$$
\frac{1}{n \cdot 2^{n}} \leq \frac{1}{2^{n}}, \forall n \in N
$$

mexa $\hat{j e}_{\infty} b_{n}=\frac{1}{2^{n}}$. Nlaga je $a_{m} \leq b u$ tnex peg $\sum_{n=1}^{\infty}$ lon je теомендиісин, $q=\frac{1}{2}$
$|2|=\frac{1}{2}<1$ wa peg $\sum_{n=1}^{\infty}$ br froнlepripa
$\left.\begin{array}{ll}j^{0} a_{n} \leqslant \text { bn }, \forall n \in N \\ 0 & \sum_{n=1}^{\infty} b_{n} \text { koнeегора }\end{array}\right\} \Rightarrow$ peg $\sum_{n=1}^{\infty} a_{n}$ koнleprupa $2^{0} \sum_{n=1}^{\infty} b_{n} k$
$\sum_{n=1}^{\infty} \frac{1}{3^{n}+n}$

$$
\begin{aligned}
& a_{n}=\frac{1}{3^{n}+n} \\
& \quad \frac{1}{3^{u}+n} \leq \frac{1}{3^{n}}, \forall n \in X \\
& b u=\frac{1}{3^{m}} \quad a_{u} \leq b u, \forall n \in X
\end{aligned}
$$

$\sum_{n=1}^{a}$ lu kohleprupa kav teoneuopúw 3 a Koju je $2=\frac{1}{3}\left(|2|=\frac{1}{3}<1\right)$
$\left.\begin{array}{c}1^{0} a_{u} \leqslant \text { bu, } \forall n \in x \mid \\ 2^{\circ} \sum_{n=1}^{\infty} \text { bu koнleprupa }\end{array}\right\} \Rightarrow$ peg $\sum_{n=1}^{\infty}$ au koHlejur
(1) Mcu"ucuir toнleptertgujy

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\sin 2 n}{1+2^{n}} \\
& a_{n}=\frac{\sin 2 u}{1+2^{n}} \\
& \frac{\sin 2 u}{1+2^{n}}<\frac{1}{2^{n}} \\
& b u=\frac{1}{2^{n}} \\
& a_{u} \leqslant b_{4}+\forall n \in N
\end{aligned}
$$

$\sum_{n=1}^{\infty}$ bu kottepropa kao Teerieunvín u peg sa kegr (1e $|2|=\left|\frac{1}{2}\right|<1$
$\left.\begin{array}{lll}1^{0} & a_{u} \leqslant b u & \forall n \in N \\ 2^{\circ} & \sum_{n=1}^{\infty} \text { bu конверирa }\end{array}\right\} \Rightarrow$ peg $\sum_{n=1}^{\infty} a_{n}$ конееріра
(1) Alcuй aur кitbepitzgry

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(n!)^{2}}{2^{n^{2}}} \\
& a_{n}=\frac{(u!)^{2}}{2^{n}} \\
& \lim _{n \rightarrow \infty} \frac{a_{u}+1}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{((n+1)!)^{2}}{2^{(u+1)^{2}}}}{\frac{(u!)^{2}}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2} \cdot(n!)^{2}}{2^{n!} \cdot 2^{2 u+1}} \\
& \lim _{n \rightarrow \infty} \frac{(n 1+1)^{2}}{2^{n+1}}=0<\infty \xrightarrow[\infty]{\text { 2anaudepob upueqfusu} \frac{(n i)^{2}}{2 n^{2}}}
\end{aligned}
$$

peg $\sum_{n=1}^{\infty} a_{n}$ peg Rotheprupa

Dlawñaur koнlepilnyuly pega

$$
\begin{aligned}
& \frac{4}{2}+\frac{4 \cdot 7}{2 \cdot 6}+\frac{\underbrace{4 \cdot 7 \cdot 10}}{\underbrace{2 \cdot 6 \cdot 10}}+\cdots \\
& a_{u}=\frac{4 \cdot 7 \cdot(\cdot(3 n+1)}{2 \cdot 6 \cdot(4 n-2)}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{d_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{4 \cdot 7 \cdot(34+1)(30+4)}{2 \cdot 6 \cdot(4+-2)(40012)}}{\frac{4 \cdot 7 \cdot 1301+1)}{-2 \cdot 6(40-2)}}=
$$

$$
=\lim _{m \rightarrow \infty} \frac{3 u+4}{4 u+2}=\frac{3}{4}<1
$$

Lannavepubor kpuepiygery
\rightarrow peg $\sum_{n=1}^{\infty} a_{n}$ rokeprepa
Cloañaun xovepiettyuy pega

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{n!}{n^{n}} \\
& a_{n}=\frac{n!}{n^{n}} \\
& \lim _{n \rightarrow \infty} \frac{a_{u+1}}{a_{n}}=\lim _{m \rightarrow \infty} \frac{\frac{(n+1)!}{(n+1)^{m+n}}}{n!}= \\
& =\lim _{m \rightarrow \infty} \frac{\frac{(m+1) \cdot n!}{n^{n}}}{\frac{(n+1)^{n}(n+1)}{n!}}=\lim _{n \rightarrow \infty}^{n^{n}} \frac{n^{n}}{(n+1)^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{n}{u+1}\right)^{n}=\lim _{n \rightarrow \infty}\left(\left(\frac{u+1}{u}\right)^{n}\right)^{-1}=\lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{u}\right)^{n}\right)^{-1}= \\
& =e^{-1}=\frac{1}{e}<1 \text { ganaчіерг иритеруун } \\
& \text { peg } \sum_{n=1}^{\infty} a_{n} \text { toHbepoupa } \\
& \sum_{n=1}^{\infty}\left(\frac{n-1}{u+1}\right)^{n(u-1)} \\
& a_{u}=\left(\frac{u-1}{u+1}\right)^{n(u-1)} \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n-1}{n+1}\right)^{n(n-1)}}= \\
& =\lim _{n \rightarrow \infty}\left(\frac{u-1}{u+1}\right)^{n-1}=\lim \left(1+\frac{n-1}{u+1}-1\right)^{\frac{1}{u-1}}= \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{-2}{u+1}\right)^{\frac{n+1}{-2}\left(\frac{-2}{u+1}(u-1)\right.}= \\
& =\lim _{n \rightarrow \infty}\left(\left(1+\frac{-2}{u+1}\right)^{\frac{u+1}{-2}}\right)^{\frac{-2(u-1)}{u+1}}=
\end{aligned}
$$

Rownjes uжurepyi
peg $\sum_{n=1}^{\infty}$ au kotleргчра
(18) $\sum_{n=1}^{\infty} \frac{3^{n} \cdot n^{3}}{e^{n}}$
B) $d_{u}=\frac{3^{n} \cdot n^{3}}{e^{n}}=\left(\frac{3}{e}\right)^{n} \cdot n^{3}$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{m}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{3}{e}\right)^{n} \cdot m^{3}}=
$$

$$
=\lim _{m \rightarrow \infty} \frac{3}{e}(\sqrt[n]{n})^{3}=\frac{3}{e}>1 \xrightarrow{\text { towayet }} \underset{ }{\text { tow }}
$$

peg $\sum_{n=1}^{\infty} a_{u}$ gubeprepa

$$
\begin{aligned}
& \sum_{\mu=1}^{\infty}\left(\frac{1+\cos \mu}{2+\cos \mu}\right)^{2 \mu-\ln \mu} \\
& a_{n}=\left(\frac{1+\cos n}{2+\cos n}\right)^{2 n-\ln n} \\
& \frac{1+\cos x}{2+\cos x}=\left(1-\frac{1}{2+\cos x} \leqslant 1-\frac{1}{3}=\frac{2}{3}\right. \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{1+\cos n}{2+\cos n}\right)^{2 n-\ln } n} \leq \lim _{n \rightarrow \infty} \sqrt[\infty]{\left(\frac{2}{3}\right)^{2 n-n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{2-\ln 2}{ }^{2}=\left(\frac{2}{3}\right)^{3}=\frac{2}{3}<1 \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}<1 \stackrel{\text { Kamujab }}{\Longrightarrow} \text { peg } \sum_{n=1}^{\infty} a_{i} \text { Koнleprps }
\end{aligned}
$$

Iovudepb सputpryyu se gaje ogroro

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\frac{n-1}{n}\right)^{n} \\
& a_{u}=\left(\frac{n-1}{n}\right)^{n} \\
& \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n-1}{n}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n-1}{n}=1 \\
& \lim _{n \rightarrow \infty} a_{n}= \\
& =\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{-1}{n}\right)^{-n(-1)}= \\
& =e^{-1} \frac{1}{e} \neq 0 \Rightarrow \text { peg } \sum_{n=1}^{\infty} a_{n} \text { gubepaps } \\
& \sum_{m=1}^{\infty} \frac{u!}{(a+1)(a+2) \cdot(a+u)}, a>0 \\
& \text { 2/ } \\
& \lim _{m \rightarrow \infty} \frac{u+1}{a+u+1}= \\
& \lim _{n \rightarrow \infty} \frac{n+1}{n+1+a}=1
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left(\frac{a n}{a_{n+1}}-1\right)=\lim _{n \rightarrow \infty} n\left(\frac{n+1+a}{n+1}-1\right)= \\
& =\lim _{n \rightarrow \infty} n \frac{a}{n+1}=\lim _{n \rightarrow \infty} \frac{a \cdot n}{m+1}=a \\
& 3 a \quad a>1 \text { peg } \sum_{n=1}^{\infty} a_{n} \text { rotteprupa } \\
& 3 a \text { ora peg. } \sum_{n=1} \text { guleprup }
\end{aligned}
$$

$3 a \quad a=1$

$$
\sum_{n=1}^{\infty} \frac{n!}{2 \cdot 3 \cdot(n+1)}=\sum_{n=1}^{\infty} \frac{1}{n+1}
$$

oüthure rhàt väaga $a_{u}=\frac{1}{u+1}$
Hexa je bu $=\frac{1}{n}$, nuaga jé

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n}}{b n}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1+1}{1}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 \\
& 0<\lim \frac{a_{n}}{b u}<+\infty \Rightarrow \text { pegdu } \sum_{n=1}^{\infty} a_{n} \& u \\
& \infty .
\end{aligned}
$$

$\sum_{n=1}^{\infty} b_{n}$ yy exbuконерсенитн
Peg $\sum_{m=1}^{\infty}$ lom qubeprepa kao suvepocap rostcur sa guleprupa x peg $\sum_{n=1}^{\infty} a_{r}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-2)^{n}+3 n^{2}}{3^{n}} \\
& a_{n}=\frac{(-2)^{4}+3 n^{2}}{3^{n}}
\end{aligned}
$$

Hena je bu $=\frac{(-2)^{n}}{3^{n}}=\left(-\frac{2}{3}\right)^{n} \quad$ u $c_{u}=\frac{3 u^{2}}{3 x^{n}}=\frac{3 n^{2}}{3}{ }_{\infty}^{n} n^{n}$ peg $\sum_{n=1}^{\infty}$ bu конеегира као теонелиусии

$$
\begin{aligned}
& \quad|2|=\left|-\frac{2}{3}\right|=\frac{n}{3}<1 \\
& \quad \lim _{n \rightarrow \infty} \frac{C n+1}{c}=\lim _{n \rightarrow \infty} \frac{\frac{3(n+1)^{2}}{3^{n+1}}}{\frac{3 n^{2}}{3^{n}}}=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2}}{3^{2} \cdot 3}}{\frac{n^{2}}{3^{n}}}= \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{3 n^{2}}=\frac{1}{3} \lim \frac{(n+1)^{2}}{n^{2}}=\frac{1}{3}<1
\end{aligned}
$$

 $\left.\begin{array}{cc}\sum_{n=1}^{\infty} \text { bu kohleprupa } \\ \sum_{n=1}^{\infty} c_{n} & \text { kolkepoupa }\end{array}\right\} \Rightarrow$ peg $\sum_{n=1}^{\infty}\left(b u+c_{n}\right)$ kottbept.
peg $\sum_{n=1}^{\infty} a_{u}$ koHleprups

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n \cdot e^{-n^{2}} \\
& a_{u}=n \cdot e^{-n^{2}}
\end{aligned}
$$

Heka le $f(x)=x \cdot e^{-x^{2}}$

$$
f(x)=\frac{x}{e^{x^{2}}}
$$

maga je

$$
\begin{aligned}
& f(x)=a, \quad \forall n \in X \\
& 1^{\circ} f(x)=\frac{x}{e^{x^{2}}}>0 \quad \forall x \in[1,+\infty)
\end{aligned}
$$

 y ocnamir gequmacatocior

$$
\begin{aligned}
& 30 f^{\prime}(x)=\frac{e^{x^{2}}-x \cdot e^{x^{2}} \cdot 2 x}{\left(e^{x^{2}}\right)^{2}}=\frac{e^{x^{2}}\left(1-2 x^{2}\right)}{\left(e^{x^{2}}\right)^{x}}= \\
& =\frac{\left(1-2 x^{2}\right)}{e^{x^{2}}} \\
& f^{\prime}(x)=\frac{1-2 x^{2}}{e^{x^{2}}}-0
\end{aligned}
$$

$f^{\prime}(x)<0$ akko $1-2 x^{2}<0$

$$
\begin{aligned}
& f^{\prime}(x)<0 \Leftrightarrow x \in\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}},+\infty\right) \\
& \Rightarrow f^{\prime}(x)<0, \forall x \in[1,+\infty)
\end{aligned}
$$

$$
\text { Synuseya je oūagafyta tha }[1,+\infty)
$$

(1/3 1, ネ, Ka oxtrby Rourujbor uthvepantur qриіерууна cuyеge ga peg $\sum_{i=1}^{\infty} a_{n}$ korteprupa (gubepropa) ak 0
$\int_{1}^{+\infty} f(x) d x$ hoнbeprupa (queprapa)

$$
\begin{aligned}
& \int_{1}^{+\infty} f(x) d x=\int_{1}^{+\infty} \frac{x}{e x^{2}} d x= \\
& =\lim _{b \rightarrow+\infty} \int_{1}^{b} \frac{x}{e^{x^{2}}} d x=\Gamma \quad \begin{array}{l}
x^{2}=t \\
2 x d x=d t
\end{array} \\
& x d x=\frac{d t}{2} \\
& \left.\frac{x \mid 1)^{2} b}{t+1 / b^{2}}\right] \\
& =\lim _{b \rightarrow+\infty} \frac{1}{2} \int_{1}^{b^{2}} \frac{d t}{e^{t}}=\frac{1}{2} \lim _{b \rightarrow+\infty}-\left.e^{-t}\right|_{1} ^{b^{2}}= \\
& =\frac{1}{a} \cdot \lim _{b \rightarrow+\infty}\left(-\frac{1}{e^{b^{2}}}+\frac{1}{e}\right)= \\
& =\frac{1}{2 \cdot e} \Rightarrow \int_{1}^{+\infty} f(x) d x \text { нонеер з्यa } \Rightarrow
\end{aligned}
$$

\Rightarrow peg $\sum_{n=1}^{\infty} a_{n}$ kotteprup 9 U/

