
Chapter 13

Secondary Storage
Management

Database systems always involve secondary storage — the disks and other de­
vices that store large amounts of data that persists over time. This chapter
summarizes what we need to know about how a typical computer system man­
ages storage. We review the memory hierarchy of devices with progressively
slower access but larger capacity. We examine disks in particular and see how
the speed of data access is affected by how we organize our data on the disk.
We also study mechanisms for making disks more reliable.

Then, we turn to how data is represented. We discuss the way tuples of a
relation or similar records or objects are stored. Efficiency, as always, is the
key issue. We cover ways to find records quickly, and how to manage insertions
and deletions of records, as well as records whose sizes grow and shrink.

13.1 The Memory Hierarchy
We begin this section by examining the memory hierarchy of a computer system.
We then focus on disks, by far the most common device at the “secondary-
storage” level of the hierarchy. We give the rough parameters that determine
the speed of access and look at the transfer of data from disks to the lower
levels of the memory hierarchy.

13.1.1 The Memory Hierarchy
A typical computer system has several different components in which data may
be stored. These components have data capacities ranging over at least seven
orders of magnitude and also have access speeds ranging over seven or more
orders of magnitude. The cost per byte of these components also varies, but
more slowly, with perhaps three orders of magnitude between the cheapest and

557

558 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

most expensive forms of storage. Not surprisingly, the devices with smallest
capacity also offer the fastest access speed and have the highest cost per byte.
A schematic of the memory hierarchy is shown in Fig. 13.1.

DBMS

Nonvolatile

t
Volatile

I
Figure 13.1: The memory hierarchy

Here are brief descriptions of the levels, from the lowest, or fastest-smallest
level, up.

1. Cache. A typical machine has a megabyte or more of cache storage.
On-board cache is found on the same chip as the microprocessor itself,
and additional level-2 cache is found on another chip. Data and instruc­
tions are moved to cache from main memory when they are needed by
the processor. Cached data can be accessed by the processor in a few
nanoseconds.

2. Main Memory. In the center of the action is the computer’s main memory.
We may think of everything that happens in the computer — instruction
executions and data manipulations — as working on information that is
resident in main memory (although in practice, it is normal for what is
used to migrate to the cache). A typical machine in 2008 is configured
with about a gigabyte of main memory, although much larger main mem­
ories are possible. Typical times to move data from main memory to the
processor or cache are in the 10-100 nanosecond range.

3. Secondary Storage. Secondary storage is typically magnetic disk, a device
we shall consider in detail in Section 13.2. In 2008, single disk units
have capacities of up to a terabyte, and one machine can have several
disk units. The time to transfer a single byte between disk and main

13.1. THE MEMORY HIERARCHY 559

Computer Quantities are Powers of 2

It is conventional to talk of sizes or capacities of computer components
as if they were powers of 10: megabytes, gigabytes, and so on. In reality,
since it is most efficient to design components such as memory chips to
hold a number of bits that is a power of 2, all these numbers are really
shorthands for nearby powers of 2. Since 210 = 1024 is very close to a
thousand, we often maintain the fiction that 210 = 1000, and talk about
210 with the prefix “kilo,” 220 as “mega,” 230 as “giga,” 240 as “tera,” and
250 as “peta,” even though these prefixes in scientific parlance refer to 103,
106, 109, 1012 and 1015, respectively. The discrepancy grows as we talk of
larger numbers. A “gigabyte” is really 1.074 x 109 bytes.

We use the standard abbreviations for these numbers: K, M, G, T, and
P for kilo, mega, giga, tera, and peta, respectively. Thus, 16Gb is sixteen
gigabytes, or strictly speaking 234 bytes. Since we sometimes want to talk
about numbers that are the conventional powers of 10, we shall reserve for
these the traditional numbers, without the prefixes “kilo,” “mega,” and
so on. For example, “one million bytes” is 1,000,000 bytes, while “one
megabyte” is 1,048,576 bytes.

A recent trend is to use “kilobyte,” “megabyte,” and so on for exact
powers of ten, and to replace the third and fourth letters by “bi” to repre­
sent the similar powers of two. Thus, “kibibyte” is 1024 bytes, “mebibyte”
is 1,048,576 bytes, and so on. We shall not use this convention.

memory is around 10 miliseconds. However, large numbers of bytes can
be transferred at one time, so the m atter of how fast data moves from
and to disk is somewhat complex.

4. Tertiary Storage. As capacious as a collection of disk units can be, there
are databases much larger than what can be stored on the disk(s) of a
single machine, or even several machines. To serve such needs, tertiary
storage devices have been developed to hold data volumes measured in ter­
abytes. Tertiary storage is characterized by significantly higher read/write
times than secondary storage, but also by much larger capacities and
smaller cost per byte than is available from magnetic disks. Many ter­
tiary devices involve robotic arms or conveyors that bring storage media
such as magnetic tape or optical disks (e.g., DVD’s) to a reading device.
Retrieval takes seconds or minutes, but capacities in the petabyte range
are possible.

560 CHAPTER 13. SECONDARY STO RAGE M ANAGEM ENT

13.1.2 Transfer of Data Between Levels

Normally, data moves between adjacent levels of the hierarchy. At the secondary
and tertiary levels, accessing the desired data or finding the desired place to
store data takes a great deal of time, so each level is organized to transfer
large amounts of data to or from the level below, whenever any data at all is
needed. Especially important for understanding the operation of a database
system is the fact that the disk is organized into disk blocks (or just blocks, or
as in operating systems, pages) of perhaps 4-64 kilobytes. Entire blocks axe
moved to or from a continuous section of main memory called a buffer. Thus,
a key technique for speeding up database operations is to arrange data so that
when one piece of a disk block is needed, it is likely that other data on the same
block will also be needed at about the same time.

The same idea applies to other hierarchy levels. If we use tertiary storage,
we try to arrange so that when we select a unit such as a DVD to read, we
need much of what is on that DVD. At a lower level, movement between main
memory and cache is by units of cache lines, typically 32 consecutive bytes.
The hope is that entire cache lines will be used together. For example, if a
cache line stores consecutive instructions of a program, we hope that when
the first instruction is needed, the next few instructions will also be executed
immediately thereafter.

13.1.3 Volatile and Nonvolatile Storage
An additional distinction among storage devices is whether they are volatile or
nonvolatile. A volatile device “forgets” what is stored in it when the power goes
off. A nonvolatile device, on the other hand, is expected to keep its contents
intact even for long periods when the device is turned off or there is a power
failure. The question of volatility is important, because one of the characteristic
capabilities of a DBMS is the ability to retain its data even in the presence of
errors such as power failures.

Magnetic and optical materials hold their data in the absence of power.
Thus, essentially all secondary and tertiary storage devices are nonvolatile. On
the other hand, main memory is generally volatile (although certain types of
more expensive memory chips, such as flash memory, can hold their data after
a power failure). A significant part of the complexity in a DBMS comes from
the requirement that no change to the database can be considered final until it
has migrated to nonvolatile, secondary storage.

13.1.4 Virtual Memory-
Typical software executes in virtual-memory, an address space that is typically
32 bits; i.e., there are 232 bytes, or 4 gigabytes, in a virtual memory. The
operating system manages virtual memory, keeping some of it in main memory
and the rest on disk. Transfer between memory and disk is in units of disk

13.1. THE MEMORY HIERARCHY 561

M oore’s Law

Gordon Moore observed many years ago that integrated circuits were im­
proving in many ways, following an exponential curve that doubles about
every 18 months. Some of these parameters that follow “Moore’s law” are:

1. The number of instructions per second that can be executed for unit
cost. Until about 2005, the improvement was achieved by making
processor chips faster, while keeping the cost fixed. After that year,
the improvement has been maintained by putting progressively more
processors on a single, fixed-cost chip.

2. The number of memory bits that can be bought for unit cost and
the number of bits that can be put on one chip.

3. The number of bytes per unit cost on a disk and the capacity of the
largest disks.

On the other hand, there are some other important parameters that
do not follow Moore’s law; they grow slowly if at all. Among these slowly
growing parameters are the speed of accessing data in main memory and
the speed at which disks rotate. Because they grow slowly, “latency”
becomes progressively larger. That is, the time to move data between
levels of the memory hierarchy appears enormous today, and will only get
worse.

blocks (pages). Virtual memory is an artifact of the operating system and its
use of the machine’s hardware, and it is not a level of the memory hierarchy.

The path in Fig. 13.1 involving virtual memory represents the treatment
of conventional programs and applications. It does not represent the typical
way data in a database is managed, since a DBMS manages the data itself.
However, there is increasing interest in main-memory database systems, which
do indeed manage their data through virtual memory, relying on the operating
system to bring needed data into main memory through the paging mechanism.
Main-memory database systems, like most applications, are most useful when
the data is small enough to remain in main memory without being swapped
out by the operating system.

13.1.5 Exercises for Section 13.1
Exercise 13.1.1: Suppose that in 2008 the typical computer has a processor
chip with two processors (“cores”) that each run at 3 gigahertz, has a disk of
250 gigabytes, and a main memory of 1 gigabyte. Assume that Moore’s law
(these factors double every 18 months) holds into the indefinite future.

562 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

a) When will petabyte disks be common?

b) When will terabyte main memories be common?

c) When will terahertz processor chips be common (i.e., the total number of
cycles per second of all the cores on a chip will be approximately 1012?

d) W hat will be a typical configuration (processor, disk, memory) in the year
2015?

! Exercise 13.1 .2 : Commander Data, the android from the 24th century on
Star Trek: The Next Generation once proudly announced that his processor
runs at “12 teraops.” While an operation and a cycle may not be the same, let
us suppose they are, and that Moore’s law continues to hold for the next 300
years. If so, what would Data’s true processor speed be?

13.2 Disks
The use of secondary storage is one of the important characteristics of a DBMS,
and secondary storage is almost exclusively based on magnetic disks. Thus, to
motivate many of the ideas used in DBMS implementation, we must examine
the operation of disks in detail.

13.2.1 Mechanics of Disks
The two principal moving pieces of a disk drive are shown in Fig. 13.2; they
are a disk assembly and a head assembly. The disk assembly consists of one
or more circular platters that rotate around a central spindle. The upper and
lower surfaces of the platters are covered with a thin layer of magnetic material,
on which bits are stored. 0’s and l ’s are represented by different patterns in the
magnetic material. A common diameter for disk platters is 3.5 inches, although
disks with diameters from an inch to several feet have been built.

The disk is organized into tracks, which are concentric circles on a single
platter. The tracks that are at a fixed radius from the center, among all the
surfaces, form one cylinder. Tracks occupy most of a surface, except for the
region closest to the spindle, as can be seen in the top view of Fig. 13.3. The
density of data is much greater along a track than radially. In 2008, a typical
disk has about 100,000 tracks per inch but stores about a million bits per inch
along the tracks.

Tracks are organized into sectors, which are segments of the circle separated
by gaps that are not magnetized to represent either 0’s or l ’s.1 The sector is an
indivisible unit, as far as reading and writing the disk is concerned. It is also
indivisible as far as errors are concerned. Should a portion of the magnetic layer

1 W e show each tra c k w ith th e sam e n u m b er o f sec to rs in F ig . 13.3. However, th e n u m b er
o f sec to rs p e r tra c k no rm ally varies, w ith th e o u te r track s hav ing m ore sec to rs th a n inn er
tracks.

13.2. DISKS 563

Figure 13.2: A typical disk

be corrupted in some way, so that it cannot store information, then the entire
sector containing this portion cannot be used. Gaps often represent about 10%
of the total track and are used to help identify the beginnings of sectors. As we
mentioned in Section 13.1.2, blocks are logical units of data that are transferred
between disk and main memory; blocks consist of one or more sectors.

Figure 13.3: Top view of a disk surface

The second movable piece shown in Fig. 13.2, the head assembly, holds the
disk heads. For each surface there is one head, riding extremely close to the
surface but never touching it (or else a “head crash” occurs and the disk is
destroyed). A head reads the magnetism passing under it, and can also alter
the magnetism to write information on the disk. The heads are each attached
to an arm, and the arms for all the surfaces move in and out together, being
part of the rigid head assembly.

E xam ple 13.1: The Megatron 7^7 disk has the following characteristics, which

564 CHAPTER 13. SECONDARY STO RAG E M ANAGEM ENT

are typical of a large vintage-2008 disk drive.

• There are eight platters providing sixteen surfaces.

• There are 216, or 65,536, tracks per surface.

• There are (on average) 28 = 256 sectors per track.

• There are 212 = 4096 bytes per sector.

The capacity of the disk is the product of 16 surfaces, times 65,536 tracks,
times 256 sectors, times 4096 bytes, or 240 bytes. The Megatron 747 is thus a
terabyte disk. A single track holds 256 x 4096 bytes, or 1 megabyte. If blocks
are 214, or 16,384 bytes, then one block uses 4 consecutive sectors, and there
are (on average) 256/4 = 32 blocks on a track. □

13.2.2 The Disk Controller
One or more disk drives are controlled by a disk controller, which is a small
processor capable of:

1. Controlling the mechanical actuator that moves the head assembly, to
position the heads at a particular radius, i.e., so that any track of one
particular cylinder can be read or written.

2. Selecting a sector from among all those in the cylinder at which the heads
are positioned. The controller is also responsible for knowing when the ro­
tating spindle has reached the point where the desired sector is beginning
to move under the head.

3. Transferring bits between the desired sector and the computer’s main
memory.

4. Possibly, buffering an entire track or more in local memory of the disk
controller, hoping that many sectors of this track will be read soon, and
additional accesses to the disk can be avoided.

Figure 13.4 shows a simple, single-processor computer. The processor com­
municates via a data bus with the main memory and the disk controller. A
disk controller can control several disks; we show three disks in this example.

13.2.3 Disk Access Characteristics
Accessing (reading or writing) a block requires three steps, and each step has
an associated delay.

1. The disk controller positions the head assembly at the cylinder containing
the track on which the block is located. The time to do so is the seek time.

13.2. DISKS 565

Disks

Figure 13.4: Schematic of a simple computer system

2. The disk controller waits while the first sector of the block moves under
the head. This time is called the rotational latency.

3. All the sectors and the gaps between them pass under the head, while the
disk controller reads or writes data in these sectors. This delay is called
the transfer time.

The sum of the seek time, rotational latency, and transfer time is the latency
of the disk.

The seek time for a typical disk depends on the distance the heads have to
travel from where they are currently located. If they are already at the desired
cylinder, the seek time is 0. However, it takes roughly a millisecond to start
the disk heads moving, and perhaps 10 milliseconds to move them across all
the tracks.

A typical disk rotates once in roughly 10 milliseconds. Thus, rotational
latency ranges from 0 to 10 milliseconds, and the average is 5. TYansfer times
tend to be much smaller, since there are often many blocks on a track. Thus,
transfer times are in the sub-millisecond range. When you add all three delays,
the typical average latency is about 10 milliseconds, and the maximum latency
about twice that.

E xam ple 13.2: Let us examine the time it takes to read a 16,384-byte block
from the Megatron 747 disk. First, we need to know some timing properties of
the disk:

• The disk rotates at 7200 rpm; i.e., it makes one rotation in 8.33 millisec­
onds.

• To move the head assembly between cylinders takes one millisecond to
start and stop, plus one additional millisecond for every 4000 cylinders

566 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

traveled. Thus, the heads move one track in 1.00025 milliseconds and
move from the innermost to the outermost track, a distance of 65,536
tracks, in about 17.38 milliseconds.

• Gaps occupy 10% of the space around a track.

Let us calculate the minimum, maximum, and average times to read that
16,384-byte block. The minimum time is just the transfer time. That is, the
block might be on a track over which the head is positioned already, and the
first sector of the block might be about to pass under the head.

Since there are 4096 bytes per sector on the Megatron 747 (see Example 13.1
for the physical specifications of the disk), the block occupies four sectors. The
heads must therefore pass over four sectors and the three gaps between them.
We assume that gaps represent 10% of the circle and sectors the remaining 90%.
There are 256 gaps and 256 sectors around the circle. Since the gaps together
cover 36 degrees of arc and sectors the remaining 324 degrees, the total degrees
of arc covered by 3 gaps and 4 sectors is 36 x 3/256 + 324 x 4/256 = 5.48
degrees. The transfer time is thus (5.48/360) x 0.00833 = .00013 seconds. That
is, 5.48/360 is the fraction of a rotation needed to read the entire block, and
.00833 seconds is the amount of time for a 360-degree rotation.

Now, let us look at the maximum possible time to read the block. In the
worst case, the heads are positioned at the innermost cylinder, and the block
we want to read is on the outermost cylinder (or vice versa). Thus, the first
thing the controller must do is move the heads. As we observed above, the time
it takes to move the Megatron 747 heads across all cylinders is about 17.38
milliseconds. This quantity is the seek time for the read.

The worst thing that can happen when the heads arrive at the correct cylin­
der is that the beginning of the desired block has just passed under the head.
Assuming we must read the block starting at the beginning, we have to wait
essentially a full rotation, or 8.33 milliseconds, for the beginning of the block
to reach the head again. Once that happens, we have only to wait an amount
equal to the transfer time, 0.13 milliseconds, to read the entire block. Thus,
the worst-case latency is 17.38 + 8.33 + 0.13 = 25.84 milliseconds.

Last, let us compute the average latency. Two of the components of the
latency are easy to compute: the transfer time is always 0.13 milliseconds, and
the average rotational latency is the time to rotate the disk half way around, or
4.17 milliseconds. We might suppose that the average seek time is just the time
to move across half the tracks. However, that is not quite right, since typically,
the heads are initially somewhere near the middle and therefore will have to
move less than half the distance, on average, to the desired cylinder. We leave
it as an exercise to show that the average distance traveled is 1/3 of the way
across the disk.

The time it takes the Megatron 747 to move 1/3 of the way across the disk
is 1 + (65536/3)/4000 = 6.46 milliseconds. Our estimate of the average latency
is thus 6.46 + 4.17 + 0.13 = 10.76 milliseconds; the three terms represent average
seek time, average rotational latency, and transfer time, respectively. □

13.2. DISKS 567

13.2.4 Exercises for Section 13.2
E xercise 13.2.1: The Megatron 777 disk has the following characteristics:

1. There are ten surfaces, with 100,000 tracks each.

2. Tracks hold an average of 1000 sectors of 1024 bytes each.

3. 20% of each track is used for gaps.

4. The disk rotates at 10,000 rpm.

5. The time it takes the head to move n tracks is 1 + 0.0002n milliseconds.

Answer the following questions about the Megatron 777.

a) What is the capacity of the disk?

b) If tracks are located on the outer inch of a 3.5-inch-diameter surface, what
is the average density of bits in the sectors of a track?

c) What is the maximum seek time?

d) What is the maximum rotational latency?

e) If a block is 65,546 bytes (i.e., 64 sectors), what is the transfer time of a
block?

! f) What is the average seek time?

g) What is the average rotational latency?

! E xercise 13.2.2: Suppose the Megatron 747 disk head is at cylinder 8192,
i.e., 1/8 of the way across the cylinders. Suppose that the next request is for a
block on a random cylinder. Calculate the average time to read this block.

!! Exercise 13.2.3: Prove that if we move the head from a random cylinder to
another random cylinder, the average distance we move is 1/3 of the way across
the disk (neglecting edge effects due to the fact that the number of cylinders is
finite).

!! Exercise 13.2.4: Exercise 13.2.3 assumes that we move from a random track
to another random track. Suppose, however, that the number of sectors per
track is proportional to the length (or radius) of the track, so the bit density
is the same for all tracks. Suppose also that we need to move the head from a
random sector to another random sector. Since the sectors tend to congregate
at the outside of the disk, we might expect that the average head move would
be less than 1/3 of the way across the tracks. Assuming that tracks occupy
radii from 0.75 inches to 1.75 inches, calculate the average number of tracks the
head travels when moving between two random sectors.

568 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

E xercise 13.2.5: To modify a block on disk, we must read it into main mem­
ory, perform the modification, and write it back. Assume that the modification
in main memory takes less time than it does for the disk to rotate, and that the
disk controller postpones other requests for disk access until the block is ready
to be written back to the disk. For the Megatron 747 disk, what is the time to
modify a block?

13.3 Accelerating Access to Secondary Storage
Just because a disk takes an average of, say, 10 milliseconds to access a block,
it does not follow that an application such as a database system will get the
data it requests 10 milliseconds after the request is sent to the disk controller.
If there is only one disk, the disk may be busy with another access for the same
process or another process. In the worst case, a request for a disk access arrives
more than once every 10 milliseconds, and these requests back up indefinitely.
In that case, the scheduling latency becomes infinite.

There are several things we can do to decrease the average time a disk access
takes, and thus improve the throughput (number of disk accesses per second that
the system can accomodate). We begin this section by arguing that the “I/O
model” is the right one for measuring the time database operations take. Then,
we consider a number of techniques for speeding up typical database accesses
to disk:

1. Place blocks that are accessed together on the same cylinder, so we can
often avoid seek time, and possibly rotational latency as well.

2. Divide the data among several smaller disks rather than one large one.
Having more head assemblies that can go after blocks independently can
increase the number of block accesses per unit time.

3. “Mirror” a disk: making two or more copies of the data on different disks.
In addition to saving the data in case one of the disks fails, this strategy,
like dividing the data among several disks, lets us access several blocks at
once.

4. Use a disk-scheduling algorithm, either in the operating system, in the
DBMS, or in the disk controller, to select the order in which several
requested blocks will be read or written.

5. Prefetch blocks to main memory in anticipation of their later use.

13.3.1 The I/O Model of Computation
Let us imagine a simple computer running a DBMS and trying to serve a
number of users who are performing queries and database modifications. For
the moment, assume our computer has one processor, one disk controller, and

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 569

one disk. The database itself is much too large to fit in main memory. Key parts
of the database may be buffered in main memory, but generally, each piece of
the database that one of the users accesses will have to be retrieved initially
from disk. The following rule, which defines the I/O model of computation, can
thus be assumed.

D om inance o f I /O cost: The time taken to perform a disk ac­
cess is much larger than the time likely to be used manipulating
that data in main memory. Thus, the number of block accesses
(Disk I /O ’s) is a good approximation to the time needed by the
algorithm and should be minimized.

E xam ple 13.3: Suppose our database has a relation R and a query asks for
the tuple of R that has a certain key value k. It is quite desirable to have
an index on R to identify the disk block on which the tuple with key value k
appears. However it is generally unimportant whether the index tells us where
on the block this tuple appears.

For instance, if we assume a Megatron 747 disk, it will take on the order
of 11 milliseconds to read a 16K-byte block. In 11 milliseconds, a modern
microprocessor can execute millions of instructions. However, searching for
the key value k once the block is in main memory will only take thousands of
instructions, even if the dumbest possible linear search is used. The additional
time to perform the search in main memory will therefore be less than 1% of
the block access time and can be neglected safely. □

13.3.2 Organizing Data by Cylinders
Since seek time represents about half the time it takes to access a block, it makes
sense to store data that is likely to be accessed together, such as relations, on
a single cylinder, or on as many adjacent cylinders as are needed. In fact, if we
choose to read all the blocks on a single track or on a cylinder consecutively,
then we can neglect all but the first seek time (to move to the cylinder) and
the first rotational latency (to wait until the first of the blocks moves under the
head). In that case, we can approach the theoretical transfer rate for moving
data on or off the disk.

E xam ple 13.4: Suppose relation R requires 1024 blocks of a Megatron 747
disk to hold its tuples. Suppose also that we need to access all the tuples of
R; for example we may be doing a search without an index or computing a
sum of the values of a particular attribute of R. If the blocks holding R are
distributed around the disk at random, then we shall need an average latency
(10.76 milliseconds — see Example 13.2) to access each, for a total of 11 seconds.

However, 1024 blocks are exactly one cylinder of the Megatron 747. We can
access them all by performing one average seek (6.46 milliseconds), after which
we can read the blocks in some order, one right after another. We can read all
the blocks on a cylinder in 16 rotations of the disk, since there are 16 tracks.

570 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Sixteen rotations take 16 x 8.33 = 133 milliseconds. The total time to access R
is thus about 139 milliseconds, and we speed up the operation on R by a factor
of about 80. □

13.3.3 Using M ultiple Disks
We can often improve the performance of our system if we replace one disk, with
many heads locked together, by several disks with their independent heads. The
arrangement was suggested in Fig. 13.4, where we showed three disks connected
to a single controller. As long as the disk controller, bus, and main memory
can handle n times the data-transfer rate, then n disks will have approximately
the performance of one disk that operates n times as fast.

Thus, using several disks can increase the ability of a database system to
handle heavy loads of disk-access requests. However, as long as the system is
not overloaded (when requests will queue up and are delayed for a long time or
ignored), there is no change in how long it takes to perform any single block
access. If we have several disks, then the technique known as striping (described
in the next example) will speed up access to large database objects — those
that occupy a large number of blocks.

E xam ple 1 3 .5 : Suppose we have four Megatron 747 disks and want to access
the relation R of Example 13.4 faster than the 139-millisecond time that was
suggested for storing R on one cylinder of one disk. We can “stripe” R by
dividing it among the four disks. The first disk can receive blocks 1 ,5 ,9 ,.. . of
R, the second disk holds blocks 2 ,6 ,1 0 ,.. ., the third holds blocks 3 ,7 ,1 1 ,.. .,
and the last disk holds blocks 4 ,8 ,1 2 ,.. ., as suggested by Fig. 13.5. Let us
contrive that on each of the disks, all the blocks of R are on four tracks of a
single cylinder.

r^i h
f^i r~i

IZD H
HD

10 [V]
HD

Figure 13.5: Striping a relation across four disks

Then to retrieve the 256 blocks of R on one of the disks requires an average
seek time (6.46 milliseconds) plus four rotations of the disk, one rotation for
each track. That is 6.46 + 4 x 8.33 = 39.8 milliseconds. Of course we have to
wait for the last of the four disks to finish, and there is a high probability that
one will take substantially more seek time than average. However, we should
get a speedup in the time to access R by about a factor of three on the average,
when there are four disks. □

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 571

13.3.4 Mirroring Disks
There are situations where it makes sense to have two or more disks hold identi­
cal copies of data. The disks are said to be mirrors of each other. One important
motivation is that the data will survive a head crash by either disk, since it is
still readable on a mirror of the disk that crashed. Systems designed to enhance
reliability often use pairs of disks as mirrors of each other.

If we have n disks, each holding the same data, then the rate at which we
can read blocks goes up by a factor of n, since the disk controller can assign a
read request to any of the n disks. In fact, the speedup could be even greater
than n, if a clever controller chooses to read a block from the disk whose head
is currently closest to that block. Unfortunately, the writing of disk blocks does
not speed up at all. The reason is that the new block must be written to each
of the n disks.

13.3.5 Disk Scheduling and the Elevator Algorithm
Another effective way to improve the throughput of a disk system is to have the
disk controller choose which of several requests to execute first. This approach
cannot be used if accesses have to be made in a certain sequence, but if the
requests are from independent processes, they can all benefit, on the average,
from allowing the scheduler to choose among them judiciously.

A simple and effective way to schedule large numbers of block requests is
known as the elevator algorithm. We think of the disk head as making sweeps
across the disk, from innermost to outermost cylinder and then back again,
just as an elevator makes vertical sweeps from the bottom to top of a building
and back again. As heads pass a cylinder, they stop if there are one or more
requests for blocks on that cylinder. All these blocks are read or written, as
requested. The heads then proceed in the same direction they were traveling
until the next cylinder with blocks to access is encountered. When the heads
reach a position where there are no requests ahead of them in their direction of
travel, they reverse direction.

E xam ple 13.6: Suppose we are scheduling a Megatron 747 disk, which we
recall has average seek, rotational latency, and transfer times of 6.46, 4.17,
and 0.13, respectively (in this example, all times are in milliseconds). Suppose
that at some time there are pending requests for block accesses at cylinders
8000, 24,000, and 56,000. The heads are located at cylinder 8000. In addition,
there are three more requests for block accesses that come in at later times, as
summarized in Fig. 13.6. For instance, the request for a block from cylinder
16,000 is made at time 10 milliseconds.

We shall assume that each block access incurs time 0.13 for transfer and
4.17 for average rotational latency, i.e., we need 4.3 milliseconds plus whatever
the seek time is for each block access. The seek time can be calculated by the
rule for the Megatron 747 given in Example 13.2: 1 plus the number of tracks
divided by 4000. Let us see what happens if we schedule disk accesses using

572 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder
of request

First time
available

8000 0
24000 0
56000 0
16000 10
64000 20
40000 30

Figure 13.6: Arrival times for four block-access requests

the elevator algorithm. The first request, a t cylinder 8000, requires no seek,
since the heads are already there. Thus, a t time 4.3 the first access will be
complete. The request for cylinder 16,000 has not arrived at this point, so we
move the heads to cylinder 24,000, the next requested “stop” on our sweep to
the highest-numbered tracks. The seek from cylinder 8000 to 24,000 takes 5
milliseconds, so we arrive at time 9.3 and complete the access in another 4.3.
Thus, the second access is complete at time 13.6. By this time, the request for
cylinder 16,000 has arrived, but we passed that cylinder at time 7.3 and will
not come back to it until the next pass.

We thus move next to cylinder 56,000, taking time 9 to seek and 4.3 for
rotation and transfer. The third access is thus complete at time 26.9. Now, the
request for cylinder 64,000 has arrived, so we continue outward. We require 3
milliseconds for seek time, so this access is complete at time 26.9+3+4.3 = 34.2.

At this time, the request for cylinder 40,000 has been made, so it and the
request at cylinder 16,000 remain. We thus sweep inward, honoring these two
requests. Figure 13.7 summarizes the times at which requests are honored.

Cylinder
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
64000 34.2
40000 45.5
16000 56.8

Figure 13.7: Finishing times for block accesses using the elevator algorithm

Let us compare the performance of the elevator algorithm with a more naive
approach such as first-come-first-served. The first three requests are satisfied
in exactly the same manner, assuming that the order of the first three requests
was 8000, 24,000, and 56,000. However, at that point, we go to cylinder 16,000,

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 573

because that was the fourth request to arrive. The seek time is 11 for this
request, since we travel from cylinder 56,000 to 16,000, more than half way
across the disk. The fifth request, at cylinder 64,000, requires a seek time of 13,
and the last, at 40,000, uses seek time 7. Figure 13.8 summarizes the activity
caused by first-come-first-served scheduling. The difference between the two
algorithms — 14 milliseconds — may not appear significant, but recall that
the number of requests in this simple example is small and the algorithms were
assumed not to deviate until the fourth of the six requests. □

Cylinder
of request

Time
completed

8000 4.3
24000 13.6
56000 26.9
16000 42.2
64000 59.5
40000 70.8

Figure 13.8: Finishing times for block accesses using the first-come-first-served
algorithm

13.3.6 Prefetching and Large-Scale Buffering
Our final suggestion for speeding up some secondary-memory algorithms is
called prefetching or sometimes double buffering. In some applications we can
predict the order in which blocks will be requested from disk. If so, then we can
load them into main memory buffers before they are needed. One advantage to
doing so is that we are thus better able to schedule the disk, such as by using
the elevator algorithm, to reduce the average time needed to access a block. In
the extreme case, where there are many access requests waiting at all times, we
can make the seek time per request be very close to the minimum seek time,
rather than the average seek time.

13.3.7 Exercises for Section 13.3
E xercise 13.3.1: Suppose we are scheduling I/O requests for a Megatron 747
disk, and the requests in Fig. 13.9 are made, with the head initially at track
32,000. At what time is each request serviced fully if:

a) We use the elevator algorithm (it is permissible to start moving in either
direction at first).

b) We use first-come-first-served scheduling.

574 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

Cylinder First time
of Request available

8000 0
48000 1
4000 10

40000 20

Figure 13.9: Arrival times for four block-access requests

Exercise 13.3.2: Suppose we use two Megatron 747 disks as mirrors of one
another. However, instead of allowing reads of any block from either disk, we
keep the head of the first disk in the inner half of the cylinders, and the head
of the second disk in the outer half of the cylinders. Assuming read requests
are on random tracks, and we never have to write:

a) What is the average rate at which this system can read blocks?

b) How does this rate compare with the average rate for mirrored Megatron
747 disks with no restriction?

c) What disadvantages do you foresee for this system?

E xercise 13.3.3: Let us explore the relationship between the arrival rate of
requests, the throughput of the elevator algorithm, and the average delay of
requests. To simplify the problem, we shall make the following assumptions:

1. A pass of the elevator algorithm always proceeds from the innermost to
outermost track, or vice-versa, even if there are no requests a t the extreme
cylinders.

2. When a pass starts, only those requests that are already pending will be
honored, not requests that come in while the pass is in progress, even if
the head passes their cylinder.2

3. There will never be two requests for blocks on the same cylinder waiting
on one pass.

Let A be the interarrival rate, that is the time between requests for block ac­
cesses. Assume that the system is in steady state, that is, it has been accepting
and answering requests for a long time. For a Megatron 747 disk, compute as
a function of A:

2 T h e p u rpose o f th is assu m p tio n is to avoid having to deal w ith th e fac t th a t a typ ica l pass
of th e e levator a lg o rith m goes fast a t firs t, as th e re w ill b e few w aiting requests w here th e
head h as recen tly been, an d slows dow n as i t m oves in to an a re a of th e d isk w here it has no t
recen tly been. T h e analysis o f th e way request d ensity varies du ring a pass is an in terestin g
exercise in its ow n righ t.

13.4. DISK FAILURES 575

a) The average time taken to perform one pass.

b) The number of requests serviced on one pass.

c) The average time a request waits for service.

!! Exercise 13.3.4: In Example 13.5, we saw how dividing the data to be sorted
among four disks could allow more than one block to be read at a time. Sup­
pose our data is divided randomly among n disks, and requests for data are also
random. Requests must be executed in the order in which they are received
because there are dependencies among them that must be respected (see Chap­
ter 18, for example, for motivation for this constraint). What is the average
throughput for such a system?

! E xercise 13.3.5: If we read k randomly chosen blocks from one cylinder, on
the average how far around the cylinder must we go before we pass all of the
blocks?

13.4 Disk Failures

In this section we shall consider the ways in which disks can fail and what can
be done to mitigate these failures.

1. The most common form of failure is an intermittent failure, where an
attempt to read or write a sector is unsuccessful, but with repeated tries
we are able to read or write successfully.

2. A more serious form of failure is one in which a bit or bits are permanently
corrupted, and it becomes impossible to read a sector correctly no matter
how many times we try. This form of error is called media decay.

3. A related type of error is a write failure, where we attempt to write
a sector, but we can neither write successfully nor can we retrieve the
previously written sector. A possible cause is that there was a power
outage during the writing of the sector.

4. The most serious form of disk failure is a disk crash, where the entire disk
becomes unreadable, suddenly and permanently.

We shall discuss parity checks as a way to detect intermittent failures. We also
discuss “stable storage,” a technique for organizing a disk so that media decays
or failed writes do not result in permanent loss. Finally, we examine techniques
collectively known as “RAID” for coping with disk crashes.

576 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

13.4.1 Interm ittent Failures

An intermittent failure occurs if we try to read a sector, but the correct content
of that sector is not delivered to the disk controller. If the controller has a way
to tell that the sector is good or bad (as we shall discuss in Section 13.4.2),
then the controller can reissue the read request when bad data is read, until
the sector is returned correctly, or some preset limit, like 100 tries, is reached.

Similarly, the controller may attempt to write a sector, but the contents of
the sector are not what was intended. The only way to check that the write was
correct is to let the disk go around again and read the sector. A straightforward
way to perform the check is to read the sector and compare it with the sector
we intended to write. However, instead of performing the complete comparison
at the disk controller, it is simpler to read the sector and see if a good sector
was read. If so, we assume the write was correct, and if the sector read is bad,
then the write was apparently unsuccessful and must be repeated.

13.4.2 Checksums

How a reading operation can determine the good/bad status of a sector may
appear mysterious at first. Yet the technique used in modern disk drives is quite
simple: each sector has some additional bits, called the checksum, that are set
depending on the values of the data bits stored in that sector. If, on reading,
we find that the checksum is not proper for the data bits, then we know there
is an error in reading. If the checkum is proper, there is still a small chance
that the block was not read correctly, but by using many checksum bits we can
make the probability of missing a bad read arbitrarily small.

A simple form of checksum is based on the parity of all the bits in the sector.
If there is an odd number of l ’s among a collection of bits, we say the bits have
odd parity and add a parity bit that is 1. Similarly, if there is an even number
of l ’s among the bits, then we say the bits have even parity and add parity bit
0. As a result:

• The number of l ’s among a collection of bits and their parity bit is always
even.

When we write a sector, the disk controller can compute the parity bit and
append it to the sequence of bits written in the sector. Thus, every sector will
have even parity.

E xam ple 1 3 .7 : If the sequence of bits in a sector were 01101000, then there
is an odd number of l ’s, so the parity bit is 1. If we follow this sequence by its
parity bit we have 011010001. If the given sequence of bits were 11101110, we
have an even number of l ’s, and the parity bit is 0. The sequence followed by
its parity bit is 111011100. Note that each of the nine-bit sequences constructed
by adding a parity bit has even parity. □

13.4. DISK FAILURES 577

Any one-bit error in reading or writing the bits and their parity bit results
in a sequence of bits that has odd parity, i.e., the number of l ’s is odd. It is
easy for the disk controller to count the number of l ’s and to determine the
presence of an error if a sector has odd parity.

Of course, more than one bit of the sector may be corrupted. If so, the
probability is 50% that the number of 1-bits will be even, and the error will not
be detected. We can increase our chances of detecting errors if we keep several
parity bits. For example, we could keep eight parity bits, one for the first bit
of every byte, one for the second bit of every byte, and so on, up to the eighth
and last bit of every byte. Then, on a massive error, the probability is 50%
that any one parity bit will detect an error, and the chance that none of the
eight do so is only one in 28, or 1/256. In general, if we use n independent bits
as a checksum, then the chance of missing an error is only 1/2". For instance,
if we devote 4 bytes to a checksum, then there is only one chance in about four
billion that the error will go undetected.

13.4.3 Stable Storage
While checksums will almost certainly detect the existence of a media failure
or a failure to read or write correctly, it does not help us correct the error.
Moreover, when writing we could find ourselves in a position where we overwrite
the previous contents of a sector and yet cannot read the new contents correctly.
That situation could be serious if, say, we were adding a small increment to
an account balance and now have lost both the original balance and the new
balance. If we could be assured that the contents of the sector contained either
the new or old balance, then we would only have to determine whether the
write was successful or not.

To deal with the problems above, we can implement a policy known as
stable storage on a disk or on several disks. The general idea is that sectors
are paired, and each pair represents one sector-contents X . We shall refer to
the pair of sectors representing X as the “left” and “right” copies, X l and X r .
We continue to assume that the copies are written with a sufficient number of
parity-check bits so that we can rule out the possibility that a bad sector looks
good when the parity checks are considered. Thus, we shall assume that if the
read function returns a good value w for either X l or X r , then w is the true
value of X . The stable-storage writing policy is:

1. Write the value of X into X l - Check that the value has status “good” ;
i.e., the parity-check bits are correct in the written copy. If not, repeat the
write. If after a set number of write attempts, we have not successfully
written X into X l , assume that there is-a media failure in this sector. A
fix-up such as substituting a spare sector for X l must be adopted.

2. Repeat (1) for X r .

The stable-storage reading policy is to alternate trying to read X l and X r ,

578 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

until a good value is returned. Only if no good value is returned after some
large, prechosen number of tries, is X truly unreadable.

13.4.4 Error-Handling Capabilities of Stable Storage
The policies described in Section 13.4.3 are capable of compensating for several
different kinds of errors. We shall outline them here.

1. Media failures. If, after storing X in sectors X l and X r , one of them
undergoes a media failure and becomes permanently unreadable, we can
always read X from the other. If both X l and X r have failed, then we
cannot read X , but the probability of both failing is extremely small.

2. Write failure. Suppose that as we write X , there is a system failure —
e.g., a power outage. It is possible that X will be lost in main memory,
and also the copy of X being written at the time will be garbled. For
example, half the sector may be written with part of the new value of X ,
while the other half remains as it was. When the system becomes available
and we examine X l and X r , we are sure to be able to determine either
the old or new value of X . The possible cases are:

(a) The failure occurred as we were writing X l ■ Then we shall find that
the status of X l is “bad.” However, since we never got to write X r ,
its status will be “good” (unless there is a coincident media failure
at X r , which is extremely unlikely). Thus, we can obtain the old
value of X . We may also copy X r into X l to repair the damage to
X l .

(b) The failure occurred after we wrote X l- Then we expect that X l
will have status “good,” and we may read the new value of X from
X l - Since X r may or may not have the correct value of X , we
should also copy X l into X r .

13.4.5 Recovery from Disk Crashes
The most serious mode of failure for disks is the “disk crash” or “head crash,”
where data is permanently destroyed. If the data was not backed up on another
medium, such as a tape backup system, or on a mirror disk as we discussed in
Section 13.3.4, then there is nothing we can do to recover the data. This
situation represents a disaster for many DBMS applications, such as banking
and other financial applications.

Several schemes have been developed to reduce the risk of data loss by disk
crashes. They generally involve redundancy, extending the idea of parity checks
from Section 13.4.2 or duplicated sectors, as in Section 13.4.3. The common
term for this class of strategies is RAID, or Redundant Arrays of Independent
Disks.

13.4. DISK FAILURES 579

The rate at which disk crashes occur is generally measured by the mean time
to failure, the time after which 50% of a population of disks can be expected to
fail and be unrecoverable. For modern disks, the mean time to failure is about
10 years. We shall make the convenient assumption that if the mean time to
failure is n years, then in any given year, 1 /nth of the surviving disks fail. In
reality, there is a tendency for disks, like most electronic equipment, to fail early
or fail late. That is, a small percentage have manufacturing defects that lead
to their early demise, while those without such defects will survive for many
years, until wear-and-tear causes a failure.

However, the mean time to a disk crash does not have to be the same as
the mean time to data loss. The reason is that there are a number of schemes
available for assuring that if one disk fails, there are others to help recover the
data of the failed disk. In the remainder of this section, we shall study the most
common schemes.

Each of these schemes starts with one or more disks that hold the data (we’ll
call these the data disks) and adding one or more disks that hold information
that is completely determined by the contents of the data disks. The latter are
called redundant disks. When there is a disk crash of either a data disk or a
redundant disk, the other disks can be used to restore the failed disk, and there
is no permanent information loss.

13.4.6 Mirroring as a Redundancy Technique
The simplest scheme is to mirror each disk, as discussed in Section 13.3.4.
We shall call one of the disks the data disk, while the other is the redundant
disk, which is which doesn’t matter in this scheme. Mirroring, as a protection
against data loss, is often referred to as RAID level 1. It gives a mean time
to memory loss that is much greater than the mean time to disk failure, as
the following example illustrates. Essentially, with mirroring and the other
redundancy schemes we discuss, the only way data can be lost is if there is a
second disk crash while the first crash is being repaired.

E xam ple 13.8: Suppose each disk has a 10-year mean time to failure, which
we shall take to mean that the probability of failure in any given year is 10%.
If disks are mirrored, then when a disk fails, we have only to replace it with a
good disk and copy the mirror disk to the new one. At the end, we have two
disks that are mirrors of each other, and the system is restored to its former
state.

The only thing that could go wrong is that during the copying the mirror
disk fails. Now, both copies of at least part of the data have been lost, and
there is no way to recover.

But how often will this sequence of events occur? Suppose that the process
of replacing the failed disk takes 3 hours, which is 1/8 of a day, or 1/2920 of a
year. Since we assume the average disk lasts 10 years, the probability that the
mirror disk will fail during copying is (1/10) x (1/2920), or one in 29,200. If

580 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

one disk fails every 10 years, then one of the two disks will fail once in 5 years
on the average. One in every 29,200 of these failures results in data loss. Put
another way, the mean time to a failure involving data loss is 5 x 29,200 =
146,000 years. □

13.4.7 Parity Blocks

While mirroring disks is an effective way to reduce the probability of a disk crash
involving data loss, it uses as many redundant disks as there are data disks.
Another approach, often called RAID level 4, uses only one redundant disk, no
m atter how many data disks there are. We assume the disks are identical, so
we can number the blocks on each disk from 1 to some number n. Of course,
all the blocks on all the disks have the same number of bits; for instance, the
16,384-byte blocks of the Megatron 747 have 8 x 16,384 = 131,072 bits. In the
redundant disk, the *th block consists of parity checks for the *th blocks of all
the data disks. That is, the j th bits of all the ith blocks, including both the
data disks and the redundant disk, must have an even number of l ’s among
them, and we always choose the bit of the redundant disk to make this condition
true.

We saw in Example 13.7 how to force the condition to be true. In the
redundant disk, we choose bit j to be 1 if an odd number of the data disks
have 1 in that bit, and we choose bit j of the redundant disk to be 0 if there
are an even number of l ’s in that bit among the data disks. The term for this
calculation is the modulo-2 sum. That is, the modulo-2 sum of bits is 0 if there
are an even number of l ’s among those bits, and 1 if there are an odd number
of l ’s.

E xam p le 1 3 .9 : Suppose for sake of an extremely simple example that blocks
consist of only one byte — eight bits. Let there be three data disks, called
1, 2, and 3, and one redundant disk, called disk 4. Focus on the first block
of all these disks. If the data disks have in their first blocks the following bit
sequences:

disk 1: 11110000
disk 2: 10101010
disk 3: 00111000

then the redundant disk will have in block 1 the parity check bits:

disk 4: 01100010

Notice how in each position, an even number of the four 8-bit sequences have
l ’s. There are two l ’s in positions 1, 2, 4, 5, and 7, four l ’s in position 3, and
zero l ’s in positions 6 and 8. □

13.4. DISK FAILURES 581

R eading

Reading blocks from a data disk is no different from reading blocks from any
disk. There is generally no reason to read from the redundant disk, but we
could.

W riting

When we write a new block of a data disk, we need not only to change that
block, but we need to change the corresponding block of the redundant disk
so it continues to hold the parity checks for the corresponding blocks of all the
data disks. A naive approach would read the corresponding blocks of the n data
disks, take their modulo-2 sum, and rewrite the block of the redundant disk.
That approach requires a write of the data block that is rewritten, the reading
of the n — 1 other data blocks, and a write of the block of the redundant disk.
The total is thus n + 1 disk I /O ’s.

A better approach is to look only at the old and new versions of the data
block i being rewritten. If we take their modulo-2 sum, we know in which
positions there is a change in the number of l ’s among the blocks numbered i
on all the disks. Since these changes are always by one, any even number of l ’s
changes to an odd number. If we change the same positions of the redundant
block, then the number of l ’s in each position becomes even again. We can
perform these calculations using four disk I/O ’s:

1. Read the old value of the data block being changed.

2. Read the corresponding block of the redundant disk.

3. Write the new data block.

4. Recalculate and write the block of the redundant disk.

E xam ple 13.10: Suppose the three first blocks of the data disks are as in
Example 13.9:

disk 1: 11110000
disk 2: 10101010
disk 3: 00111000

Suppose also that the block on the second disk changes from 10101010 to
11001100. We take the modulo-2 sum of the old and new values of the block
on disk 2, to get 01100110. That tells us we must change positions 2, 3, 6, and
7 of the first block of the redundant disk. We read that block: 01100010. We
replace this block by a new block that we get by changing the appropriate po­
sitions; in effect we replace the redundant block by the modulo-2 sum of itself
and 01100110, to get 00000100. Another way to express the new redundant
block is that it is the modulo-2 sum of the old and new versions of the block

582 CHAPTER 13. SECONDARY STORAGE MANAGEM ENT

The Algebra of Modulo-2 Sums

It may be helpful for understanding some of the tricks used with parity
checks to know the algebraic rules involving the modulo-2 sum opera­
tion on bit vectors. We shall denote this operation ©. As an example,
1100 ® 1010 = 0110. Here are some useful rules about ffi:

• The commutative law: x © y = y ffi x.

• The associative law. x © (y © z) — (x © y) © z.

• The all-0 vector of the appropriate length, which we denote 0, is the
identity for ©; that is, x ffi 0 = 0 ffi x = x.

• ffi is its own inverse: x ffi x = 0. As a useful consequence, if x ffi y = 2 ,
then we can “add” x to both sides and get y = x ffi z.

being rewritten and the old value of the redundant block. In our example, the
first blocks of the four disks — three data disks and one redundant — have
become:

disk 1: 11110000
disk 2: 11001100
disk 3: 00111000
disk 4: 00000100

after the write to the block on the second disk and the necessary recomputation
of the redundant block. Notice that in the blocks above, each column continues
to have an even number of l ’s. □

Failure R ecovery

Now, let us consider what we would do if one of the disks crashed. If it is the
redundant disk, we swap in a new disk, and recompute the redundant blocks. If
the failed disk is one of the data disks, then we need to swap in a good disk and
recompute its data from the other disks. The rule for recomputing any missing
data is actually simple, and doesn’t depend on which disk, data or redundant,
is failed. Since we know that the number of l ’s among corresponding bits of all
disks is even, it follows that:

• The bit in any position is the modulo-2 sum of all the bits in the corre­
sponding positions of all the other disks.

If one doubts the above rule, one has only to consider the two cases. If the
bit in question is 1, then the number of corresponding bits in the other disks

13.4. DISK FAILURES 583

that are 1 must be odd, so their modulo-2 sum is 1. If the bit in question is 0,
then there are an even number of l ’s among the corresponding bits of the other
disks, and their modulo-2 sum is 0.

E xam ple 13.11: Suppose that disk 2 fails. We need to recompute each block
of the replacement disk. Following Example 13.9, let us see how to recompute
the first block of the second disk. We are given the corresponding blocks of the
first and third data disks and the redundant disk, so the situation looks like:

disk 1: 11110000
disk 2: ????????
disk 3: 00111000
disk 4: 01100010

If we take the modulo-2 sum of each column, we deduce that the missing block
is 10101010, as was initially the case in Example 13.9. □

13.4.8 An Improvement: RAID 5
The RAID level 4 strategy described in Section 13.4.7 effectively preserves data
unless there are two almost simultaneous disk crashes. However, it suffers from
a bottleneck defect that we can see when we re-examine the process of writing
a new data block. Whatever scheme we use for updating the disks, we need to
read and write the redundant disk’s block. If there are n data disks, then the
number of disk writes to the redundant disk will be n times the average number
of writes to any one data disk.

However, as we observed in Example 13.11, the rule for recovery is the
same as for the data disks and redundant disks: take the modulo-2 sum of
corresponding bits of the other disks. Thus, we do not have to treat one disk as
the redundant disk and the others as data disks. Rather, we could treat each
disk as the redundant disk for some of the blocks. This improvement is often
called RAID level 5.

For instance, if there are n + 1 disks numbered 0 through n, we could treat
the ith cylinder of disk j as redundant if j is the remainder when i is divided
by n + 1.

E xam ple 13.12: In our running example, n = 3 so there are 4 disks. The
first disk, numbered 0, is redundant for its cylinders numbered 4, 8, 12, and so
on, because these are the numbers that leave remainder 0 when divided by 4.
The disk numbered 1 is redundant for blocks numbered 1, 5, 9, and so on; disk
2 is redundant for blocks 2, 6, 1 0 ,.. ., and disk 3 is redundant for 3, 7, 1 1 ,... .

As a result, the reading and writing load for each disk is the same. If all
blocks are equally likely to be written, then for one write, each disk has a 1/4
chance that the block is on that disk. If not, then it has a 1/3 chance that
it will be the redundant disk for that block. Thus, each of the four disks is
involved in 1/4 + (3/4) x (1/3) = 1/2 of the writes. □

584 CHAPTER 13. SECONDARY STORAGE M ANAGEM ENT

13.4.9 Coping W ith M ultiple Disk Crashes
There is a theory of error-correcting codes that allows us to deal with any
number of disk crashes — data or redundant — if we use enough redundant
disks. This strategy leads to the highest RAID “level,” RAID level 6. We
shall give only a simple example here, where two simultaneous crashes are
correctable, and the strategy is based on the simplest error-correcting code,
known as a Hamming code.

In our description we focus on a system with seven disks, numbered 1
through 7. The first four are data disks, and disks 5 through 7 are redun­
dant. The relationship between data and redundant disks is summarized by
the 3 x 7 matrix of 0’s and l ’s in Fig. 13.10. Notice that:

a) Every possible column of three 0’s and l ’s, except for the all-0 column,
appears in the matrix of Fig. 13.10.

b) The columns for the redundant disks have a single 1.

c) The columns for the data disks each have at least two l ’s.

Data Redundant

Disk number 1 2 3 4 5 6 7

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

Figure 13.10: Redundancy pattern for a system that can recover from two
simultaneous disk crashes

The meaning of each of the three rows of 0’s and l ’s is that if we look at
the corresponding bits from all seven disks, and restrict our attention to those
disks that have 1 in that row, then the modulo-2 sum of these bits must be 0.
Put another way, the disks with 1 in a given row of the matrix are treated as
if they were the entire set of disks in a RAID level 4 scheme. Thus, we can
compute the bits of one of the redundant disks by finding the row in which that
disk has 1, and talcing the modulo-2 sum of the corresponding bits of the other
disks that have 1 in the same row.

For the matrix of Fig. 13.10, this rule implies:

1. The bits of disk 5 are the modulo-2 sum of the corresponding bits of disks
1, 2, and 3.

2. The bits of disk 6 are the modulo-2 sum of the corresponding bits of disks
1, 2, and 4.

13.4. DISK FAILURES 585

3. The bits of disk 7 are the modulo-2 sum of the corresponding bits of disks
1, 3, and 4.

We shall see shortly that the particular choice of bits in this matrix gives us a
simple rule by which we can recover from two simultaneous disk crashes.

R eading

We may read data from any data disk normally. The redundant disks can be
ignored.

W riting

The idea is similar to the writing strategy outlined in Section 13.4.8, but now
several redundant disks may be involved. To write a block of some data disk,
we compute the modulo-2 sum of the new and old versions of that block. These
bits are then added, in a modulo-2 sum, to the corresponding blocks of all those
redundant disks that have 1 in a row in which the written disk also has 1.

E xam ple 13.13: Let us again assume that blocks are only eight bits long,
and focus on the first blocks of the seven disks involved in our RAID level 6
example. First, suppose the data and redundant first blocks are as given in
Fig. 13.11. Notice that the block for disk 5 is the modulo-2 sum of the blocks
for the first three disks, the sixth row is the modulo-2 sum of rows 1, 2, and 4,
and the last row is the modulo-2 sum of rows 1, 3, and 4.

Disk Contents

1) 11110000
2) 10101010
3) 00111000
4) 01000001
5) 01100010
6) 00011011
7) 10001001

Figure 13.11: First blocks of all disks

Suppose we rewrite the first block of disk 2 to be 00001111. If we sum this
sequence of bits modulo-2 with the sequence 10101010 that is the old value of
this block, we get 10100101. If we look at the column for disk 2 in Fig. 13.10,
we find that this disk has l ’s in the first two rows, but not the third. Since
redundant disks 5 and 6 have 1 in rows 1 and 2, respectively, we must perform
the sum modulo-2 operation on the current contents of their first blocks and
the sequence 10100101 just calculated. That is, we flip the values of positions 1,
3, 6, and 8 of these two blocks. The resulting contents of the first blocks of all

586 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

disks is shown in Fig. 13.12. Notice that the new contents continue to satisfy the
constraints implied by Fig. 13.10: the modulo-2 sum of corresponding blocks
that have 1 in a particular row of the matrix of Fig. 13.10 is still all 0’s. □

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) 11000111
6) 10111110
7) 10001001

Figure 13.12: First blocks of all disks after rewriting disk 2 and changing the
redundant disks

Failure R ecovery

Now, let us see how the redundancy scheme outlined above can be used to
correct up to two simultaneous disk crashes. Let the failed disks be a and b.
Since all columns of the matrix of Fig. 13.10 are different, we must be able to
find some row r in which the columns for a and b are different. Suppose that a
has 0 in row r, while b has 1 there.

Then we can compute the correct b by taking the modulo-2 sum of corre­
sponding bits from all the disks other than b that have 1 in row r. Note that
a is not among these, so none of these disks have failed. Having recomputed b,
we must recompute a, with all other disks available. Since every column of the
matrix of Fig. 13.10 has a 1 in some row, we can use this row to recompute disk
a by taking the modulo-2 sum of bits of those other disks with a 1 in this row.

Disk Contents

1) 11110000
2) ????????
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.13: Situation after disks 2 and 5 fail

13.4. DISK FAILURES 587

E xam ple 13.14: Suppose that disks 2 and 5 fail at about the same time.
Consulting the matrix of Fig. 13.10, we find that the columns for these two
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus
reconstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these
three disks has failed. For instance, following from the situation regarding the
first blocks in Fig. 13.12, we would initially have the data of Fig. 13.13 available
after disks 2 and 5 failed.

If we take the modulo-2 sum of the contents of the blocks of disks 1, 4, and
6, we find that the block for disk 2 is 00001111. This block is correct as can be
verified from Fig. 13.12. The situation is now as in Fig. 13.14.

Disk Contents

1) 11110000
2) 00001111
3) 00111000
4) 01000001
5) ????????
6) 10111110
7) 10001001

Figure 13.14: After recovering disk 2

Now, we see that disk 5’s column in Fig. 13.10 has a 1 in the first row. We
can therefore recompute disk 5 by taking the modulo-2 sum of corresponding
bits from disks 1, 2, and 3, the other three disks that have 1 in the first row.
For block 1, this sum is 11000111. Again, the correctness of this calculation
can be confirmed by Fig. 13.12. □

13.4.10 Exercises for Section 13.4
Exercise 13.4.1: Compute the parity bit for the following bit sequences:

a) 00111011.

b) 00000000.

c) 10101101.

Exercise 13.4.2: We can have two parity bits associated with a string if we
follow the string by one bit that is a parity bit for the odd positions and a
second that is the parity bit for the even positions. For each of the strings in
Exercise 13.4.1, find the two bits that serve in this way.

588 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

Additional Observations About RAID Level 6

1. We can combine the ideas of RAID levels 5 and 6, by varying the
choice of redundant disks according to the block or cylinder number.
Doing so will avoid bottlenecks when writing; the scheme described
in Section 13.4.9 will cause bottlenecks at the redundant disks.

2. The scheme described in Section 13.4.9 is not restricted to four data
disks. The number of disks can be one less than any power of 2, say
2k — 1. Of these disks, k are redundant, and the remaining 2k — k — 1
are data disks, so the redundancy grows roughly as the logarithm of
the number of data disks. For any k , we can construct the matrix
corresponding to Fig. 13.10 by writing all possible columns of k 0’s
and l ’s, except the all-O’s column. The columns with a single 1
correspond to the redundant disks, and the columns with more than
one 1 are the data disks.

E xercise 13.4.3: Suppose we use mirrored disks as in Example 13.8, the
failure rate is 4% per year, and it takes 8 hours to replace a disk. What is the
mean time to a disk failure involving loss of data?

! E xercise 13.4.4: Suppose that a disk has probability F of failing in a given
year, and it takes H hours to replace a disk.

a) If we use mirrored disks, what is the mean time to data loss, as a function
of F and H I

b) If we use a RAID level 4 or 5 scheme, with N disks, what is the mean
time to data loss?

!! E xercise 13.4.5: Suppose we use three disks as a mirrored group; i.e., all
three hold identical data. If the yearly probability of failure for one disk is F,
and it takes H hours to restore a disk, what is the mean time to data loss?

E xercise 13.4.6: Suppose we are using a RAID level 4 scheme with four data
disks and one redundant disk. As in Example 13.9 assume blocks are a single
byte. Give the block of the redundant disk if the corresponding blocks of the
data disks are:

a) 01010110,11000000, 00111011, and 11111011.

b) 11110000, 11111000, 00111111, and 00000001.

13.4. DISK FAILURES 589

Error-Correcting Codes and RAID Level 6

There is a theory that guides our selection of a suitable matrix, like that
of Fig. 13.10, to determine the content of redundant disks. A code of
length n is a set of bit-vectors (called code words) of length n. The Ham­
ming distance between two code words is the number of positions in which
they differ, and the minimum distance of a code is the smallest Hamming
distance of any two different code words.

If C is any code of length n, we can require that the corresponding
bits on n disks have one of the sequences that are members of the code. As
a very simple example, if we are using a disk and its mirror, then n = 2,
and we can use the code C — {00,11}. That is, the corresponding bits
of the two disks must be the same. For another example, the matrix of
Fig. 13.10 defines the code consisting of the 16 bit-vectors of length 7 that
have arbitrary values for the first four bits and have the remaining three
bits determined by the rules for the three redundant disks.

If the minimum distance of a code is d, then disks whose corresponding
bits are required to be a vector in the code will be able to tolerate d — 1
simultaneous disk crashes. The reason is that, should we obscure d — 1
positions of a code word, and there were two different ways these positions
could be filled in to make a code word, then the two code words would have
to differ in at most the d — 1 positions. Thus, the code could not have
minimum distance d. As an example, the matrix of Fig. 13.10 actually
defines the well-known Hamming code, which has minimum distance 3.
Thus, it can handle two disk crashes.

E xercise 13.4.7: Using the same RAID level 4 scheme as in Exercise 13.4.6,
suppose that data disk 1 has failed. Recover the block of that disk under the
following circumstances:

a) The contents of disks 2 through 4 are 01010110,11000000, and 00111011,
while the redundant disk holds 11111011.

b) The contents of disks 2 through 4 are 11110000, 11111000, and 00111111,
while the redundant disk holds 00000001.

E xercise 13.4.8: Suppose the block on the first disk in Exercise 13.4.6 is
changed to 10101010. What changes to the corresponding blocks on the other
disks must be made?

Exercise 13.4.9: Suppose we have the RAID level 6 scheme of Example 13.13,
and the blocks of the four data disks are 00111100, 11000111, 01010101, and
10000100, respectively.

