \lambda(x) d x=1 \tag{2.7}
\end{equation*}
$$

We call x_{0} a Lebesgue point of the function $v(x)$ if

$$
\lim _{h \rightarrow 0} \frac{1}{h^{n}} \int_{\left|x-x_{0}\right| \leqslant h}\left|v(x)-v\left(x_{0}\right)\right| d x=0
$$

It is easily seen that at any Lebesgue point x_{0} of the function $v(x)$

$$
\lim _{h \rightarrow 0} v^{h}\left(x_{0}\right)=v\left(x_{0}\right) .
$$

Since the set of points which are not Lebesgue points of $v(x)$ has measure zero (see, for example, [14], Russian p. 396), it follows that $v^{h}(x) \rightarrow v(x)$ as $h \rightarrow 0$ almost everywhere.

We let $\omega(\sigma)$ designate modulus of continuity type functions. These functions are defined and continuous for $\sigma \geq 0$, are nondecreasing, and take on zero values at $\sigma=0$.

Lemma 1. Let the function $v(x)$ be integrable in the ball $K_{r+2 \rho}=\{|x| \leq r+2 \rho\}, r>0, \rho>0$, where

$$
\begin{equation*}
J_{\mathrm{s}}(v, \Delta x) \equiv \int_{K_{\mathrm{s}}}|v(x+\Delta x)-v(x)| d x \leqslant_{\mathrm{s}} \omega_{\mathrm{s}}(|\Delta x|) \tag{2.8}
\end{equation*}
$$

for $|\Delta x| \leq \rho$ and $s \in[0, r+\rho]$. Then for $h \leq \rho$

$$
\begin{gather*}
J_{r}\left(v^{h}, \Delta x\right) \leqslant \omega_{r+n}(|\Delta x|), \tag{2.9}\\
\int_{K_{r}}| | v\left|-v(\operatorname{sign} v)^{h}\right| d x \leqslant 2 \omega_{r}(h) . \tag{2.10}
\end{gather*}
$$

Estimate (2.9) follows from the obvious inequality

1) Concerning mean functions, see [17].

$$
J_{r}\left(v^{h}, \Delta x\right) \leqslant \int_{E_{n}} \lambda(z) \int_{K_{r}}^{n}|v(x+\Delta x-h z)-v(x-h z)| d x d z .
$$

To prove estimate (2.10), it suffices to note that

$$
\begin{aligned}
||v(x)|-v(x) \operatorname{sign} v(y)|= & ||v(x)|-|v(y)|-[v(x)-v(y)|\operatorname{sign} v(y)| \\
& \leqslant 2|v(x)-v(y)|
\end{aligned}
$$

and consequently

$$
\begin{gathered}
\int_{K_{r}}| | v\left|-v(\operatorname{sign} v)^{h}\right| d x \\
\leqslant \int_{K_{r}} \int_{E_{n}} h^{-n} \lambda\left(\frac{x-y}{h}\right)| | u(x)|-u(x) \operatorname{sign} v(y)| d y d x \\
\leqslant 2 \int_{E_{n}} \lambda(z) \int_{K_{r}}|u(x)-u(x-h z)| d x d z \leqslant 2 \omega_{r}(h) .
\end{gathered}
$$

Lemma 2. Let the function $v(t, x)$ be bounded and measurable in some cylinder $Q=[0, T] \times K_{r}$. If for some $\rho \in(0, \min [r, T])$ and any number $h \in(0, \rho)$ we set

$$
\begin{gather*}
V_{h}=\frac{1}{h^{n+1}} \iiint_{\left|\frac{t-\tau}{2}\right| \leqslant h, \rho \leqslant \frac{t+\tau}{2} \leqslant T-\rho,}|v(t, x)-v(\tau, y)| d x d t d y d \tau, \tag{2.11}\\
\left|\frac{x-y}{2}\right| \leqslant h,\left|\frac{x+y}{2}\right| \leqslant r-\rho
\end{gather*}
$$

then $\lim _{h \rightarrow 0} V_{h}=0$.
Proof. After substituting

$$
\frac{t+\tau}{2}=\alpha, \quad \frac{t-\tau}{2}=\beta, \quad \frac{x+y}{2}=\eta, \quad \frac{x-y}{2}=\xi
$$

we have

$$
\begin{gathered}
V_{h}=2^{n+1} \iint_{\substack{\rho \leqslant \alpha \leqslant T-\rho \\
|\eta| \leqslant r-\rho}} G_{h}(\alpha, \eta) d \eta d \alpha, \\
G_{h}(\alpha, \eta)=\frac{1}{h^{n+1}} \iint_{\substack{|B| \leqslant h \\
|\xi| \leqslant h}}|v(\alpha+\beta, \eta+\xi)-v(\alpha-\beta, \eta-\xi)| d \xi d \beta .
\end{gathered}
$$

Since almost all points (α, η) of the cylinder $Q_{\rho}=[\rho, T-\rho] \times K_{r-\rho}$ are Lebesgue points of the function $v(\alpha, \eta)$, and since

$$
\begin{aligned}
&|v(\alpha+\beta, \eta+\xi)-v(\alpha-\beta, \eta-\xi)| \leqslant|v(\alpha+\beta, \eta+\xi)-v(\alpha, \eta)| \\
&+|v(\alpha, \eta)-v(\alpha-\beta, \eta-\xi)|
\end{aligned}
$$

it follows that $G_{h}(\alpha, \eta) \rightarrow 0$ as $h \rightarrow 0$ almost everywhere in Q_{ρ}. It remains to note that $\left|G_{h}(\alpha, \eta)\right| \leq$ $c(n)$ sup $|v|$ and that the assertion of the lemma follows from Lebesgue's theorem on passing to the limit under the integral sign ([14], Russian p. 139).

Lemma 3. If the function $F(u)$ satisfies a Lipschitz condition on the interval $[-M, M]$ with constant L, then the function $H(u, v) \equiv \operatorname{sign}(u-v)[F(u)-F(v)]$ also satisfies the Lipschitz condition in u and v with the constant L.

To prove this, it suffices to take into account that $H_{u}(u, v)=F^{\prime}(u) \operatorname{sign}(u-v)$ for fixed $v \in$ $[-M, M]$ and almost all $u \in[-M, M]$, and that $H_{v}(u, v)=F^{\prime}(v) \operatorname{sign}(v-u)$ for fixed $u \in[-M, M]$ and almost all $v \in[-M, M]$.

Finally, we introduce notation connected with the concept of a characteristic cone. For any $R>0$ and $M>\mathbf{0}$ we set

$$
\begin{equation*}
N=N_{M}(R)=\max _{\substack{(t, x) \in[0, T] \times K_{R} \\|u| \leqslant M}}\left[\sum_{i=1}^{n} \varphi_{i u}^{2}(t, x, u)\right]^{1 / 2} \tag{2.12}
\end{equation*}
$$

and iet K designate the cone $\left\{(t, x):|x| \leq R-N t, 0 \leq t \leq T_{0}=\min \left(T, R N^{-1}\right)\right\}$; we let S_{τ} designate the cross-section of the cone K by the plane $t=\tau, \tau \in\left[0, T_{0}\right]$.

> §3. Uniqueness of the generalized solution of problem (1.1), (1.2);
> stability with respect to the initial condition

In this section we shall assume that the functions $\phi_{i}(t, x, u)$ and $\psi(t, x, u)$ are continuously differentiable in the region $\left\{(t, x) \in \pi_{T},-\infty<u<+\infty\right\}$, while the functions $\phi_{i x_{j}}(t, x, u)$ and $\phi_{i t}(t, x, u)$ satisfy the Lipschitz condition in u on any compact set.

Uniqueness of the generalized solution of problem (1.1), (1.2) follows from the following proposition concerning stability of the solutions relative to changes in the initial data in the norm of the space L_{1}.

Theorem 1. Let the functions $u(t, x)$ and $v(t, x)$ be generalized solutions of problem (1.1), (1.2) with initial functions $u_{0}(x)$ and $v_{0}(x)$, respectively, where $|u(t, x)| \leq M$ and $|v(t, x)| \leq M$ almost everywhere in the cylinder $[0, T] \times K_{R} ;$ let $\gamma=\max \left[-\psi_{u}(t, x, u)\right]$ in the region $\{(t, x) \in \mathbb{K},|u| \leq M\}$. Then for almost all $t \in\left[0, T_{0}\right]$

$$
\begin{equation*}
\int_{S_{t}}|u(t, x)-v(t, x)| d x \leqslant e^{\gamma t} \int_{S_{0}}\left|u_{0}(x)-v_{0}(x)\right| d x \tag{3.1}
\end{equation*}
$$

Proof. Let the smooth function $g(t, x ; \tau, y) \geq 0$ be finite in $\pi_{T} \times \pi_{T}$. In inequality (2.1) we set $k=v(\tau, y)$ and $f=g(t, x ; \tau, y)$ for a fixed point (τ, y) (we note that the function $v(\tau, y)$ is defined almost everywhere in π_{T}), and we then integrate over π_{T} (in the variables (τ, y)):

$$
\begin{gather*}
\iint_{\pi_{T} \times \int_{\pi}} \int_{T}\left\{|u(t, x)-v(\tau, y)| g_{t}+\operatorname{sign}(u(t, x)-v(\tau, y))\left[\varphi_{i}(t, x, u(t, x))\right.\right. \\
\left.-\varphi_{i}(t, x, v(\tau, y))\right] g_{x_{i}}-\operatorname{sign}(u(t, x)-v(\tau, y))\left[\varphi_{i x_{i}}(t, x, v(\tau, y))\right. \\
+\psi(t, x, u(t, x))] g\} d x d t d y d \tau \geqslant 0 \tag{3.2}
\end{gather*}
$$

In exactly the same way, starting from integral inequality (2.1) for the function $v(\tau, y)$ written in the variables (τ, y), for $k=u(t, x)$ and $f=g(t, x ; \tau, y)$ we integrate over π_{T} (in the variables (t, x)) to obtain the inequality

$$
\begin{gather*}
\iint_{\pi_{T}} \int_{\times \pi_{T}} \int_{T}\left\{|v(\tau, y)-u(t, x)| g_{\tau}+\operatorname{sign}(v(\tau, y)-u(t, x))\left[\varphi_{i}(\tau, y, v(\tau, y))\right.\right. \\
\left.-\varphi_{i}(\tau, y, u(t, x))\right] g_{y_{i}}-\operatorname{sign}(v(\tau, y)-u(t, x))\left[\varphi_{i y_{i}}(\tau, y, u(t, x))\right. \\
+\psi(\tau, y, v(\tau, y))] g\} d y d \tau d x d t \geqslant 0 \tag{3.3}
\end{gather*}
$$

Combining (3.2) and (3.3) and making some elementary identity transformations in the integrand (which
consist of adding and subtracting identical functions and arranging terms), we find that for any smooth function $g(t, x ; \tau, y) \geq 0$ which is finite in $\pi_{T} \times \pi_{T}$ the following inequality is fulfilled:

$$
\begin{gather*}
\iint_{\pi_{T} \times \pi_{T}} \int_{T}\left\{|u(t, x)-v(\tau, y)|\left(g_{t}+g_{\tau}\right)\right. \\
+\operatorname{sign}(u(t, x)-v(\tau, y))\left[\varphi_{i}(t, x, u(t, x))-\varphi_{i}(\tau, y, v(\tau, y))\right]\left(g_{x_{i}}+g_{y_{i}}\right) \\
+\operatorname{sign}(u(t, x)-v(\tau, y))\left(\left[\varphi_{i}(\tau, y, v(\tau, y))-\varphi_{i}(t, x, v(\tau, y))\right] g_{x_{i}}\right. \\
-\varphi_{i x_{i}}(t, x, v(\tau, y)) g+\left[\varphi_{i}^{\prime}(\tau, y, u(t, x))\right. \\
\left.\left.-\varphi_{i}(t, x, u(t, x))\right] g_{y_{i}}+\varphi_{i y_{i}}(\tau, y, u(t, x)) g\right) \\
+\operatorname{sign}(u(t, x)-v(\tau, y))[\psi(\tau, y, v(\tau, y))-\psi(t, x, u(t, x))] g\} d x d t d y d \tau \\
\equiv \iint_{\pi} \int_{r} \int_{\pi_{T}}\left\{I_{1}+I_{2}+I_{3}+I_{4}\right\} d x d t d y d \tau \geqslant 0 . \tag{3.4}
\end{gather*}
$$

We first go through the later part of the proof for the case of equation (1.5) (then $l_{3} \equiv 0, I_{4}=0$), so that, when we consider the general case, our attention can be focused on the additional difficulties of a technical character which result when the functions ϕ_{i} depend on t and x. In the case of equation (1.5) inequality (3.4) takes the form

$$
\begin{gather*}
\iint_{\pi_{T}} \int_{\pi_{T}} \int_{T}\left\{|u(t, x)-v(\tau, y)|\left(g_{t}+g_{\tau}\right)\right. \\
\left.+\operatorname{sign}(u(t, x)-v(\tau, y))\left[\varphi_{i}(u(t, x))-\varphi_{i}(v(\tau, y))\right]\left(g_{x_{i}}+g_{y_{i}}\right)\right\} d x d t d y d \tau \geqslant 0 . \tag{3.5}
\end{gather*}
$$

Let $f(t, x)$ be an arbitrary test function from Definition 1 ; we may assume that $f(t, x) \equiv 0$ outside some cylinder

$$
\{(t, x)\}=[\rho, T-2 \rho] \times K_{r-2 \rho}, \quad 2 \rho \leqslant \min (T, r)
$$

In (3.5) we set

$$
\begin{equation*}
g=f\left(\frac{t+\tau}{2}, \frac{x+y}{2}\right) \delta_{h}\left(\frac{t-\tau}{2}\right) \prod_{i=1}^{n} \delta_{h}\left(\frac{x_{i}-y_{i}}{2}\right) \equiv f(\ldots) \lambda_{h}(\vdots), h \leqslant \rho \tag{3.6}
\end{equation*}
$$

where

$$
(\ldots) \equiv\left(\frac{t+\tau}{2}, \frac{x+y}{2}\right),(\vdots) \equiv\left(\frac{t-\tau}{2}, \frac{x-y}{2}\right)
$$

and the function $\delta_{h}(\sigma)$ was defined in (2.4); noting that

$$
g_{t}+g_{\tau}=f_{t}(\ldots) \lambda_{h}, \quad g_{x_{i}}+g_{y_{i}}=f_{x_{i}}(\ldots) \lambda_{h}
$$

we let h approach zero. We show that as $h \rightarrow 0$, (3.5) implies the inequality

$$
\begin{gather*}
\iint_{\pi_{T}}\left\{|u(t, x)-v(t, x)| f_{t}(t, x)\right. \\
+\operatorname{sign}(u(t, x)-v(t, x))\left[\varphi_{i}\left(u(t, x)-\varphi_{i}(v(t, x))\right] f_{x_{i}}(t, x)\right\} d x d t \geqslant 0 \tag{3.7}
\end{gather*}
$$

In fact, for this choice of g each of the two terms in the integrand of (3.5) can be represented in the form

$$
\begin{equation*}
P_{h}(t, x ; \tau, y) \equiv F(t, x, \tau, y, u(t, x), v(\tau, y)) \lambda_{h}(\vdots) \tag{3.8}
\end{equation*}
$$

where the function F satisfies a Lipschitz condition in all its variables (here we use Lemma 3), $P_{h} \equiv 0$ outside the region

$$
\{(t, x ; \tau, y)\}=\left\{\rho \leqslant \frac{t+\tau}{2} \leqslant T-2 \rho, \frac{|t-\tau|}{2} \leqslant h, \frac{|x+y|}{2} \leqslant r-2 \rho, \frac{\left|x_{i}-y_{i}\right|}{2} \leqslant h\right\}
$$

and

$$
\begin{aligned}
& \iint_{\pi_{T}} \int_{\times \pi_{T}} \int_{T} P_{h} d x d t d y d \tau=\iint_{\pi_{T} \times \pi_{T}} \int_{T}[F(t, x, \tau, y, u(t, x), v(\tau, y)) \\
& +\iint_{\pi_{T} \times} \int_{\times} \int_{\pi_{T}} F(t, x, t, x, u(t, x), v(t, x)) \lambda_{h}(\vdots) d x d t d y d \tau \equiv J_{1}(h)+J_{2}
\end{aligned}
$$

Taking into account the obvious estimate $\left|\lambda_{h}(:)\right| \leq$ const $\cdot h^{-(n+1)}$ and the above properties of the function F, we find that

$$
\begin{aligned}
\left|J_{1}(h)\right| \leqslant C\left[h+\frac{1}{h^{n+1}}\right. & \iiint_{\left|\frac{t-\tau}{2}\right| \leqslant h, \rho \leqslant \frac{t+\tau}{2} \leqslant T-\rho} \int_{\left|\frac{x_{i}-y_{i}}{2}\right| \leqslant h .\left|\frac{x+y}{2}\right| \leqslant r-\rho}|v(t, x)-v(\tau, y)| d x d t d y d \tau
\end{aligned}
$$

where the constant C does not depend on h. By Lemma 2, $J_{1}(h) \rightarrow 0$ as $h \rightarrow 0$. The integral J_{2} does not depend on h; in fact, after substituting $t=\alpha,(t-\tau) / 2=\beta, x=\eta,(x-y) / 2=\xi$ and taking into account the obvious equation

$$
\int_{-h}^{h} \int_{E_{n}} \lambda_{h}(\beta, \xi) d \xi d \beta=1
$$

we find that

$$
\begin{gathered}
J_{2}=2^{n+1} \iint_{\pi_{T}}\left\{F(\alpha, \eta, \alpha, \eta, u(\alpha, \eta), v(\alpha, \eta)) \int_{-n}^{h} \int_{E_{n}} \lambda_{h}(\beta, \xi) d \xi d \beta\right\} d \eta d \alpha \\
=2^{n+1} \iint_{\pi_{T}} F(t, x, t, x, u(t, x), v(t, x)) d x d t
\end{gathered}
$$

Hence

$$
\lim _{h \rightarrow 0} \iint_{\pi_{T} \times \pi_{T}} \iint_{h} P_{h} d x d t d y d \tau=2^{n+1} \iint_{\pi_{T}} F(t, x, t, x, u(t, x), v(t, x)) d x d t
$$

Thus (3.5) implies (3.7).
Let K be a characteristic cone, and let \mathscr{G}_{u} and \mathscr{E}_{v} be the sets of measure zero on $[0, T]$ in the definition of a generalized solution (see requirement 2) for the functions u and v, respectively. We let \tilde{G}_{μ} designate the set of points on $[0, T]$ which are not Lebesgue points of the bounded measurable function

$$
\begin{equation*}
\mu(t)=\int_{s_{t}}|u(t, x)-v(t, x)| d x \tag{3.9}
\end{equation*}
$$

Let $\mathcal{E}_{0}=\mathfrak{G}_{u} \cup \mathcal{G}_{v} \cup \mathcal{G}_{\mu}$; it is clear that mes $\mathcal{G}_{0}=0$. We define

$$
\alpha_{h}(\sigma)=\int_{-\infty}^{\sigma} \delta_{h}(\sigma) d \sigma \quad\left(\alpha_{h}(\sigma)=\delta_{h}(\sigma) \geqslant 0\right)
$$

and take two numbers ρ and $\tau \in\left(0, T_{0}\right) \backslash \mathcal{E}_{0}, \rho<\tau$. In (3.7) we set

$$
f=\left[\alpha_{h}(t-\rho)-\alpha_{h}(t-\tau)\right] \chi(t, x), \quad h<\min \left(\rho, T_{0}-\tau\right)
$$

where ${ }^{1)}$

$$
\chi=\chi_{\varepsilon}(t, x) \equiv 1-\alpha_{\varepsilon}(|x|+N t-R+\varepsilon), \quad \varepsilon>0
$$

and we note that $\chi(t, x) \equiv 0$ outside the cone K, while for $(t, x) \in K$ we have the relations

$$
0 \equiv \chi_{t}+N\left|\chi_{x}\right| \geqslant \chi_{t}+\frac{\varphi_{i}(u)-\varphi_{i}(v)}{u-v} \chi_{x_{i}}
$$

From (3.7) we obtain the inequality

$$
\begin{equation*}
\iint_{\pi_{T_{e}}}\left[\delta_{h}(t-\rho)-\delta_{h}(t-\tau)\right] \chi_{\varepsilon}(t, x)|u(t, x)-v(t, x)| d x d t \geqslant 0 \tag{3.10}
\end{equation*}
$$

Letting ϵ approach zero in (3.10), we find that

$$
\int_{0}^{T_{0}}\left\{\left[\delta_{h}(t-\rho)-\delta_{h}(t-\tau)\right] \int_{s_{t}}|u(t, x)-v(t, x)| d x\right\} d t \geqslant 0
$$

Since ρ and τ are Lebesgue points of the function $\mu(t)$ (see (3.9)), it follows that as $h \rightarrow 0$

$$
\begin{equation*}
\mu(\tau)=\int_{s_{\tau}}|u(\tau, x)-v(\tau, x)| d x \leqslant \int_{s_{\rho}}|u(\rho, x)-v(\rho, x)| d x=\mu(\rho) \tag{3.11}
\end{equation*}
$$

(for example, by properties (2.5) of the functions $\delta_{h}(\sigma)$ for $h \leq \min \left(\rho, T_{0}-\rho\right)$ we have for the point $t=\rho:$

$$
\begin{gathered}
\left|\int_{0}^{T_{0}} \delta_{h}(t-\rho) \mu(t) d t-\mu(\rho)\right|=\left|\int_{0}^{T_{0}} \delta_{h}(t-\rho)[\mu(t)-\mu(\rho)] d t\right| \\
\leqslant \text { const } \cdot h^{-1} \int_{\rho-h}^{\rho+h}|\mu(t)-\mu(\rho)| d t
\end{gathered}
$$

where the constant does not depend on h). Taking into account that

$$
|u(\rho, x)-v(\rho, x)| \leqslant\left|u(\rho, x)-u_{0}(x)\right|+\left|v(\rho, x)-u_{0}(x)\right|+\left|u_{0}(x)-v_{0}(x)\right|_{\epsilon}
$$

and letting ρ approach zero over a sequence of points in \mathcal{E}_{0}, we obtain estimate (3.1) from (3.11) in the case under consideration.

We now proceed to the general case, where we shall follow the same scheme of proof. We show that, after substituting the function g defined in (3.6) into (3.4), we have (3.4) in the limit as $h \rightarrow 0$ implying the following inequality, which is analogous to inequality (3.7):

1) It is easily seen that the function f defined in this way is a permissible test function.

$$
\begin{gather*}
\iint_{\pi_{T}}\left\{|u(t, x)-v(t, x)| f_{t}\right. \\
+\operatorname{sign}(u(t, x)-v(t, x))\left[\varphi_{i}(t, x, u(t, x))-\varphi_{i}(t, x, v(t, x)) f_{x_{i}}\right. \\
-\operatorname{sign}(u(t, x)-v(t, x))[\psi(t, x, u(t, x))-\psi(t, x, v(t, x))] f\} d x d t \geqslant 0 . \tag{3.12}
\end{gather*}
$$

We first note that as $h \rightarrow 0$ the integrals

$$
\iint_{\pi_{T} \times \pi_{T}} \int_{\pi_{T}}\left[I_{1}+I_{2}+I_{4}\right] d x d t d y d \tau
$$

approach the integral in the left side of inequality (3.12) multiplied by 2^{n+2}, since I_{1}, I_{2} and I_{4} have the form (3.8), and the corresponding functions P_{h} and F have all the properties needed above to establish the limit as $h \rightarrow 0$ of the integrals of expressions of the form (3.8). Thus it suffices to prove that the integrals of I_{3} in (3.4) approach zero as $h \rightarrow 0$; moreover, since the coefficients of $g_{x_{i}}$ and $g_{y_{i}}$ in l_{3} vanish for $|t-\tau|+|x-y|=0$, it follows by the concrete form of the function

$$
\begin{gather*}
I_{n}=\iint_{\pi_{T}} \int_{x_{\pi_{T}}} \int_{T} f(\ldots) \operatorname{sign}(u(t, x)-v(\tau, y))\left\{\left[\varphi_{i}(\tau, y, v(\tau, y))\right.\right. \\
\left.-\varphi_{i}(t, x, v(\tau, y))\right]\left(\lambda_{h}\right)_{x_{i}}-\varphi_{i x_{i}}(t, x, v(\tau, y)) \lambda_{h} \\
\left.+\left[\varphi_{i}(\tau, y, u(t, x))-\varphi_{i}(t, x, u(t, x))\right]\left(\lambda_{h}\right)_{y_{i}}+\varphi_{i y_{i}}(\tau, y, u(t, x)) \lambda_{h}\right\} d x d t d y d \tau \tag{3.13}
\end{gather*}
$$

Since the first derivatives of the functions $\phi_{i}(t, x, u)$ are uniformly continuous on any compact region, ${ }^{1)}$ we have the following relations (the index h of the function λ will be omitted in the compurations; here $\delta_{i j}$ is the Kronecker symbol):

$$
\begin{gathered}
{\left[\varphi_{i}(\tau, y, v(\tau, y))-\varphi_{i}(t, x, v(\tau, y))\right] \lambda_{x_{i}}-\varphi_{i x_{i}}(t, x, v(\tau, y)) \lambda} \\
=\varphi_{i \tau}(\tau, y, v(\tau, y))(\tau-t) \lambda_{x_{i}}+\varphi_{i y_{j}}(\tau, y, v(\tau, y))\left[\left(y_{j}-x_{j}\right) \lambda_{x_{i}}-\delta_{i j} \lambda\right] \\
+\varepsilon_{i} \lambda_{x_{i}}+\varepsilon_{0} \lambda \equiv \varphi_{i \tau}(\tau, y, v(\tau, y))((\tau-t) \lambda)_{x_{i}} \\
+\varphi_{i y_{j}}(\tau, y, v(\tau, y))\left(\left(y_{j}-x_{j}\right) \lambda\right)_{x_{i}}+\varepsilon_{i} \lambda_{x_{i}}+\varepsilon_{0} \lambda
\end{gathered}
$$

similarly, taking into account the identity $\lambda_{y_{i}} \equiv-\lambda_{x_{i}}$, we obtain that

$$
\begin{gathered}
{\left[\varphi_{i}(\tau, y, u(t, x))-\varphi_{i}(t, x, u(t, x))\right] \lambda_{y_{i}}} \\
+\varphi_{i y_{i}}(\tau, y, u(t, x)) \lambda=\varphi_{i \tau}(\tau, y, u(t, x))(\tau-t) \lambda_{y_{i}} \\
+\varphi_{i y_{j}}(\tau, y, u(t, x))\left[\left(y_{j}-x_{j}\right) \lambda_{y_{i}}+\delta_{i j} \lambda\right]+\beta_{i} \lambda_{y_{i}} \\
\equiv \varphi_{i \tau}(\tau, y, u(t, x))((t-\tau) \lambda)_{x_{i}}-\varphi_{i y_{j}}(\tau, y, u(t, x))\left(\left(y_{j}-x_{j}\right) \lambda\right)_{x_{i}}+\beta_{i} \lambda_{y_{i}}
\end{gathered}
$$

where

$$
\left|\varepsilon_{0}\right|+\sum_{i=1}^{n}\left(\left|\varepsilon_{i}\right|+\left|\beta_{i}\right|\right) \leqslant d \varepsilon(d), \quad d=|t-\tau|+|x-y|
$$

and $\epsilon(d) \rightarrow 0$ as $d \rightarrow 0$. Since $\lambda=\lambda_{h} \equiv 0$ for $|t-\tau| \geq 2 h$ or $\left|x_{i}-y_{i}\right| \geq 2 h$, and

$$
\left|\lambda_{x_{i}}\right|+\left|\lambda_{y_{i}}\right| \leqslant \mathrm{const} \cdot h^{-(n+2)},|f(\ldots)-f(\tau, y)| \leqslant \mathrm{const} \cdot(|t-\tau|+|x-y|)
$$

[^1]it follows that
\[

$$
\begin{align*}
I_{h}= & \int_{\pi_{T}} \int_{x^{\prime}} \int_{T} f(\tau, y) \operatorname{sign}(u(t, x)-v(\tau, y))\left\{\left[\varphi_{i \tau}(\tau, y, v(\tau, y))\right.\right. \\
& \left.-\varphi_{i \tau}(\tau, y, u(t, x))\right]((\tau-t) \lambda)_{x_{i}}+\left[\varphi_{i y_{j}}(\tau, y, v(\tau, y))\right. \\
& \left.\left.-\varphi_{i y_{j}}(\tau, y, u(t, x))\right]\left(\left(y_{i}-x_{j}\right) \lambda\right)_{x_{i}}\right\} d x d t d y d \tau+\beta(h), \tag{3.14}
\end{align*}
$$
\]

where $\beta(h) \rightarrow 0$ as $h \rightarrow 0$. We designate the integrand in (3.14) by B_{h}; obviously B_{h} has a representation in the form

$$
\begin{aligned}
& B_{h}=F_{i}(\tau, y, u(t, x), v(\tau, y))\left((t-\tau) \lambda_{h} f(\tau, y)\right)_{x_{i}} \\
& +G_{i j}(\tau, y, u(t, x), v(\tau, y))\left(\left(y_{j}-x_{j}\right) \lambda_{h} f(\tau, y)\right)_{x_{i}}
\end{aligned}
$$

where, by Lemma 3, the functions F_{i} and $G_{i j}$ satisfy a Lipschitz condition in u (here we take into account the assumptions in the beginning of this section concerning $\phi_{i t}$ and $\phi_{i x_{j}}$). Since the function $\lambda_{h} f(\tau, y)$ is finite in $\pi_{T} \times \pi_{T}$, we have

$$
\begin{aligned}
& \iint_{\pi_{T} \times \pi_{T}} \iint_{T}\left\{F_{i}(\tau, y, u(\tau, y), v(\tau, y))\left((\tau-t) \lambda_{h} f(\tau, y)\right)_{x_{i}}\right. \\
+ & \left.G_{i j}(\tau, y, u(\tau, y), v(\tau, y))\left(\left(y_{j}-x_{j}\right) \lambda_{h} f(\tau, y)\right)_{x_{i}}\right\} d x d t d y d \tau=0
\end{aligned}
$$

and consequently (after subtracting the last equation in (3.14))

$$
\begin{gathered}
\left|I_{h}-\beta(h)\right|=\left|\iint_{\pi_{T} \times \pi_{T}} \int_{T} B_{h} d x d t d y d \tau\right| \\
\leqslant \mathrm{const} \cdot \iint_{\pi_{T} \times \pi_{T}} \int_{T} f(\tau, y)\left[\lambda_{h}+(|t-\tau|+|x-y|)\left|\left(\lambda_{h}\right)_{x}\right|\right] \cdot \\
\cdot|u(t, x)-u(\tau, y)| d x d t d y d \tau
\end{gathered}
$$

$$
\begin{gathered}
\leqslant \frac{\text { const }}{h^{n+1}} \iiint_{\left|\frac{t-\tau}{2}\right| \leqslant h,\left|\frac{t+\tau}{2}\right| \leqslant T-\rho,}|u(t, x)-u(\tau, y)| d x d t d y d \tau \\
\left|\frac{x_{i}-y_{i}}{2}\right| \leqslant h,\left|\frac{x+y}{2}\right| \leqslant r-\rho
\end{gathered}
$$

which, by Lemma 2, implies that $I_{h}-\beta(h) \rightarrow 0$ as $h \rightarrow 0$ (and hence also $I_{h} \rightarrow 0$). Inequality (3.12) is thereby proved.

Further, choosing numbers ρ and $\tau \in \mathcal{E}_{0}, 0<\rho<\tau<T_{0}$, and substituting the same function f in (3.12) as in the proof for the case of equation (1.5), we obtain the following analogs of inequalities (3.10) and (3.11):

$$
\begin{gathered}
\iint_{\pi_{T_{0}}}\left\{\left[\delta_{h}(t-\rho)-\delta_{h}(t-\tau)\right] \chi_{\varepsilon}(t, x)|u(t, x)-v(t, x)|\right. \\
\left.\quad+\gamma \chi_{\varepsilon}(t, x)|u(t, x)-v(t, x)|\right\} d x d t \geqslant 0
\end{gathered}
$$

and

$$
\mu(\tau)=\int_{s_{\tau}}|u(\tau, x)-v(\tau, x)| d x \leqslant
$$

$$
\leqslant \int_{S_{\rho}}|u(\rho, x)-v(\rho, x)| d x+\gamma \int_{\rho}^{\tau} \int_{S_{t}}|u(t, x)-v(t, x)| d x d t
$$

Letting ρ approach zero over the set \mathcal{E}_{0}, we find that for $\tau \in \mathcal{E}_{0}$

$$
\mu(\tau) \leqslant \mu(0)+\tau \int_{0}^{\tau} \mu(t) d t
$$

from which estimate (3.1) follows in an obvious way. Theorem 1 is proved.
To prove the uniqueness theorem for the generalized solution of problem (1.1), (1.2), it is necessary to make certain assumptions concerning the growth of the functions $\phi_{i u}(t, x, u)$ as $|x| \rightarrow \infty$. Here we give one of the simplest conditions. Let K be the characteristic cone with base radius R for $|u| \leq M$ (see the end of $\S 1$), and let $N=N_{M}(R)$ be the number defined in (2.12). We shall assume that

$$
\begin{equation*}
R^{-1} N_{M}(R) \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty \tag{3.15}
\end{equation*}
$$

(for any $M>0$). It is clear that, when this condition is fulfilled for any point $(t, x) \in \pi_{T}$, we can find a characteristic cone containing the point (for any $M>0$), and so Theorem 1 implies

Theorem 2. The generalized solution of problem (1.1), (1.2) in the band π_{T} is unique.
We have the following proposition concerning monotonic dependence of the generalized solutions of problem (1.1), (1.2) on the initial data.

Theorem 3. Let the functions $u(t, x)$ and $v(t, x)$ be the generalized solutions of problem (1.1), (1.2) with initial functions $u_{0}(x)$ and $v_{0}(x)$, respectively. Let $u_{0}(x) \leq v_{0}(x)$ almost everywhere in E_{n}. Then $u(t, x) \leq v(t, x)$ almost everywhere in π_{T}.

It obviously suffices to show that the following analog of estimate (3.1) holds for the solutions $u(t, x)$ and $v(t, x)$:

$$
\begin{equation*}
\int_{s_{t}} \Phi(u(t, x)-v(t, x)) d x \leqslant e^{\gamma t} \int_{s_{0}} \Phi\left(u_{0}(x)-v_{0}(x)\right) d x, \tag{3.16}
\end{equation*}
$$

where $\Phi(\sigma) \equiv \sigma+|\sigma|$.
Taking inequality (3.4) into account, we note that, since each of the functions $u(t, x)$ and $v(t, x)$ satisfies integral identity (1.6), the following identity for the functions $g(t, x ; \tau, y)$ follow from inequality (3.4):

$$
\begin{gather*}
\iint_{\pi_{T} \times \pi_{T}} \int_{T}\left\{[u(t, x)-v(\tau, y)]\left(g_{t}+g_{\tau}\right)\right. \\
+\left[\varphi_{i}(t, x, u(t, x))-\varphi_{i}(\tau, y, v(\tau, y))\right]\left(g_{x_{i}}+g_{y_{i}}\right) \\
-[\psi(t, x, u(t, x))-\psi(\tau, y, v(\tau, y))] g\} d x d t d y d \tau=0 . \tag{3.17}
\end{gather*}
$$

Adding the integrals (3.4) and (3.17), we obtain the inequality

$$
\begin{equation*}
\iint_{\pi} \int_{\Gamma} \int_{\pi_{T}}\left\{I_{1}^{\prime}+I_{2}^{\prime}+I_{3}^{\prime}+I_{4}^{\prime}\right\} d x d t d y d \tau \geqslant 0 \tag{3.18}
\end{equation*}
$$

where the integrand I_{3}^{\prime} coincides with l_{3} in (3.4), and the expressions $l_{1}^{\prime}, I_{2}^{\prime}$ and l_{4}^{\prime} are obtained from the corresponding expressions l_{1}, I_{2} and I_{4} in (3.4) by replacing $|u(t, x)-v(\tau, y)|$
and $\operatorname{sign}(u(t, x)-v(r, y))$ by $\Phi(u(t, x)-v(\tau, y))$ and $\Phi^{\prime}(u(t, x)-v(r, y))$, respectively. Further, taking into account that $\sigma \Phi^{\prime}(\sigma) \equiv \Phi(\sigma)$, we derive inequality (3.16) from (3.18) in exactly the same way as estimate (3.1) was obtained from (3.4) in the proof of Theorem 1.

A proof of Theorem 3 based on Theorem 2 and a method of constructing generalized solutions will be given at the end of $\$ 4$ for the case of equation (1.5).

§4. Existence of the generalized solution of problem (1.1), (1.2)

The fundamental result on the existence of a generalized solution of problem (1.1), (1.2) will be proved in this section under the following assumptions:

1) The functions $\phi_{i}(t, x, u)$ are three times continuously differentiable.
2) The functions $\phi_{i u}(t, x, u)$ are uniformly bounded for $(t, x, u) \in D_{M}=\pi_{T} \times[-M, M]$ (the numbers $N=N_{M}(R)$ in (2.12) are bounded by a constant \bar{N} which does not depend on R).
3) The function $\Psi(t, x, u) \cong \phi_{i x_{i}}(t, x, u)+\psi(t, x, u)$ is twice continuously differentiable and uniformly bounded in D_{M}, where

$$
\left.\left.\begin{array}{l}
\sup _{(t, x) \in \pi_{T}}|\Psi(t, x, 0)| \leqslant c_{0}=\text { const } \\
\sup _{(t, x) \in \pi_{T}}^{(-\infty<t<+\infty} ⿺ \tag{4.2}
\end{array}\right]-\Psi_{u}(t, x, u)\right] \leqslant c_{1}=\mathrm{const} .
$$

4) $u_{0}(x)$ is an arbitrary bounded measurable function in $E_{n}\left(\left|u_{0}(x)\right| \leq M_{0}\right)$.

The assumptions concerning smoothness of the functions $\phi_{i}(t, x, u)$ and $\psi(t, x, u)$ in conditions 1) and 3) were made without taking into account the "inequivalence" of the arguments t, x_{j} and u. Hence, in the context of the methods of this section, conditions 1) and 3) can be refined and weakened (see subsection 4 in $\S 5$); for example, in the case of equation (1.5) it is sufficient to require continuity of only the first derivatives of the functions $\phi_{i}(u)$. Undoubtably, assumptions (4.1) and (4.2) in condition 3), which ensure the a priori estimate of the maximum modulus of the generalized solution of problem (1.1), (1.2), can be replaced by other well-known assumptions of the same type.

To construct the generalized solution of problem (1.1), (1.2), we apply the vanishing viscosity method. We first investigate Cauchy's problem for the parabolic equation (1.3) with initial condition (1.2), where the main object here is to obtain an a priori estimate of the modulus of continuity in L_{1} of the solution $u^{\epsilon}(t, x)$ of problem (1.3), (1.2) which ensures compactness of the family $\left\{u^{\epsilon}(t, x)\right\}$ in the L_{1}-norm, where this estimate does not depend on small viscosity ϵ. This estimate is established using similar methods separately in the following two cases A and B :
A. The initial function $u_{0}(x)$ is an arbitrary bounded function in E_{n}, but then (in addition to conditions 1)-3) in the beginning of the section) the functions ϕ_{i} do not depend on x, and the functions $\phi_{i u t}(t, x, u), \psi_{u}(\ldots), \psi_{x_{j}}(\ldots)$ and $\psi_{t}(\ldots)$ are bounded in D_{M}.
B. The initial function $u_{0}(x)$ is bounded in E_{n} and satisfies a Lipschitz condition in the $L_{1}\left(K_{R}\right)$ norm for any $R>0$:

$$
\begin{equation*}
\int_{K_{R}}\left|u_{0}(x+\Delta x)-u_{0}(x)\right| d x \leqslant c\left(R^{\mu}+1\right)|\Delta x|, c=\text { const } \geqslant 1, \mu=\text { const }>0 \tag{4.3}
\end{equation*}
$$

the functions ϕ_{i} can now depend on x, while (in addition to conditions 1) -3)) the derivatives
$\phi_{i x_{i} x_{j}}(t, x, u), \phi_{i u x_{j}}(\ldots), \phi_{i t x_{j}}(\ldots), \phi_{i u t}(\ldots)$, and also $\psi_{u}(\ldots), \psi_{x_{j}}(\ldots), \psi_{t}(\ldots)$, are bounded in D_{M}.

Case A is singled out largely for considerations of method, since in this technically simple but nevertheless typical case (which essentially corresponds to equation (1.5)) we can emphasize the fundamental ideas of the proof with special clarity.

The estimate of the modulus of continuity in case B, which is also of independent interest, plays the role of a preliminary result for obtaining the desired estimate in the general case O. We let the general case O be characterized by the following conditions: $u_{0}(x)$ is an arbitrary bounded measurable function, while the functions ϕ_{i} and ψ satisfy the same assumptions as in case B. The fundamental result used to justify the vanishing viscosity method will be formulated under conditions O (concerning the possibility of weakening these conditions, see subsection 4 in $\S 5$).

1. Cauchy's problem for the parabolic equation (1.3). We first note that, by well-known results from the theory of second order quasilinear parabolic equations (see, for example, [19] or [20]), under our assumptions about the functions ϕ_{i} and ψ problem (1.3), (1.2) has a unique classical solution $u^{\epsilon}(t, x)$ if the initial function $u_{0}(x)$ is bounded in E_{n} along with its derivatives through the third order, inclusive; here the solution $u^{\epsilon}(t, x)$ is bounded in π_{T} and has bounded and uniformly Hölder continuous derivatives in equation (1.3).

We first prove several a priori estimates for the classical solution of problem (1.3), (1.2), but we shall take care that these estimates depend only on the above properties of the functions ϕ_{i} and ψ, on M_{0}, and on the function $\omega_{R}(\sigma)$ such that (see (2.8))

$$
\begin{equation*}
J_{R}\left(u_{0}(x), \Delta x\right) \leqslant \omega_{R}(|\Delta x|) \quad \mathrm{V} R>0 \tag{4.4}
\end{equation*}
$$

(for $\omega_{R}(\sigma)$ we can take the modulus of continuity of the function $u_{0}(x)$ in $L_{1}\left(K_{R}\right)$; in case B by (4.3) we have $\omega_{R}(\sigma) \equiv c\left(R^{\mu}+1\right) \sigma$). We agree to let const designate different constants which depend on the "data" of problem (1.3), (1.2), but not on $\epsilon \in(0,1]$.

Equation (1.3) can be written in the form

$$
\begin{equation*}
u_{t}+\varphi_{i u} u_{x_{i}}+\Psi(t, x, u)=\varepsilon \Delta u \tag{4.5}
\end{equation*}
$$

Since $\Psi(t, x, u)=\Psi(i, x, 0)+\Psi_{u}(t, x, \tilde{u}) u$, we have by (4.1), (4.2) and the maximum principle that

$$
\begin{equation*}
\left|u^{\varepsilon}(t, x)\right| \leqslant \mathrm{const}=\left(M_{0}+c_{0} T\right) e^{c_{1} T}=M \tag{4.6}
\end{equation*}
$$

We now prove an estimate of the modulus of continuity in L_{1} for the solution $u^{\epsilon}(t, x)$ in case A. We take a vector $z \in E_{n}$ and set $w(t, x) \equiv u^{\epsilon}(t, x+z)-u^{\epsilon}(t, x)$; it is clear that the function $w(t, x)$ satisfies the equation

$$
\begin{equation*}
w_{t}+\left(a_{i} w\right)_{x_{i}}+c w+e_{i} z_{i}=\varepsilon \Delta w, \tag{4.7}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{i}(t, x)=\int_{0}^{1} \varphi_{i u}\left(t, \alpha u^{\varepsilon}(t, x+z)+(1-\alpha) u^{\varepsilon}(t, x)\right) d \alpha \\
c(t, x)=\int_{0}^{1} \psi_{u}\left(t, \alpha(x+z)+(1-\alpha) x, \alpha u u^{\varepsilon}(t, x+z)+(1-\alpha) u^{\varepsilon}(t, x)\right) d \alpha \equiv \int_{0}^{1} \psi_{u}(\ldots) d \alpha
\end{gathered}
$$

$$
e_{i}(t, x)=\int_{0}^{1} \psi_{x_{i}}(\ldots) d \alpha, \sum_{i=1}^{n}\left(\left|a_{i}\right|+\left|e_{i}\right|\right)+|c| \leqslant \mathrm{const}
$$

and all the functions a_{i}, c and e_{i} satisfy a Lipschitz condition on any compact set in π_{T}. We multiply equation (4.7) by a function $g(t, x)$ which is finite in x in the band $\pi_{\tau} \subset \pi_{T}$ and has continuous derivatives $g_{t}, g_{x_{i}}, g_{x_{i} x_{j}}$, and we integrate over π_{τ}; integrating by parts, we find that

$$
\begin{equation*}
\left.\int_{E_{n}} \omega g\right|_{t=\tau} d x-\iint_{\pi_{\tau}} \mathscr{L}(g) w d x d t=\left.\int_{E_{n}} w g\right|_{t=0} d x-\iint_{\pi_{\tau}} z_{i} e_{i} g d x d t \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{L}(g)=g_{t}+a_{i} g_{x_{i}}-c g+\varepsilon \Delta g \tag{4.9}
\end{equation*}
$$

Lemma 4. Let the function $q(t, x)$ be continuous in π_{τ} and satisfy the inequality $\mathcal{Q}(q) \geq 0$; let $|q(t, x)| \leq q^{0}$ and $q(r, x) \equiv 0$ for $|x| \geq r\left(q^{0}\right.$ and r are constants). Then for

$$
(t, x) \in \Omega=\{(t, x):|x| \geqslant r+H(\tau-t), 0 \leqslant t \leqslant \tau\}, \text { where } \quad H=1+\sup _{(t, x) \in \pi_{\tau}}\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2},
$$

the following estimate is fulfilled:

$$
\begin{aligned}
& q(t, x) \leqslant q^{0} \exp \left[\varepsilon^{-1}(H(\tau-t)+r-|x|)\right. \\
& \left.\quad+\tau \sup _{\pi_{\tau}}|c|+(t-\tau) \inf _{\pi_{\tau}} c\right] \equiv Q_{\varepsilon}(t, x)
\end{aligned}
$$

Proof. It is easily verified that $\mathcal{L}\left(Q_{\epsilon}\right) \leq 0$ in Ω, and that

$$
\left.Q_{\varepsilon}\right|_{|x|=r+H(\tau-t)} \geqslant q^{0},\left.\quad Q_{\varepsilon}\right|_{\substack{t=\tau \\|x| \geqslant r}} \geqslant 0
$$

Hence, by the maximum principle, $q(t, x) \leq Q_{\epsilon}(t, x)$ everywhere in Ω.
We fix a number $r>1$ and define the function $q_{h}(t, x)$ as the solution of Cauchy's problem for the equation $\mathcal{L}\left(q_{h}\right)=0$ in π_{τ} with the initial condition $q_{h}(\tau, x)=\beta^{h}(x)$, where $\beta(x)=\operatorname{sign} w(\tau, x)$ for $|x| \leq r-h, \beta(x) \equiv 0$ for $|x|>r-h$. Obviously, by the maximum principle, $\left|q_{h}(t, x)\right| \leq$ const. In (4.8) we set

$$
\begin{equation*}
g=q_{n}(t, x) \eta_{m}(|x|), \quad \eta_{m}(\sigma)=1-\int_{-\infty}^{\sigma} \delta(\sigma-m) d \sigma \tag{4.10}
\end{equation*}
$$

where m is a natural number. Transferring the derivatives in x_{i} from the function q_{h} in the integral of $2 \epsilon w\left(q_{h}\right)_{x_{i}}\left(\eta_{m}\right)_{x_{i}}$, we find that

$$
\begin{gather*}
\left.\int_{E_{n}} w q_{h} \eta_{m}\right|_{t=\tau} d x=-\iint_{\pi_{\tau}}\left[a_{i} \frac{x_{i}}{|x|} \delta(|x|-m) w\right. \\
\left.-2 \varepsilon w_{x_{i}} \frac{x_{i}}{|x|} \delta(|x|-m)+\varepsilon w \Delta \eta_{m}\right] q_{h} d x d t \\
-\int_{\pi_{\tau}} z_{i} z_{i} q_{h} \eta_{m} d x d t+\left.\int_{E_{n}} w q_{h} \eta_{m}\right|_{t=0} d x \tag{4.11}
\end{gather*}
$$

We note that, by Lemma 4, for $\epsilon \in[0,1]$

$$
\left|q_{h}(t, x)\right| \leqslant \text { const } \cdot \exp \left(-\frac{|x|}{2}\right)
$$

and for $R \geq \bar{r}=r+(1+\bar{N}) T>1$

$$
\int_{E_{n} \backslash K_{R}}\left|q_{h}(0, x)\right| d x \leqslant \mathrm{const} \cdot R^{n-\mathrm{I}} \cdot \exp \left[\varepsilon^{-1}(\bar{r}-R)\right]
$$

(here Lemma 4 is applied to the functions $\pm q_{h}(t, x)$). First letting m approach $+\infty$ in (4.11), and then letting h approach zero, we find that

$$
\begin{aligned}
& \int_{K_{r}}|w(\tau, x)| d x \leqslant \text { const } \cdot\left\{|z|+\omega_{R}(|z|)\right. \\
& \left.\quad+R^{n-1} \exp \left[\varepsilon^{-1}(\vec{r}-R)\right]\right\}=\lambda_{R}^{\varepsilon}(|z|)
\end{aligned}
$$

Consequently for $0 \leq t \leq T$

$$
\begin{equation*}
J_{r}\left(u^{\varepsilon}, \Delta x\right) \leqslant \min _{R \geqslant \bar{r}} \lambda_{R}^{\mathrm{I}}(|\Delta x|)=\omega_{r}^{x}(|\Delta x|) \tag{4.12}
\end{equation*}
$$

where the function $\omega_{r}^{x}(\sigma)$ does not depend on ϵ.
To estimate the modulus of continuity in t, we use the following interpolation theorem.
Lemma 5. Let the function $u(t, x)$ be measurable in the cylinder $\{(t, x)\}=[0, T] \times K_{r+\rho}$ $(0<2 \rho \leq r)$ and $|u(t, x)| \leq M=$ const; for $0 \leq t \leq T,|\Delta x| \leq \rho$ let

$$
J_{r}(u(t, x), \Delta x) \leqslant \omega_{r}^{x}(|\Delta x|)
$$

and for any $t, t+\Delta t \in[0, T], \Delta t>0$, and any twice smooth function $g(x)$ which is finite in K_{r} let

$$
\begin{align*}
& \left|\int_{K_{r}} g(x)[u(t+\Delta t, x)-u(t, x)] d x\right| \\
& \leqslant c_{r} \Delta t \max _{x \in K_{r}}\left[|g|+\left|g_{x}\right|+\sum_{i, j=1}^{n}\left|g_{x_{i} x_{j}}\right|\right] . \tag{4.13}
\end{align*}
$$

Then for $0 \leq t \leq t+\Delta t \leq T$

$$
\begin{gather*}
I_{r}(u(t, x), \Delta t) \equiv \int_{K_{r}}|u(t+\Delta t, x)-u(t, x)| d x \\
\leqslant \text { const } \cdot \min _{0<h \leqslant p}\left[h+\omega_{r}^{x}(h)+\frac{\Delta t}{h^{2}}\right] \tag{4.14}
\end{gather*}
$$

where the constant depends only on c_{r}, M, r and n.
Proof. In (4.13) we set $g(x)=\beta^{h}(x)$, where $\beta(x)=\operatorname{sign}(u(t+\Delta t, x)-u(t, x))$ for $|x| \leq r-h$, $\beta(x) \equiv 0$ for $|x|>r-h$ and $h \leq \rho$. Noting that $|g(x)| \leq 1,\left|g_{x}\right| \leq$ const $\cdot h^{-1},\left|g_{x_{i} x_{j}}\right| \leq$ const $\cdot h^{-2}$, we obtain the following estimate for the function $w(x) \equiv u(t+\Delta t, x)-u(t, x)$:

$$
\begin{gathered}
\left|\int_{K_{r-2 h}} w(x)(\operatorname{sign} w)^{h} d x\right| \leqslant\left|\int_{K_{T}} w(x) \beta^{h}(x) d x\right|+\text { const } \cdot h \\
\leqslant \text { const } \cdot\left[h+(\Delta t) h^{-2}\right]
\end{gathered}
$$

Applying Lemma 1 to the function $w(x)$ in $K_{2 r^{-} h}$ (see (2.10)), we further find that

$$
I_{r}(u(t, x), \Delta t) \leqslant \text { const } \cdot\left[h+\omega_{r}^{x}(h)+\frac{\Delta t}{h^{2}}\right]
$$

for any $h \in(0, \rho)$, and this is equivalent to estimate (4.14).
Lemma 5 allows us to estimate the modulus of continuity in L_{1} with respect to t for the solution $u^{\epsilon}(t, x)$ of equation (1.3) in terms of the modulus of continuity $\omega_{r}^{x}(\sigma)$ with respect to the space variables. In fact, it easily follows directly from equation (1.3) for $0<\epsilon<1$ that estimate (4.13) holds for the function $u^{\epsilon}(t, x)$ with constant $c_{r}=$ const $\cdot r^{n}$ (we may assume that $r \geq 2$ and $\rho=1$). Thus

$$
\begin{equation*}
I_{r}\left(u^{\varepsilon}(t, x), \Delta t\right) \leqslant \omega_{r}^{t}(\Delta t)=\mathrm{const} \cdot \min _{0<h \leqslant 1}\left[h+\omega_{r}^{x}(h)+\frac{\Delta t}{h^{2}}\right] \tag{4.15}
\end{equation*}
$$

We now prove the analogs of estimates (4.12) and (4.15) in case B. To do this we note that in the case of a smooth initial function $u_{0}(x)$ inequality (4.3) implies the estimate

$$
\begin{equation*}
\int_{K_{R}}\left|u_{0 x}\right| d x \leqslant \sqrt{n c}\left(R^{\mu}+1\right) \tag{4.16}
\end{equation*}
$$

and that the functions $v^{k}(t, x) \equiv u_{x_{k}}^{\epsilon}(t, x)$ satisfy the parabolic system ${ }^{1)}$

$$
\begin{align*}
v_{t}^{k} & +\frac{d}{d x_{i}}\left[\varphi_{i u}\left(t, x, u^{\varepsilon}\right) v^{k}\right]+\varphi_{i u x_{k}}(\ldots) v^{i}+\varphi_{i x_{k} x_{i}}(\ldots) \\
& +\psi_{u}(\ldots) v^{k}+\psi_{x_{k}}(\ldots)=\varepsilon \Delta v^{k}, \quad k=1, \ldots, n . \tag{4.17}
\end{align*}
$$

We multiply the k th equation in (4.17) by a sufficientiy smooth function $g^{k}(t, x)$ which is finite in x in the band π_{τ}, integrate over π_{τ}, and then sum over k from 1 to n; integrating by parts, we find that

$$
\begin{align*}
& \left.\int_{E_{n}} v^{k} g^{k}\right|_{t=\tau} d x-\int_{\pi_{\tau}} \mathscr{L}_{k}(g) v^{k} d x d t \\
= & \left.\int_{E_{n}} v^{k} g^{k}\right|_{t=0} d x-\iint_{\pi_{\tau}}\left(\varphi_{i x_{k} x_{i}}+\psi_{x_{k}}\right) g^{k} d x d t \tag{4.18}
\end{align*}
$$

where

$$
\begin{gathered}
g=\left(g^{1}, \ldots, g^{n}\right) \\
\mathscr{L}_{k}(g)=g_{t}^{k}+a_{i} g_{x_{i}}^{k}-\left[\varphi_{k u x_{i}}+\delta_{i k} \psi_{u}\right] g^{i}+\varepsilon \Delta g_{k} \\
a_{i}=\varphi_{i u}\left(t, x, u^{\varepsilon}\right), \quad k=1, \ldots, n
\end{gathered}
$$

We fix a number $r>0$ and let $q_{h}^{k}(t, x), k=1, \cdots, n$, designate the solution of Cauchy's problem for the parabolic system $\mathscr{L}_{k}\left(q_{h}\right)=0$ in π_{τ} with the initial condition $q_{h}^{k}(\tau, x)=\left(\beta_{k}(x)\right)^{h}$, where $\beta_{k}(x)=$ $\operatorname{sign} v^{k}(r, x)$ for $|x| \leq r-h, \beta_{k}(x) \equiv 0$ for $|x|>r-h$ (see [21]). Since

$$
0=2 \mathscr{L}_{k}\left(q_{h}\right) q_{h}^{k} \leqslant\left(q_{h}^{2}\right)_{t}+a_{i}\left(q_{h}^{2}\right)_{x_{i}}+\text { const } \cdot q_{h}^{2}+\varepsilon \Delta q_{h}^{2} \equiv \mathscr{L}\left(q_{h}^{2}\right), q_{h}^{2}=q_{h}^{k} q_{h}^{k}
$$

it follows by the maximum principle that $\left|q_{h}^{k}(t, x)\right| \leq q^{0}=$ const, and, by Lemma 4 , for $\epsilon \in(0,1]$

$$
\left|q_{h}^{k}(t, x)\right| \leqslant \text { const } \cdot \exp \left(-\frac{|x|}{2}\right)
$$

[^2]Substituting $g^{k}=q_{h}^{k} \eta_{m}(|x|)$ in (4.18) (see (4.10)) and, as in case A, first letting m approach ∞ and then letting h approach zero, we obtain the estimate

$$
\int_{K_{r}} \sum_{k=1}^{n}\left|v^{k}\right| d x=\text { const } \cdot\left(1+\int_{E_{n}} e^{-\frac{|x|}{2}}\left|u_{0 x}(x)\right| d x\right)
$$

Taking (4.16) into account, we find that

$$
\begin{gathered}
\int_{E_{n}} e^{-\frac{|x|}{2}}\left|u_{0 x}\right| d x=\int_{K_{1}}+\sum_{m=1}^{\infty} \int_{K_{m+1} \backslash K_{m}} \\
\leqslant 2 \sqrt{n} c+\sqrt{n} c \sum_{m=1}^{\infty} e^{-\frac{m}{2}}\left[1+(m+1)^{\mu}\right]=\mathrm{const} .
\end{gathered}
$$

Consequently in case B we have the estimates

$$
\begin{align*}
J_{r}\left(u^{\varepsilon}, \Delta x\right) & \leqslant \text { const } \cdot|\Delta x|=\omega_{r}^{x}(|\Delta x|), \\
I_{r}\left(u^{\varepsilon}, \Delta t\right) & \leqslant \mathrm{const} \cdot|\Delta t|^{1 / 3}=\omega_{r}^{t}(|\Delta t|) . \tag{4.19}
\end{align*}
$$

To derive estimates (4.12) and (4.15) in the general case O we note that the constant c in (4.3) and (4.16) is a factor in const in estimates (4.19). We let $u_{h}^{\epsilon}(t, x)$ designate the solution of Cauchy's problem for equation (1.3) with the initial condition $u_{h}^{\epsilon}(0, x)=u_{0}^{h}(x), 0<h \leq 1$; since $\left|\left(u_{0}^{h}\right){ }_{x}\right| \leq M_{0} h^{-1}$, and consequently

$$
\int_{K_{R}}\left|u_{0}^{h}(x+\Delta x)-u_{0}^{h}(x)\right| d x \leqslant \text { const } \cdot h^{-1} R^{n}|\Delta x|
$$

it follows by the above remark that

$$
\begin{equation*}
J_{r}\left(u_{h}^{\varepsilon}, \Delta x\right) \leqslant \frac{\text { const }}{h}|\Delta x|, \quad I_{r}\left(u_{h}^{\varepsilon}, \Delta t\right) \leqslant \frac{\text { const }}{h}|\Delta t|^{1 / s} \tag{4.20}
\end{equation*}
$$

The function $w=u_{h}^{\epsilon}(t, x)-u^{\epsilon}(t, x)$ satisfies an equation of the form (4.7), where $e_{i} \equiv 0(i=1, \cdots, n)$, and

$$
\begin{aligned}
& a_{i}(t, x)=\int_{0}^{\mathbf{1}} \varphi_{i u}\left(t, x, \alpha u_{h}^{\varepsilon}+(1-\alpha) u^{\varepsilon}\right) d \alpha \\
& c(t, x)=\int_{0}^{\mathrm{I}} \psi_{u}\left(t, x, \alpha u_{h}^{\varepsilon}+(1-\alpha) u^{\varepsilon}\right) d \alpha
\end{aligned}
$$

Estimating the norm of the function $w(t, x)$ for $t=\tau$ in $L_{1}\left(K_{r}\right)$ in exactly the same way as the norm of the function w satisfying equation (4.7), we obtain that for $0 \leq t \leq T$

$$
\int_{K_{r}}\left|u_{h}^{\varepsilon}(t, x)-u^{\varepsilon}(t, x)\right| d x \leqslant \mathrm{const} \cdot \int_{E_{n}} e^{\frac{-|x|}{2}}\left|u_{0}^{h}(x)-u_{0}(x)\right| d x .
$$

It is well known that for any $R \geq 1$

$$
\int_{K_{R}}\left|u_{0}^{h}(x)-u_{0}(x)\right| d x \leqslant \omega_{R}(h)
$$

where $\omega_{R}(\sigma)$ is the function in inequality (4.4) (for example, the modulus of continuity of the function $u_{0}(x)$ in $L_{1}\left(K_{R}\right)$). Consequently

$$
\begin{equation*}
\int_{K_{r}}\left|u_{h}^{\varepsilon}(t, x)-u^{\varepsilon}(t, x)\right| d x \leqslant \text { const } \cdot\left[\omega_{R}(h)+R^{n-1} \exp \left(-\frac{R}{2}\right)\right] \quad \forall R \geqslant 1 . \tag{4.21}
\end{equation*}
$$

From (4.20) and (4.21) we conclude that for $0 \leq t \leq T$

$$
\begin{aligned}
J_{r}\left(u^{\varepsilon}, \Delta x\right) \leqslant \text { const } \cdot \min _{\substack{0<h \leqslant 1 \\
1 \leqslant R<+\infty}} & {\left[\omega_{R}(h)+R^{n-1} \exp \left(-\frac{R}{2}\right)+|\Delta x| h^{-1}\right] } \\
& =\omega_{r}^{x}(|\Delta x|) \\
I_{r}\left(u^{\varepsilon}, \Delta t\right) \leqslant \text { const } \cdot \min _{\substack{0<h \leqslant 1 \\
1 \leqslant R<+\infty}} & {\left[\omega_{R}(h)+R^{n-1} \exp \left(-\frac{R}{2}\right)+|\Delta t|^{1 / 3} h^{-1}\right] } \\
& =\omega_{r}^{t}(|\Delta t|) .
\end{aligned}
$$

Thus in each of the cases A, B and O we can find functions $\omega_{r}^{x}(\sigma)$ and $\omega_{r}^{t}(\sigma)$ which do not depend on ϵ such that for $0 \leq t \leq T$

$$
\begin{equation*}
J_{r}\left(u^{\varepsilon}, \Delta x\right)+I_{r}\left(u^{\varepsilon}, \Delta t\right) \leqslant \omega_{r}^{x}(|\Delta x|)+\omega_{r}^{t}(|\Delta t|) \tag{4.22}
\end{equation*}
$$

(however, this estimate was obtained under an additional assumption concerning sufficient smoothness of the function $u_{0}(x)$).

Let $\Phi(u)$ be an arbitrary twice smooth convex downward function on the line $-\infty<u<+\infty$. We multiply equation (1.3) by the function $\Phi^{\prime}(u) f(t, x)$, where $f(t, x) \geq 0$ is a twice smooth function which is finite in π_{T}, and we integrate over π_{T}. Transferring the derivatives with respect to t and x_{i} to the test function f and taking into account that $\Phi^{\prime \prime}(u)_{u_{x_{i}}{ }^{u} x_{i}} f \geq 0$, we obtain the inequality

$$
\begin{gathered}
\iint_{\pi_{T}}\left\{\Phi(u) f_{t}+\int_{k}^{u} \Phi^{\prime}(u) \varphi_{i u}(t, x, u) d u f_{x_{i}}-\Phi^{\prime}(u) \varphi_{i x_{i}}(\ldots) f\right. \\
\left.+\left[\int_{k}^{u} \Phi^{\prime}(u) \varphi_{i u x_{i}}(\ldots) d u-\Phi^{\prime}(u) \psi(\ldots)\right] f+\varepsilon \Phi(u) \Delta f\right\} d x d t \geqslant 0
\end{gathered}
$$

where k is a constant. Hence (using an approximation of the function $|u-k|$ by twice smooth convex functions $\Phi(u)$) we conclude that this inequality also holds for $\Phi=|u-k|$:

$$
\begin{gather*}
\iint_{\pi_{T}}\left\{|u-k|\left(f_{t}+\varepsilon \Delta f\right)+\operatorname{sign}(u-k)\left[\varphi_{i}(t, x, u)-\varphi_{i}(t, x, k)\right] f_{x_{i}}\right. \\
\left.-\operatorname{sign}(u-k)\left[\varphi_{i x_{i}}(t, x, k)+\psi(t, x, u)\right] f\right\} d x d t \geqslant 0 . \tag{4.23}
\end{gather*}
$$

To free ourselves from the requirement that the function $u_{0}(x)$ be sufficiently smooth, we make the following observations, which are based on elementary considerations of approximation and compactness. We approximate the bounded measurable function $u_{0}(x)$ by the mean functions $u_{0}^{h}(x)$ and note that the moduli of continuity in L_{1} of the functions $u_{0}^{h}(x)$ are estimated in terms of the modulus of continuity of the function $u_{0}(x)$ (see (2.9)). Hence, for the classical solutions $u_{h}^{\epsilon}(t, x)$ of Cauchy's
problem for equation (1.3) with initial functions $u_{0}^{h}(x)$, estimates (4.6) and (4.22) hold uniformly for $h \epsilon(0,1]$ and $\epsilon \in(0,1]$. On the other hand, inner estimates of Schauder type (see [19], Chapter 7, 3 and 4) hold for the solutions $u_{h}^{\epsilon}(t, x)$ with fixed $\epsilon>0$ as a result of our smoothness assumptions for the functions ϕ_{i} and ψ. Using these estimates, we can find a subsequence $u_{h_{m}}^{\epsilon}$ ($\left.t, x\right)$ which converges uniformly to the function $u^{\epsilon}(t, x)$ in any cylinder $\{(t, x)\}=[\rho, T] \times K_{R}, \rho>0$ along with the derivatives in equation (1.3). Obviously for $t>0$ the twice smooth function $u^{\epsilon}(t, x)$ satisfies equation (1.3) in the usual sense, estimates (4.6) and (4.22) hold for it, and for any $r>0$ and $\rho \in[0, T]$

$$
\begin{equation*}
\int_{K_{r}}\left|u^{\varepsilon}(\rho, x)-u_{0}(x)\right| d x \leqslant \omega_{r}^{t}(\rho) \tag{4.24}
\end{equation*}
$$

It is also clear that the function $u^{\epsilon}(t, x)$ satisfies inequality (4.23). We shall henceforth understand the functions $u^{\epsilon}(t, x)$ to be the solutions of problem (1.3), (1.2) constructed in this way.
2. Justification of the vanishing viscosity method. Existence theorem for a generalized solution of problem (1.1), (1.2).

Theorem 4. Let the assumptions of the general case O be fulfilled. Then the solutions $u^{\epsilon}(t, x)$ of problem (1.3), (1.2) converge as $\epsilon \rightarrow 0$ almost everywhere in π_{T} to a function $u(t, x)$ which is a generalized solution of problem (1.1), (1.2).

Proof. By the estimates in subsection 1 of this section, the family $\left\{u^{\epsilon}(t, x)\right\}$ is compact in the L_{1}-norm in any cylinder $[0, T] \times K_{r}, r=1,2,3, \cdots$. Using the diagonal process, we can find a subsequence $u{ }^{\epsilon_{m}}(t, x)$ which converges almost everywhere in π_{T} to a bounded function $u(t, x)$. Passing to the limit as $\epsilon_{m} \rightarrow 0$ in inequality (4.23), where $u=u^{\epsilon_{m}}$, we find that the function $u(t, x)$ satisfies requirement 1) of the definition of a generalized solution of problem (1.1), (1.2) (here we take into account that only the first derivatives of the function f appear in the integrand in inequality (2.1) and that the smooth finite function $f(t, x) \geq 0$ can be uniformly approximated along with its first derivatives using twice smooth finite nonnegative functions). We can obviously find a set \mathcal{E} of measure zero on $[0, T]$ such that if $t \in[0, T] \backslash \bar{E}$, then the sequence $u^{{ }^{\epsilon} m}(t, x)$ converges to $u(t, x)$ almost everywhere in E_{n}. Passing to the limit as $\epsilon=\epsilon_{m} \rightarrow 0$ in inequality (4.24), where $\rho \in[0, T] \backslash \mathcal{G}$, we conclude that the function $u(t, x)$ satisfies requirement 2) of the definition of a generalized solution of problem (1.1), (1.2).

The function $u(t, x)$ is hence a generalized solution of problem (1.1), (1.2). By the uniqueness theorem for the generalized solution of this problem that was proved in $\oint 3$, the sequence $u^{\epsilon}(t, x)$ converges to the function $u(t, x)$ as ϵ approaches zero in any way.

Theorem 5. A generalized solution of problem (1.1), (1.2) exists if conditions 1)-4) in the beginning of this section are fulfilled.

Proof. In case O, the existence of a generalized solution was proved in Theorem 4. Using the finiteness property of the domain of dependence of the generalized solution on the initial condition, we discard superfluous assumptions concerning boundedness of certain derivatives of ϕ_{i} and ψ (see condition B). Along with equation (1.1) we consider the sequence of equations

$$
\begin{gathered}
u_{t}+\frac{d}{d x_{i}}\left[\eta_{m}(|x|) \varphi_{i}(t, x, u)\right]-\left(\eta_{m}\right)_{x_{i}} \varphi_{i}(t, x, u)+\eta_{m} \psi(t, x, u)=0 \\
\eta_{m}(\sigma)=1-\int_{-\infty}^{\sigma} \delta(\sigma-m) d \sigma, \quad \eta_{m}=\eta_{m}(|x|)
\end{gathered}
$$

Since for the m th equation the corresponding function $\Psi_{m}=\eta_{m} \Psi(t, x, u)$ and the corresponding functions $\phi_{i m}$ and ψ_{m} are finite in x, this equation satisfies all the requirements of case O. We let $u_{m}(t, x)$ designate the generalized solution of Cauchy's problem for the m th equation with initial condition (1.2). Noting that $\left|\left(\phi_{i m}\right)_{u}\right| \leq\left|\phi_{i u}\right|$, we fix a number $r>0$. By Theorem 1 , all the functions $u_{m}(t, x)$ will coincide almost everywhere in the cylinder $[0, T] \times K_{r}$ for $m \geq \bar{r}+1=r+\bar{N} T+1$ (we note that $\eta_{m}(|x|) \equiv 1$ for $\left.|x| \leq m-1\right)$. Hence the sequence $u_{m}(t, x)$ converges almost everywhere in π_{T} to a bounded measurable function $u(t, x)$; since in any cylinder $[0, T] \times K_{r}$ the function $u(t, x)$ coincides with the solution $u_{m_{r}}(t, x)$ where $m_{r}=2+[\bar{r}]$, it follows that the function $u(t, x)$ is a generalized solution of problem (1.1), (1.2).
3. Proof of Theorem 3 for the case of equation (1.5). By Theorem 4, any generalized solution of problem (1.5), (1.2) can be obtained as the limit as $\epsilon \rightarrow 0$ of solutions $u^{\epsilon}(t, x)$ of Cauchy's problem for the parabolic equation

$$
\begin{equation*}
u_{t}+\left(\varphi_{i}(u)\right)_{x_{i}}=\varepsilon \Delta u \tag{4.25}
\end{equation*}
$$

with initial condition (1.2). Since for any classical solutions $u_{1}(t, x)$ and $u_{2}(t, x)$ of equation (4.25), where $u_{1}(0, x) \geq u_{2}(0, x)$, the maximum principle implies that the inequality $u_{1}(t, x) \geq u_{2}(t, x)$ holds everywhere in π_{T}, it follows from the construction of the functions $u^{\epsilon}(t, x)$ and $v^{\epsilon}(t, x)$ which approximate the functions $u(t, x)$ and $v(t, x)$ considered in Theorem 3 that $u^{\epsilon}(t, x) \geq v^{\epsilon}(t, x)$ in π_{T} for any $\epsilon \in(0,1]$. Consequently $u(t, x) \geq v(t, x)$ almost everywhere in π_{T}.

$\oint 5$. Remarks and additions

1°. All the results of this paper can easily be carried over to the case of the following equation, which is more general than (1.1):

$$
\begin{gather*}
\frac{d}{d t} \varphi_{0}(t, x, u)+\frac{d}{d x_{i}} \varphi_{i}(t, x, u)+\psi(t, x, u)=0 \tag{5.1}\\
\varphi_{0 u}(t, x, u) \neq 0
\end{gather*}
$$

In particular, the corresponding results concerning stability and uniqueness of the generalized solution of problem (5.1), (1.2) are valid under the same conditions on the functions $\phi_{i}(t, x, u), i=$ $0,1, \cdots, n$ and $\psi(t, x, u)$ as in the beginning of $\S 3$. However, in the case $\phi_{0}(t, x, u) \equiv u$, considered in $\S 3$, we can use a slight modification of the proof of Theorem 1 to weaken the assumptions concerning smoothness of these functions in t.
2°. The requirement that the generalized solution of problem (1.1), (1.2) be bounded in π_{T} can be replaced by a boundedness condition on any compact set; a uniqueness theorem holds for such a solution, for example in the class of functions $u(t, x)$ such that as $R \rightarrow \infty$

$$
\sup _{\substack{(t, x) \in\{0, T] \times K_{R} \\|v| \leqslant \sup |u(t, x)| \\(t, x) \in[0, T] \times K_{R}}}\left(\sum_{i=1}^{n} \varphi_{i v}^{2}(t, x, v)\right)^{1 / 2}=o(R) .
$$

3°. From Theorem 1 we can obviously derive a proposition on compactness of the family of generalized solutions of problem (1.1), (1.2) in the L_{1}-norm, assuming that the corresponding initial functions are uniformly bounded in C and are equicontinuous in L_{1} on any compact set.
4°. The smoothness requirements on the functions $\phi_{i}(t, x, u)$ and $\psi(t, x, u)$ under which the existence of a generalized solution was proved (see the beginning of §4) are certainly excessive even with the methods of $\$ 4$. But it is not hard to discard the superfluous requirements. In fact, it follows from the proof of Theorem 4 that to construct a generalized solution of problem (1.1), (1.2) using the vanishing viscosity method it suffices to prove the existence of a solution $u^{\epsilon}(t, x)$ of problem (1.3), (1.2) which is continuous for $t>0$ and satisfies inequality (4.23) as well as estimates (4.6) and (4.22) which do not depend on $\epsilon \in(0,1]$. Estimate (4.6) is ensured by assumptions (4.1) and (4.2); a quick analysis of the derivation of estimate (4.22) in case O shows that this estimate depends (if we are interested in the smoothness assumption for the functions ϕ_{i} and ψ) only on the least upper bound of the moduli of the derivatives $\phi_{i u}, \phi_{i u x_{j}}, \phi_{i x_{i} x_{j}}, \psi_{u}, \psi_{x_{k}}$ in D_{M}. Using elementary methods for approximating the functions ϕ_{i} and ψ by sufficiently smooth functions, making use of estimates of Schauder type for fixed ϵ (see [19], Chapter 7, 3, 4), and taking into account the method of proof of Theorem B, we conclude that a generalized solution of problem (1.1), (1.2) exists when the following requirements on the functions ϕ_{i} and ψ are fulfilled: these functions are continuous, they have continuous derivatives $\phi_{i u}, \phi_{i u x_{j}}, \phi_{i x_{i} x_{j}}, \psi_{u}, \psi_{x_{k}}$, and the functions $\phi_{i u}(t, x, u)$ and $\Psi(t, x, u)$ are bounded in the regions D_{M}; inequalities (4.1) and (4.2) are fulfilled. In particular, in the case of equation (1.5) we only need continuous differentiability of the functions ϕ_{i} (u) (see also [15]).
5°. It is easily seen that the derivation of the estimates of the moduli of continuity in case B is still suitable when the following inequality is fulfilled instead of (4.3):

$$
\int_{\dot{K}_{R}}\left|u_{0}(x+\Delta x)-u_{0}(x)\right| d x \leqslant c \cdot \exp (\operatorname{const} R)|\Delta x|
$$

6°. The method of obtaining the norm estimate for the function $w=u^{\epsilon}(t, x+\Delta x)-u^{\epsilon}(t, x)$ in L_{1} in case A (see $\oint 4$, subsection 1) is also applicable to prove uniqueness and stability in L_{1} of the bounded solutions $u^{\epsilon}(t, x)$ of problem (1.3), (1.2) constructed at the end of subsection 1 of \oint_{4} in the sense of the integral identity

$$
\begin{gathered}
\iint_{\pi_{T}}\left\{u f_{t}+\varphi_{i}(t, x, u) f_{x_{i}}-\psi(t, x, u) f+\varepsilon u \Delta f\right\} d x d t \\
+\int_{E_{n}} f(0, x) u_{0}(x) d x=0 .
\end{gathered}
$$

An analogous investigation of the difference of the two solutions $u^{\epsilon}(t, x)$ and $v^{\epsilon}(t, x)$ of this problem with initial functions $u_{0}(x)$ and $v_{0}(x)$, respectively, leads to the following estimate (for $0<\epsilon \leq 1$):

$$
\int_{K_{r}}\left|u^{\varepsilon}(t, x)-v^{\varepsilon}(t, x)\right| d x \leqslant \mathrm{const} \cdot \int_{E_{n}} e^{-|x|}\left|u_{0}(x)-v_{0}(x)\right| d x
$$

We note that these results (like the L_{1} estimates in §4) are based on the elementary fact (see Lemma 4) of the decrease as $|x| \rightarrow \infty$ of the solutions of Cauchy's problem with finite initial functions for the equation ($\mathcal{Q}(g)=0$), which is conjugate to the variation of the nonlinear parabolic equation under consideration.
7°. Cauchy's problem for quasilinear hyperbolic systems. The approach to defining a generalized solution of equation (1.1) used in this article permits a natural generalization to the case of
quasilinear hyperbolic systems (here we only consider systems of the form (1.7)). We first note that requirement 1) of the definition of a generalized solution of problem (1.1), (1.2) (see $\S 2$, Definition 1) generalizes to the case of a system in the following (equivalent) form: for an arbitrary convex downward function $\Phi(u)$ and any smooth function $f(t, x) \geq 0$ which is finite in π_{T} we have the inequality

$$
\begin{align*}
& \iint_{\pi_{T}}\left\{\Phi(u) f_{t}+\int_{0}^{u} \Phi^{\prime}(u) \varphi_{i u}(t, x, u) d u f_{x_{i}}-\Phi^{\prime}(u) \varphi_{i x_{i}}(\ldots) f\right. \\
& \left.\quad+\left[\int_{0}^{u} \Phi^{\prime}(u) \varphi_{i u x_{i}}(\ldots) d u-\Phi^{\prime}(u) \psi(\ldots)\right] f\right\} d x d t \geqslant 0 \tag{5.2}
\end{align*}
$$

For $\Phi \equiv|u-k|$ inequality (5.2) coincides with (2.1). We easily see that, conversely, inequality (2.1) (for any $k!$) implies (5.2). In fact, as we noted in $\S 2$, if the function $u(t, x)$ satisfies inequality (2.1), then it also satisfies identity (1.6), and hence inequality (5.2) with the function $\Phi_{k}(u)=\max (u-k, 0)$; it remains to note that any function $\Phi(u)$ which is convex downward on $[-M, M]$ can be approximated by "inscribed broken lines", i.e. functions of the form $\Phi(-M)+\Phi$ '($-M)(u+M)+\sum_{i=1}^{m} \alpha_{l} \Phi_{k_{l}}(u)$, where $\alpha_{l}=$ const $\geq 0,-M<k_{l}<k_{l+1}<M$.

We now consider the quasilinear hyperbolic system

$$
\begin{equation*}
\frac{\partial \varphi_{0}(u)}{\partial t}+\frac{\partial \varphi_{i}(u)}{\partial x_{i}}=0, \tag{5.3}
\end{equation*}
$$

where $u=,\left(u^{1}, \cdots, u^{N}\right), N \geq 2, \phi_{i}(u)=\left(\phi_{i}^{1}(u), \cdots, \phi_{i}^{N}(u)\right), i=0,1, \cdots, n$. We introduce the simple viscosity $\varepsilon \Delta u, \epsilon=$ const >0 in system (5.3) and assume that the generalized solution which interests us of Cauchy's problem for the system (5.3) with the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0}(x) \tag{5.4}
\end{equation*}
$$

can be obtained as the limit as $\epsilon \rightarrow+0$ (for example, in L_{1}) of solutions $u^{\epsilon}(t, x)$ of Cauchy's problem for the system

$$
\begin{equation*}
\frac{\partial \varphi_{0}}{\partial t}+\frac{\partial \varphi_{i}(u)}{\partial x_{i}}=\varepsilon \Delta u \tag{5.5}
\end{equation*}
$$

with the initial condition (5.4), where

$$
\sup _{\pi_{T}}\left|u^{\varepsilon}\right|+\int_{0}^{T} \int_{K_{r}}\left|u_{x_{i}}^{\varepsilon}\right| d x d t \leqslant \text { const }
$$

uniformly in ϵ (the integral estimate assumption can be weakened, and in many cases can be entirely removed). Let the components $H^{k}(u)$ of the vector function $H(u)=\left(H^{1}(u), \ldots, H^{N}(u)\right)$ be smooth functions, and let the matrix $H^{\prime}(u)=\left\|H_{u}^{k}\right\|$ be nonnegative. For any real vector $\xi=\left(\xi^{1}, \ldots, \xi^{N}\right)$

$$
\begin{equation*}
\left(H^{\prime}(u) \xi, \xi\right) \geqslant 0 \tag{5.6}
\end{equation*}
$$

(for any values of u under consideration). We multiply the system (5.5) by the vector $H(u)$ using scalar multiplication, and we require that the expressions $\left(H(u), \phi_{0}^{\prime} u_{t}\right)$ and ($\left.H(u), \phi_{i}^{\prime} u_{x_{i}}\right)$ ($\phi_{i}^{\prime}=\left\|\phi_{i u}^{k}\right\|$) be total derivatives with respect to t and x^{i} of certain functions $\Phi(u)$ and $\Psi_{i}(u)$ respectively; the latter requirement means that $H(u)$ must satisfy the following system of linear equations, which is generally overdetermined:

$$
\begin{equation*}
\operatorname{rot}\left(\varphi_{i}^{{ }^{*}}(u) H(u)\right)=0, \quad i=0,1, \ldots, n \tag{5.7}
\end{equation*}
$$

(this system is not overdetermined only if $n=1, N=2$; here $\phi_{i}^{\prime *}$ is the transpose matrix of ϕ_{i}^{\prime}). Taking (5.6) into account, we have

$$
\begin{align*}
& \frac{\partial \Phi(u)}{\partial t}+\frac{\partial \Psi_{i}(u)}{\partial x_{i}}=\varepsilon \frac{\partial}{\partial x_{i}}\left(H(u), \frac{\partial u}{\partial x_{i}}\right) \\
& -\varepsilon\left(H^{\prime}(u) u_{x_{i}}, u_{x_{i}}\right) \leqslant \varepsilon \frac{\partial}{\partial x_{i}}\left(H(u), \frac{\partial u}{\partial x_{i}}\right) \tag{5.8}
\end{align*}
$$

Multiplying inequality (5.8) by the test function $f(t, x) \geq 0$, integrating over π_{T} (interchanging the first derivatives with respect to t and x_{i} using integration by parts on f) and passing to the limit as $\epsilon \rightarrow+0$, we find that the limit function $u(t, x)$ satisfies the inequality

$$
\begin{equation*}
\int_{\pi_{T}} \int_{T}\left[\Phi(u) f_{t}+\Psi_{i}(u) f_{x_{i}}\right] d x d t \geqslant 0 \tag{5.9}
\end{equation*}
$$

for any smooth finite function $f \geq 0$.
Thus we arrive at the following notion of a generalized solution.
Definition 2. A bounded measurable vector function $u(t, x)$ is called a generalized solution of problem (5.3), (5.4) in the band π_{T} if the following conditions are satisfied.

1) Any smooth function $f(t, x) \geq 0$ which is finite in π_{T} satisfies inequality (5.9), where $\Phi(u)$ and $\Psi_{i}(u)$ are the functions constructed as above for an arbitrary solution $H(u)$ of system (5.7) so as to satisfy condition (5.6).
2) Requirement 2) of Definition 1 in $\$ 2$ is fulfilled.

We note that the functions $H \equiv \pm \underbrace{(0, \cdots, 0}_{k-1}, 1,0, \cdots, 0)$, which clearly satisfy condition (5.6), correspond to the functions $\Phi= \pm \phi_{0}^{k}(u)$ and $\Psi_{i}= \pm \phi_{i}^{k}(u)$; hence our generalized solution is also a generalized solution in the sense of the usual integral identity

$$
\iint_{\pi}\left[\varphi_{0}^{k}(u) f_{t}+\varphi_{i}^{k}(u) f_{x_{i}}\right] d x d t=0 .
$$

But the arbitrariness in the choice of the function $H(u)$ (and hence in the choice of Φ and Ψ_{i}) assumed in requirement 1) of the definition of a generalized solution certainly also takes into account the "entropy" relations at the discontinuities.

Here we have considered the simplest situation connected with an implicit "equivalence" relation for all the equations of system (5.3) (this is reflected in the choice of a viscosity of the form $\epsilon \Delta u$). However, an analogous approach is applicable in more general situations, in particular, for gas dynamic systems.

We conclude by noting that the problem of a generalized solution in the theory of quasilinear equations and in gas dynamics is discussed in [22].

BIBLIOGRAPHY

[1] E. Hopf, The partial differential equation $u_{t}+u u_{x}=\mu u_{x x}$, Comm. Pure Appl. Math. 3 (1950), 201-230. MR 13, 846.
[2] O. A. Oleǐnik, Discontinuous solutions of non-linear differential equations, Uspehi Mat. Nauk 12 (1957), no. 3 (75), 3-73; English transl., Amer. Math. Soc. Transl. (2) 26 (1963), 95-172. MR 20 \#1055; 27 \#1721.
[3] L. D. Landau and E. M. Lifšic, Mechanics of continuous media, 2nd ed., GITTL, Moscow, 1953; English transl., Course of Theoretical Physics, vols. 6, 7, Pergamon Press, New York; AddisonWesley, Reading, Mass., 1959. MR 16, 412; 21 \#6839.
[4] O. A. Oleĭnik, Cauchy's problem for nonlinear equations in a class of discontinuous functions, Dokl. Akad. Nauk SSSR 95 (1954), 451-545; English transl., Amer. Math. Soc. Transl. (2) 42 (1964), 7-12. MR 16, 253.
[5] A. N. Tihonov and A. A. Samarskiy, Discontinuous solutions of quasilinear equations of the first order, Dokl. Akad. Nauk SSSR 99 (1954), 27-30; English transl., Amer. Math. Soc. Transl. (2) 42 (1964), 1-6. MR 16, 704.
[6] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954), 159-193. MR 16, 524.
[7] S. N. Kružkov, Methods for constructing generalized solutions for the Cauchy problem for a quasilinear equation of the first order, Uspehi Mat. Nauk 20 (1965), no. 6(126), 112-118. (Russian) MR 33 \#391.
[8] O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 165-170; English transl., Amer. Math. Soc. Transl. (2) 33 (1963), 285-290. MR 22 \#8187.
[9] I. M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 87-158; English transl., Amer. Math. Soc. Transl. (2) 29 (1963), 295-381. MR 22 \#1736; 27 \#3921.
[10] A. S. Kalašnikov, Construction of generalized solutions of quasi-linear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter, Dokl. Akad. Nauk SSSR 127 (1959), 27-30. (Russian) MR 21 \#7366.
[11] Wu Cho-chün, On the existence and uniqueness of the generalized solutions of the Cauchy problem for quasilinear equations of first order without convexity conditions, Acra Math. Sinica 13 (1963), 515-530 = Chinese Math.-Acta 4 (1964), 561-577. MR $29 \# 6146$.
[12] E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95-105. MR 33 \#388.
[13] A. I. Vol'pert, The spaces BV and quasilinear equations, Mat. Sb. 73 (115) (1967), 255-302 = Math. USSR Sb. 2 (1967), 225-267. MR 35 \#7172.
[14] I. P. Natanson, Theory of functions of a real variable, 2nd rev. ed., GITTL, Moscow, 1957; English transl., Ungar, New York, 1955, 1961. MR 16, 804; 26 \#6309.
[15] S. N. Kružkov, Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof, Mat. Zametki 6(1969), 97-108. (Russian) MR 40 \#3073.
[16] N. N. Kuznecov, The weak solution of the Cauchy problem for a multi-dimensional quasilinear equation, Mat. Zametki 2 (1967), 401-410. (Russian) MR 36 \#6781.
[17] S. N. Kružkov, Generalized solutions of the Cauchy problem in the large for first order nonlinear equations, Dokl. Akad. Nauk SSSR 187 (1969), 29-32 = Soviet Math. Dokl. 10 (1969), 785-788. MR 40 \#30 46.
[18] S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad. Gos. Univ., Leningrad, 1950; English transl., Transl. Math. Monographs, vol. 7, Amer. Math. Soc., Providence, R. I., 1963. MR 14, 565; 29 \#2624.
[19] A. Friedman, Partial differential equations of the parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964; Russian transl., "Mir", Moscow, 1968. MR 31 \#6062.
[20] O. A. Oleĭnik and S. N. Kružkov, Quasi-linear parabolic second-order equations with several independent variables, Uspehi Mat. Nauk 16 (1961), no. 5(101), 115-155= Russian Math. Surveys 16 (1961), no. 5, 105-146. MR 25 \#5289.
[21] S. D. Eǐdel'man, Parabolic systems, "Nauka", Moscow, 1964; English transl., Noordhoff, Groningen; North-Holland, Amsterdam, 1969. MR 29 \#4998.
[22] S. K. Godunov, The problem of a generalized solution in the theory of quasi-linear equations and in gas dynamics, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 147-158 = Russian Math. Surveys 17 (1962), no. 3, 145-156. MR 27 \#5445.

Translated by:
N. Koblitz

[^0]: 1) Some equations which are model equations for gas dynamics have the form (1.1) and (1.3); the parameter ϵ in (1.3) corresponds to the gas-dynamic notion of viscosity.
[^1]: 1) We easily see that the integrand in I_{h} equals zero outside the region $\{0 \leq t \leq T, 0 \leq \tau \leq T,|x| \leq n r,|y| \leq n r\}$.
[^2]: 1) Under our smoothness assumptions for the functions ϕ_{i} and ψ the possibility of differentiating equation (1.3) with respect to x_{k} follows from well-known results for linear equations (see, for example, [19], Chapter 3 , §5).
