

Homework Assignment

Implementing a Scanner, Parser, and AST for a Google Query Language

Introduction
In	this	assignment,	you	will	implement	basic	components	of	a	compiler	for	a	small,	domain-
specific	language	designed	to	express	structured	Google	search	queries	using	keywords,	
directives,	and	set	operations.	
	
The	language	supports	the	declaration	of	queries,	conditional	execution,	loops	over	query	
lists,	and	assignment	of	query	results.	Students	will	deepen	their	understanding	of	
tokenization	(lexical	analysis),	parsing	(syntax	analysis),	and	abstract	syntax	tree	(AST)	
construction	for	context-free	grammars	with	operator	precedence.	

Language Summary
The	language	allows	you	to:	
	
-	Declare	queries	with	keywords,	directives	(key-value	pairs),	and	logical	operations.	
-	Compose	query	sets	using	set	operations:	union	("++"),	difference	("--"),	intersection	
("**").	
-	Control	execution	with	"IF"	conditions	and	"FOR"	loops.	
	
Query	structures	are	enclosed	in	'<'	and	'>'	symbols	to	clearly	mark	their	beginning	and	end.	
Terms	inside	a	query	can	be	simple	words,	directives,	or	combined	using	logical	operators.	
	
Operator	precedence	must	be	respected:	
-	Juxtaposition	(space	between	terms)	binds	stronger	than	'|'.	
	
Students	are	expected	to	study	and	properly	handle	precedence	and	associativity	in	their	
parser.	

Grammar (Shortened Form)
	
program	->	declarations	commands	
	
declarations	->	declaration	
														|	declarations	declaration	
	
declaration	->	"QUERY"	query_name	"="	query	";"	
													|	"QUERY"	query_name	"="	list_of_queries	";"	
													|	"RESULT_OF_QUERY"	identifier	";"	

	
commands	->	command	
										|	commands	command	
	
command	->	"EXEC"	query_name	";"	
									|	"IF"	condition	"BEGIN"	commands	"END"	
									|	"FOR"	identifier	"IN"	list_of_queries	"BEGIN"	commands	"END"	
									|	assign_command	";"	
	
assign_command	->	identifier	"="	"EXEC"	query_name	";"	
																|	identifier	"="	identifier	set_operator	identifier	
	
condition	->	"EMPTY"	"("	identifier	")"	
											|	"URL_EXISTS"	"("	identifier	","	STRING	")"	
											|	"NOT_EMPTY"	"("	identifier	")"	
	
list_of_queries	->	"["	query_list	"]"	
	
query_list	->	query	
												|	query_list	","	query	
	
query	->	"<"	terms	">"	
	
terms	->	term	
							|	terms	term	
	
term	->	TERM	
					|	directive	
					|	operator	term	
					|	term	"|"	term	
	
operator	->	"+"	
										|	"-"	
										|	"*"	
	
set_operator	->	"++"	
														|	"--"	
														|	"**"	
	
directive	->	KEY	":"	VALUE	
	
TERM	->	WORD	|	STRING	
	

identifier	->	WORD	
KEY	->	WORD	
VALUE	->	WORD	|	STRING	
STRING	->	"string	literal"	
WORD	->	[a-zA-Z0-9_]+	
	

Tasks

1. Implement a Scanner (Lexer)
-	Write	a	scanner	that	reads	the	source	text	and	converts	it	into	a	stream	of	tokens.	
-	The	scanner	must	correctly	recognize	keywords	(QUERY,	EXEC,	etc.),	operators	(+,	-,	*,	|,	
++,	--,	**),	brackets	(<,	>,	[,],	(,)),	identifiers,	and	string	literals.	
-	Handle	spaces	and	comments	(if	any)	appropriately.	

2. Implement a Parser
-	Write	a	parser	that	builds	a	parse	tree	according	to	the	grammar	rules.	
-	Pay	special	attention	to	operator	precedence:	
		-	Juxtaposition	(space)	binds	stronger	than	the	'|'	(alternative	operator).	
-	Report	syntax	errors	clearly	if	the	input	does	not	conform	to	the	grammar.	
	
Hint:	You	may	choose	between	hand-writing	the	parser	(recursive	descent)	or	using	parser	
generator	tools	(e.g.,	ANTLR,	Yacc/Bison).	

3. Build an Abstract Syntax Tree (AST)
-	Define	AST	node	classes	for	all	important	constructs:	Program,	Declarations,	Commands,	
Queries,	Terms,	etc.	
-	The	AST	should	represent	the	logical	structure	of	the	program,	not	the	syntactic	details	
(e.g.,	no	brackets	or	separators	in	the	tree).	
-	Implement	the	parser	so	that	instead	of	building	a	raw	parse	tree,	it	constructs	the	
corresponding	AST	during	parsing.	

Additional Notes
-	Respect	operator	precedence	and	associativity	when	building	the	AST.	
-	You	may	optionally	extend	the	language	to	support	parentheses	'()'	inside	queries	for	
custom	grouping	(bonus	points).	
-	Think	carefully	about	the	distinction	between	tokens,	syntax	structure,	and	abstract	
structure	(AST).	

Example

Example Program:
	
QUERY	basic	=	<	apple	banana	|	orange	>;	
QUERY	advanced	=	<filetype:pdf	apple	+fruit	-tree	>;	

RESULT_OF_QUERY	temp;	
RESULT_OF_QUERY	res;	

	
FOR	item	IN	[basic,	advanced]	BEGIN	
				temp	=	EXEC	item;	
				res	=	res	++	item;	
END	
	

Corresponding AST Structure:
AST	Structure	(simplified):	
	
Program	

	├─	Declarations	

	│			├─	QueryDeclaration	"basic"	

	│			│			└─	Query	

	│			│							└─	Or	

	│			│											├─	Juxtaposition	

	│			│											│			├─	Term	"apple"	

	│			│											│			└─	Term	"banana"	

	│			│											└─	Term	"orange"	

	│			├─	QueryDeclaration	"advanced"	

	│			│			└─	Query	

	│			│							└─	Juxtaposition	

	│			│											├─	Directive	(filetype:pdf)	

	│			│											├─	Term	"apple"	

	│			│											├─	Plus(Term	"fruit")	

	│			│											└─	Minus(Term	"tree")	

	│			├─	ResultOfQueryDeclaration	"temp"	

	│			└─	ResultOfQueryDeclaration	"res"	

	└─	Commands	

					└─	ForCommand	(iterator:	item)	

									├─	Iterable	

									│			├─	QueryReference	"basic"	

									│			└─	QueryReference	"advanced"	

									└─	Body	

													├─	AssignCommand	

													│			├─	Target:	"temp"	

													│			└─	ExecCommand	(QueryName:	"item")	

													└─	AssignCommand	

																	├─	Target:	"res"	

																	└─	SetOperation	(res	++	item)	

