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c) Lookup all records in the range 20 to 30.

d) Lookup all records with keys less than 30.

e) Lookup all records with keys greater than 30.

f) Insert a record with key 1.

g) Insert records with keys 14 through 16.

h) Delete the record with key 23.

i) Delete all the records with keys 23 and higher.

Exercise 14.2.6: When duplicate keys are allowed in a B-tree, there are some 
necessary modifications to the algorithms for lookup, insertion, and deletion 
that we described in this section. Give the changes for: (a) lookup (b) insertion
(c) deletion.

! E xercise 14.2.7: In Example 14.17 we suggested that it would be possible 
to borrow keys from a nonsibling to the right (or left) if we used a more com
plicated algorithm for maintaining keys at interior nodes. Describe a suitable 
algorithm that rebalances by borrowing from adjacent nodes at a level, regard
less of whether they are siblings of the node that has too many or too few 
key-pointer pairs.

! Exercise 14.2.8: If we use the 3-key, 4-pointer nodes of our examples in this 
section, how many different B-trees are there when the data file has the following 
numbers of records: (a) 6 (b) 10 !! (c) 15.

! Exercise 14.2.9: Suppose we have B-tree nodes with room for three keys and 
four pointers, as in the examples of this section. Suppose also that when we 
split a leaf, we divide the pointers 2 and 2, while when we split an interior node, 
the first 3 pointers go with the first (left) node, and the last 2 pointers go with 
the second (right) node. We start with a leaf containing pointers to records 
with keys 1, 2, and 3. We then add in order, records with keys 4, 5, 6, and so 
on. At the insertion of what key will the B-tree first reach four levels?

14.3 Hash Tables
There are a number of data structures involving a hash table that are useful as 
indexes. We assume the reader has seen the hash table used as a main-memory 
data structure. In such a structure there is a hash function h that takes a search 
key (the hash key) as an argument and computes from it an integer in the range
0 to B  — 1, where B  is the number of buckets. A bucket array, which is an array 
indexed from 0 to B  — 1, holds the headers of B  linked lists, one for each bucket 
of the array. If a record has search key K ,  then we store the record by linking 
it to the bucket list for the bucket numbered h(K).
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14.3.1 Secondary-Storage Hash Tables
A hash table that holds a very large number of records, so many that they must 
be kept mainly in secondary storage, differs from the main-memory version in 
small but important ways. First, the bucket array consists of blocks, rather 
than pointers to the headers of lists. Records that are hashed by the hash 
function h to a certain bucket are put in the block for that bucket. If a bucket 
has too many records, a chain of overflow blocks can be added to the bucket to 
hold more records.

We shall assume that the location of the first block for any bucket i can be 
found given i. For example, there might be a main-memory array of pointers 
to blocks, indexed by the bucket number. Another possibility is to put the first 
block for each bucket in fixed, consecutive disk locations, so we can compute 
the location of bucket i from the integer i.
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Figure 14.20: A hash table

E xam ple 14.19: Figure 14.20 shows a hash table. To keep our illustrations 
manageable, we assume that a block can hold only two records, and that B  =  4;
i.e., the hash function h returns values from 0 to 3. We show certain records 
populating the hash table. Keys are letters a through /  in Fig. 14.20. We 
assume that h(d) =  0, h(c) - h(e) =  1, h(b) =  2, and h(a) = h (f) — 3. Thus, 
the six records are distributed into blocks as shown. □

Note that we show each block in Fig. 14.20 with a “nub” at the right end. 
This nub represents additional information in the block’s header. We shall use 
it to chain overflow blocks together, and starting in Section 14.3.5, we shall use 
it to keep other critical information about the block.

14.3.2 Insertion Into a Hash Table
When a new record with search key K  must be inserted, we compute h(K ). If 
the bucket numbered h(K ) has space, then we insert the record into the block 
for this bucket, or into one of the overflow blocks on its chain if there is no room
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Choice of Hash Function

The hash function should “hash” the key so the resulting integer is a 
seemingly random function of the key. Thus, buckets will tend to have 
equal numbers of records, which improves the average time to access a 
record, as we shall discuss in Section 14.3.4. Also, the hash function 
should be easy to compute, since we shall compute it many times.

A common choice of hash function when keys are integers is to com
pute the remainder of K /B ,  where K  is the key value and B  is the number 
of buckets. Often, B  is chosen to be a prime, although there are reasons 
to make B  a power of 2, as we discuss starting in Section 14.3.5. For 
character-string search keys, we may treat each character as an integer, 
sum these integers, and take the remainder when the sum is divided by B.

in the first block. If none of the blocks of the chain for bucket h(K ) has room, 
we add a new overflow block to the chain and store the new record there.

E xam ple 14.20: Suppose we add to the hash table of Fig. 14.20 a record with 
key g, and h(g) =  1. Then we must add the new record to the bucket numbered
1. However, the block for that bucket already has two records. Thus, we add a 
new block and chain it to the original block for bucket 1. The record with key 
g goes in that block, as shown in Fig. 14.21. □
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Figure 14.21: Adding an additional block to a hash-table bucket

14.3.3 Hash-Table Deletion
Deletion of the record (or records) with search key K  follows the same pattern 
as insertion. We go to the bucket numbered h(K ) and search for records with 
that search key. Any that we find are deleted. If we are able to move records
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around among blocks, then after deletion we may optionally consolidate the 
blocks of a bucket into one fewer block.6

E xam ple 14.21: Figure 14.22 shows the result of deleting the record with key 
c from the hash table of Fig. 14.21. Recall h(c) = 1, so we go to the bucket 
numbered 1 (i.e., the second bucket) and search all its blocks to find a record 
(or records if the search key were not the primary key) with key c. We find it 
in the first block of the chain for bucket 1. Since there is now room to move 
the record with key g from the second block of the chain to the first, we can do 
so and remove the second block.

0
d J

1
e J
g
b J

2

3
f J

Figure 14.22: Result of deletions from a hash table

We also show the deletion of the record with key a. For this key, we found 
our way to bucket 3, deleted it, and “consolidated” the remaining record at the 
beginning of the block. □

14.3.4 Efficiency of Hash Table Indexes
Ideally, there are enough buckets that most of them fit on one block. If so, 
then the typical lookup takes only one disk I/O , and insertion or deletion from 
the file takes only two disk I /O ’s. That number is significantly better than 
straightforward sparse or dense indexes, or B-tree indexes (although hash tables 
do not support range queries as B-trees do; see Section 14.2.4).

However, if the file grows, then we shall eventually reach a situation where 
there are many blocks in the chain for a typical bucket. If so, then we need to 
search long lists of blocks, taking at least one disk I/O  per block. Thus, there 
is a good reason to try to keep the number of blocks per bucket low.

The hash tables we have examined so far are called static hash tables, because 
B, the number of buckets, never changes. However, there are several kinds of 
dynamic hash tables, where B  is allowed to vary so it approximates the number

®A risk of consolidating blocks of a chain whenever possible is that an oscillation, where 
we alternately insert and delete records from a bucket, will cause a block to be created or 
destroyed at each step.
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of records divided by the number of records that can fit on a block; i.e., there 
is about one block per bucket. We shall discuss two such methods:

1. Extensible hashing in Section 14.3.5, and

2. Linear hashing in Section 14.3.7.

The first grows B  by doubling it whenever it is deemed too small, and the 
second grows B  by 1 each time statistics of the file suggest some growth is 
needed.

14.3.5 Extensible Hash Tables
Our first approach to dynamic hashing is called extensible hash tables. The 
major additions to the simpler static hash table structure are:

1. There is a level of indirection for the buckets. That is, an array of pointers 
to blocks represents the buckets, instead of the array holding the data 
blocks themselves.

2. The array of pointers can grow. Its length is always a power of 2, so in a 
growing step the number of buckets doubles.

3. However, there does not have to be a data block for each bucket; certain 
buckets can share a block if the total number of records in those buckets 
can fit in the block.

4. The hash function h computes for each key a sequence of k bits for some 
large k, say 32. However, the bucket numbers will at all times use some 
smaller number of bits, say i bits, from the beginning or end of this 
sequence. The bucket array will have 2* entries when * is the number of 
bits used.

E xam ple 14.22: Figure 14.23 shows a small extensible hash table. We sup
pose, for simplicity of the example, that k = 4; i.e., the hash function produces 
a sequence of only four bits. At the moment, only one of these bits is used, 
as indicated by * =  1 in the box above the bucket array. The bucket array 
therefore has only two entries, one for 0 and one for 1.

The bucket array entries point to two blocks. The first holds all the current 
records whose search keys hash to a bit sequence that begins with 0, and the 
second holds all those whose search keys hash to a sequence beginning with 
1. For convenience, we show the keys of records as if they were the entire bit 
sequence to which the hash function converts them. Thus, the first block holds 
a record whose key hashes to 0001, and the second holds records whose keys 
hash to 1001 and 1100. □
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Buckets Data blocks

Figure 14.23: An extensible hash table

We should notice the number 1 appearing in the “nub” of each of the blocks 
in Fig. 14.23. This number, which would actually appear in the block header, 
indicates how many bits of the hash function’s sequence is used to determine 
membership of records in this block. In the situation of Example 14.22, there 
is only one bit considered for all blocks and records, but as we shall see, the 
number of bits considered for various blocks can differ as the hash table grows. 
That is, the bucket array size is determined by the maximum number of bits 
we are now using, but some blocks may use fewer.

14.3.6 Insertion Into Extensible Hash Tables
Insertion into an extensible hash table begins like insertion into a static hash 
table. To insert a record with search key K ,  we compute h(K ), take the first 
i bits of this bit sequence, and go to the entry of the bucket array indexed by 
these i bits. Note that we can determine i because it is kept as part of the data 
structure.

We follow the pointer in this entry of the bucket array and arrive at a 
block B. If there is room to put the new record in block B, we do so and we 
are done. If there is no room, then there are two possibilities, depending on 
the number j ,  which indicates how many bits of the hash value are used to 
determine membership in block B  (recall the value of j  is found in the “nub” 
of each block in figures).

1. If j  < i, then nothing needs to be done to the bucket array. We:

(a) Split block B  into two.
(b) Distribute records in B  to the two blocks, based on the value of their 

(j +  l)st bit — records whose key has 0 in that bit stay in B  and 
those with 1 there go to the new block.

(c) Put j  +  1 in each block’s “nub” (header) to indicate the number of 
bits used to determine membership.

(d) Adjust the pointers in the bucket array so entries that formerly 
pointed to B  now point either to B  or the new block, depending 
on their (j + l)st bit.
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Note that splitting block B  may not solve the problem, since by chance 
all the records of B  may go into one of the two blocks into which it was 
split. If so, we need to repeat the process on the overfull block, using the 
next higher value of j  and the block that is still overfull.

2. If j  — i, then we must first increment i by 1. We double the length of 
the bucket array, so it now has 2t+1 entries. Suppose w is a sequence 
of i bits indexing one of the entries in the previous bucket array. In the 
new bucket array, the entries indexed by both wO and w 1 (i.e., the two 
numbers derived from w by extending it with 0 or 1) each point to the 
same block that the w entry used to point to. That is, the two new entries 
share the block, and the block itself does not change. Membership in the 
block is still determined by whatever number of bits was previously used. 
Finally, we proceed to split block B  as in case 1. Since i is now greater 
than j ,  that case applies.

E xam ple 14.23: Suppose we insert into the table of Fig. 14.23 a record whose 
key hashes to the sequence 1010. Since the first bit is 1, this record belongs in 
the second block. However, that block is already full, so it needs to be split. 
We find that j  =  i =  1 in this case, so we first need to double the bucket array, 
as shown in Fig. 14.24. We have also set i — 2 in this figure.

Figure 14.24: Now, two bits of the hash function are used

Notice that the two entries beginning with 0 each point to the block for 
records whose hashed keys begin with 0, and that block still has the integer 1 
in its “nub” to indicate that only the first bit determines membership in the 
block. However, the block for records beginning with 1 needs to be split, so we 
partition its records into those beginning 10 and those beginning 11. A 2 in 
each of these blocks indicates that two bits are used to determine membership. 
Fortunately, the split is successful; since each of the two new blocks gets at least 
one record, we do not have to split recursively.

Now suppose we insert records whose keys hash to 0000 and 0111. These 
both go in the first block of Fig. 14.24, which then overflows. Since only one bit 
is used to determine membership in this block, while i = 2, we do not have to
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adjust the bucket array. We simply split the block, with 0000 and 0001 staying, 
and 0111 going to the new block. The entry for 01 in the bucket array is made 
to point to the new block. Again, we have been fortunate that the records did 
not all go in one of the new blocks, so we have no need to split recursively.

Figure 14.25: The hash table now uses three bits of the hash function

Now suppose a record whose key hashes to 1000 is inserted. The block for 
10 overflows. Since it already uses two bits to determine membership, it is 
time to split the bucket array again and set * =  3. Figure 14.25 shows the 
data structure at this point. Notice that the block for 10 has been split into 
blocks for 100 and 101, while the other blocks continue to use only two bits to 
determine membership. □

14.3.7 Linear Hash Tables

Extensible hash tables have some important advantages. Most significant is the 
fact that when looking for a record, we never need to search more than one data 
block. We also have to examine an entry of the bucket array, but if the bucket 
array is small enough to be kept in main memory, then there is no disk I/O  
needed to access the bucket array. However, extensible hash tables also suffer 
from some defects:

1. When the bucket array needs to be doubled in size, there is a substantial 
amount of work to be done (when i is large). This work interrupts access 
to the data file, or makes certain insertions appear to take a long time.
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2. When the bucket array is doubled in size, it may no longer fit in main 
memory, or may crowd out other data that we would like to hold in main 
memory. As a result, a system that was performing well might suddenly 
start using many more disk I/O ’s per operation.

3. If the number of records per block is small, then there is likely to be 
one block that needs to be split well in advance of the logical time to 
do so. For instance, if there are two records per block as in our running 
example, there might be one sequence of 20 bits that begins the keys of 
three records, even though the total number of records is much less than 
220. In that case, we would have to use i — 20 and a million-bucket array, 
even though the number of blocks holding records was much smaller than 
a million.

Another strategy, called linear hashing, grows the number of buckets more 
slowly. The principal new elements we find in linear hashing are:

• The number of buckets n  is always chosen so the average number of records 
per bucket is a fixed fraction, say 80%, of the number of records that fill 
one block.

•  Since blocks cannot always be split, overflow blocks are permitted, al
though the average number of overflow blocks per bucket will be much 
less than 1.

• The number of bits used to number the entries of the bucket array is 
["log2 n ] , where n  is the current number of buckets. These bits are always 
taken from the right (low-order) end of the bit sequence that is produced 
by the hash function.

• Suppose i bits of the hash function are being used to number array en
tries, and a record with key K  is intended for bucket aia2 • • ■ a*; that is, 
a\a,2 ■ ■ • at are the last i bits of h(K). Then let a\a2 ■•■ai be m, treated 
as an i-bit binary integer. If m  < n, then the bucket numbered m  exists, 
and we place the record in that bucket. If n < m  < 2®, then the bucket 
m  does not yet exist, so we place the record in bucket m  — 2*-1 , that is, 
the bucket we would get if we changed «i (which must be 1) to 0.

E xam ple 14.24: Figure 14.26 shows a linear hash table with n  =  2. We 
currently are using only one bit of the hash value to determine the buckets 
of records. Following the pattern established in Example 14.22, we assume the 
hash function h produces 4 bits, and we represent records by the value produced 
by h when applied to the search key of the record.

We see in Fig. 14.26 the two buckets, each consisting of one block. The 
buckets are numbered 0 and 1. All records whose hash value ends in 0 go in 
the first bucket, and those whose hash value ends in 1 go in the second.

Also part of the structure are the parameters i (the number of bits of the 
hash function that currently are used), n  (the current number of buckets), and r
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Figure 14.26: A linear hash table

(the current number of records in the hash table). The ratio r /n  will be limited 
so that the typical bucket will need about one disk block. We shall adopt the 
policy of choosing n, the number of buckets, so that there are no more than 
1.7n records in the file; i.e., r  < 1.7n. That is, since blocks hold two records, 
the average occupancy of a bucket does not exceed 85% of the capacity of a 
block. □

14.3.8 Insertion Into Linear Hash Tables
When we insert a new record, we determine its bucket by the algorithm outlined 
in Section 14.3.7. We compute h(K ), where K  is the key of the record, and 
we use the i bits at the end of bit sequence h(K) as the bucket number, m. If 
m < n, we put the record in bucket m, and if m  > n, we put the record in 
bucket m  — 2*-1 . If there is no room in the designated bucket, then we create 
an overflow block, add it to the chain for that bucket, and put the record there.

Each time we insert, we compare the current number of records r with the 
threshold ratio of r /n ,  and if the ratio is too high, we add the next bucket to 
the table. Note that the bucket we add bears no relationship to the bucket 
into which the insertion occurs! If the binary representation of the number of 
the bucket we add is ld2 • • • aj, then we split the bucket numbered O02 ■ ■ ■ di, 
putting records into one or the other bucket, depending on their last i bits. 
Note that all these records will have hash values that end in 02 • ■ - a», and only 
the ith  bit from the right end will vary.

The last important detail is what happens when n  exceeds 2*. Then, i is 
incremented by 1. Technically, all the bucket numbers get an additional 0 in 
front of their bit sequences, but there is no need to make any physical change, 
since these bit sequences, interpreted as integers, remain the same.

E xam ple 14.25: We shall continue with Example 14.24 and consider what 
happens when a record whose key hashes to 0101 is inserted. Since this bit 
sequence ends in 1, the record goes into the second bucket of Fig. 14.26. There 
is room for the record, so no overflow block is created.

However, since there are now 4 records in 2 buckets, we exceed the ratio 
1.7, and we must therefore raise n  to 3. Since |"log2 3] =  2, we should begin to 
think of buckets 0 and 1 as 00 and 01, but no change to the data structure is 
necessary. We add to the table the next bucket, which would have number 10. 
Then, we split the bucket 00, that bucket whose number differs from the added
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bucket only in the first bit. When we do the split, the record whose key hashes 
to 0000 stays in 00, since it ends with 00, while the record whose key hashes to 
1010 goes to 10 because it ends that way. The resulting hash table is shown in 
Fig. 14.27.

n=3

Figure 14.27: Adding a third bucket

Next, let us suppose we add a record whose search key hashes to 0001. 
The last two bits are 01, so we put it in this bucket, which currently exists. 
Unfortunately, the bucket’s block is full, so we add an overflow block. The three 
records are distributed among the two blocks of the bucket; we chose to keep 
them in numerical order of their hashed keys, but order is not important. Since 
the ratio of records to buckets for the table as a whole is 5/3, and this ratio is 
less than 1.7, we do not create a new bucket. The result is seen in Fig. 14.28.

Figure 14.28: Overflow blocks are used if necessary

Finally, consider the insertion of a record whose search key hashes to 0111. 
The last two bits are 11, but bucket 11 does not yet exist. We therefore redirect 
this record to bucket 01, whose number differs by having a 0 in the first bit. 
The new record fits in the overflow block of this bucket.

However, the ratio of the number of records to buckets has exceeded 1.7, so 
we must create a new bucket, numbered 11. Coincidentally, this bucket is the 
one we wanted for the new record. We split the four records in bucket 01, with 
0001 and 0101 remaining, and 0111 and 1111 going to the new bucket. Since 
bucket 01 now has only two records, we can delete the overflow block. The hash 
table is now as shown in Fig. 14.29.

Notice that the next time we insert a record into Fig. 14.29, we shall exceed
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n=4
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Figure 14.29: Adding a fourth bucket

the 1.7 ratio of records to buckets. Then, we shall raise n  to 5 and i becomes
3. □

Lookup in a linear hash table follows the procedure we described for selecting 
the bucket in which an inserted record belongs. If the record we wish to look 
up is not in that bucket, it cannot be anywhere.

14.3.9 Exercises for Section 14.3
Exercise 14.3.1: Show what happens to the buckets in Fig. 14.20 if the fol
lowing insertions and deletions occur:

i. Records g through j  are inserted into buckets 0 through 3, respectively.

ii. Records a and b are deleted.

Hi. Records k through n  are inserted into buckets 0 through 3, respectively.

iv. Records c and d are deleted.

Exercise 14.3.2: We did not discuss how deletions can be carried out in a 
linear or extensible hash table. The mechanics of locating the record(s) to 
be deleted should be obvious. What method would you suggest for executing 
the deletion? In particular, what are the advantages and disadvantages of 
restructuring the table if its smaller size after deletion allows for compression 
of certain blocks?

! E xercise 14.3.3: The material of this section assumes that search keys are 
unique. However, only small modifications are needed to allow the techniques 
to work for search keys with duplicates. Describe the necessary changes to 
insertion, deletion, and lookup algorithms, and suggest the major problems 
that arise when there are duplicates in each of the following kinds of hash 
tables: (a) simple (b) linear (c) extensible.
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! Exercise 14.3.4: Some hash functions do not work as well as theoretically 
possible. Suppose that we use the hash function on integer keys i defined by 
h(i) =  i2 mod B, where B  is the number of buckets.

a) What is wrong with this hash function if B  — 10?

b) How good is this hash function if B  = 16?

c) Are there values of B  for which this hash function is useful?

Exercise 14.3.5: In an extensible hash table with n  records per block, what 
is the probability that an overflowing block will have to be handled recursively;
i.e., all members of the block will go into the same one of the two blocks created 
in the split?

E xercise 14.3.6: Suppose keys are hashed to four-bit sequences, as in our 
examples of extensible and linear hashing in this section. However, also suppose 
that blocks can hold three records, rather than the two-record blocks of our 
examples. If we start with a hash table with two empty blocks (corresponding 
to 0 and 1), show the organization after we insert records with hashed keys:

a) 0000,0001,... ,1111, and the method of hashing is extensible hashing.

b) 0000,0001,... ,1111, and the method of hashing is linear hashing with a 
capacity threshold of 100%.

c) 1111,1110,..., 0000, and the method of hashing is extensible hashing.

d) 1111,1110,... , 0000, and the method of hashing is linear hashing with a 
capacity threshold of 75%.

Exercise 14.3.7: Suppose we use a linear or extensible hashing scheme, but 
there are pointers to records from outside. These pointers prevent us from mov
ing records between blocks, as is sometimes required by these hashing methods. 
Suggest several ways that we could modify the structure to allow pointers from 
outside.

!! E xercise 14.3.8: A linear-hashing scheme with blocks that hold k records 
uses a threshold constant c, such that the current number of buckets n  and 
the current number of records r are related by r = ckn. For instance, in 
Example 14.24 we used k =  2 and c = 0.85, so there were 1.7 records per 
bucket; i.e., r — 1.7n.

a) Suppose for convenience that each key occurs exactly its expected number 
of times.7 As a function of c, k, and n, how many blocks, including 
overflow blocks, are needed for the structure?

7This assumption does not mean all buckets have the same number of records, because 
some buckets represent twice as many keys as others.
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b) Keys will not generally distribute equally, but rather the number of rec
ords with a given key (or suffix of a key) will be Poisson distributed. That 
is, if A is the expected number of records with a given key suffix, then 
the actual number of such records will be i with probability e~xX /i\.  
Under this assumption, calculate the expected number of blocks used, as 
a function of c, k, and n.

Exercise 14.3.9: Suppose we have a file of 1,000,000 records that we want to 
hash into a table with 1000 buckets. 100 records will fit in a block, and we wish 
to keep blocks as full as possible, but not allow two buckets to share a block. 
What are the minimum and maximum number of blocks that we could need to 
store this hash table?

14.4 M ultidimensional Indexes
All the index structures discussed so far are one dimensional; that is, they 
assume a single search key, and they retrieve records that match a given search- 
key value. Although the search key may involve several attributes, the one
dimensional nature of indexes such as B-trees comes from the fact that values 
must be provided for all attributes of the search key, or the index is useless. So 
far in this chapter, we took advantage of a one-dimensional search-key space in 
several ways:

• Indexes on sequential files and B-trees both take advantage of having a 
single linear order for the keys.

• Hash tables require that the search key be completely known for any 
lookup. If a key consists of several fields, and even one is unknown, we 
cannot apply the hash function, but must instead search all the buckets.

In the balance of this chapter, we shall look at index structures that are suitable 
for multidimensional data. In these structures, any nonempty subset of the 
fields that form the dimensions can be given values, and some speedup will 
result.

14.4.1 Applications of Multidimensional Indexes
There are a number of applications that require us to view data as existing in a 
2-dimensional space, or sometimes in higher dimensions. Some of these appli
cations can be supported by conventional DBMS’s, but there are also some spe
cialized systems designed for multidimensional applications. One way in which 
these specialized systems distinguish themselves is by using data structures that 
support certain kinds of queries that are not common in SQL applications.

One important application of multidimensional indexes involves geographic 
data. A geographic information system stores objects in a (typically) two- 
dimensional space. The objects may be points or shapes. Often, these databases


