
Chapter 14

Index Structures

It is not sufficient simply to scatter the records that represent tuples of a relation
among various blocks. To see why, think how we would answer the simple query
SELECT * FROM R. We would have to examine every block in the storage system
to find the tuples of R. A better idea is to reserve some blocks, perhaps several
whole cylinders, for R. Now, at least we can find the tuples of R without
scanning the entire data store.

However, this organization offers little help for a query like

SELECT * FROM R WHERE a=10;

Section 8.4 introduced us to the importance of creating indexes to speed up
queries that specify values for one or more attributes. As suggested in Fig. 14.1,
an index is any data structure that takes the value of one or more fields and
finds the records with that value “quickly.” In particular, an index lets us find
a record without having to look at more than a small fraction of all possible
records. The field(s) on whose values the index is based is called the search key,
or just “key” if the index is understood.

value
m atching

records

Figure 14.1: An index takes a value for some field(s) and finds records with the
matching value

619

620 CHAPTER 14. INDEX STRUCTURES

Different Kinds of “Keys”

There are many meanings of the term “key.” We used it in Section 2.3.6
to mean the primary key of a relation. We shall also speak of “sort keys,”
the attribute(s) on which a file of records is sorted. We just introduced
“search keys,” the attribute(s) for which we are given values and asked to
search, through an index, for tuples with matching values. We try to use
the appropriate adjective — “primary,” “sort,” or “search” — when the
meaning of “key” is unclear. However, in many cases, the three kinds of
keys are one and the same.

In this chapter, we shall introduce the most common form of index in
database systems: the B-tree. We shall also discuss hash tables in secondary
storage, which is another important index structure. Finally, we consider other
index structures that are designed to handle multidimensional data. These
structures support queries that specify values or ranges for several attributes
at once.

14.1 Index-Structure Basics

In this section, we introduce concepts that apply to all index structures. Stor
age structures consist of files, which are similar to the files used by operating
systems. A data file may be used to store a relation, for example. The data file
may have one or more index files. Each index file associates values of the search
key with pointers to data-file records that have that value for the attribute(s)
of the search key.

Indexes can be “dense,” meaning there is an entry in the index file for every
record of the data file. They can be “sparse,” meaning that only some of the
data records are represented in the index, often one index entry per block of
the data file. Indexes can also be “primary” or “secondary.” A primary index
determines the location of the records of the data file, while a secondary index
does not. For example, it is common to create a primary index on the primary
key of a relation and to create secondary indexes on some of the other attributes.

We conclude the section with a study of information retrieval from doc
uments. The ideas of the section are combined to yield “inverted indexes,”
which enable efficient retrieval of documents that contain one or more given
keywords. This technique is essential for answering search queries on the Web,
for instance.

14.1. INDEX-STRUCTURE BASICS 621

14.1.1 Sequential Files
A sequential file is created by sorting the tuples of a relation by their primary
key. The tuples are then distributed among blocks, in this order.

E xam ple 14.1: Fig 14.2 shows a sequential file on the right. We imagine
that keys are integers; we show only the key field, and we make the atypical
assumption that there is room for only two records in one block. For instance,
the first block of the file holds the records with keys 10 and 20. In this and
several other examples, we use integers that are sequential multiples of 10 as
keys, although there is surely no requirement that keys form an arithmetic
sequence. □

Although in Example 14.1 we supposed that records were packed as tightly
as possible into blocks, it is common to leave some space initially in each block to
accomodate new tuples that may be added to a relation. Alternatively, we may
accomodate new tuples with overflow blocks, as we suggested in Section 13.8.1.

14.1.2 Dense Indexes
If records Eire sorted, we can build on them a dense index, which is a sequence
of blocks holding only the keys of the records and pointers to the records them
selves; the pointers are addresses in the sense discussed in Section 13.6. The
index blocks of the dense index maintain these keys in the same sorted order as
in the file itself. Since keys and pointers presumably take much less space than
complete records, we expect to use many fewer blocks for the index than for
the file itself. The index is especially advantageous when it, but not the data
file, can fit in main memory. Then, by using the index, we can find any record
given its search key, with only one disk I/O per lookup.

E xam ple 14.2: Figure 14.2 suggests a dense index on a sorted file. The
first index block contains pointers to the first four records (an atypically small
number of pointers for one block), the second block has pointers to the next
four, and so on. □

The dense index supports queries that ask for records with a given search-
key value. Given key value K , we search the index blocks for K , and when we
find it, we follow the associated pointer to the record with key K . It might
appear that we need to examine every block of the index, or half the blocks of
the index, on average, before we find K . However, there are several factors that
make the index-based search more efficient than it seems.

1. The number of index blocks is usually small compared with the number
of data blocks.

2. Since keys are sorted, we can use binary search to find K . If there are n
blocks of the index, we only look at log2 n of them.

622 CHAPTER 14. INDEX STRUCTURES

10
20
30
40

10

20

50
60
70
80

90
100
110 — —•

120 —

30
40

50
60

70
80

90
100

Index file Data file

Figure 14.2: A dense index (left) on a sequential data file (right)

3. The index may be small enough to be kept permanently in main memory
buffers. If so, the search for key K involves only main-memory accesses,
and there are no expensive disk I/O ’s to be performed.

14.1.3 Sparse Indexes
A sparse index typically has only one key-pointer pair per block of the data file.
It thus uses less space than a dense index, at the expense of somewhat more
time to find a record given its key. You can only use a sparse index if the data
file is sorted by the search key, while a dense index can be used for any search
key. Figure 14.3 shows a sparse index with one key-pointer per data block. The
keys are for the first records on each data block.

E xam ple 14.3: As in Example 14.2, we assume that the data file is sorted,
and keys are all the integers divisible by 10, up to some large number. We also
continue to assume that four key-pointer pairs fit on an index block. Thus, the
first sparse-index block has entries for the first keys on the first four blocks,
which are 10, 30, 50, and 70. Continuing the assumed pattern of keys, the
second index block has the first keys of the fifth through eighth blocks, which
we assume are 90, 110, 130, and 150. We also show a third index block with
first keys from the hypothetical ninth through twelfth data blocks. □

To find the record with search-key value K , we search the sparse index for
the largest key less than or equal to K . Since the index file is sorted by key, a

14.1. INDEX-STRUCTURE BASICS 623

10
30
50
70 "■

90
110 •-'

130 ■--

150 —

170 — -
190 —
210 — -
230 —

10

20

30
40

50
60

70
80

90
100

Figure 14.3: A sparse index on a sequential file

binary search can locate this entry. We follow the associated pointer to a data
block. Now, we must search this block for the record with key K . Of course the
block must have enough format information that the records and their contents
can be identified. Any of the techniques from Sections 13.5 and 13.7 can be
used.

14.1.4 Multiple Levels of Index

An index file can cover many blocks. Even if we use binary search to find the
desired index entry, we still may need to do many disk I /O ’s to get to the record
we want. By putting an index on the index, we can make the use of the first
level of index more efficient.

Figure 14.4 extends Fig. 14.3 by adding a second index level (as before, we
assume keys are every multiple of 10). The same idea would let us place a third-
level index on the second level, and so on. However, this idea has its limits,
and we prefer the B-tree structure described in Section 14.2 over building many
levels of index.

In this example, the first-level index is sparse, although we could have chosen
a dense index for the first level. However, the second and higher levels must
be sparse. The reason is that a dense index on an index would have exactly as
many key-pointer pairs as the first-level index, and therefore would take exactly
as much space as the first-level index.

624 CHAPTER 14. INDEX STRUCTURES

10
90
170
250 .

330 — -
410 — ■
490 — ■
570

10
30
50
70

90
110 — -
130 — ■
150 -

170 — -
190 — -
210 — -
230 —

10

20

30
40

50
60

70
80

90
100

Figure 14.4: Adding a second level of sparse index

14.1.5 Secondary Indexes
A secondary index serves the purpose of any index: it is a data structure that
facilitates finding records given a value for one or more fields. However, the
secondary index is distinguished from the primary index in that a secondary
index does not determine the placement of records in the data file. Rather, the
secondary index tells us the current locations of records; that location may have
been decided by a primary index on some other field. An important consequence
of the distinction between primary and secondary indexes is that:

• Secondary indexes are always dense. It makes no sense to talk of a sparse,
secondary index. Since the secondary index does not influence location,
we could not use it to predict the location of any record whose key was
not mentioned in the index file explicitly.

E xam ple 14.4: Figure 14.5 shows a typical secondary index. The data file
is shown with two records per block, as has been our standard for illustration.
The records have only their search key shown; this attribute is integer valued,
and as before we have taken the values to be multiples of 10. Notice that, unlike
the data file in Fig. 14.2, here the data is not sorted by the search key.

However, the keys in the index file are sorted. The result is that the pointers
in one index block can go to many different data blocks, instead of one or a few
consecutive blocks. For example, to retrieve all the records with search key 20,
we not only have to look at two index blocks, but we are sent by their pointers
to three different data blocks. Thus, using a secondary index may result in

14.1. INDEX-STRUCTURE BASICS 625

Figure 14.5: A secondary index

many more disk I /O ’s than if we get the same number of records via a primary
index. However, there is no help for this problem; we cannot control the order
of tuples in the data block, because they are presumably ordered according to
some other attribute(s). □

14.1.6 Applications of Secondary Indexes
Besides supporting additional indexes on relations that are organized as sequen
tial files, there are some data structures where secondary indexes are needed for
even the primary key. One of these is the “heap” structure, where the records
of the relation are kept in no particular order.

A second common structure needing secondary indexes is the clustered file.
Suppose there are relations R and S, with a many-one relationship from the
tuples of R to tuples of S. It may make sense to store each tuple of R with the
tuple of S to which it is related, rather than according to the primary key of R.
An example will illustrate why this organization makes good sense in special
situations.

E xam ple 14.5 : Consider our standard movie and studio relations:

M o v ie (tit le , y ea r, len g th , genre, studioName, producerC#)
Studio(name, add ress, presC#)

Suppose further that the most common form of query is:

626 CHAPTER 14. INDEX STRUCTURES

SELECT t i t l e , year
FROM Movie, S tudio
WHERE presC# = zzz AND Movie. studioName = Studio.nam e;

Here, zzz represents any possible certificate number for a studio president. That
is, given the president of a studio, we need to find all the movies made by that
studio.

If we are convinced that the above query is typical, then instead of ordering
Movie tuples by the primary key t i t l e and year, we can create a clustered
file structure for both relations S tudio and Movie, as suggested by Fig. 14.6.
Following each S tudio tuple are all the Movie tuples for all the movies owned
by that studio.

studio 1 studio 2 studio 3 studio 4

movies by
studio 1

movies by
studio 2

movies by
studio 3

movies by
studio 4

Figure 14.6: A clustered file with each studio clustered with the movies made
by that studio

If we create an index for S tudio with search key presC#, then whatever the
value of zzz is, we can quickly find the tuple for the proper studio. Moreover,
all the Movie tuples whose value of attribute studioName matches the value
of name for that studio will follow the studio’s tuple in the clustered file. As
a result, we can find the movies for this studio by making almost as few disk
I /O ’s as possible. The reason is that the desired Movie tuples are packed
almost as densely as possible onto the following blocks. However, an index on
any attribute(s) of Movie would have to be a secondary index. □

14.1.7 Indirection in Secondary Indexes

There is some wasted space, perhaps a significant amount of wastage, in the
structure suggested by Fig. 14.5. If a search-key value appears n times in the
data file, then the value is written n times in the index file. It would be better
if we could write the key value once for all the pointers to data records with
that value.

A convenient way to avoid repeating values is to use a level of indirection,
called buckets, between the secondary index file and the data file. As shown in
Fig. 14.7, there is one pair for each search key K . The pointer of this pair goes
to a position in a “bucket file,” which holds the “bucket” for K . Following this
position, until the next position pointed to by the index, are pointers to all the
records with search-key value K .

14.1. INDEX-STRUCTURE BASICS 627

Figure 14.7: Saving space by using indirection in a secondary index

E xam ple 14.6: For instance, let us follow the pointer from search key 50
in the index file of Fig. 14.7 to the intermediate “bucket” file. This pointer
happens to take us to the last pointer of one block of the bucket file. We search
forward, to the first pointer of the next block. We stop at that point, because
the next pointer of the index file, associated with search key 60, points to the
next record in the bucket file. □

The scheme of Fig. 14.7 saves space as long as search-key values are larger
than pointers, and the average key appears at least twice. However, even if not,
there is an important advantage to using indirection with secondary indexes:
often, we can use the pointers in the buckets to help answer queries without
ever looking at most of the records in the data file. Specifically, when there are
several conditions to a query, and each condition has a secondary index to help
it, we can find the bucket pointers that satisfy all the conditions by intersecting
sets of pointers in memory, and retrieving only the records pointed to by the
surviving pointers. We thus save the I/O cost of retrieving records that satisfy
some, but not all, of the conditions.1

E xam ple 14.7: Consider the usual Movie relation:

M o v ie (title , y ea r, len g th , genre, studioName, producerC#)

1 We also could use this pointer-intersection trick if we got the pointers directly from the
index, rather than from buckets.

628 CHAPTER 14. INDEX STRUCTURES

Suppose we have secondary indexes with indirect buckets on both studioName
and yeax, and we are asked the query

SELECT t i t l e
FROM Movie
WHERE studioName = ’D isney’ AND year = 2005;

that is, find all the Disney movies made in 2005.

Buckets Buckets
for Movie tuples for

studio year

Studio Year
index index

Figure 14.8: Intersecting buckets in main memory

Figure 14.8 shows how we can answer this query using the indexes. Using
the index on studioName, we find the pointers to all records for Disney movies,
but we do not yet bring any of those records from disk to memory. Instead,
using the index on year, we find the pointers to all the movies of 2005. We then
intersect the two sets of pointers, getting exactly the movies that were made
by Disney in 2005. Finally, we retrieve from disk all data blocks holding one or
more of these movies, thus retrieving the minimum possible number of blocks.
□

14.1.8 Document Retrieval and Inverted Indexes
For many years, the information-retrieval community has dealt with the storage
of documents and the efficient retrieval of documents with a given set of key
words. With the advent of the World-Wide Web and the feasibility of keeping

14.1. INDEX-STRUCTURE BASICS 629

all documents on-line, the retrieval of documents given keywords has become
one of the largest database problems. While there are many kinds of queries
that one can use to find relevant documents, the simplest and most common
form can be seen in relational terms as follows:

• A document may be thought of as a tuple in a relation Doc. This relation
has very many attributes, one corresponding to each possible word in a
document. Each attribute is boolean — either the word is present in the
document, or it is not. Thus, the relation schema may be thought of as

Doc(hasCat, hasDog, ...)

where hasCat is true if and only if the document has the word “cat” at
least once.

• There is a secondary index on each of the attributes of Doc. However,
we save the trouble of indexing those tuples for which the value of the
attribute is FALSE; instead, the index leads us to only the documents for
which the word is present. That is, the index has entries only for the
search-key value TRUE.

• Instead of creating a separate index for each attribute (i.e., for each word),
the indexes are combined into one, called an inverted index. This in
dex uses indirect buckets for space efficiency, as was discussed in Sec
tion 14.1.7.

E xam ple 1 4 .8 : An inverted index is illustrated in Fig. 14.9. In place of a data
file of records is a collection of documents, each of which may be stored on one
or more disk blocks. The inverted index itself consists of a set of word-pointer
pairs; the words are in effect the search key for the index. The inverted index
is kept in a sequence of blocks, just like any of the indexes discussed so far.

The pointers refer to positions in a “bucket” file. For instance, we have
shown in Fig. 14.9 the word “cat” with a pointer to the bucket file. That
pointer leads us to the beginning of a list of pointers to all the documents that
contain the word “cat.” We have shown some of these in the figure. Similarly,
the word “dog” is shown leading to a list of pointers to all the documents with
“dog.” □

Pointers in the bucket file can be:

1. Pointers to the document itself.

2. Pointers to an occurrence of the word. In this case, the pointer might
be a pair consisting of the first block for the document and an integer
indicating the number of the word in the document.

630 CHAPTER 14. INDEX STRUCTURES

Documents

Figure 14.9: An inverted index on documents

When we use “buckets” of pointers to occurrences of each word, we may
extend the idea to include in the bucket array some information about each
occurrence. Now, the bucket file itself becomes a collection of records with
important structure. Early uses of the idea distinguished occurrences of a word
in the title of a document, the abstract, and the body of text. With the growth
of documents on the Web, especially documents using HTML, XML, or another
markup language, we can also indicate the markings associated with words.
For instance, we can distinguish words appearing in titles, headers, tables, or
anchors, as well as words appearing in different fonts or sizes.

E xam ple 14 .9 : Figure 14.10 illustrates a bucket file that has been used to
indicate occurrences of words in HTML documents. The first column indicates
the type of occurrence, i.e., its marking, if any. The second and third columns
are together the pointer to the occurrence. The third column indicates the doc
ument, and the second column gives the number of the word in the document.

We can use this data structure to answer various queries about documents
without having to examine the documents in detail. For instance, suppose we
want to find documents about dogs that compare them with cats. Without a
deep understanding of the meaning of the text, we cannot answer this query
precisely. However, we could get a good hint if we searched for documents that

a) Mention dogs in the title, and

14.1. INDEX-STRUCTURE BASICS 631

Type Position

Figure 14.10: Storing more information in the inverted index

Insertion and Deletion From Buckets

We show buckets in figures such as Fig. 14.9 as compacted arrays of appro
priate size. In practice, they are records with a single field (the pointer)
and are stored in blocks like any other collection of records. Thus, when
we insert or delete pointers, we may use any of the techniques seen so far,
such as leaving extra space in blocks for expansion of the file, overflow
blocks, and possibly moving records within or among blocks. In the latter
case, we must be careful to change the pointer from the inverted index to
the bucket file, as we move the records it points to.

b) Mention cats in an anchor — presumably a link to a document about
cats.

We can answer this query by intersecting pointers. That is, we follow the
pointer associated with “cat” to find the occurrences of this word. We select
from the bucket file the pointers to documents associated with occurrences of
“cat” where the type is “anchor.” We then find the bucket entries for “dog”
and select from them the document pointers associated with the type “title.”
If we intersect these two sets of pointers, we have the documents that meet the
conditions: they mention “dog” in the title and “cat” in an anchor. □

14.1.9 Exercises for Section 14.1
Exercise 14.1.1: Suppose blocks hold either three records, or ten key-pointer
pairs. As a function of n, the number of records, how many blocks do we need
to hold a data file and: (a) A dense index (b) A sparse index?

632 CHAPTER 14. INDEX STRUCTURES

More About Information Retrieval

There are a number of techniques for improving the effectiveness of re
trieval of documents given keywords. While a complete treatment is be
yond the scope of this book, here are two useful techniques:

1. Stemming. We remove suffixes to find the “stem” of each word, be
fore entering its occurrence into the index. For example, plural nouns
can be treated as their singular versions. Thus, in Example 14.8, the
inverted index evidently uses stemming, since the search for word
“dog” got us not only documents with “dog,” but also a document
with the word “dogs.”

2. Stop words. The most common words, such as “the” or “and,” are
called stop words and often are excluded from the inverted index.
The reason is that the several hundred most common words appear in
too many documents to make them useful as a way to find documents
about specific subjects. Eliminating stop words also reduces the size
of the inverted index significantly.

E xercise 14.1.2: Repeat Exercise 14.1.1 if blocks can hold up to 30 records
or 200 key-pointer pairs, but neither data- nor index-blocks are allowed to be
more than 80% full.

! E xercise 14.1.3: Repeat Exercise 14.1.1 if we use as many levels of index as
is appropriate, until the final level of index has only one block.

! E xercise 14.1.4: Consider a clustered file organization like Fig. 14.6, and
suppose that ten records, either studio records or movie records, will fit on
one block. Also assume that the number of movies per studio is uniformly
distributed between 1 and m. As a function of m, what is the average number
of disk I /O ’s needed to retrieve a studio and all its movies? What would the
number be if movies were randomly distributed over a large number of blocks?

E xercise 14.1.5: Suppose that blocks can hold either three records, ten key-
pointer pairs, or fifty pointers. Using the indirect-buckets scheme of Fig. 14.7:

a) If the average search-key value appears in 10 records, how many blocks
do we need to hold 3000 records and its secondary index structure? How
many blocks would be needed if we did not use buckets?

! b) If there are no constraints on the number of records that can have a given
search-key value, what are the minimum and maximum number of blocks
needed?

14.2. B-TREES 633

E xercise 14.1.6: On the assumptions of Exercise 14.1.5(a), what is the av
erage number of disk I /O ’s to find and retrieve the ten records with a given
search-key value, both with and without the bucket structure? Assume nothing
is in memory to begin, but it is possible to locate index or bucket blocks without
incurring additional I /O ’s beyond what is needed to retrieve these blocks into
memory.

E xercise 14.1.7: Suppose we have a repository of 1000 documents, and we
wish to build an inverted index with 10,000 words. A block can hold ten
word-pointer pairs or 50 pointers to either a document or a position within
a document. The distribution of words is Zipfian (see the box on “The Zipfian
Distribution” in Section 16.4.3); the number of occurrences of the ith most
frequent word is 100000/\/i, for i — 1 ,2 ,. .. , 10000.

a) What is the averge number of words per document?

b) Suppose our inverted index only records for each word all the documents
that have that word. What is the maximum number of blocks we could
need to hold the inverted index?

c) Suppose our inverted index holds pointers to each occurrence of each word.
How many blocks do we need to hold the inverted index?

d) Repeat (b) if the 400 most common words (“stop” words) are not included
in the index.

e) Repeat (c) if the 400 most common words are not included in the index.

E xercise 14.1.8: If we use an augmented inverted index, such as in Fig. 14.10,
we can perform a number of other kinds of searches. Suggest how this index
could be used to find:

a) Documents in which “cat” and “dog” appeared within five positions of
each other in the same type of element (e.g., title, text, or anchor).

b) Documents in which “dog” followed “cat” separated by exactly one posi
tion.

c) Documents in which “dog” and “cat” both appear in the title.

14.2 B-Trees
While one or two levels of index are often very helpful in speeding up queries,
there is a more general structure that is commonly used in commercial systems.
This family of data structures is called B-trees, and the particular variant that
is most often used is known as a B+ tree. In essence:

