
Chapter 13

Secondary Storage 
Management

Database systems always involve secondary storage — the disks and other de­
vices that store large amounts of data that persists over time. This chapter 
summarizes what we need to know about how a typical computer system man­
ages storage. We review the memory hierarchy of devices with progressively 
slower access but larger capacity. We examine disks in particular and see how 
the speed of data access is affected by how we organize our data on the disk. 
We also study mechanisms for making disks more reliable.

Then, we turn to how data is represented. We discuss the way tuples of a 
relation or similar records or objects are stored. Efficiency, as always, is the 
key issue. We cover ways to find records quickly, and how to manage insertions 
and deletions of records, as well as records whose sizes grow and shrink.

13.1 The Memory Hierarchy
We begin this section by examining the memory hierarchy of a computer system. 
We then focus on disks, by far the most common device at the “secondary- 
storage” level of the hierarchy. We give the rough parameters that determine 
the speed of access and look at the transfer of data from disks to the lower 
levels of the memory hierarchy.

13.1.1 The Memory Hierarchy
A typical computer system has several different components in which data may 
be stored. These components have data capacities ranging over at least seven 
orders of magnitude and also have access speeds ranging over seven or more 
orders of magnitude. The cost per byte of these components also varies, but 
more slowly, with perhaps three orders of magnitude between the cheapest and
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558 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

most expensive forms of storage. Not surprisingly, the devices with smallest 
capacity also offer the fastest access speed and have the highest cost per byte. 
A schematic of the memory hierarchy is shown in Fig. 13.1.
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I
Figure 13.1: The memory hierarchy

Here are brief descriptions of the levels, from the lowest, or fastest-smallest 
level, up.

1. Cache. A typical machine has a megabyte or more of cache storage. 
On-board cache is found on the same chip as the microprocessor itself, 
and additional level-2 cache is found on another chip. Data and instruc­
tions are moved to cache from main memory when they are needed by 
the processor. Cached data can be accessed by the processor in a few 
nanoseconds.

2. Main Memory. In the center of the action is the computer’s main memory. 
We may think of everything that happens in the computer — instruction 
executions and data manipulations — as working on information that is 
resident in main memory (although in practice, it is normal for what is 
used to migrate to the cache). A typical machine in 2008 is configured 
with about a gigabyte of main memory, although much larger main mem­
ories are possible. Typical times to move data from main memory to the 
processor or cache are in the 10-100 nanosecond range.

3. Secondary Storage. Secondary storage is typically magnetic disk, a device 
we shall consider in detail in Section 13.2. In 2008, single disk units 
have capacities of up to a terabyte, and one machine can have several 
disk units. The time to transfer a single byte between disk and main
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Computer Quantities are Powers of 2

It is conventional to talk of sizes or capacities of computer components 
as if they were powers of 10: megabytes, gigabytes, and so on. In reality, 
since it is most efficient to design components such as memory chips to 
hold a number of bits that is a power of 2, all these numbers are really 
shorthands for nearby powers of 2. Since 210 =  1024 is very close to a 
thousand, we often maintain the fiction that 210 =  1000, and talk about 
210 with the prefix “kilo,” 220 as “mega,” 230 as “giga,” 240 as “tera,” and 
250 as “peta,” even though these prefixes in scientific parlance refer to 103, 
106, 109, 1012 and 1015, respectively. The discrepancy grows as we talk of 
larger numbers. A “gigabyte” is really 1.074 x 109 bytes.

We use the standard abbreviations for these numbers: K, M, G, T, and 
P for kilo, mega, giga, tera, and peta, respectively. Thus, 16Gb is sixteen 
gigabytes, or strictly speaking 234 bytes. Since we sometimes want to talk 
about numbers that are the conventional powers of 10, we shall reserve for 
these the traditional numbers, without the prefixes “kilo,” “mega,” and 
so on. For example, “one million bytes” is 1,000,000 bytes, while “one 
megabyte” is 1,048,576 bytes.

A recent trend is to use “kilobyte,” “megabyte,” and so on for exact 
powers of ten, and to replace the third and fourth letters by “bi” to repre­
sent the similar powers of two. Thus, “kibibyte” is 1024 bytes, “mebibyte” 
is 1,048,576 bytes, and so on. We shall not use this convention.

memory is around 10 miliseconds. However, large numbers of bytes can 
be transferred at one time, so the m atter of how fast data moves from 
and to disk is somewhat complex.

4. Tertiary Storage. As capacious as a collection of disk units can be, there
are databases much larger than what can be stored on the disk(s) of a
single machine, or even several machines. To serve such needs, tertiary 
storage devices have been developed to hold data volumes measured in ter­
abytes. Tertiary storage is characterized by significantly higher read/write
times than secondary storage, but also by much larger capacities and 
smaller cost per byte than is available from magnetic disks. Many ter­
tiary devices involve robotic arms or conveyors that bring storage media 
such as magnetic tape or optical disks (e.g., DVD’s) to a reading device. 
Retrieval takes seconds or minutes, but capacities in the petabyte range 
are possible.
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13.1.2 Transfer of Data Between Levels

Normally, data moves between adjacent levels of the hierarchy. At the secondary 
and tertiary levels, accessing the desired data or finding the desired place to 
store data takes a great deal of time, so each level is organized to transfer 
large amounts of data to or from the level below, whenever any data at all is 
needed. Especially important for understanding the operation of a database 
system is the fact that the disk is organized into disk blocks (or just blocks, or 
as in operating systems, pages) of perhaps 4-64 kilobytes. Entire blocks axe 
moved to or from a continuous section of main memory called a buffer. Thus, 
a key technique for speeding up database operations is to arrange data so that 
when one piece of a disk block is needed, it is likely that other data on the same 
block will also be needed at about the same time.

The same idea applies to other hierarchy levels. If we use tertiary storage, 
we try  to arrange so that when we select a unit such as a DVD to read, we 
need much of what is on that DVD. At a lower level, movement between main 
memory and cache is by units of cache lines, typically 32 consecutive bytes. 
The hope is that entire cache lines will be used together. For example, if a 
cache line stores consecutive instructions of a program, we hope that when 
the first instruction is needed, the next few instructions will also be executed 
immediately thereafter.

13.1.3 Volatile and Nonvolatile Storage
An additional distinction among storage devices is whether they are volatile or 
nonvolatile. A volatile device “forgets” what is stored in it when the power goes 
off. A nonvolatile device, on the other hand, is expected to keep its contents 
intact even for long periods when the device is turned off or there is a power 
failure. The question of volatility is important, because one of the characteristic 
capabilities of a DBMS is the ability to retain its data even in the presence of 
errors such as power failures.

Magnetic and optical materials hold their data in the absence of power. 
Thus, essentially all secondary and tertiary storage devices are nonvolatile. On 
the other hand, main memory is generally volatile (although certain types of 
more expensive memory chips, such as flash memory, can hold their data after 
a power failure). A significant part of the complexity in a DBMS comes from 
the requirement that no change to the database can be considered final until it 
has migrated to nonvolatile, secondary storage.

13.1.4 Virtual Memory-
Typical software executes in virtual-memory, an address space that is typically 
32 bits; i.e., there are 232 bytes, or 4 gigabytes, in a virtual memory. The 
operating system manages virtual memory, keeping some of it in main memory 
and the rest on disk. Transfer between memory and disk is in units of disk



13.1. THE MEMORY HIERARCHY 561

M oore’s Law

Gordon Moore observed many years ago that integrated circuits were im­
proving in many ways, following an exponential curve that doubles about 
every 18 months. Some of these parameters that follow “Moore’s law” are:

1. The number of instructions per second that can be executed for unit 
cost. Until about 2005, the improvement was achieved by making 
processor chips faster, while keeping the cost fixed. After that year, 
the improvement has been maintained by putting progressively more 
processors on a single, fixed-cost chip.

2. The number of memory bits that can be bought for unit cost and 
the number of bits that can be put on one chip.

3. The number of bytes per unit cost on a disk and the capacity of the 
largest disks.

On the other hand, there are some other important parameters that 
do not follow Moore’s law; they grow slowly if at all. Among these slowly 
growing parameters are the speed of accessing data in main memory and 
the speed at which disks rotate. Because they grow slowly, “latency” 
becomes progressively larger. That is, the time to move data between 
levels of the memory hierarchy appears enormous today, and will only get 
worse.

blocks (pages). Virtual memory is an artifact of the operating system and its 
use of the machine’s hardware, and it is not a level of the memory hierarchy.

The path in Fig. 13.1 involving virtual memory represents the treatment 
of conventional programs and applications. It does not represent the typical 
way data in a database is managed, since a DBMS manages the data itself. 
However, there is increasing interest in main-memory database systems, which 
do indeed manage their data through virtual memory, relying on the operating 
system to bring needed data into main memory through the paging mechanism. 
Main-memory database systems, like most applications, are most useful when 
the data is small enough to remain in main memory without being swapped 
out by the operating system.

13.1.5 Exercises for Section 13.1
Exercise 13.1.1: Suppose that in 2008 the typical computer has a processor 
chip with two processors (“cores”) that each run at 3 gigahertz, has a disk of 
250 gigabytes, and a main memory of 1 gigabyte. Assume that Moore’s law 
(these factors double every 18 months) holds into the indefinite future.
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a) When will petabyte disks be common?

b) When will terabyte main memories be common?

c) When will terahertz processor chips be common (i.e., the total number of 
cycles per second of all the cores on a chip will be approximately 1012?

d) W hat will be a typical configuration (processor, disk, memory) in the year 
2015?

! Exercise 13.1 .2 : Commander Data, the android from the 24th century on 
Star Trek: The Next Generation once proudly announced that his processor 
runs at “12 teraops.” While an operation and a cycle may not be the same, let 
us suppose they are, and that Moore’s law continues to hold for the next 300 
years. If so, what would Data’s true processor speed be?

13.2 Disks
The use of secondary storage is one of the important characteristics of a DBMS, 
and secondary storage is almost exclusively based on magnetic disks. Thus, to 
motivate many of the ideas used in DBMS implementation, we must examine 
the operation of disks in detail.

13.2.1 Mechanics of Disks
The two principal moving pieces of a  disk drive are shown in Fig. 13.2; they 
are a disk assembly and a head assembly. The disk assembly consists of one 
or more circular platters that rotate around a central spindle. The upper and 
lower surfaces of the platters are covered with a thin layer of magnetic material, 
on which bits are stored. 0’s and l ’s are represented by different patterns in the 
magnetic material. A common diameter for disk platters is 3.5 inches, although 
disks with diameters from an inch to several feet have been built.

The disk is organized into tracks, which are concentric circles on a single 
platter. The tracks that are at a fixed radius from the center, among all the 
surfaces, form one cylinder. Tracks occupy most of a surface, except for the 
region closest to the spindle, as can be seen in the top view of Fig. 13.3. The 
density of data is much greater along a track than radially. In 2008, a typical 
disk has about 100,000 tracks per inch but stores about a million bits per inch 
along the tracks.

Tracks are organized into sectors, which are segments of the circle separated 
by gaps that are not magnetized to represent either 0’s or l ’s.1 The sector is an 
indivisible unit, as far as reading and writing the disk is concerned. It is also 
indivisible as far as errors are concerned. Should a portion of the magnetic layer

1 W e show each tra c k  w ith  th e  sam e n u m b er o f sec to rs in  F ig . 13.3. However, th e  n u m b er 
o f sec to rs p e r  tra c k  no rm ally  varies, w ith  th e  o u te r  track s hav ing  m ore sec to rs th a n  inn er 
tracks.
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Figure 13.2: A typical disk

be corrupted in some way, so that it cannot store information, then the entire 
sector containing this portion cannot be used. Gaps often represent about 10% 
of the total track and are used to help identify the beginnings of sectors. As we 
mentioned in Section 13.1.2, blocks are logical units of data that are transferred 
between disk and main memory; blocks consist of one or more sectors.

Figure 13.3: Top view of a disk surface

The second movable piece shown in Fig. 13.2, the head assembly, holds the 
disk heads. For each surface there is one head, riding extremely close to the 
surface but never touching it (or else a “head crash” occurs and the disk is 
destroyed). A head reads the magnetism passing under it, and can also alter 
the magnetism to write information on the disk. The heads are each attached 
to an arm, and the arms for all the surfaces move in and out together, being 
part of the rigid head assembly.

E xam ple 13.1: The Megatron 7^7 disk has the following characteristics, which
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are typical of a large vintage-2008 disk drive.

• There are eight platters providing sixteen surfaces.

• There are 216, or 65,536, tracks per surface.

• There are (on average) 28 =  256 sectors per track.

• There are 212 =  4096 bytes per sector.

The capacity of the disk is the product of 16 surfaces, times 65,536 tracks, 
times 256 sectors, times 4096 bytes, or 240 bytes. The Megatron 747 is thus a 
terabyte disk. A single track holds 256 x 4096 bytes, or 1 megabyte. If blocks 
are 214, or 16,384 bytes, then one block uses 4 consecutive sectors, and there 
are (on average) 256/4 =  32 blocks on a track. □

13.2.2 The Disk Controller
One or more disk drives are controlled by a disk controller, which is a small 
processor capable of:

1. Controlling the mechanical actuator that moves the head assembly, to 
position the heads at a particular radius, i.e., so that any track of one 
particular cylinder can be read or written.

2. Selecting a sector from among all those in the cylinder at which the heads 
are positioned. The controller is also responsible for knowing when the ro­
tating spindle has reached the point where the desired sector is beginning 
to move under the head.

3. Transferring bits between the desired sector and the computer’s main 
memory.

4. Possibly, buffering an entire track or more in local memory of the disk 
controller, hoping that many sectors of this track will be read soon, and 
additional accesses to the disk can be avoided.

Figure 13.4 shows a simple, single-processor computer. The processor com­
municates via a data bus with the main memory and the disk controller. A 
disk controller can control several disks; we show three disks in this example.

13.2.3 Disk Access Characteristics
Accessing (reading or writing) a block requires three steps, and each step has 
an associated delay.

1. The disk controller positions the head assembly at the cylinder containing 
the track on which the block is located. The time to do so is the seek time.
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Disks

Figure 13.4: Schematic of a simple computer system

2. The disk controller waits while the first sector of the block moves under 
the head. This time is called the rotational latency.

3. All the sectors and the gaps between them pass under the head, while the 
disk controller reads or writes data in these sectors. This delay is called 
the transfer time.

The sum of the seek time, rotational latency, and transfer time is the latency 
of the disk.

The seek time for a typical disk depends on the distance the heads have to 
travel from where they are currently located. If they are already at the desired 
cylinder, the seek time is 0. However, it takes roughly a millisecond to start 
the disk heads moving, and perhaps 10 milliseconds to move them across all 
the tracks.

A typical disk rotates once in roughly 10 milliseconds. Thus, rotational 
latency ranges from 0 to 10 milliseconds, and the average is 5. TYansfer times 
tend to be much smaller, since there are often many blocks on a track. Thus, 
transfer times are in the sub-millisecond range. When you add all three delays, 
the typical average latency is about 10 milliseconds, and the maximum latency 
about twice that.

E xam ple 13.2: Let us examine the time it takes to read a 16,384-byte block 
from the Megatron 747 disk. First, we need to know some timing properties of 
the disk:

• The disk rotates at 7200 rpm; i.e., it makes one rotation in 8.33 millisec­
onds.

• To move the head assembly between cylinders takes one millisecond to 
start and stop, plus one additional millisecond for every 4000 cylinders
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traveled. Thus, the heads move one track in 1.00025 milliseconds and 
move from the innermost to the outermost track, a distance of 65,536 
tracks, in about 17.38 milliseconds.

• Gaps occupy 10% of the space around a track.

Let us calculate the minimum, maximum, and average times to read that
16,384-byte block. The minimum time is just the transfer time. That is, the 
block might be on a track over which the head is positioned already, and the 
first sector of the block might be about to pass under the head.

Since there are 4096 bytes per sector on the Megatron 747 (see Example 13.1 
for the physical specifications of the disk), the block occupies four sectors. The 
heads must therefore pass over four sectors and the three gaps between them. 
We assume that gaps represent 10% of the circle and sectors the remaining 90%. 
There are 256 gaps and 256 sectors around the circle. Since the gaps together 
cover 36 degrees of arc and sectors the remaining 324 degrees, the total degrees 
of arc covered by 3 gaps and 4 sectors is 36 x 3/256 +  324 x 4/256 =  5.48 
degrees. The transfer time is thus (5.48/360) x 0.00833 =  .00013 seconds. That 
is, 5.48/360 is the fraction of a rotation needed to read the entire block, and 
.00833 seconds is the amount of time for a 360-degree rotation.

Now, let us look at the maximum possible time to read the block. In the 
worst case, the heads are positioned at the innermost cylinder, and the block 
we want to read is on the outermost cylinder (or vice versa). Thus, the first 
thing the controller must do is move the heads. As we observed above, the time 
it takes to move the Megatron 747 heads across all cylinders is about 17.38 
milliseconds. This quantity is the seek time for the read.

The worst thing that can happen when the heads arrive at the correct cylin­
der is that the beginning of the desired block has just passed under the head. 
Assuming we must read the block starting at the beginning, we have to wait 
essentially a full rotation, or 8.33 milliseconds, for the beginning of the block 
to reach the head again. Once that happens, we have only to wait an amount 
equal to the transfer time, 0.13 milliseconds, to read the entire block. Thus, 
the worst-case latency is 17.38 +  8.33 +  0.13 =  25.84 milliseconds.

Last, let us compute the average latency. Two of the components of the 
latency are easy to compute: the transfer time is always 0.13 milliseconds, and 
the average rotational latency is the time to rotate the disk half way around, or
4.17 milliseconds. We might suppose that the average seek time is just the time 
to move across half the tracks. However, that is not quite right, since typically, 
the heads are initially somewhere near the middle and therefore will have to 
move less than half the distance, on average, to the desired cylinder. We leave 
it as an exercise to show that the average distance traveled is 1/3 of the way 
across the disk.

The time it takes the Megatron 747 to move 1/3 of the way across the disk 
is 1 +  (65536/3)/4000 =  6.46 milliseconds. Our estimate of the average latency 
is thus 6.46 +  4.17 +  0.13 =  10.76 milliseconds; the three terms represent average 
seek time, average rotational latency, and transfer time, respectively. □
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13.2.4 Exercises for Section 13.2
E xercise 13.2.1: The Megatron 777 disk has the following characteristics:

1. There are ten surfaces, with 100,000 tracks each.

2. Tracks hold an average of 1000 sectors of 1024 bytes each.

3. 20% of each track is used for gaps.

4. The disk rotates at 10,000 rpm.

5. The time it takes the head to move n  tracks is 1 +  0.0002n milliseconds. 

Answer the following questions about the Megatron 777.

a) What is the capacity of the disk?

b) If tracks are located on the outer inch of a 3.5-inch-diameter surface, what 
is the average density of bits in the sectors of a track?

c) What is the maximum seek time?

d) What is the maximum rotational latency?

e) If a block is 65,546 bytes (i.e., 64 sectors), what is the transfer time of a 
block?

! f) What is the average seek time?

g) What is the average rotational latency?

! E xercise 13.2.2: Suppose the Megatron 747 disk head is at cylinder 8192,
i.e., 1/8 of the way across the cylinders. Suppose that the next request is for a 
block on a random cylinder. Calculate the average time to read this block.

!! Exercise 13.2.3: Prove that if we move the head from a random cylinder to 
another random cylinder, the average distance we move is 1/3 of the way across 
the disk (neglecting edge effects due to the fact that the number of cylinders is 
finite).

!! Exercise 13.2.4: Exercise 13.2.3 assumes that we move from a random track 
to another random track. Suppose, however, that the number of sectors per 
track is proportional to the length (or radius) of the track, so the bit density 
is the same for all tracks. Suppose also that we need to move the head from a 
random sector to another random sector. Since the sectors tend to congregate 
at the outside of the disk, we might expect that the average head move would 
be less than 1/3 of the way across the tracks. Assuming that tracks occupy 
radii from 0.75 inches to 1.75 inches, calculate the average number of tracks the 
head travels when moving between two random sectors.
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E xercise 13.2.5: To modify a block on disk, we must read it into main mem­
ory, perform the modification, and write it back. Assume that the modification 
in main memory takes less time than it does for the disk to rotate, and that the 
disk controller postpones other requests for disk access until the block is ready 
to be written back to the disk. For the Megatron 747 disk, what is the time to 
modify a block?

13.3 Accelerating Access to Secondary Storage
Just because a disk takes an average of, say, 10 milliseconds to access a block, 
it does not follow that an application such as a database system will get the 
data it requests 10 milliseconds after the request is sent to the disk controller. 
If there is only one disk, the disk may be busy with another access for the same 
process or another process. In the worst case, a request for a disk access arrives 
more than once every 10 milliseconds, and these requests back up indefinitely. 
In that case, the scheduling latency becomes infinite.

There are several things we can do to decrease the average time a disk access 
takes, and thus improve the throughput (number of disk accesses per second that 
the system can accomodate). We begin this section by arguing that the “I/O  
model” is the right one for measuring the time database operations take. Then, 
we consider a number of techniques for speeding up typical database accesses 
to disk:

1. Place blocks that are accessed together on the same cylinder, so we can 
often avoid seek time, and possibly rotational latency as well.

2. Divide the data among several smaller disks rather than one large one. 
Having more head assemblies that can go after blocks independently can 
increase the number of block accesses per unit time.

3. “Mirror” a disk: making two or more copies of the data on different disks. 
In addition to saving the data in case one of the disks fails, this strategy, 
like dividing the data among several disks, lets us access several blocks at 
once.

4. Use a disk-scheduling algorithm, either in the operating system, in the 
DBMS, or in the disk controller, to select the order in which several 
requested blocks will be read or written.

5. Prefetch blocks to main memory in anticipation of their later use.

13.3.1 The I/O  Model of Computation
Let us imagine a simple computer running a DBMS and trying to serve a 
number of users who are performing queries and database modifications. For 
the moment, assume our computer has one processor, one disk controller, and
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one disk. The database itself is much too large to fit in main memory. Key parts 
of the database may be buffered in main memory, but generally, each piece of 
the database that one of the users accesses will have to be retrieved initially 
from disk. The following rule, which defines the I/O  model of computation, can 
thus be assumed.

D om inance o f I /O  cost: The time taken to perform a disk ac­
cess is much larger than the time likely to be used manipulating 
that data in main memory. Thus, the number of block accesses 
(Disk I /O ’s) is a good approximation to the time needed by the 
algorithm and should be minimized.

E xam ple 13.3: Suppose our database has a relation R  and a query asks for 
the tuple of R  that has a certain key value k. It is quite desirable to have 
an index on R  to identify the disk block on which the tuple with key value k 
appears. However it is generally unimportant whether the index tells us where 
on the block this tuple appears.

For instance, if we assume a Megatron 747 disk, it will take on the order 
of 11 milliseconds to read a 16K-byte block. In 11 milliseconds, a modern 
microprocessor can execute millions of instructions. However, searching for 
the key value k once the block is in main memory will only take thousands of 
instructions, even if the dumbest possible linear search is used. The additional 
time to perform the search in main memory will therefore be less than 1% of 
the block access time and can be neglected safely. □

13.3.2 Organizing Data by Cylinders
Since seek time represents about half the time it takes to access a block, it makes 
sense to store data that is likely to be accessed together, such as relations, on 
a single cylinder, or on as many adjacent cylinders as are needed. In fact, if we 
choose to read all the blocks on a single track or on a cylinder consecutively, 
then we can neglect all but the first seek time (to move to the cylinder) and 
the first rotational latency (to wait until the first of the blocks moves under the 
head). In that case, we can approach the theoretical transfer rate for moving 
data on or off the disk.

E xam ple 13.4: Suppose relation R  requires 1024 blocks of a Megatron 747 
disk to hold its tuples. Suppose also that we need to access all the tuples of 
R; for example we may be doing a search without an index or computing a 
sum of the values of a particular attribute of R. If the blocks holding R  are 
distributed around the disk at random, then we shall need an average latency 
(10.76 milliseconds — see Example 13.2) to access each, for a total of 11 seconds.

However, 1024 blocks are exactly one cylinder of the Megatron 747. We can 
access them all by performing one average seek (6.46 milliseconds), after which 
we can read the blocks in some order, one right after another. We can read all 
the blocks on a cylinder in 16 rotations of the disk, since there are 16 tracks.
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Sixteen rotations take 16 x 8.33 =  133 milliseconds. The total time to access R  
is thus about 139 milliseconds, and we speed up the operation on R  by a factor 
of about 80. □

13.3.3 Using M ultiple Disks
We can often improve the performance of our system if we replace one disk, with 
many heads locked together, by several disks with their independent heads. The 
arrangement was suggested in Fig. 13.4, where we showed three disks connected 
to a single controller. As long as the disk controller, bus, and main memory 
can handle n times the data-transfer rate, then n  disks will have approximately 
the performance of one disk that operates n  times as fast.

Thus, using several disks can increase the ability of a database system to 
handle heavy loads of disk-access requests. However, as long as the system is 
not overloaded (when requests will queue up and are delayed for a long time or 
ignored), there is no change in how long it takes to perform any single block 
access. If we have several disks, then the technique known as striping (described 
in the next example) will speed up access to large database objects — those 
that occupy a large number of blocks.

E xam ple 1 3 .5 : Suppose we have four Megatron 747 disks and want to access 
the relation R  of Example 13.4 faster than the 139-millisecond time that was 
suggested for storing R  on one cylinder of one disk. We can “stripe” R  by 
dividing it among the four disks. The first disk can receive blocks 1 ,5 ,9 ,.. .  of 
R, the second disk holds blocks 2 ,6 ,1 0 ,.. .,  the third holds blocks 3 ,7 ,1 1 ,.. .,  
and the last disk holds blocks 4 ,8 ,1 2 ,.. .,  as suggested by Fig. 13.5. Let us 
contrive that on each of the disks, all the blocks of R  are on four tracks of a 
single cylinder.

r^i h  
f^i r~i

IZD H  
HD

10 [V]
HD

Figure 13.5: Striping a relation across four disks

Then to retrieve the 256 blocks of R  on one of the disks requires an average 
seek time (6.46 milliseconds) plus four rotations of the disk, one rotation for 
each track. That is 6.46 +  4 x 8.33 =  39.8 milliseconds. Of course we have to 
wait for the last of the four disks to finish, and there is a high probability that 
one will take substantially more seek time than average. However, we should 
get a speedup in the time to access R  by about a factor of three on the average, 
when there are four disks. □
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13.3.4 Mirroring Disks
There are situations where it makes sense to have two or more disks hold identi­
cal copies of data. The disks are said to be mirrors of each other. One important 
motivation is that the data will survive a head crash by either disk, since it is 
still readable on a mirror of the disk that crashed. Systems designed to enhance 
reliability often use pairs of disks as mirrors of each other.

If we have n  disks, each holding the same data, then the rate at which we 
can read blocks goes up by a factor of n, since the disk controller can assign a 
read request to any of the n  disks. In fact, the speedup could be even greater 
than n, if a clever controller chooses to read a block from the disk whose head 
is currently closest to that block. Unfortunately, the writing of disk blocks does 
not speed up at all. The reason is that the new block must be written to each 
of the n  disks.

13.3.5 Disk Scheduling and the Elevator Algorithm
Another effective way to improve the throughput of a disk system is to have the 
disk controller choose which of several requests to execute first. This approach 
cannot be used if accesses have to be made in a certain sequence, but if the 
requests are from independent processes, they can all benefit, on the average, 
from allowing the scheduler to choose among them judiciously.

A simple and effective way to schedule large numbers of block requests is 
known as the elevator algorithm. We think of the disk head as making sweeps 
across the disk, from innermost to outermost cylinder and then back again, 
just as an elevator makes vertical sweeps from the bottom to top of a building 
and back again. As heads pass a cylinder, they stop if there are one or more 
requests for blocks on that cylinder. All these blocks are read or written, as 
requested. The heads then proceed in the same direction they were traveling 
until the next cylinder with blocks to access is encountered. When the heads 
reach a position where there are no requests ahead of them in their direction of 
travel, they reverse direction.

E xam ple 13.6: Suppose we are scheduling a Megatron 747 disk, which we 
recall has average seek, rotational latency, and transfer times of 6.46, 4.17, 
and 0.13, respectively (in this example, all times are in milliseconds). Suppose 
that at some time there are pending requests for block accesses at cylinders 
8000, 24,000, and 56,000. The heads are located at cylinder 8000. In addition, 
there are three more requests for block accesses that come in at later times, as 
summarized in Fig. 13.6. For instance, the request for a block from cylinder
16,000 is made at time 10 milliseconds.

We shall assume that each block access incurs time 0.13 for transfer and
4.17 for average rotational latency, i.e., we need 4.3 milliseconds plus whatever 
the seek time is for each block access. The seek time can be calculated by the 
rule for the Megatron 747 given in Example 13.2: 1 plus the number of tracks 
divided by 4000. Let us see what happens if we schedule disk accesses using
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Cylinder 
of request

First time 
available

8000 0
24000 0
56000 0
16000 10
64000 20
40000 30

Figure 13.6: Arrival times for four block-access requests

the elevator algorithm. The first request, a t cylinder 8000, requires no seek, 
since the heads are already there. Thus, a t time 4.3 the first access will be 
complete. The request for cylinder 16,000 has not arrived at this point, so we 
move the heads to cylinder 24,000, the next requested “stop” on our sweep to 
the highest-numbered tracks. The seek from cylinder 8000 to 24,000 takes 5 
milliseconds, so we arrive at time 9.3 and complete the access in another 4.3. 
Thus, the second access is complete at time 13.6. By this time, the request for 
cylinder 16,000 has arrived, but we passed that cylinder at time 7.3 and will 
not come back to it until the next pass.

We thus move next to cylinder 56,000, taking time 9 to seek and 4.3 for 
rotation and transfer. The third access is thus complete at time 26.9. Now, the 
request for cylinder 64,000 has arrived, so we continue outward. We require 3 
milliseconds for seek time, so this access is complete at time 26.9+3+4.3 =  34.2.

At this time, the request for cylinder 40,000 has been made, so it and the 
request at cylinder 16,000 remain. We thus sweep inward, honoring these two 
requests. Figure 13.7 summarizes the times at which requests are honored.

Cylinder 
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
64000 34.2
40000 45.5
16000 56.8

Figure 13.7: Finishing times for block accesses using the elevator algorithm

Let us compare the performance of the elevator algorithm with a more naive 
approach such as first-come-first-served. The first three requests are satisfied 
in exactly the same manner, assuming that the order of the first three requests 
was 8000, 24,000, and 56,000. However, at that point, we go to cylinder 16,000,
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because that was the fourth request to arrive. The seek time is 11 for this 
request, since we travel from cylinder 56,000 to 16,000, more than half way 
across the disk. The fifth request, at cylinder 64,000, requires a seek time of 13, 
and the last, at 40,000, uses seek time 7. Figure 13.8 summarizes the activity 
caused by first-come-first-served scheduling. The difference between the two 
algorithms — 14 milliseconds — may not appear significant, but recall that 
the number of requests in this simple example is small and the algorithms were 
assumed not to deviate until the fourth of the six requests. □

Cylinder 
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
16000 42.2
64000 59.5
40000 70.8

Figure 13.8: Finishing times for block accesses using the first-come-first-served 
algorithm

13.3.6 Prefetching and Large-Scale Buffering
Our final suggestion for speeding up some secondary-memory algorithms is 
called prefetching or sometimes double buffering. In some applications we can 
predict the order in which blocks will be requested from disk. If so, then we can 
load them into main memory buffers before they are needed. One advantage to 
doing so is that we are thus better able to schedule the disk, such as by using 
the elevator algorithm, to reduce the average time needed to access a block. In 
the extreme case, where there are many access requests waiting at all times, we 
can make the seek time per request be very close to the minimum seek time, 
rather than the average seek time.

13.3.7 Exercises for Section 13.3
E xercise 13.3.1: Suppose we are scheduling I/O  requests for a Megatron 747 
disk, and the requests in Fig. 13.9 are made, with the head initially at track 
32,000. At what time is each request serviced fully if:

a) We use the elevator algorithm (it is permissible to start moving in either 
direction at first).

b) We use first-come-first-served scheduling.



574 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder First time
of Request available

8000 0
48000 1
4000 10

40000 20

Figure 13.9: Arrival times for four block-access requests

Exercise 13.3.2: Suppose we use two Megatron 747 disks as mirrors of one 
another. However, instead of allowing reads of any block from either disk, we 
keep the head of the first disk in the inner half of the cylinders, and the head 
of the second disk in the outer half of the cylinders. Assuming read requests 
are on random tracks, and we never have to write:

a) What is the average rate at which this system can read blocks?

b) How does this rate compare with the average rate for mirrored Megatron 
747 disks with no restriction?

c) What disadvantages do you foresee for this system?

E xercise 13.3.3: Let us explore the relationship between the arrival rate of 
requests, the throughput of the elevator algorithm, and the average delay of 
requests. To simplify the problem, we shall make the following assumptions:

1. A pass of the elevator algorithm always proceeds from the innermost to 
outermost track, or vice-versa, even if there are no requests a t the extreme 
cylinders.

2. When a pass starts, only those requests that are already pending will be 
honored, not requests that come in while the pass is in progress, even if 
the head passes their cylinder.2

3. There will never be two requests for blocks on the same cylinder waiting 
on one pass.

Let A  be the interarrival rate, that is the time between requests for block ac­
cesses. Assume that the system is in steady state, that is, it has been accepting 
and answering requests for a long time. For a Megatron 747 disk, compute as 
a function of A:

2 T h e  p u rpose  o f  th is  assu m p tio n  is to  avoid having to  deal w ith  th e  fac t th a t  a  typ ica l pass 
of th e  e levator a lg o rith m  goes fast a t  firs t, as th e re  w ill b e  few w aiting  requests w here th e  
head  h as recen tly  been, an d  slows dow n as i t  m oves in to  an  a re a  of th e  d isk  w here it  has no t 
recen tly  been. T h e  analysis o f th e  way request d ensity  varies du ring  a  pass is an  in terestin g  
exercise in its  ow n righ t.
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a) The average time taken to perform one pass.

b) The number of requests serviced on one pass.

c) The average time a request waits for service.

!! Exercise 13.3.4: In Example 13.5, we saw how dividing the data to be sorted 
among four disks could allow more than one block to be read at a time. Sup­
pose our data is divided randomly among n  disks, and requests for data are also 
random. Requests must be executed in the order in which they are received 
because there are dependencies among them that must be respected (see Chap­
ter 18, for example, for motivation for this constraint). What is the average 
throughput for such a system?

! E xercise 13.3.5: If we read k randomly chosen blocks from one cylinder, on 
the average how far around the cylinder must we go before we pass all of the 
blocks?

13.4 Disk Failures

In this section we shall consider the ways in which disks can fail and what can 
be done to mitigate these failures.

1. The most common form of failure is an intermittent failure, where an 
attempt to read or write a sector is unsuccessful, but with repeated tries 
we are able to read or write successfully.

2. A more serious form of failure is one in which a bit or bits are permanently 
corrupted, and it becomes impossible to read a sector correctly no matter 
how many times we try. This form of error is called media decay.

3. A related type of error is a write failure, where we attempt to write 
a sector, but we can neither write successfully nor can we retrieve the 
previously written sector. A possible cause is that there was a power 
outage during the writing of the sector.

4. The most serious form of disk failure is a disk crash, where the entire disk 
becomes unreadable, suddenly and permanently.

We shall discuss parity checks as a way to detect intermittent failures. We also 
discuss “stable storage,” a technique for organizing a disk so that media decays 
or failed writes do not result in permanent loss. Finally, we examine techniques 
collectively known as “RAID” for coping with disk crashes.
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13.4.1 Interm ittent Failures

An intermittent failure occurs if we try  to read a sector, but the correct content 
of that sector is not delivered to the disk controller. If the controller has a way 
to tell that the sector is good or bad (as we shall discuss in Section 13.4.2), 
then the controller can reissue the read request when bad data is read, until 
the sector is returned correctly, or some preset limit, like 100 tries, is reached.

Similarly, the controller may attempt to write a sector, but the contents of 
the sector are not what was intended. The only way to check that the write was 
correct is to let the disk go around again and read the sector. A straightforward 
way to perform the check is to read the sector and compare it with the sector 
we intended to write. However, instead of performing the complete comparison 
at the disk controller, it is simpler to read the sector and see if a good sector 
was read. If so, we assume the write was correct, and if the sector read is bad, 
then the write was apparently unsuccessful and must be repeated.

13.4.2 Checksums

How a reading operation can determine the good/bad status of a sector may 
appear mysterious at first. Yet the technique used in modern disk drives is quite 
simple: each sector has some additional bits, called the checksum, that are set 
depending on the values of the data bits stored in that sector. If, on reading, 
we find that the checksum is not proper for the data bits, then we know there 
is an error in reading. If the checkum is proper, there is still a small chance 
that the block was not read correctly, but by using many checksum bits we can 
make the probability of missing a bad read arbitrarily small.

A simple form of checksum is based on the parity of all the bits in the sector. 
If there is an odd number of l ’s among a collection of bits, we say the bits have 
odd parity and add a parity bit that is 1. Similarly, if there is an even number 
of l ’s among the bits, then we say the bits have even parity and add parity bit
0. As a result:

• The number of l ’s among a collection of bits and their parity bit is always 
even.

When we write a sector, the disk controller can compute the parity bit and 
append it to the sequence of bits written in the sector. Thus, every sector will 
have even parity.

E xam ple 1 3 .7 : If the sequence of bits in a sector were 01101000, then there 
is an odd number of l ’s, so the parity bit is 1. If we follow this sequence by its 
parity bit we have 011010001. If the given sequence of bits were 11101110, we 
have an even number of l ’s, and the parity bit is 0. The sequence followed by 
its parity bit is 111011100. Note that each of the nine-bit sequences constructed 
by adding a parity bit has even parity. □
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Any one-bit error in reading or writing the bits and their parity bit results 
in a sequence of bits that has odd parity, i.e., the number of l ’s is odd. It is 
easy for the disk controller to count the number of l ’s and to determine the 
presence of an error if a sector has odd parity.

Of course, more than one bit of the sector may be corrupted. If so, the 
probability is 50% that the number of 1-bits will be even, and the error will not 
be detected. We can increase our chances of detecting errors if we keep several 
parity bits. For example, we could keep eight parity bits, one for the first bit 
of every byte, one for the second bit of every byte, and so on, up to the eighth 
and last bit of every byte. Then, on a massive error, the probability is 50% 
that any one parity bit will detect an error, and the chance that none of the 
eight do so is only one in 28, or 1/256. In general, if we use n independent bits 
as a checksum, then the chance of missing an error is only 1/2". For instance, 
if we devote 4 bytes to a checksum, then there is only one chance in about four 
billion that the error will go undetected.

13.4.3 Stable Storage
While checksums will almost certainly detect the existence of a media failure 
or a failure to read or write correctly, it does not help us correct the error. 
Moreover, when writing we could find ourselves in a position where we overwrite 
the previous contents of a sector and yet cannot read the new contents correctly. 
That situation could be serious if, say, we were adding a small increment to 
an account balance and now have lost both the original balance and the new 
balance. If we could be assured that the contents of the sector contained either 
the new or old balance, then we would only have to determine whether the 
write was successful or not.

To deal with the problems above, we can implement a policy known as 
stable storage on a disk or on several disks. The general idea is that sectors 
are paired, and each pair represents one sector-contents X .  We shall refer to 
the pair of sectors representing X  as the “left” and “right” copies, X l and X r . 
We continue to assume that the copies are written with a sufficient number of 
parity-check bits so that we can rule out the possibility that a bad sector looks 
good when the parity checks are considered. Thus, we shall assume that if the 
read function returns a good value w for either X l or X r , then w is the true 
value of X . The stable-storage writing policy is:

1. Write the value of X  into X l - Check that the value has status “good” ;
i.e., the parity-check bits are correct in the written copy. If not, repeat the 
write. If after a set number of write attempts, we have not successfully 
written X  into X l , assume that there is-a media failure in this sector. A 
fix-up such as substituting a spare sector for X l must be adopted.

2. Repeat (1) for X r .

The stable-storage reading policy is to alternate trying to read X l  and X r ,
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until a good value is returned. Only if no good value is returned after some 
large, prechosen number of tries, is X  truly unreadable.

13.4.4 Error-Handling Capabilities of Stable Storage
The policies described in Section 13.4.3 are capable of compensating for several 
different kinds of errors. We shall outline them here.

1. Media failures. If, after storing X  in sectors X l and X r , one of them 
undergoes a media failure and becomes permanently unreadable, we can 
always read X  from the other. If both X l and X r  have failed, then we 
cannot read X ,  but the probability of both failing is extremely small.

2. Write failure. Suppose that as we write X ,  there is a system failure — 
e.g., a power outage. It is possible that X  will be lost in main memory, 
and also the copy of X  being written at the time will be garbled. For 
example, half the sector may be written with part of the new value of X ,  
while the other half remains as it was. When the system becomes available 
and we examine X l and X r , we are sure to be able to determine either 
the old or new value of X .  The possible cases are:

(a) The failure occurred as we were writing X l ■ Then we shall find that 
the status of X l  is “bad.” However, since we never got to write X r , 
its status will be “good” (unless there is a coincident media failure 
at X r , which is extremely unlikely). Thus, we can obtain the old 
value of X .  We may also copy X r  into X l  to repair the damage to 
X l .

(b) The failure occurred after we wrote X l-  Then we expect that X l  
will have status “good,” and we may read the new value of X  from 
X l - Since X r  may or may not have the correct value of X ,  we 
should also copy X l  into X r .

13.4.5 Recovery from Disk Crashes
The most serious mode of failure for disks is the “disk crash” or “head crash,” 
where data is permanently destroyed. If the data was not backed up on another 
medium, such as a tape backup system, or on a mirror disk as we discussed in 
Section 13.3.4, then there is nothing we can do to recover the data. This 
situation represents a disaster for many DBMS applications, such as banking 
and other financial applications.

Several schemes have been developed to reduce the risk of data loss by disk 
crashes. They generally involve redundancy, extending the idea of parity checks 
from Section 13.4.2 or duplicated sectors, as in Section 13.4.3. The common 
term for this class of strategies is RAID, or Redundant Arrays of Independent 
Disks.
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The rate at which disk crashes occur is generally measured by the mean time 
to failure, the time after which 50% of a population of disks can be expected to 
fail and be unrecoverable. For modern disks, the mean time to failure is about 
10 years. We shall make the convenient assumption that if the mean time to 
failure is n years, then in any given year, 1 /nth of the surviving disks fail. In 
reality, there is a tendency for disks, like most electronic equipment, to fail early 
or fail late. That is, a small percentage have manufacturing defects that lead 
to their early demise, while those without such defects will survive for many 
years, until wear-and-tear causes a failure.

However, the mean time to a disk crash does not have to be the same as 
the mean time to data loss. The reason is that there are a number of schemes 
available for assuring that if one disk fails, there are others to help recover the 
data of the failed disk. In the remainder of this section, we shall study the most 
common schemes.

Each of these schemes starts with one or more disks that hold the data (we’ll 
call these the data disks) and adding one or more disks that hold information 
that is completely determined by the contents of the data disks. The latter are 
called redundant disks. When there is a disk crash of either a data disk or a 
redundant disk, the other disks can be used to restore the failed disk, and there 
is no permanent information loss.

13.4.6 Mirroring as a Redundancy Technique
The simplest scheme is to mirror each disk, as discussed in Section 13.3.4. 
We shall call one of the disks the data disk, while the other is the redundant 
disk, which is which doesn’t  matter in this scheme. Mirroring, as a protection 
against data loss, is often referred to as RAID level 1. It gives a mean time 
to memory loss that is much greater than the mean time to disk failure, as 
the following example illustrates. Essentially, with mirroring and the other 
redundancy schemes we discuss, the only way data can be lost is if there is a 
second disk crash while the first crash is being repaired.

E xam ple 13.8: Suppose each disk has a 10-year mean time to failure, which 
we shall take to mean that the probability of failure in any given year is 10%. 
If disks are mirrored, then when a disk fails, we have only to replace it with a 
good disk and copy the mirror disk to the new one. At the end, we have two 
disks that are mirrors of each other, and the system is restored to its former 
state.

The only thing that could go wrong is that during the copying the mirror 
disk fails. Now, both copies of at least part of the data have been lost, and 
there is no way to recover.

But how often will this sequence of events occur? Suppose that the process 
of replacing the failed disk takes 3 hours, which is 1/8 of a day, or 1/2920 of a 
year. Since we assume the average disk lasts 10 years, the probability that the 
mirror disk will fail during copying is (1/10) x (1/2920), or one in 29,200. If
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one disk fails every 10 years, then one of the two disks will fail once in 5 years 
on the average. One in every 29,200 of these failures results in data loss. Put 
another way, the mean time to a failure involving data loss is 5 x 29,200 =
146,000 years. □

13.4.7 Parity Blocks

While mirroring disks is an effective way to reduce the probability of a disk crash 
involving data loss, it uses as many redundant disks as there are data disks. 
Another approach, often called RAID level 4, uses only one redundant disk, no 
m atter how many data disks there are. We assume the disks are identical, so 
we can number the blocks on each disk from 1 to some number n. Of course, 
all the blocks on all the disks have the same number of bits; for instance, the
16,384-byte blocks of the Megatron 747 have 8 x 16,384 =  131,072 bits. In the 
redundant disk, the *th block consists of parity checks for the *th blocks of all 
the data disks. That is, the j th  bits of all the ith  blocks, including both the 
data disks and the redundant disk, must have an even number of l ’s among 
them, and we always choose the bit of the redundant disk to make this condition 
true.

We saw in Example 13.7 how to force the condition to be true. In the 
redundant disk, we choose bit j  to be 1 if an odd number of the data disks 
have 1 in that bit, and we choose bit j  of the redundant disk to be 0 if there 
are an even number of l ’s in that bit among the data disks. The term for this 
calculation is the modulo-2 sum. That is, the modulo-2 sum of bits is 0 if there 
are an even number of l ’s among those bits, and 1 if there are an odd number 
of l ’s.

E xam p le 1 3 .9 : Suppose for sake of an extremely simple example that blocks 
consist of only one byte — eight bits. Let there be three data disks, called
1, 2, and 3, and one redundant disk, called disk 4. Focus on the first block 
of all these disks. If the data disks have in their first blocks the following bit 
sequences:

disk 1: 11110000 
disk 2: 10101010 
disk 3: 00111000

then the redundant disk will have in block 1 the parity check bits:

disk 4: 01100010

Notice how in each position, an even number of the four 8-bit sequences have 
l ’s. There are two l ’s in positions 1, 2, 4, 5, and 7, four l ’s in position 3, and 
zero l ’s in positions 6 and 8. □
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R eading

Reading blocks from a data disk is no different from reading blocks from any 
disk. There is generally no reason to read from the redundant disk, but we 
could.

W riting

When we write a new block of a data disk, we need not only to change that 
block, but we need to change the corresponding block of the redundant disk 
so it continues to hold the parity checks for the corresponding blocks of all the 
data disks. A naive approach would read the corresponding blocks of the n  data 
disks, take their modulo-2 sum, and rewrite the block of the redundant disk. 
That approach requires a write of the data block that is rewritten, the reading 
of the n  — 1 other data blocks, and a write of the block of the redundant disk. 
The total is thus n + 1 disk I /O ’s.

A better approach is to look only at the old and new versions of the data 
block i being rewritten. If we take their modulo-2 sum, we know in which 
positions there is a change in the number of l ’s among the blocks numbered i 
on all the disks. Since these changes are always by one, any even number of l ’s 
changes to an odd number. If we change the same positions of the redundant 
block, then the number of l ’s in each position becomes even again. We can 
perform these calculations using four disk I/O ’s:

1. Read the old value of the data block being changed.

2. Read the corresponding block of the redundant disk.

3. Write the new data block.

4. Recalculate and write the block of the redundant disk.

E xam ple 13.10: Suppose the three first blocks of the data disks are as in 
Example 13.9:

disk 1: 11110000 
disk 2: 10101010 
disk 3: 00111000

Suppose also that the block on the second disk changes from 10101010 to 
11001100. We take the modulo-2 sum of the old and new values of the block 
on disk 2, to get 01100110. That tells us we must change positions 2, 3, 6, and 
7 of the first block of the redundant disk. We read that block: 01100010. We 
replace this block by a new block that we get by changing the appropriate po­
sitions; in effect we replace the redundant block by the modulo-2 sum of itself 
and 01100110, to get 00000100. Another way to express the new redundant 
block is that it is the modulo-2 sum of the old and new versions of the block
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The Algebra of Modulo-2 Sums

It may be helpful for understanding some of the tricks used with parity 
checks to know the algebraic rules involving the modulo-2 sum opera­
tion on bit vectors. We shall denote this operation ©. As an example, 
1100 ® 1010 =  0110. Here are some useful rules about ffi:

• The commutative law: x  © y = y ffi x.

•  The associative law. x  © (y © z) — (x © y) © z.

• The all-0 vector of the appropriate length, which we denote 0, is the 
identity for ©; that is, x  ffi 0 =  0 ffi x  =  x.

• ffi is its own inverse: x ffi x = 0. As a useful consequence, if x ffi y =  2 , 
then we can “add” x  to both sides and get y =  x  ffi z.

being rewritten and the old value of the redundant block. In our example, the 
first blocks of the four disks — three data disks and one redundant — have 
become:

disk 1: 11110000 
disk 2: 11001100 
disk 3: 00111000 
disk 4: 00000100

after the write to the block on the second disk and the necessary recomputation 
of the redundant block. Notice that in the blocks above, each column continues 
to have an even number of l ’s. □

Failure R ecovery

Now, let us consider what we would do if one of the disks crashed. If it is the 
redundant disk, we swap in a new disk, and recompute the redundant blocks. If 
the failed disk is one of the data disks, then we need to swap in a good disk and 
recompute its data from the other disks. The rule for recomputing any missing 
data is actually simple, and doesn’t depend on which disk, data or redundant, 
is failed. Since we know that the number of l ’s among corresponding bits of all 
disks is even, it follows that:

• The bit in any position is the modulo-2 sum of all the bits in the corre­
sponding positions of all the other disks.

If one doubts the above rule, one has only to consider the two cases. If the 
bit in question is 1, then the number of corresponding bits in the other disks
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that are 1 must be odd, so their modulo-2 sum is 1. If the bit in question is 0, 
then there are an even number of l ’s among the corresponding bits of the other 
disks, and their modulo-2 sum is 0.

E xam ple 13.11: Suppose that disk 2 fails. We need to recompute each block 
of the replacement disk. Following Example 13.9, let us see how to recompute 
the first block of the second disk. We are given the corresponding blocks of the 
first and third data disks and the redundant disk, so the situation looks like:

disk 1: 11110000 
disk 2: ???????? 
disk 3: 00111000 
disk 4: 01100010

If we take the modulo-2 sum of each column, we deduce that the missing block 
is 10101010, as was initially the case in Example 13.9. □

13.4.8 An Improvement: RAID 5
The RAID level 4 strategy described in Section 13.4.7 effectively preserves data 
unless there are two almost simultaneous disk crashes. However, it suffers from 
a bottleneck defect that we can see when we re-examine the process of writing 
a new data block. Whatever scheme we use for updating the disks, we need to 
read and write the redundant disk’s block. If there are n data disks, then the 
number of disk writes to the redundant disk will be n  times the average number 
of writes to any one data disk.

However, as we observed in Example 13.11, the rule for recovery is the 
same as for the data disks and redundant disks: take the modulo-2 sum of 
corresponding bits of the other disks. Thus, we do not have to treat one disk as 
the redundant disk and the others as data disks. Rather, we could treat each 
disk as the redundant disk for some of the blocks. This improvement is often 
called RAID level 5.

For instance, if there are n  +  1 disks numbered 0 through n, we could treat 
the ith  cylinder of disk j  as redundant if j  is the remainder when i is divided 
by n  +  1.

E xam ple 13.12: In our running example, n = 3 so there are 4 disks. The 
first disk, numbered 0, is redundant for its cylinders numbered 4, 8, 12, and so 
on, because these are the numbers that leave remainder 0 when divided by 4. 
The disk numbered 1 is redundant for blocks numbered 1, 5, 9, and so on; disk 
2 is redundant for blocks 2, 6, 1 0 ,.. .,  and disk 3 is redundant for 3, 7, 1 1 ,... .

As a result, the reading and writing load for each disk is the same. If all 
blocks are equally likely to be written, then for one write, each disk has a 1/4 
chance that the block is on that disk. If not, then it has a 1/3 chance that 
it will be the redundant disk for that block. Thus, each of the four disks is 
involved in 1/4 +  (3/4) x (1/3) =  1/2 of the writes. □
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13.4.9 Coping W ith M ultiple Disk Crashes
There is a theory of error-correcting codes that allows us to deal with any 
number of disk crashes — data or redundant — if we use enough redundant 
disks. This strategy leads to the highest RAID “level,” RAID level 6. We 
shall give only a simple example here, where two simultaneous crashes are 
correctable, and the strategy is based on the simplest error-correcting code, 
known as a Hamming code.

In our description we focus on a system with seven disks, numbered 1 
through 7. The first four are data disks, and disks 5 through 7 are redun­
dant. The relationship between data and redundant disks is summarized by 
the 3 x 7  matrix of 0’s and l ’s in Fig. 13.10. Notice that:

a) Every possible column of three 0’s and l ’s, except for the all-0 column, 
appears in the matrix of Fig. 13.10.

b) The columns for the redundant disks have a single 1.

c) The columns for the data disks each have at least two l ’s.

Data Redundant

Disk number 1 2 3 4 5 6 7

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

Figure 13.10: Redundancy pattern for a system that can recover from two 
simultaneous disk crashes

The meaning of each of the three rows of 0’s and l ’s is that if we look at 
the corresponding bits from all seven disks, and restrict our attention to those 
disks that have 1 in that row, then the modulo-2 sum of these bits must be 0. 
Put another way, the disks with 1 in a given row of the matrix are treated as 
if they were the entire set of disks in a RAID level 4 scheme. Thus, we can 
compute the bits of one of the redundant disks by finding the row in which that 
disk has 1, and talcing the modulo-2 sum of the corresponding bits of the other 
disks that have 1 in the same row.

For the matrix of Fig. 13.10, this rule implies:

1. The bits of disk 5 are the modulo-2 sum of the corresponding bits of disks 
1, 2, and 3.

2. The bits of disk 6 are the modulo-2 sum of the corresponding bits of disks 
1, 2, and 4.
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3. The bits of disk 7 are the modulo-2 sum of the corresponding bits of disks 
1, 3, and 4.

We shall see shortly that the particular choice of bits in this matrix gives us a 
simple rule by which we can recover from two simultaneous disk crashes.

R eading

We may read data from any data disk normally. The redundant disks can be 
ignored.

W riting

The idea is similar to the writing strategy outlined in Section 13.4.8, but now 
several redundant disks may be involved. To write a block of some data disk, 
we compute the modulo-2 sum of the new and old versions of that block. These 
bits are then added, in a modulo-2 sum, to the corresponding blocks of all those 
redundant disks that have 1 in a row in which the written disk also has 1.

E xam ple 13.13: Let us again assume that blocks are only eight bits long, 
and focus on the first blocks of the seven disks involved in our RAID level 6 
example. First, suppose the data and redundant first blocks are as given in 
Fig. 13.11. Notice that the block for disk 5 is the modulo-2 sum of the blocks 
for the first three disks, the sixth row is the modulo-2 sum of rows 1, 2, and 4, 
and the last row is the modulo-2 sum of rows 1, 3, and 4.

Disk Contents

1) 11110000
2) 10101010
3) 00111000
4) 01000001
5) 01100010
6) 00011011
7) 10001001

Figure 13.11: First blocks of all disks

Suppose we rewrite the first block of disk 2 to be 00001111. If we sum this 
sequence of bits modulo-2 with the sequence 10101010 that is the old value of 
this block, we get 10100101. If we look at the column for disk 2 in Fig. 13.10, 
we find that this disk has l ’s in the first two rows, but not the third. Since 
redundant disks 5 and 6 have 1 in rows 1 and 2, respectively, we must perform 
the sum modulo-2 operation on the current contents of their first blocks and 
the sequence 10100101 just calculated. That is, we flip the values of positions 1,
3, 6, and 8 of these two blocks. The resulting contents of the first blocks of all
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disks is shown in Fig. 13.12. Notice that the new contents continue to satisfy the 
constraints implied by Fig. 13.10: the modulo-2 sum of corresponding blocks 
that have 1 in a particular row of the matrix of Fig. 13.10 is still all 0’s. □

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) 11000111
6) 10111110
7) 10001001

Figure 13.12: First blocks of all disks after rewriting disk 2 and changing the 
redundant disks

Failure R ecovery

Now, let us see how the redundancy scheme outlined above can be used to 
correct up to two simultaneous disk crashes. Let the failed disks be a and b. 
Since all columns of the matrix of Fig. 13.10 are different, we must be able to 
find some row r in which the columns for a and b are different. Suppose that a 
has 0 in row r, while b has 1 there.

Then we can compute the correct b by taking the modulo-2 sum of corre­
sponding bits from all the disks other than b that have 1 in row r. Note that 
a is not among these, so none of these disks have failed. Having recomputed b, 
we must recompute a, with all other disks available. Since every column of the 
matrix of Fig. 13.10 has a 1 in some row, we can use this row to recompute disk 
a by taking the modulo-2 sum of bits of those other disks with a 1 in this row.

Disk Contents

1) 11110000
2) ????????
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.13: Situation after disks 2 and 5 fail
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E xam ple 13.14: Suppose that disks 2 and 5 fail at about the same time. 
Consulting the matrix of Fig. 13.10, we find that the columns for these two 
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus 
reconstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these 
three disks has failed. For instance, following from the situation regarding the 
first blocks in Fig. 13.12, we would initially have the data of Fig. 13.13 available 
after disks 2 and 5 failed.

If we take the modulo-2 sum of the contents of the blocks of disks 1, 4, and
6, we find that the block for disk 2 is 00001111. This block is correct as can be 
verified from Fig. 13.12. The situation is now as in Fig. 13.14.

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.14: After recovering disk 2

Now, we see that disk 5’s column in Fig. 13.10 has a 1 in the first row. We 
can therefore recompute disk 5 by taking the modulo-2 sum of corresponding 
bits from disks 1, 2, and 3, the other three disks that have 1 in the first row. 
For block 1, this sum is 11000111. Again, the correctness of this calculation 
can be confirmed by Fig. 13.12. □

13.4.10 Exercises for Section 13.4
Exercise 13.4.1: Compute the parity bit for the following bit sequences:

a) 00111011.

b) 00000000.

c) 10101101.

Exercise 13.4.2: We can have two parity bits associated with a string if we 
follow the string by one bit that is a parity bit for the odd positions and a 
second that is the parity bit for the even positions. For each of the strings in 
Exercise 13.4.1, find the two bits that serve in this way.
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Additional Observations About RAID Level 6

1. We can combine the ideas of RAID levels 5 and 6, by varying the 
choice of redundant disks according to the block or cylinder number. 
Doing so will avoid bottlenecks when writing; the scheme described 
in Section 13.4.9 will cause bottlenecks at the redundant disks.

2. The scheme described in Section 13.4.9 is not restricted to four data 
disks. The number of disks can be one less than any power of 2, say 
2k — 1. Of these disks, k are redundant, and the remaining 2k — k  — 1 
are data disks, so the redundancy grows roughly as the logarithm of 
the number of data disks. For any k , we can construct the matrix 
corresponding to Fig. 13.10 by writing all possible columns of k 0’s 
and l ’s, except the all-O’s column. The columns with a single 1 
correspond to the redundant disks, and the columns with more than 
one 1 are the data disks.

E xercise 13.4.3: Suppose we use mirrored disks as in Example 13.8, the 
failure rate is 4% per year, and it takes 8 hours to replace a disk. What is the 
mean time to a disk failure involving loss of data?

! E xercise 13.4.4: Suppose that a disk has probability F  of failing in a given 
year, and it takes H  hours to replace a disk.

a) If we use mirrored disks, what is the mean time to data loss, as a function 
of F  and H I

b) If we use a RAID level 4 or 5 scheme, with N  disks, what is the mean 
time to data loss?

!! E xercise 13.4.5: Suppose we use three disks as a mirrored group; i.e., all 
three hold identical data. If the yearly probability of failure for one disk is F, 
and it takes H  hours to restore a disk, what is the mean time to data loss?

E xercise 13.4.6: Suppose we are using a RAID level 4 scheme with four data 
disks and one redundant disk. As in Example 13.9 assume blocks are a single 
byte. Give the block of the redundant disk if the corresponding blocks of the 
data disks are:

a) 01010110,11000000, 00111011, and 11111011.

b) 11110000, 11111000, 00111111, and 00000001.
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Error-Correcting Codes and RAID Level 6

There is a theory that guides our selection of a suitable matrix, like that 
of Fig. 13.10, to determine the content of redundant disks. A code of 
length n  is a set of bit-vectors (called code words) of length n. The Ham­
ming distance between two code words is the number of positions in which 
they differ, and the minimum distance of a code is the smallest Hamming 
distance of any two different code words.

If C is any code of length n, we can require that the corresponding 
bits on n disks have one of the sequences that are members of the code. As 
a very simple example, if we are using a disk and its mirror, then n =  2, 
and we can use the code C — {00,11}. That is, the corresponding bits 
of the two disks must be the same. For another example, the matrix of 
Fig. 13.10 defines the code consisting of the 16 bit-vectors of length 7 that 
have arbitrary values for the first four bits and have the remaining three 
bits determined by the rules for the three redundant disks.

If the minimum distance of a code is d, then disks whose corresponding 
bits are required to be a vector in the code will be able to tolerate d — 1 
simultaneous disk crashes. The reason is that, should we obscure d — 1 
positions of a code word, and there were two different ways these positions 
could be filled in to make a code word, then the two code words would have 
to differ in at most the d — 1 positions. Thus, the code could not have 
minimum distance d. As an example, the matrix of Fig. 13.10 actually 
defines the well-known Hamming code, which has minimum distance 3. 
Thus, it can handle two disk crashes.

E xercise 13.4.7: Using the same RAID level 4 scheme as in Exercise 13.4.6, 
suppose that data disk 1 has failed. Recover the block of that disk under the 
following circumstances:

a) The contents of disks 2 through 4 are 01010110,11000000, and 00111011, 
while the redundant disk holds 11111011.

b) The contents of disks 2 through 4 are 11110000, 11111000, and 00111111, 
while the redundant disk holds 00000001.

E xercise 13.4.8: Suppose the block on the first disk in Exercise 13.4.6 is 
changed to 10101010. What changes to the corresponding blocks on the other 
disks must be made?

Exercise 13.4.9: Suppose we have the RAID level 6 scheme of Example 13.13, 
and the blocks of the four data disks are 00111100, 11000111, 01010101, and 
10000100, respectively.


