
15.4 Sorting 701

15.4 Sorting

Sorting of data plays an important role in database systems for two reasons. First, SQL
queries can specify that the output be sorted. Second, and equally important for query
processing, several of the relational operations, such as joins, can be implemented ef-
ficiently if the input relations are first sorted. Thus, we discuss sorting here before
discussing the join operation in Section 15.5.

We can sort a relation by building an index on the sort key and then using that
index to read the relation in sorted order. However, such a process orders the relation
only logically, through an index, rather than physically. Hence, the reading of tuples
in the sorted order may lead to a disk access (disk seek plus block transfer) for each
record, which can be very expensive, since the number of records can be much larger
than the number of blocks. For this reason, it may be desirable to order the records
physically.

The problem of sorting has been studied extensively, both for relations that fit
entirely in main memory and for relations that are bigger than memory. In the first
case, standard sorting techniques such as quick-sort can be used. Here, we discuss how
to handle the second case.

15.4.1 External Sort-Merge Algorithm

Sorting of relations that do not fit in memory is called external sorting. The most com-
monly used technique for external sorting is the external sort–merge algorithm. We
describe the external sort–merge algorithm next. Let M denote the number of blocks
in the main memory buffer available for sorting, that is, the number of disk blocks
whose contents can be buffered in available main memory.

1. In the first stage, a number of sorted runs are created; each run is sorted but
contains only some of the records of the relation.

i = 0;
repeat

read M blocks of the relation, or the rest of the relation,
whichever is smaller;

sort the in-memory part of the relation;
write the sorted data to run file Ri;
i = i + 1;

until the end of the relation

2. In the second stage, the runs are merged. Suppose, for now, that the total number
of runs, N, is less than M, so that we can allocate one block to each run and have
space left to hold one block of output. The merge stage operates as follows:

702 Chapter 15 Query Processing

read one block of each of the N files Ri into a buffer block in memory;
repeat

choose the first tuple (in sort order) among all buffer blocks;
write the tuple to the output, and delete it from the buffer block;
if the buffer block of any run Ri is empty and not end-of-file(Ri)

then read the next block of Ri into the buffer block;
until all input buffer blocks are empty

The output of the merge stage is the sorted relation. The output file is buffered to
reduce the number of disk write operations. The preceding merge operation is a gener-
alization of the two-way merge used by the standard in-memory sort–merge algorithm;
it merges N runs, so it is called an N-way merge.

In general, if the relation is much larger than memory, there may be M or more
runs generated in the first stage, and it is not possible to allocate a block for each run
during the merge stage. In this case, the merge operation proceeds in multiple passes.
Since there is enough memory for M−1 input buffer blocks, each merge can take M−1
runs as input.

The initial pass functions in this way: It merges the first M − 1 runs (as described
in item 2 above) to get a single run for the next pass. Then, it merges the next M − 1
runs similarly, and so on, until it has processed all the initial runs. At this point, the
number of runs has been reduced by a factor of M − 1. If this reduced number of runs
is still greater than or equal to M , another pass is made, with the runs created by the
first pass as input. Each pass reduces the number of runs by a factor of M − 1. The
passes repeat as many times as required, until the number of runs is less than M ; a final
pass then generates the sorted output.

Figure 15.4 illustrates the steps of the external sort–merge for an example relation.
For illustration purposes, we assume that only one tuple fits in a block (fr = 1), and we
assume that memory holds at most three blocks. During the merge stage, two blocks
are used for input and one for output.

15.4.2 Cost Analysis of External Sort-Merge

We compute the disk-access cost for the external sort–merge in this way: Let
br denote the number of blocks containing records of relation r. The first stage
reads every block of the relation and writes them out again, giving a total of 2br block
transfers. The initial number of runs is ⌈br∕M⌉. During the merge pass, reading in
each run one block at a time leads to a large number of seeks; to reduce the number of
seeks, a larger number of blocks, denoted bb, are read or written at a time, requiring bb
buffer blocks to be allocated to each input run and to the output run. Then, ⌊M∕bb⌋−1
runs can be merged in each merge pass, decreasing the number of runs by a factor of
⌊M∕bb⌋− 1. The total number of merge passes required is ⌈log⌊M∕bb⌋−1(br∕M)⌉. Each
of these passes reads every block of the relation once and writes it out once, with two
exceptions. First, the final pass can produce the sorted output without writing its result

15.4 Sorting 703

g

a

d 31

c 33

b 14

e 16

r 16

d 21

m 3

p 2

d 7

a 14

a 14

a 19

b 14

c 33

d 7

d 21

d 31

e 16

g 24

m 3

p 2

r 16

a 19

b 14

c 33

d 31

e 16

g 24

a 14

d 7

d 21

m 3

p 2

r 16

a 19

d 31

g 24

b 14

c 33

e 16

d 21

m 3

r 16

a 14

d 7

p 2
initial

relation
create
runs

merge
pass–1

merge
pass–2

runs runs
sorted
output

24

19

Figure 15.4 External sorting using sort–merge.

to disk. Second, there may be runs that are not read in or written out during a pass
—for example, if there are ⌊M∕bb⌋ runs to be merged in a pass, ⌊M∕bb⌋ − 1 are read
in and merged, and one run is not accessed during the pass. Ignoring the (relatively
small) savings due to the latter effect, the total number of block transfers for external
sorting of the relation is:

br(2⌈log⌊M∕bb⌋−1(br∕M)⌉ + 1)

Applying this equation to the example in Figure 15.4, with bb set to 1, we get a total of
12 ∗ (4 + 1) = 60 block transfers, as you can verify from the figure. Note that these
above numbers do not include the cost of writing out the final result.

We also need to add the disk-seek costs. Run generation requires seeks for reading
data for each of the runs as well as for writing the runs. Each merge pass requires
around ⌈br∕bb⌉ seeks for reading data.6 Although the output is written sequentially, if
it is on the same disk as the input runs, the head may have moved away between writes
of consecutive blocks. Thus we would have to add a total of 2⌈br∕bb⌉ seeks for each
merge pass, except the final pass (since we assume the final result is not written back
to disk).

6To be more precise, since we read each run separately and may get fewer than bb blocks when reading the end of a
run, we may require an extra seek for each run. We ignore this detail for simplicity.

704 Chapter 15 Query Processing

2⌈br∕M⌉ + ⌈br∕bb⌉(2⌈log⌊M∕bb⌋−1(br∕M)⌉ − 1)

Applying this equation to the example in Figure 15.4, we get a total of 8 + 12 ∗ (2 ∗
2 − 1) = 44 disk seeks if we set the number of buffer blocks per run bb to 1.

15.5 Join Operation

In this section, we study several algorithms for computing the join of relations, and we
analyze their respective costs.

We use the term equi-join to refer to a join of the form r ⋈r A=s.B s, where A and B
are attributes or sets of attributes of relations r and s, respectively.

We use as a running example the expression:

student ⋈ takes

using the same relation schemas that we used in Chapter 2. We assume the following
information about the two relations:

• Number of records of student: nstudent = 5000.

• Number of blocks of student: bstudent = 100.

• Number of records of takes: ntakes = 10, 000.

• Number of blocks of takes: btakes = 400.

15.5.1 Nested-Loop Join

Figure 15.5 shows a simple algorithm to compute the theta join, r ⋈θ s, of two relations
r and s. This algorithm is called the nested-loop join algorithm, since it basically consists
of a pair of nested for loops. Relation r is called the outer relation and relation s the
inner relation of the join, since the loop for r encloses the loop for s. The algorithm
uses the notation tr ⋅ ts, where tr and ts are tuples; tr ⋅ ts denotes the tuple constructed
by concatenating the attribute values of tuples tr and ts.

Like the linear file-scan algorithm for selection, the nested-loop join algorithm re-
quires no indices, and it can be used regardless of what the join condition is. Extending
the algorithm to compute the natural join is straightforward, since the natural join can
be expressed as a theta join followed by elimination of repeated attributes by a projec-
tion. The only change required is an extra step of deleting repeated attributes from the
tuple tr ⋅ ts, before adding it to the result.

The nested-loop join algorithm is expensive, since it examines every pair of tuples
in the two relations. Consider the cost of the nested-loop join algorithm. The number
of pairs of tuples to be considered is nr ∗ ns, where nr denotes the number of tuples in
r, and ns denotes the number of tuples in s. For each record in r, we have to perform

15.5 Join Operation 705

for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr, ts) to see if they satisfy the join condition θ
if they do, add tr ⋅ ts to the result;

end
end

Figure 15.5 Nested-loop join.

a complete scan on s. In the worst case, the buffer can hold only one block of each
relation, and a total of nr ∗ bs + br block transfers would be required, where br and bs
denote the number of blocks containing tuples of r and s, respectively. We need only
one seek for each scan on the inner relation s since it is read sequentially, and a total
of br seeks to read r, leading to a total of nr + br seeks. In the best case, there is enough
space for both relations to fit simultaneously in memory, so each block would have to
be read only once; hence, only br + bs block transfers would be required, along with
two seeks.

If one of the relations fits entirely in main memory, it is beneficial to use that
relation as the inner relation, since the inner relation would then be read only once.
Therefore, if s is small enough to fit in main memory, our strategy requires only a total
br + bs block transfers and two seeks—the same cost as that for the case where both
relations fit in memory.

Now consider the natural join of student and takes. Assume for now that we have
no indices whatsoever on either relation, and that we are not willing to create any
index. We can use the nested loops to compute the join; assume that student is the
outer relation and takes is the inner relation in the join. We will have to examine 5000
∗ 10,000 = 50 ∗ 106 pairs of tuples. In the worst case, the number of block transfers
is 5000 ∗ 400 + 100 = 2,000,100, plus 5000 + 100 = 5100 seeks. In the best-case
scenario, however, we can read both relations only once and perform the computation.
This computation requires at most 100 + 400 = 500 block transfers, plus two seeks
—a significant improvement over the worst-case scenario. If we had used takes as the
relation for the outer loop and student for the inner loop, the worst-case cost of our
final strategy would have been 10,000 ∗ 100 + 400 = 1,000,400 block transfers, plus
10,400 disk seeks. The number of block transfers is significantly less, and although the
number of seeks is higher, the overall cost is reduced, assuming tS = 4 milliseconds
and tT = 0.1 milliseconds.

15.5.2 Block Nested-Loop Join

If the buffer is too small to hold either relation entirely in memory, we can still obtain
a major saving in block accesses if we process the relations on a per-block basis, rather

706 Chapter 15 Query Processing

than on a per-tuple basis. Figure 15.6 shows block nested-loop join, which is a variant of
the nested-loop join where every block of the inner relation is paired with every block
of the outer relation. Within each pair of blocks, every tuple in one block is paired with
every tuple in the other block, to generate all pairs of tuples. As before, all pairs of
tuples that satisfy the join condition are added to the result.

The primary difference in cost between the block nested-loop join and the basic
nested-loop join is that, in the worst case, each block in the inner relation s is read only
once for each block in the outer relation, instead of once for each tuple in the outer
relation. Thus, in the worst case, there will be a total of br ∗ bs + br block transfers,
where br and bs denote the number of blocks containing records of r and s, respectively.
Each scan of the inner relation requires one seek, and the scan of the outer relation
requires one seek per block, leading to a total of 2 ∗ br seeks. It is more efficient to
use the smaller relation as the outer relation, in case neither of the relations fits in
memory. In the best case, where the inner relation fits in memory, there will be br + bs
block transfers and just two seeks (we would choose the smaller relation as the inner
relation in this case).

Now return to our example of computing student ⋈ takes, using the block nested-
loop join algorithm. In the worst case, we have to read each block of takes once for each
block of student. Thus, in the worst case, a total of 100 ∗ 400 + 100 = 40,100 block
transfers plus 2 ∗ 100 = 200 seeks are required. This cost is a significant improvement
over the 5000 ∗ 400 + 100 = 2,000,100 block transfers plus 5100 seeks needed in the
worst case for the basic nested-loop join. The best-case cost remains the same—namely,
100 + 400 = 500 block transfers and two seeks.

The performance of the nested-loop and block nested-loop procedures can be fur-
ther improved:

for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

test pair (tr, ts) to see if they satisfy the join condition
if they do, add tr ⋅ ts to the result;

end
end

end
end

Figure 15.6 Block nested-loop join.

15.5 Join Operation 707

• If the join attributes in a natural join or an equi-join form a key on the inner rela-
tion, then for each outer relation tuple the inner loop can terminate as soon as the
first match is found.

• In the block nested-loop algorithm, instead of using disk blocks as the blocking
unit for the outer relation, we can use the biggest size that can fit in memory, while
leaving enough space for the buffers of the inner relation and the output. In other
words, if memory has M blocks, we read in M − 2 blocks of the outer relation at
a time, and when we read each block of the inner relation we join it with all the
M − 2 blocks of the outer relation. This change reduces the number of scans of
the inner relation from br to ⌈br∕(M − 2)⌉, where br is the number of blocks of
the outer relation. The total cost is then ⌈br∕(M − 2)⌉ ∗ bs + br block transfers
and 2⌈br∕(M − 2)⌉ seeks.

• We can scan the inner loop alternately forward and backward. This scanning
method orders the requests for disk blocks so that the data remaining in the buffer
from the previous scan can be reused, thus reducing the number of disk accesses
needed.

• If an index is available on the inner loop’s join attribute, we can replace file scans
with more efficient index lookups. Section 15.5.3 describes this optimization.

15.5.3 Indexed Nested-Loop Join

In a nested-loop join (Figure 15.5), if an index is available on the inner loop’s join
attribute, index lookups can replace file scans. For each tuple tr in the outer relation r,
the index is used to look up tuples in s that will satisfy the join condition with tuple tr.

This join method is called an indexed nested-loop join; it can be used with existing
indices, as well as with temporary indices created for the sole purpose of evaluating the
join.

Looking up tuples in s that will satisfy the join conditions with a given tuple tr is
essentially a selection on s. For example, consider student ⋈ takes. Suppose that we
have a student tuple with ID “00128”. Then, the relevant tuples in takes are those that
satisfy the selection “ID = 00128”.

The cost of an indexed nested-loop join can be computed as follows: For each tuple
in the outer relation r, a lookup is performed on the index for s, and the relevant tuples
are retrieved. In the worst case, there is space in the buffer for only one block of r and
one block of the index. Then, br I/O operations are needed to read relation r, where br
denotes the number of blocks containing records of r; each I/O requires a seek and a
block transfer, since the disk head may have moved in between each I/O. For each tuple
in r, we perform an index lookup on s. Then, the cost of the join can be computed as
br(tT + tS) + nr ∗ c, where nr is the number of records in relation r, and c is the cost of
a single selection on s using the join condition. We have seen in Section 15.3 how to
estimate the cost of a single selection algorithm (possibly using indices); that estimate
gives us the value of c.

708 Chapter 15 Query Processing

The cost formula indicates that, if indices are available on both relations r and s, it
is generally most efficient to use the one with fewer tuples as the outer relation.

For example, consider an indexed nested-loop join of student ⋈ takes, with student
as the outer relation. Suppose also that takes has a clustering B+-tree index on the join
attribute ID, which contains 20 entries on average in each index node. Since takes has
10,000 tuples, the height of the tree is 4, and one more access is needed to find the
actual data. Since nstudent is 5000, the total cost is 100 + 5000 ∗ 5 = 25,100 disk
accesses, each of which requires a seek and a block transfer. In contrast, as we saw
before, 40,100 block transfers plus 200 seeks were needed for a block nested-loop join.
Although the number of block transfers has been reduced, the seek cost has actually
increased, increasing the total cost since a seek is considerably more expensive than a
block transfer. However, if we had a selection on the student relation that reduces the
number of rows significantly, indexed nested-loop join could be significantly faster than
block nested-loop join.

15.5.4 Merge Join

The merge-join algorithm (also called the sort-merge-join algorithm) can be used to
compute natural joins and equi-joins. Let r(R) and s(S) be the relations whose natural
join is to be computed, and let R ∩ S denote their common attributes. Suppose that
both relations are sorted on the attributes R ∩ S. Then, their join can be computed by
a process much like the merge stage in the merge–sort algorithm.

15.5.4.1 Merge-Join Algorithm

Figure 15.7 shows the merge-join algorithm. In the algorithm, JoinAttrs refers to the
attributes in R ∩ S, and tr ⋈ ts, where tr and ts are tuples that have the same values for
JoinAttrs, denotes the concatenation of the attributes of the tuples, followed by project-
ing out repeated attributes. The merge-join algorithm associates one pointer with each
relation. These pointers point initially to the first tuple of the respective relations. As
the algorithm proceeds, the pointers move through the relation. A group of tuples of
one relation with the same value on the join attributes is read into Ss. The algorithm
in Figure 15.7 requires that every set of tuples Ss fit in main memory; we discuss ex-
tensions of the algorithm to avoid this requirement shortly. Then, the corresponding
tuples (if any) of the other relation are read in and are processed as they are read.

Figure 15.8 shows two relations that are sorted on their join attribute a1. It is
instructive to go through the steps of the merge-join algorithm on the relations shown
in the figure.

The merge-join algorithm of Figure 15.7 requires that each set Ss of all tuples with
the same value for the join attributes must fit in main memory. This requirement can
usually be met, even if the relation s is large. If there are some join attribute values for

15.5 Join Operation 709

pr := address of first tuple of r;
ps := address of first tuple of s;
while (ps ≠ null and pr ≠ null) do

begin
ts := tuple to which ps points;
Ss := {ts};
set ps to point to next tuple of s;
done := false;
while (not done and ps ≠ null) do

begin
ts
′ := tuple to which ps points;

if (ts
′[JoinAttrs] = ts[JoinAttrs])

then begin
Ss := Ss ∪ {ts′};
set ps to point to next tuple of s;

end
else done := true;

end
tr := tuple to which pr points;
while (pr ≠ null and tr[JoinAttrs] < ts[JoinAttrs]) do

begin
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
while (pr ≠ null and tr[JoinAttrs] = ts[JoinAttrs]) do

begin
for each ts in Ss do

begin
add ts ⋈ tr to result;

end
set pr to point to next tuple of r;
tr := tuple to which pr points;

end
end.

Figure 15.7 Merge join.

which Ss is larger than available memory, a block nested-loop join can be performed
for such sets Ss, matching them with corresponding blocks of tuples in r with the same
values for the join attributes.

710 Chapter 15 Query Processing

a 3

b 1

d 8

13d

f 7

m 5

q 6

a A

b G

c L

d N

m B

a1 a2 a1 a3
pr ps

r

s

Figure 15.8 Sorted relations for merge join.

If either of the input relations r and s is not sorted on the join attributes, they can be
sorted first, and then the merge-join algorithm can be used. The merge-join algorithm
can also be easily extended from natural joins to the more general case of equi-joins.

15.5.4.2 Cost Analysis

Once the relations are in sorted order, tuples with the same value on the join attributes
are in consecutive order. Thereby, each tuple in the sorted order needs to be read only
once, and, as a result, each block is also read only once. Since it makes only a single
pass through both files (assuming all sets Ss fit in memory), the merge-join method is
efficient; the number of block transfers is equal to the sum of the number of blocks in
both files, br + bs.

Assuming that bb buffer blocks are allocated to each relation, the number of disk
seeks required would be ⌈br∕bb⌉ + ⌈bs∕bb⌉ disk seeks. Since seeks are much more
expensive than data transfer, it makes sense to allocate multiple buffer blocks to each
relation, provided extra memory is available. For example, with tT = 0.1 milliseconds
per 4-kilobyte block, and tS = 4 milliseconds, the buffer size is 400 blocks (or 1.6
megabytes), so the seek time would be 4 milliseconds for every 40 milliseconds of
transfer time; in other words, seek time would be just 10 percent of the transfer time.

If either of the input relations r and s is not sorted on the join attributes, they must
be sorted first; the cost of sorting must then be added to the above costs. If some sets
Ss do not fit in memory, the cost would increase slightly.

Suppose the merge-join scheme is applied to our example of student ⋈ takes.
The join attribute here is ID. Suppose that the relations are already sorted on the join
attribute ID. In this case, the merge join takes a total of 400+100 = 500 block transfers.
If we assume that in the worst case only one buffer block is allocated to each input
relation (that is, bb = 1), a total of 400 + 100 = 500 seeks would also be required; in
reality bb can be set much higher since we need to buffer blocks for only two relations,
and the seek cost would be significantly less.

15.5 Join Operation 711

Suppose the relations are not sorted, and the memory size is the worst case, only
three blocks. The cost is as follows:

1. Using the formulae that we developed in Section 15.4, we can see that sorting
relation takes requires ⌈log3−1(400∕3)⌉ = 8 merge passes. Sorting of relation
takes then takes 400 ∗ (2⌈log3−1(400∕3)⌉ + 1), or 6800, block transfers, with
400 more transfers to write out the result. The number of seeks required is 2 ∗
⌈400∕3⌉+400 ∗ (2 ∗ 8−1) or 6268 seeks for sorting, and 400 seeks for writing
the output, for a total of 6668 seeks, since only one buffer block is available for
each run.

2. Similarly, sorting relation student takes ⌈log3−1(100∕3)⌉ = 6 merge passes and
100 ∗ (2⌈log3−1(100∕3)⌉+ 1), or 1300, block transfers, with 100 more transfers
to write it out. The number of seeks required for sorting student is 2 ∗ ⌈100∕3⌉+
100 ∗ (2 ∗ 6 − 1) = 1168, and 100 seeks are required for writing the output, for
a total of 1268 seeks.

3. Finally, merging the two relations takes 400+100 = 500 block transfers and 500
seeks.

Thus, the total cost is 9100 block transfers plus 8932 seeks if the relations are not
sorted, and the memory size is just 3 blocks.

With a memory size of 25 blocks, and the relations not sorted, the cost of sorting
followed by merge join would be as follows:

1. Sorting the relation takes can be done with just one merge step and takes a total
of just 400 ∗ (2⌈log24(400∕25)⌉ + 1) = 1200 block transfers. Similarly, sorting
student takes 300 block transfers. Writing the sorted output to disk requires 400
+ 100 = 500 block transfers, and the merge step requires 500 block transfers
to read the data back. Adding up these costs gives a total cost of 2500 block
transfers.

2. If we assume that only one buffer block is allocated for each run, the number of
seeks required in this case is 2 ∗ ⌈400∕25⌉+ 400 + 400 = 832 seeks for sorting
takes and writing the sorted output to disk, and similarly 2 ∗ ⌈100∕25⌉ + 100 +
100 = 208 for student, plus 400 + 100 seeks for reading the sorted data in the
merge-join step. Adding up these costs gives a total cost of 1640 seeks.

The number of seeks can be significantly reduced by setting aside more buffer
blocks for each run. For example, if 5 buffer blocks are allocated for each run
and for the output from merging the 4 runs of student, the cost is reduced to
2 ∗ ⌈100∕25⌉ + ⌈100∕5⌉ + ⌈100∕5⌉ = 48 seeks, from 208 seeks. If the merge-
join step sets aside 12 blocks each for buffering takes and student, the number
of seeks for the merge-join step goes down to ⌈400∕12⌉ + ⌈100∕12⌉ = 43, from
500. The total number of seeks is then 251.

712 Chapter 15 Query Processing

Thus, the total cost is 2500 block transfers plus 251 seeks if the relations are not sorted,
and the memory size is 25 blocks.

15.5.4.3 Hybrid Merge Join

It is possible to perform a variation of the merge-join operation on unsorted tuples, if
secondary indices exist on both join attributes. The algorithm scans the records through
the indices, resulting in their being retrieved in sorted order. This variation presents
a significant drawback, however, since records may be scattered throughout the file
blocks. Hence, each tuple access could involve accessing a disk block, and that is costly.

To avoid this cost, we can use a hybrid merge-join technique that combines indices
with merge join. Suppose that one of the relations is sorted; the other is unsorted, but
has a secondary B+-tree index on the join attributes. The hybrid merge-join algorithm
merges the sorted relation with the leaf entries of the secondary B+-tree index. The
result file contains tuples from the sorted relation and addresses for tuples of the un-
sorted relation. The result file is then sorted on the addresses of tuples of the unsorted
relation, allowing efficient retrieval of the corresponding tuples, in physical storage or-
der, to complete the join. Extensions of the technique to handle two unsorted relations
are left as an exercise for you.

15.5.5 Hash Join

Like the merge-join algorithm, the hash-join algorithm can be used to implement natu-
ral joins and equi-joins. In the hash-join algorithm, a hash function h is used to partition
tuples of both relations. The basic idea is to partition the tuples of each of the relations
into sets that have the same hash value on the join attributes.

We assume that:

• h is a hash function mapping JoinAttrs values to {0, 1,… , nh}, where JoinAttrs
denotes the common attributes of r and s used in the natural join.

• r0, r1,… , rnh
denote partitions of r tuples, each initially empty. Each tuple tr ∈ r

is put in partition ri, where i = h(tr[JoinAttrs]).

• s0, s1, ..., snh
denote partitions of s tuples, each initially empty. Each tuple ts ∈ s is

put in partition si, where i = h(ts[JoinAttrs]).

The hash function h should have the “goodness” properties of randomness and uni-
formity that we discussed in Chapter 14. Figure 15.9 depicts the partitioning of the
relations.

15.5.5.1 Basics

The idea behind the hash-join algorithm is this: Suppose that an r tuple and an s tuple
satisfy the join condition; then, they have the same value for the join attributes. If that
value is hashed to some value i, the r tuple has to be in ri and the s tuple in si. Therefore,

15.5 Join Operation 713

0

1

2

3

4

0

1

2

3

4r

s

.

.

.

.

.

.

.

.

partitions
of r

partitions
of s

Figure 15.9 Hash partitioning of relations.

r tuples in ri need only be compared with s tuples in si; they do not need to be compared
with s tuples in any other partition.

For example, if d is a tuple in student, c a tuple in takes, and h a hash function
on the ID attributes of the tuples, then d and c must be tested only if h(c) = h(d). If
h(c) ≠ h(d), then c and d must have different values for ID. However, if h(c) = h(d), we
must test c and d to see whether the values in their join attributes are the same, since
it is possible that c and d have different iids that have the same hash value.

Figure 15.10 shows the details of the hash-join algorithm to compute the natural
join of relations r and s. As in the merge-join algorithm, tr ⋈ ts denotes the concatena-
tion of the attributes of tuples tr and ts, followed by projecting out repeated attributes.
After the partitioning of the relations, the rest of the hash-join code performs a sepa-
rate indexed nested-loop join on each of the partition pairs i, for i = 0,… , nh. To do so,
it first builds a hash index on each si, and then probes (that is, looks up si) with tuples
from ri. The relation s is the build input, and r is the probe input.

The hash index on si is built in memory, so there is no need to access the disk to
retrieve the tuples. The hash function used to build this hash index must be different
from the hash function h used earlier, but it is still applied to only the join attributes. In
the course of the indexed nested-loop join, the system uses this hash index to retrieve
records that match records in the probe input.

The build and probe phases require only a single pass through both the build and
probe inputs. It is straightforward to extend the hash-join algorithm to compute general
equi-joins.

The value nh must be chosen to be large enough such that, for each i, the tuples in
the partition si of the build relation, along with the hash index on the partition, fit in
memory. It is not necessary for the partitions of the probe relation to fit in memory. It is

714 Chapter 15 Query Processing

/* Partition s */
for each tuple ts in s do begin

i := h(ts[JoinAttrs]);
Hsi

:= Hsi
∪ {ts};

end
/* Partition r */
for each tuple tr in r do begin

i := h(tr[JoinAttrs]);
Hri

:= Hri
∪ {tr};

end
/* Perform join on each partition */
for i := 0 to nh do begin

read Hsi
and build an in-memory hash index on it;

for each tuple tr in Hri
do begin

probe the hash index on Hsi
to locate all tuples ts

such that ts[JoinAttrs] = tr[JoinAttrs];
for each matching tuple ts in Hsi

do begin
add tr ⋈ ts to the result;

end
end

end

Figure 15.10 Hash join.

best to use the smaller input relation as the build relation. If the size of the build relation
is bs blocks, then, for each of the nh partitions to be of size less than or equal to M , nh
must be at least ⌈bs∕M⌉. More precisely stated, we have to account for the extra space
occupied by the hash index on the partition as well, so nh should be correspondingly
larger. For simplicity, we sometimes ignore the space requirement of the hash index in
our analysis.

15.5.5.2 Recursive Partitioning

If the value of nh is greater than or equal to the number of blocks of memory, the rela-
tions cannot be partitioned in one pass, since there will not be enough buffer blocks.
Instead, partitioning has to be done in repeated passes. In one pass, the input can be
split into at most as many partitions as there are blocks available for use as output
buffers. Each bucket generated by one pass is separately read in and partitioned again
in the next pass, to create smaller partitions. The hash function used in a pass is dif-
ferent from the one used in the previous pass. The system repeats this splitting of the

15.5 Join Operation 715

input until each partition of the build input fits in memory. Such partitioning is called
recursive partitioning.

A relation does not need recursive partitioning if M > nh + 1, or equivalently
M > (bs∕M)+1, which simplifies (approximately) to M >

√
bs. For example, consider

a memory size of 12 megabytes, divided into 4-kilobyte blocks; it would contain a total
of 3-kilobyte (3072) blocks. We can use a memory of this size to partition relations
of size up to 3-kilobyte ∗ 3-kilobyte blocks, which is 36 gigabytes. Similarly, a relation
of size 1 gigabyte requires just over

√
256K blocks, or 2 megabytes, to avoid recursive

partitioning.

15.5.5.3 Handling of Overflows

Hash-table overflow occurs in partition i of the build relation s if the hash index on si
is larger than main memory. Hash-table overflow can occur if there are many tuples in
the build relation with the same values for the join attributes, or if the hash function
does not have the properties of randomness and uniformity. In either case, some of
the partitions will have more tuples than the average, whereas others will have fewer;
partitioning is then said to be skewed.

We can handle a small amount of skew by increasing the number of partitions so
that the expected size of each partition (including the hash index on the partition) is
somewhat less than the size of memory. The number of partitions is therefore increased
by a small value, called the fudge factor, that is usually about 20 percent of the number
of hash partitions computed as described in Section 15.5.5.

Even if, by using a fudge factor, we are conservative on the sizes of the partitions,
overflows can still occur. Hash-table overflows can be handled by either overflow reso-
lution or overflow avoidance. Overflow resolution is performed during the build phase if
a hash-index overflow is detected. Overflow resolution proceeds in this way: If si, for
any i, is found to be too large, it is further partitioned into smaller partitions by using
a different hash function. Similarly, ri is also partitioned using the new hash function,
and only tuples in the matching partitions need to be joined.

In contrast, overflow avoidance performs the partitioning carefully, so that overflows
never occur during the build phase. In overflow avoidance, the build relation s is initially
partitioned into many small partitions, and then some partitions are combined in such
a way that each combined partition fits in memory. The probe relation r is partitioned
in the same way as the combined partitions on s, but the sizes of ri do not matter.

If a large number of tuples in s have the same value for the join attributes, the
resolution and avoidance techniques may fail on some partitions. In that case, instead
of creating an in-memory hash index and using a nested-loop join to join the partitions,
we can use other join techniques, such as block nested-loop join, on those partitions.

15.5.5.4 Cost of Hash Join

We now consider the cost of a hash join. Our analysis assumes that there is no hash-
table overflow. First, consider the case where recursive partitioning is not required.

716 Chapter 15 Query Processing

• The partitioning of the two relations r and s calls for a complete reading of both
relations and a subsequent writing back of them. This operation requires 2(br+bs)
block transfers, where br and bs denote the number of blocks containing records
of relations r and s, respectively. The build and probe phases read each of the
partitions once, calling for further br + bs block transfers. The number of blocks
occupied by partitions could be slightly more than br + bs, as a result of partially
filled blocks. Accessing such partially filled blocks can add an overhead of at most
2nh for each of the relations, since each of the nh partitions could have a partially
filled block that has to be written and read back. Thus, a hash join is estimated to
require:

3(br + bs) + 4nh

block transfers. The overhead 4nh is usually quite small compared to br + bs and
can be ignored.

• Assuming bb blocks are allocated for the input buffer and each output buffer, parti-
tioning requires a total of 2(⌈br∕bb⌉+ ⌈bs∕bb⌉) seeks. The build and probe phases
require only one seek for each of the nh partitions of each relation, since each par-
tition can be read sequentially. The hash join thus requires 2(⌈br∕bb⌉+⌈bs∕bb⌉)+
2nh seeks.

Now consider the case where recursive partitioning is required. Again we assume
that bb blocks are allocated for buffering each partition. Each pass then reduces the size
of each of the partitions by an expected factor of ⌊M∕bb⌋− 1; and passes are repeated
until each partition is of size at most M blocks. The expected number of passes required
for partitioning s is therefore ⌈log⌊M∕bb⌋−1(bs∕M)⌉.

• Since, in each pass, every block of s is read in and written out, the total number
of block transfers for partitioning of s is 2bs⌈log⌊M∕bb⌋−1(bs∕M)⌉. The number of
passes for partitioning of r is the same as the number of passes for partitioning of
s, therefore the join is estimated to require

2(br + bs)⌈log⌊M∕bb⌋−1(bs∕M)⌉ + br + bs

block transfers.

• Ignoring the relatively small number of seeks during the build and probe phases,
hash join with recursive partitioning requires

2(⌈br∕bb⌉ + ⌈bs∕bb⌉)⌈log⌊M∕bb⌋−1(bs∕M)⌉
disk seeks.

Consider, for example, the natural join takes ⋈ student. With a memory size of 20
blocks, the student relation can be partitioned into five partitions, each of size 20 blocks,
which size will fit into memory. Only one pass is required for the partitioning. The

15.5 Join Operation 717

relation takes is similarly partitioned into five partitions, each of size 80. Ignoring the
cost of writing partially filled blocks, the cost is 3(100 + 400) = 1500 block transfers.
There is enough memory to allocate the buffers for the input and each of the five outputs
during partitioning (i.e, bb = 3) leading to 2(⌈100∕3⌉ + ⌈400∕3⌉) = 336 seeks.

The hash join can be improved if the main memory size is large. When the entire
build input can be kept in main memory, nh can be set to 0; then, the hash-join algorithm
executes quickly, without partitioning the relations into temporary files, regardless of
the probe input’s size. The cost estimate goes down to br + bs block transfers and two
seeks.

Indexed nested loops join can have a much lower cost than hash join in case the
outer relation is small, and the index lookups fetch only a few tuples from the inner
(indexed) relation. However, in case a secondary index is used, and the number of
tuples in the outer relation is large, indexed nested loops join can have a very high cost,
as compared to hash join. If the number of tuples in the outer relation is known at
query optimization time, the best join algorithm can be chosen at that time. However,
in some cases, for example, when there is a selection condition on the outer input, the
optimizer makes a decision based on an estimate that may potentially be imprecise. The
number of tuples in the outer relation may be found only at runtime, for example, after
executing selection. Some systems allow a dynamic choice between the two algorithms
at run time, after finding the number of tuples in the outer input.

15.5.5.5 Hybrid Hash Join

The hybrid hash-join algorithm performs another optimization; it is useful when mem-
ory sizes are relatively large but not all of the build relation fits in memory. The parti-
tioning phase of the hash-join algorithm needs a minimum of one block of memory as
a buffer for each partition that is created, and one block of memory as an input buffer.
To reduce the impact of seeks, a larger number of blocks would be used as a buffer;
let bb denote the number of blocks used as a buffer for the input and for each parti-
tion. Hence, a total of (nh + 1) ∗ bb blocks of memory are needed for partitioning the
two relations. If memory is larger than (nh + 1) ∗ bb, we can use the rest of memory
(M − (nh + 1) ∗ bb blocks) to buffer the first partition of the build input (i.e, s0) so
that it will not need to be written out and read back in. Further, the hash function is
designed in such a way that the hash index on s0 fits in M − (nh + 1) ∗ bb blocks, in
order that, at the end of partitioning of s, s0 is completely in memory and a hash index
can be built on s0.

When the system partitions r, it again does not write tuples in r0 to disk; instead, as
it generates them, the system uses them to probe the memory-resident hash index on
s0, and to generate output tuples of the join. After they are used for probing, the tuples
can be discarded, so the partition r0 does not occupy any memory space. Thus, a write
and a read access have been saved for each block of both r0 and s0. The system writes
out tuples in the other partitions as usual and joins them later. The savings of hybrid
hash join can be significant if the build input is only slightly bigger than memory.

718 Chapter 15 Query Processing

If the size of the build relation is bs, nh is approximately equal to bs∕M . Thus, hybrid
hash join is most useful if M >> (bs∕M) ∗ bb, or M >>

√
bs ∗ bb, where the notation

>> denotes much larger than. For example, suppose the block size is 4 kilobytes, the
build relation size is 5 gigabytes, and bb is 20. Then, the hybrid hash-join algorithm
is useful if the size of memory is significantly more than 20 megabytes; memory sizes
of gigabytes or more are common on computers today. If we devote 1 gigabyte for the
join algorithm, s0 would be nearly 1 gigabyte, and hybrid hash join would be nearly 20
percent cheaper than hash join.

15.5.6 Complex Joins

Nested-loop and block nested-loop joins can be used regardless of the join conditions.
The other join techniques are more efficient than the nested-loop join and its variants,
but they can handle only simple join conditions, such as natural joins or equi-joins. We
can implement joins with complex join conditions, such as conjunctions and disjunc-
tions, by using the efficient join techniques, if we apply the techniques developed in
Section 15.3.3 for handling complex selections.

Consider the following join with a conjunctive condition:

r ⋈ θ1∧θ2∧⋯∧θn
s

One or more of the join techniques described earlier may be applicable for joins on the
individual conditions r ⋈θ1

s, r ⋈θ2
s, r ⋈θ3

s, and so on. We can compute the overall
join by first computing the result of one of these simpler joins r ⋈θi

s; each pair of
tuples in the intermediate result consists of one tuple from r and one from s. The result
of the complete join consists of those tuples in the intermediate result that satisfy the
remaining conditions:

θ1 ∧⋯ ∧ θi−1 ∧ θi+1 ∧⋯ ∧ θn

These conditions can be tested as tuples in r ⋈ θi
s are being generated.

A join whose condition is disjunctive can be computed in this way. Consider:

r ⋈ θ1 ∨θ2∨⋯∨θn
s

The join can be computed as the union of the records in individual joins r ⋈ θi
s:

(r ⋈ θ1
s) ∪ (r ⋈ θ2

s) ∪⋯ ∪ (r ⋈ θn
s)

Section 15.6 describes algorithms for computing the union of relations.

15.6 Other Operations 719

15.5.7 Joins over Spatial Data

The join algorithms we have presented make no specific assumptions about the type of
data being joined, but they do assume the use of standard comparison operations such
as equality, less than, or greater than, where the values are linearly ordered.

Selection and join conditions on spatial data involve comparison operators that
check if one region contains or overlaps another, or whether a region contains a partic-
ular point; and the regions may be multi-dimensional. Comparisons may pertain also
to the distance between points, for example, finding a set of points closest to a given
point in a two-dimensional space.

Merge-join cannot be used with such comparison operations, since there is no sim-
ple sort order over spatial data in two or more dimensions. Partitioning of data based
on hashing is also not applicable, since there is no way to ensure that tuples that sat-
isfy an overlap or containment predicate are hashed to the same value. Nested loops
join can always be used regardless of the complexity of the conditions, but can be very
inefficient on large datasets.

Indexed nested-loops join can however be used, if appropriate spatial indices are
available. In Section 14.10, we saw several types of indices for spatial data, including
R-trees, k-d trees, k-d-B trees, and quadtrees. Additional details on those indices appear
in Section 24.4. These index structures enable efficient retrieval of spatial data based
on predicates such as contains, contained in, or overlaps, and can also be effectively
used to find nearest neighbors.

Most major database systems today incorporate support for indexing spatial data,
and make use of them when processing queries using spatial comparison conditions.

15.6 Other Operations

Other relational operations and extended relational operations—such as duplicate elim-
ination, projection, set operations, outer join, and aggregation—can be implemented as
outlined in Section 15.6.1 through Section 15.6.5.

15.6.1 Duplicate Elimination

We can implement duplicate elimination easily by sorting. Identical tuples will appear
adjacent to each other as a result of sorting, and all but one copy can be removed. With
external sort–merge, duplicates found while a run is being created can be removed
before the run is written to disk, thereby reducing the number of block transfers. The
remaining duplicates can be eliminated during merging, and the final sorted run has
no duplicates. The worst-case cost estimate for duplicate elimination is the same as the
worst-case cost estimate for sorting of the relation.

We can also implement duplicate elimination by hashing, as in the hash-join algo-
rithm. First, the relation is partitioned on the basis of a hash function on the whole
tuple. Then, each partition is read in, and an in-memory hash index is constructed.

720 Chapter 15 Query Processing

While constructing the hash index, a tuple is inserted only if it is not already present.
Otherwise, the tuple is discarded. After all tuples in the partition have been processed,
the tuples in the hash index are written to the result. The cost estimate is the same as
that for the cost of processing (partitioning and reading each partition) of the build
relation in a hash join.

Because of the relatively high cost of duplicate elimination, SQL requires an explicit
request by the user to remove duplicates; otherwise, the duplicates are retained.

15.6.2 Projection

We can implement projection easily by performing projection on each tuple, which
gives a relation that could have duplicate records, and then removing duplicate rec-
ords. Duplicates can be eliminated by the methods described in Section 15.6.1. If the at-
tributes in the projection list include a key of the relation, no duplicates will exist; hence,
duplicate elimination is not required. Generalized projection can be implemented in
the same way as projection.

15.6.3 Set Operations

We can implement the union, intersection, and set-difference operations by first sorting
both relations, and then scanning once through each of the sorted relations to produce
the result. In r ∪ s, when a concurrent scan of both relations reveals the same tuple in
both files, only one of the tuples is retained. The result of r ∩ s will contain only those
tuples that appear in both relations. We implement set difference, r − s, similarly, by
retaining tuples in r only if they are absent in s.

For all these operations, only one scan of the two sorted input relations is required,
so the cost is br + bs block transfers if the relations are sorted in the same order. As-
suming a worst case of one block buffer for each relation, a total of br + bs disk seeks
would be required in addition to br + bs block transfers. The number of seeks can be
reduced by allocating extra buffer blocks.

If the relations are not sorted initially, the cost of sorting has to be included. Any
sort order can be used in the evaluation of set operations, provided that both inputs
have that same sort order.

Hashing provides another way to implement these set operations. The first step in
each case is to partition the two relations by the same hash function and thereby create
the partitions r0, r1,… , rnh

and s0, s1,… , snh
. Depending on the operation, the system

then takes these steps on each partition i = 0, 1,… , nh:

• r ∪ s

1. Build an in-memory hash index on ri.

2. Add the tuples in si to the hash index only if they are not already present.

3. Add the tuples in the hash index to the result.

15.6 Other Operations 721

Note 15.1 Answering Keyword Queries

Keyword search on documents is widely used in the context of web search. In
its simplest form, a keyword query provides a set of words K1, K2,… , Kn, and the
goal is to find documents di from a collection of documents D such that di con-
tains all the keywords in the query. Real-life keyword search is more complicated,
since it requires ranking of documents based on various metrics such TF–IDF and
PageRank, as we saw earlier in Section 8.3.

Documents that contain a specified keyword can be located efficiently by using
an index (often referred to as an inverted index) that maps each keyword Ki to a
list Si of identifiers of the documents that contain Ki. The list is kept sorted. For
example, if documents d1, d9 and d21 contain the term “Silberschatz”, the inverted
list for the keyword Silberschatz would be “d1; d9; d21”. Compression techniques
are used to reduce the size of the inverted lists. A B+-tree index can be used to
map each keyword Ki to its associated inverted list Si.

To answer a query with keyword K1, K2,… , Kn, we retrieve the inverted list Si
for each keyword Ki, and then compute the intersection S1 ∩ S2 ∩⋯ ∩ Sn to find
documents that appear in all the lists. Since the lists are sorted, the intersection can
be efficiently implemented by merging the lists using concurrent scans of all the
lists. Many information-retrieval systems return documents that contain several,
even if not all, of the keywords; the merge step can be easily modified to output
documents that contain at least k of the n keywords.

To support ranking of keyword-query results, extra information can be stored
in each inverted list, including the inverse document frequency of the term, and
for each document the PageRank, the term frequency of the term, as well as the
positions within the document where the term occurs. This information can be
used to compute scores that are then used to rank the documents. For example,
documents where the keywords occur close to each other may receive a higher
score for keyword proximity than those where they occur farther from each other.
The keyword proximity score may be combined with the TF–IDF score, and PageR-
ank to compute an overall score. Documents are then ranked on this score. Since
most web searches retrieve only the top few answers, search engines incorporate a
number of optimizations that help to find the top few answers efficiently, without
computing the full list and then finding the ranking. References providing further
details may be found in the Further Reading section at the end of the chapter.

• r ∩ s

1. Build an in-memory hash index on ri.

2. For each tuple in si, probe the hash index and output the tuple to the result
only if it is already present in the hash index.

722 Chapter 15 Query Processing

• r − s

1. Build an in-memory hash index on ri.

2. For each tuple in si, probe the hash index, and, if the tuple is present in the
hash index, delete it from the hash index.

3. Add the tuples remaining in the hash index to the result.

15.6.4 Outer Join

Recall the outer-join operations described in Section 4.1.3. For example, the natural left
outer join takes⟕ student contains the join of takes and student, and, in addition, for
each takes tuple t that has no matching tuple in student (i.e, where ID is not in student),
the following tuple t1 is added to the result. For all attributes in the schema of takes,
tuple t1 has the same values as tuple t. The remaining attributes (from the schema of
student) of tuple t1 contain the value null.

We can implement the outer-join operations by using one of two strategies:

1. Compute the corresponding join, and then add further tuples to the join result to
get the outer-join result. Consider the left outer-join operation and two relations:
r(R) and s(S). To evaluate r ⟕θ s, we first compute r ⋈θ s and save that result
as temporary relation q1. Next, we compute r − ΠR(q1) to obtain those tuples in
r that do not participate in the theta join. We can use any of the algorithms for
computing the joins, projection, and set difference described earlier to compute
the outer joins. We pad each of these tuples with null values for attributes from
s, and add it to q1 to get the result of the outer join.

The right outer-join operation r ⟖ θ s is equivalent to s⟕θ r and can therefore
be implemented in a symmetric fashion to the left outer join. We can implement
the full outer-join operation r ⟗ θ s by computing the join r ⋈ s and then adding
the extra tuples of both the left and right outer-join operations, as before.

2. Modify the join algorithms. It is easy to extend the nested-loop join algorithms
to compute the left outer join: Tuples in the outer relation that do not match any
tuple in the inner relation are written to the output after being padded with null
values. However, it is hard to extend the nested-loop join to compute the full outer
join.

Natural outer joins and outer joins with an equi-join condition can be com-
puted by extensions of the merge-join and hash-join algorithms. Merge join can
be extended to compute the full outer join as follows: When the merge of the two
relations is being done, tuples in either relation that do not match any tuple in
the other relation can be padded with nulls and written to the output. Similarly,
we can extend merge join to compute the left and right outer joins by writing out
nonmatching tuples (padded with nulls) from only one of the relations. Since the
relations are sorted, it is easy to detect whether or not a tuple matches any tuples

15.6 Other Operations 723

from the other relation. For example, when a merge join of takes and student is
done, the tuples are read in sorted order of ID, and it is easy to check, for each
tuple, whether there is a matching tuple in the other.

The cost estimates for implementing outer joins using the merge-join algo-
rithm are the same as are those for the corresponding join. The only difference
lies in the size of the result, and therefore in the block transfers for writing it out,
which we did not count in our earlier cost estimates.

The extension of the hash-join algorithm to compute outer joins is left for you
to do as an exercise (Exercise 15.21).

15.6.5 Aggregation

Recall the aggregation function (operator), discussed in Section 3.7. For example, the
function

select dept name, avg (salary)
from instructor
group by dept name;

computes the average salary in each university department.
The aggregation operation can be implemented in the same way as duplicate elim-

ination. We use either sorting or hashing, just as we did for duplicate elimination, but
based on the grouping attributes (dept name in the preceding example). However, in-
stead of eliminating tuples with the same value for the grouping attribute, we gather
them into groups and apply the aggregation operations on each group to get the result.

The cost estimate for implementing the aggregation operation is the same as the
cost of duplicate elimination for aggregate functions such as min, max, sum, count, and
avg.

Instead of gathering all the tuples in a group and then applying the aggregation
operations, we can implement the aggregation operations sum, min, max, count, and
avg on the fly as the groups are being constructed. For the case of sum, min, and max,
when two tuples in the same group are found, the system replaces them with a single
tuple containing the sum, min, or max, respectively, of the columns being aggregated.
For the count operation, it maintains a running count for each group for which a tuple
has been found. Finally, we implement the avg operation by computing the sum and
the count values on the fly, and finally dividing the sum by the count to get the average.

If all tuples of the result fit in memory, the sort-based and the hash-based imple-
mentations do not need to write any tuples to disk. As the tuples are read in, they can
be inserted in a sorted tree structure or in a hash index. When we use on-the-fly ag-
gregation techniques, only one tuple needs to be stored for each of the groups. Hence,
the sorted tree structure or hash index fits in memory, and the aggregation can be pro-
cessed with just br block transfers (and 1 seek) instead of the 3br transfers (and a worst
case of up to 2br seeks) that would be required otherwise.

724 Chapter 15 Query Processing

15.7 Evaluation of Expressions

So far, we have studied how individual relational operations are carried out. Now we
consider how to evaluate an expression containing multiple operations. The obvious
way to evaluate an expression is simply to evaluate one operation at a time, in an ap-
propriate order. The result of each evaluation is materialized in a temporary relation
for subsequent use. A disadvantage to this approach is the need to construct the tem-
porary relations, which (unless they are small) must be written to disk. An alternative
approach is to evaluate several operations simultaneously in a pipeline, with the results
of one operation passed on to the next, without the need to store a temporary relation.

In Section 15.7.1 and Section 15.7.2, we consider both the materialization approach
and the pipelining approach. We shall see that the costs of these approaches can differ
substantially, but also that there are cases where only the materialization approach is
feasible.

15.7.1 Materialization

It is easiest to understand intuitively how to evaluate an expression by looking at a
pictorial representation of the expression in an operator tree. Consider the expression:

Πname(σbuilding= “Watson”(department) ⋈ instructor)

in Figure 15.11.
If we apply the materialization approach, we start from the lowest-level operations

in the expression (at the bottom of the tree). In our example, there is only one such
operation: the selection operation on department. The inputs to the lowest-level oper-
ations are relations in the database. We execute these operations using the algorithms
that we studied earlier, and we store the results in temporary relations. We can use these
temporary relations to execute the operations at the next level up in the tree, where the
inputs now are either temporary relations or relations stored in the database. In our

Π

σ

name

building = “Watson”

department

instructor

Figure 15.11 Pictorial representation of an expression.

15.7 Evaluation of Expressions 725

example, the inputs to the join are the instructor relation and the temporary relation
created by the selection on department. The join can now be evaluated, creating another
temporary relation.

By repeating the process, we will eventually evaluate the operation at the root of the
tree, giving the final result of the expression. In our example, we get the final result by
executing the projection operation at the root of the tree, using as input the temporary
relation created by the join.

Evaluation as just described is called materialized evaluation, since the results of
each intermediate operation are created (materialized) and then are used for evaluation
of the next-level operations.

The cost of a materialized evaluation is not simply the sum of the costs of the
operations involved. When we computed the cost estimates of algorithms, we ignored
the cost of writing the result of the operation to disk. To compute the cost of evaluating
an expression as done here, we have to add the costs of all the operations, as well as
the cost of writing the intermediate results to disk. We assume that the records of the
result accumulate in a buffer, and, when the buffer is full, they are written to disk. The
number of blocks written out, br, can be estimated as nr∕fr, where nr is the estimated
number of tuples in the result relation r and fr is the blocking factor of the result relation,
that is, the number of records of r that will fit in a block. In addition to the transfer
time, some disk seeks may be required, since the disk head may have moved between
successive writes. The number of seeks can be estimated as ⌈br∕bb⌉ where bb is the size
of the output buffer (measured in blocks).

Double buffering (using two buffers, with one continuing execution of the algorithm
while the other is being written out) allows the algorithm to execute more quickly by
performing CPU activity in parallel with I/O activity. The number of seeks can be re-
duced by allocating extra blocks to the output buffer and writing out multiple blocks
at once.

15.7.2 Pipelining

We can improve query-evaluation efficiency by reducing the number of temporary files
that are produced. We achieve this reduction by combining several relational operations
into a pipeline of operations, in which the results of one operation are passed along
to the next operation in the pipeline. Evaluation as just described is called pipelined
evaluation.

For example, consider the expression (Πa1,a2(r ⋈ s)). If materialization were ap-
plied, evaluation would involve creating a temporary relation to hold the result of the
join and then reading back in the result to perform the projection. These operations
can be combined: When the join operation generates a tuple of its result, it passes that
tuple immediately to the project operation for processing. By combining the join and
the projection, we avoid creating the intermediate result and instead create the final
result directly.

726 Chapter 15 Query Processing

Creating a pipeline of operations can provide two benefits:

1. It eliminates the cost of reading and writing temporary relations, reducing the
cost of query evaluation. Note that the cost formulae that we saw earlier for each
operation included the cost of reading the result from disk. If the input to an
operator oi is pipelined from a preceding operator oj, the cost of oi should not
include the cost of reading the input from disk; the cost formulae that we saw
earlier can be modified accordingly.

2. It can start generating query results quickly, if the root operator of a query-
evaluation plan is combined in a pipeline with its inputs. This can be quite useful
if the results are displayed to a user as they are generated, since otherwise there
may be a long delay before the user sees any query results.

15.7.2.1 Implementation of Pipelining

We can implement a pipeline by constructing a single, complex operation that com-
bines the operations that constitute the pipeline. Although this approach may be feasi-
ble for some frequently occurring situations, it is desirable in general to reuse the code
for individual operations in the construction of a pipeline.

In the example of Figure 15.11, all three operations can be placed in a pipeline,
which passes the results of the selection to the join as they are generated. In turn,
it passes the results of the join to the projection as they are generated. The memory
requirements are low, since results of an operation are not stored for long. However,
as a result of pipelining, the inputs to the operations are not available all at once for
processing.

Pipelines can be executed in either of two ways:

1. In a demand-driven pipeline, the system makes repeated requests for tuples from
the operation at the top of the pipeline. Each time that an operation receives
a request for tuples, it computes the next tuple (or tuples) to be returned and
then returns that tuple. If the inputs of the operation are not pipelined, the next
tuple(s) to be returned can be computed from the input relations, while the sys-
tem keeps track of what has been returned so far. If it has some pipelined inputs,
the operation also makes requests for tuples from its pipelined inputs. Using the
tuples received from its pipelined inputs, the operation computes tuples for its
output and passes them up to its parent.

2. In a producer-driven pipeline, operations do not wait for requests to produce tu-
ples, but instead generate the tuples eagerly. Each operation in a producer-driven
pipeline is modeled as a separate process or thread within the system that takes
a stream of tuples from its pipelined inputs and generates a stream of tuples for
its output.

15.7 Evaluation of Expressions 727

We describe next how demand-driven and producer-driven pipelines can be imple-
mented.

Each operation in a demand-driven pipeline can be implemented as an iterator that
provides the following functions: open(), next(), and close(). After a call to open(), each
call to next() returns the next output tuple of the operation. The implementation of the
operation in turn calls open() and next() on its inputs, to get its input tuples when
required. The function close() tells an iterator that no more tuples are required. The
iterator maintains the state of its execution in between calls so that successive next()
requests receive successive result tuples.

For example, for an iterator implementing the select operation using linear search,
the open() operation starts a file scan, and the iterator’s state records the point to which
the file has been scanned. When the next() function is called, the file scan continues
from after the previous point; when the next tuple satisfying the selection is found by
scanning the file, the tuple is returned after storing the point where it was found in
the iterator state. A merge-join iterator’s open() operation would open its inputs, and
if they are not already sorted, it would also sort the inputs. On calls to next(), it would
return the next pair of matching tuples. The state information would consist of up to
where each input had been scanned. Details of the implementation of iterators are left
for you to complete in Practice Exercise 15.7.

Producer-driven pipelines, on the other hand, are implemented in a different man-
ner. For each pair of adjacent operations in a producer-driven pipeline, the system cre-
ates a buffer to hold tuples being passed from one operation to the next. The processes
or threads corresponding to different operations execute concurrently. Each operation
at the bottom of a pipeline continually generates output tuples, and puts them in its
output buffer, until the buffer is full. An operation at any other level of a pipeline gen-
erates output tuples when it gets input tuples from lower down in the pipeline until its
output buffer is full. Once the operation uses a tuple from a pipelined input, it removes
the tuple from its input buffer. In either case, once the output buffer is full, the opera-
tion waits until its parent operation removes tuples from the buffer so that the buffer
has space for more tuples. At this point, the operation generates more tuples until the
buffer is full again. The operation repeats this process until all the output tuples have
been generated.

It is necessary for the system to switch between operations only when an output
buffer is full or when an input buffer is empty and more input tuples are needed to gen-
erate any more output tuples. In a parallel-processing system, operations in a pipeline
may be run concurrently on distinct processors (see Section 22.5.1).

Using producer-driven pipelining can be thought of as pushing data up an oper-
ation tree from below, whereas using demand-driven pipelining can be thought of as
pulling data up an operation tree from the top. Whereas tuples are generated eagerly
in producer-driven pipelining, they are generated lazily, on demand, in demand-driven
pipelining. Demand-driven pipelining is used more commonly than producer-driven
pipelining because it is easier to implement. However, producer-driven pipelining is
very useful in parallel processing systems. Producer-driven pipelining has also been

728 Chapter 15 Query Processing

found to be more efficient than demand-driven pipelining on modern CPUs since it re-
duces the number of function call invocations as compared to demand-driven pipelin-
ing. Producer-driven pipelining is increasingly used in systems that generate machine
code for high performance query evaluation.

15.7.2.2 Evaluation Algorithms for Pipelining

Query plans can be annotated to mark edges that are pipelined; such edges are called
pipelined edges. In contrast, non-pipelined edges are referred to as blocking edges or
materialized edges. The two operators connected by a pipelined edge must be executed
concurrently, since one consumes tuples as the other generates them. Since a plan can
have multiple pipelined edges, the set of all operators that are connected by pipelined
edges must be executed concurrently. A query plan can be divided into subtrees such
that each subtree has only pipelined edges, and the edges between the subtrees are non-
pipelined. Each such subtree is called a pipeline stage. The query processor executes
the plan one pipeline stage at a time, and concurrently executes all the operators in a
single pipeline stage.

Some operations, such as sorting, are inherently blocking operations, that is, they
may not be able to output any results until all tuples from their inputs have been exam-
ined.7 But interestingly, blocking operators can consume tuples as they are generated,
and can output tuples to their consumers as they are generated; such operations actu-
ally execute in two or more stages, and blocking actually happens between two stages
of the operation.

For example, the external sort-merge operation actually has two steps: (i) run-
generation, followed by (ii) merging. The run-generation step can accept tuples as they
are generated by the input to the sort, and can thus be pipelined with the sort input.
The merge step, on the other hand, can send tuples to its consumer as they are gener-
ated, and can thus be pipelined with the consumer of the sort operation. But the merge
step can start only after the run-generation step has finished. We can thus model the
sort-merge operator as two sub-operators connected to each other by a non-pipelined
edge, but each of the sub-operators can be connected by pipelined edges to their input
and output respectively.

Other operations, such as join, are not inherently blocking, but specific evaluation
algorithms may be blocking. For example, the indexed nested loops join algorithm can
output result tuples as it gets tuples for the outer relation. It is therefore pipelined on its
outer (left-hand side) relation; however, it is blocking on its indexed (right-hand side)
input, since the index must be fully constructed before the indexed nested-loop join
algorithm can execute.

The hash-join algorithm is a blocking operation on both inputs, since it requires
both its inputs to be fully retrieved and partitioned before it outputs any tuples. How-

7Blocking operations such as sorting may be able to output tuples early if the input is known to satisfy some special
properties such as being sorted, or partially sorted, already. However, in the absence of such information, blocking
operations cannot output tuples early.

15.7 Evaluation of Expressions 729

(a) Logical Query (b) Pipelined Plan

r

s

Part.

Part.

r

s

HJ-BP HA-IMγ

Figure 15.12 Query plan with pipelining.

ever, hash-join partitions each of its inputs, and then performs multiple build-probe
steps, once per partition. Thus, the hash-join algorithm has 3 steps: (i) partitioning of
the first input, (ii) partitioning of the second input, and (iii) the build-probe step. The
partitioning step for each input can accept tuples as they are generated by the input,
and can thus be pipelined with its input. The build-probe step can output tuples to its
consumer as the tuples are generated, and can thus be pipelined with its consumer.
But the two partitioning steps are connected to the build-probe step by non-pipelined
edges, since build-probe can start only after partitioning has been completed on both
inputs.

Hybrid hash join can be viewed as partially pipelined on the probe relation, since
it can output tuples from the first partition as tuples are received for the probe relation.
However, tuples that are not in the first partition will be output only after the entire
pipelined input relation is received. Hybrid hash join thus provides fully pipelined eval-
uation on its probe input if the build input fits entirely in memory, or nearly pipelined
evaluation if most of the build input fits in memory.

Figure 15.12a shows a query that joins two relations r and s, and then performs an
aggregation on the result; details of the join predicate, group by attributes and aggre-
gation functions are omitted for simplicity. Figure 15.12b shows a pipelined plan for
the query using hash join and in-memory hash aggregation. Pipelined edges are shown
using a normal line, while blocking edges are shown using a bold line. Pipeline stages
are enclosed in dashed boxes. Note that hash join has been split into three suboper-
ators. Two of suboperators, shown abbreviated to Part., partition r and s respectively.
The third, abbreviated to HJ-BP, performs the build and probe phase of the hash join.
The HA-IM operator is the in-memory hash aggregation operator. The edges from the
partition operators to the HJ-BP operator are blocking edges, since the HJ-BP operator
can start execution only after the partition operators have completed execution. The
edges from the relations (assumed to be scanned using a relation scan operator) to the
partition operators are pipelined, as is the edge from the HJ-BP operator to the HA-IM
operator. The resultant pipeline stages are shown enclosed in dashed boxes.

In general, for each materialized edge we need to add the cost of writing the data
to disk, and the cost of the consumer operator should include the cost of reading the
data from disk. However, when a materialized edge is between suboperators of a single

730 Chapter 15 Query Processing

doner := false;
dones := false;
r := ∅;
s := ∅;
result := ∅;
while not doner or not dones do

begin
if queue is empty, then wait until queue is not empty;
t := top entry in queue;
if t = Endr then doner := true

else if t = Ends then dones := true
else if t is from input r

then
begin

r := r ∪ {t};
result := result ∪ ({t} ⋈ s);

end
else /* t is from input s */

begin
s := s ∪ {t};
result := result ∪ (r ⋈ {t});

end
end

Figure 15.13 Double-pipelined join algorithm.

operator, for example between run generation and merge, the materialization cost has
already been accounted for in the operators cost, and should not be added again.

In some applications, a join algorithm that is pipelined on both its inputs and its
output is desirable. If both inputs are sorted on the join attribute, and the join condition
is an equi-join, merge join can be used, with both its inputs and its output pipelined.

However, in the more common case that the two inputs that we desire to pipeline
into the join are not already sorted, another alternative is the double-pipelined join tech-
nique, shown in Figure 15.13. The algorithm assumes that the input tuples for both
input relations, r and s, are pipelined. Tuples made available for both relations are
queued for processing in a single queue. Special queue entries, called Endr and Ends,
which serve as end-of-file markers, are inserted in the queue after all tuples from r and s
(respectively) have been generated. For efficient evaluation, appropriate indices should
be built on the relations r and s. As tuples are added to r and s, the indices must be kept

15.8 Query Processing in Memory 731

up to date. When hash indices are used on r and s, the resultant algorithm is called the
double-pipelined hash-join technique.

The double-pipelined join algorithm in Figure 15.13 assumes that both inputs fit in
memory. In case the two inputs are larger than memory, it is still possible to use the
double-pipelined join technique as usual until available memory is full. When available
memory becomes full, r and s tuples that have arrived up to that point can be treated
as being in partition r0 and s0, respectively. Tuples for r and s that arrive subsequently
are assigned to partitions r1 and s1, respectively, which are written to disk, and are
not added to the in-memory index. However, tuples assigned to r1 and s1 are used to
probe s0 and r0, respectively, before they are written to disk. Thus, the join of r1 with
s0, and s1 with r0, is also carried out in a pipelined fashion. After r and s have been
fully processed, the join of r1 tuples with s1 tuples must be carried out to complete the
join; any of the join techniques we have seen earlier can be used to join r1 with s1.

15.7.3 Pipelines for Continuous-Stream Data

Pipelining is also applicable in situations where data are entered into the database
in a continuous manner, as is the case, for example, for inputs from sensors that are
continuously monitoring environmental data. Such data are called data streams, as we
saw earlier in Section 10.5. Queries may be written over stream data in order to respond
to data as they arrive. Such queries are called continuous queries.

The operations in a continuous query should be implemented using pipelined al-
gorithms, so that results from the pipeline can be output without blocking. Producer-
driven pipelines (which we discussed earlier in Section 15.7.2.1) are the best suited for
continuous query evaluation.

Many such queries perform aggregation with windowing; tumbling windows which
divide time into fixed size intervals, such as 1 minute, or 1 hour, are commonly used.
Grouping and aggregation is performed separately on each window, as tuples are re-
ceived; assuming memory size is large enough, an in-memory hash index is used to
perform aggregation.

The result of aggregation on a window can be output once the system knows that no
further tuples in that window will be received in future. If tuples are guaranteed to arrive
sorted by timestamp, the arrival of a tuple of a following window indicates no more
tuples will be received for an earlier window. If tuples may arrive out of order, streams
must carry punctuations that indicate that all future tuples will have a timestamp greater
than some specified value. The arrival of a punctuation allows the output of aggregates
of windows whose end-timestamp is less than or equal to the timestamp specified by
the punctuation.

15.8 Query Processing in Memory

The query processing algorithms that we have described so far focus on minimizing
I/O cost. In this section, we discuss extensions to the query processing techniques that

732 Chapter 15 Query Processing

help minimize memory access costs by using cache-conscious query processing algo-
rithms and query compilation. We then discuss query processing with column-oriented
storage. The algorithms we describe in this section give significant benefits for memory
resident data; they are also very useful with disk-resident data, since they can speed up
processing once data has been brought into the in-memory buffer.

15.8.1 Cache-Conscious Algorithms

When data is resident in memory, access is much faster than if data were resident on
magnetic disks, or even SSDs. However, it must be kept in mind that data already in
CPU cache can be accessed as much as 100 times faster than data in memory. Modern
CPUs have several levels of cache. Commonly used CPUs today have an L1 cache of size
around 64 kilobytes, with a latency of about 1 nanosecond, an L2 cache of size around
256 kilobytes, with a latency of around 5 nanoseconds, and an L3 cache of having a size
of around 10 megabytes, with a latency of 10 to 15 nanoseconds. In contrast, reading
data in memory results in a latency of around 50 to 100 nanoseconds. For simplicity
in the rest of this section we ignore the difference between the L1, L2 and L3 cache
levels, and assume that there is only a single cache level.

As we saw in Section 14.4.7, the speed difference between cache memory and main
memory, and the fact that data are transferred between main memory and cache in units
of a cache-line (typically about 64 bytes), results in a situation where the relationship
between cache and main memory is not dissimilar to the relationship between main
memory and disk (although with smaller speed differences). But there is a difference:
while the contents of the main memory buffers disk-based data are controlled by the
database system, CPU cache is controlled by the algorithms built into the computer
hardware. Thus, the database system cannot directly control what is kept in cache.

However, query processing algorithms can be designed in a way that the makes the
best use of cache, to optimize performance. Here are some ways this can be done:

• To sort a relation that is in-memory, we use the external merge-sort algorithm, with
the run size chosen such that the run fits into the cache; assuming we focus on the
L3 cache, each run should be a few megabytes in size. We then use an in-memory
sorting algorithm on each run; since the run fits in cache, cache misses are likely to
be minimal when the run is sorted. The sorted runs (all of which are in memory)
are then merged. Merging is cache efficient, since access to the runs is sequential:
when a particular word is accessed from memory, the cache line that is fetched
will contain the words that would be accessed next from that run.

To sort a relation larger than memory, we can use external sort-merge with
much larger run sizes, but use the in-memory merge-sort technique we just de-
scribed to perform the in-memory sort of the large runs.

• Hash-join requires probing of an index on the build relation. If the build relation
fits in memory, an index could be built on the whole relation; however, cache hits
during probe can be maximized by partitioning the relations into smaller pieces

15.8 Query Processing in Memory 733

such that each partition of the build-relation along with the index fits in the cache.
Each partition is processed separately, with a build and a probe phase; since the
build partition and its index fit in cache, cache misses are minimized during the
build as well as the probe phase.

For relations larger than memory, the first stage of hash-join should partition
the two relations such that for each partition, the partitions of the two relations
together fit in memory. The technique just described can then be used to perform
the hash join on each of these partitions, after fetching the contents into memory.

• Attributes in a tuple can be arranged such that attributes that tend to be accessed
together are laid out consecutively. For example, if a relation is often used for aggre-
gation, those attributes used as group by attributes, and those that are aggregated
upon, can be stored consecutively. As a result, if there is a cache miss on one at-
tribute, the cache line that is fetched would contain attributes that are likely to be
used immediately.

Cache-aware algorithms are of increasing importance in modern database systems,
since memory sizes are often large enough that much of the data is memory-resident.

In cases where the requisite data item is not in cache, there is a processing stall
while the data item is retrieved from memory and loaded into cache. In order to con-
tinue to make use of the core that made the request resulting in the stall, the operating
system maintains multiple threads of execution on which a core may work. Parallel
query processing algorithms, which we study in Chapter 22 can use multiple threads
running on a single CPU core; if one thread is stalled, another can start execution so
the CPU core is utilized better.

15.8.2 Query Compilation

With data resident in memory, CPU cost becomes the bottleneck, and minimizing CPU
cost can give significant benefits. Traditional databases query processors act as inter-
preters that execute a query plan. However, there is a significant overhead due to inter-
pretation: for example, to access an attribute of a record, the query execution engine
may repeatedly look up the relation meta-data to find the offset of the attribute within
the record, since the same code must work for all relations. There is also significant
overhead due to function calls that are performed for each record processed by an
operation.

To avoid overhead due to interpretation, modern main-memory databases com-
pile query plans into machine code or intermediate level byte-code. For example, the
compiler can compute the offset of an attribute at compile time, and generate code
where the offset is a constant. The compiler can also combine the code for multiple
functions in a way that minimizes function calls. With these, and other related opti-
mizations, compiled code has been found to execute faster, by up to a factor of 10, than
interpreted code.

734 Chapter 15 Query Processing

15.8.3 Column-Oriented Storage

In Section 13.6, we saw that in data-analytic applications, only a few attributes of a
large schema may be needed, and that in such cases, storing a relation by column
instead of by row may be advantageous. Selection operations on a single attribute (or
small number of attributes) have significantly lower cost in a column store since only
the relevant attributes need to be accessed. However, since accessing each attribute
requires its own data access, the cost of retrieving many attributes is higher and may
incur additional seeks if data are stored on disk.

Because column stores permit efficient access to many values for a given attribute
at once, they are well suited to exploit the vector-processing capabilities of modern
processors. This capability allows certain operations (such as comparisons and aggre-
gations) to be performed in a parallel on multiple attribute values. When compiling
query plans to machine code, the compiler can generate vector-processing instructions
supported by the processor.

15.9 Summary

• The first action that the system must perform on a query is to translate the query
into its internal form, which (for relational database systems) is usually based on
the relational algebra. In the process of generating the internal form of the query,
the parser checks the syntax of the user’s query, verifies that the relation names
appearing in the query are names of relations in the database, and so on. If the
query was expressed in terms of a view, the parser replaces all references to the
view name with the relational-algebra expression to compute the view.

• Given a query, there are generally a variety of methods for computing the answer.
It is the responsibility of the query optimizer to transform the query as entered by
the user into an equivalent query that can be computed more efficiently. Chapter
16 covers query optimization.

• We can process simple selection operations by performing a linear scan or by
making use of indices. We can handle complex selections by computing unions
and intersections of the results of simple selections.

• We can sort relations larger than memory by the external sort–merge algorithm.

• Queries involving a natural join may be processed in several ways, depending on
the availability of indices and the form of physical storage for the relations.

° If the join result is almost as large as the Cartesian product of the two relations,
a block nested-loop join strategy may be advantageous.

° If indices are available, the indexed nested-loop join can be used.

Review Terms 735

° If the relations are sorted, a merge join may be desirable. It may be advantageous
to sort a relation prior to join computation (so as to allow use of the merge-join
strategy).

° The hash-join algorithm partitions the relations into several pieces, such that
each piece of one of the relations fits in memory. The partitioning is carried
out with a hash function on the join attributes so that corresponding pairs of
partitions can be joined independently.

• Duplicate elimination, projection, set operations (union, intersection, and differ-
ence), and aggregation can be done by sorting or by hashing.

• Outer-join operations can be implemented by simple extensions of join algorithms.

• Hashing and sorting are dual, in the sense that any operation such as duplicate
elimination, projection, aggregation, join, and outer join that can be implemented
by hashing can also be implemented by sorting, and vice versa; that is, any opera-
tion that can be implemented by sorting can also be implemented by hashing.

• An expression can be evaluated by means of materialization, where the system
computes the result of each subexpression and stores it on disk and then uses it to
compute the result of the parent expression.

• Pipelining helps to avoid writing the results of many subexpressions to disk by
using the results in the parent expression even as they are being generated.

Review Terms

• Query processing

• Evaluation primitive

• Query-execution plan

• Query-evaluation plan

• Query-execution engine

• Measures of query cost

• Sequential I/O

• Random I/O

• File scan

• Linear search

• Selections using indices

• Access paths

• Index scans

• Conjunctive selection

• Disjunctive selection

• Composite index

• Intersection of identifiers

• External sorting

• External sort–merge

• Runs

• N -way merge

• Equi-join

• Nested-loop join

• Block nested-loop join

• Indexed nested-loop join

• Merge join

• Sort-merge join

• Hybrid merge join

736 Chapter 15 Query Processing

• Hash-join

° Build

° Probe

° Build input

° Probe input

° Recursive partitioning

° Hash-table overflow

° Skew

° Fudge factor

° Overflow resolution

° Overflow avoidance

• Hybrid hash-join

• Spatial join

• Operator tree

• Materialized evaluation

• Double buffering

• Pipelined evaluation

° Demand-driven pipeline
(lazy, pulling)

° Producer-driven pipeline
(eager, pushing)

° Iterator

° Pipeline stages

• Double-pipelined join

• Continuous query evaluation

Practice Exercises

15.1 Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most three blocks. Show the runs created on each pass of
the sort-merge algorithm when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby, 21), (emu, 1), (wombat, 13), (platypus,
3), (lion, 8), (warthog, 4), (zebra, 11), (meerkat, 6), (hyena, 9), (hornbill, 2),
(baboon, 12).

15.2 Consider the bank database of Figure 15.14, where the primary keys are un-
derlined, and the following SQL query:

select T.branch name
from branch T, branch S
where T.assets > S.assets and S.branch city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query.
Justify your choice.

15.3 Let relations r1(A, B, C) and r2(C, D, E) have the following properties: r1 has
20,000 tuples, r2 has 45,000 tuples, 25 tuples of r1 fit on one block, and 30
tuples of r2 fit on one block. Estimate the number of block transfers and seeks
required using each of the following join strategies for r1 ⋈ r2:

a. Nested-loop join.

b. Block nested-loop join.

Practice Exercises 737

c. Merge join.

d. Hash join.

15.4 The indexed nested-loop join algorithm described in Section 15.5.3 can be
inefficient if the index is a secondary index and there are multiple tuples with
the same value for the join attributes. Why is it inefficient? Describe a way,
using sorting, to reduce the cost of retrieving tuples of the inner relation. Under
what conditions would this algorithm be more efficient than hybrid merge join?

15.5 Let r and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest-cost way (in terms of I/O
operations) to compute r ⋈ s? What is the amount of memory required for
this algorithm?

15.6 Consider the bank database of Figure 15.14, where the primary keys are un-
derlined. Suppose that a B+-tree index on branch city is available on relation
branch, and that no other index is available. List different ways to handle the
following selections that involve negation:

a. σ¬(branch city<“Brooklyn”)(branch)

b. σ¬(branch city=“Brooklyn”)(branch)

c. σ¬(branch city<“Brooklyn” ∨ assets<5000)(branch)

15.7 Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Your pseudocode must define the stan-
dard iterator functions open(), next(), and close(). Show what state information
the iterator must maintain between calls.

15.8 Design sort-based and hash-based algorithms for computing the relational di-
vision operation (see Practice Exercise 2.9 for a definition of the division op-
eration).

branch(branch name, branch city, assets)
customer (customer name, customer street, customer city)
loan (loan number, branch name, amount)
borrower (customer name, loan number)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 15.14 Bank database.

738 Chapter 15 Query Processing

15.9 What is the effect on the cost of merging runs if the number of buffer blocks
per run is increased while overall memory available for buffering runs remains
fixed?

15.10 Consider the following extended relational-algebra operators. Describe how to
implement each operation using sorting and using hashing.

a. Semijoin (⋉θ): The multiset semijoin operator r⋉θs is defined as follows:
if a tuple ri appears n times in r, it appears n times in the result of r⋉θ
if there is at least one tuple sj such that ri and sj satisfy predicate θ;
otherwise ri does not appear in the result.

b. Anti-semijoin (⋉θ): The multiset anti-semijoin operator r⋉θs is defined
as follows: if a tuple ri appears n times in r, it appears n times in the result
of r⋉θ if there does not exist any tuple sj in s such that ri and sj satisfy
predicate θ; otherwise ri does not appear in the result.

15.11 Suppose a query retrieves only the first K results of an operation and termi-
nates after that. Which choice of demand-driven or producer-driven pipelining
(with buffering) would be a good choice for such a query? Explain your an-
swer.

15.12 Current generation CPUs include an instruction cache, which caches recently
used instructions. A function call then has a significant overhead because the
set of instructions being executed changes, resulting in cache misses on the
instruction cache.

a. Explain why producer-driven pipelining with buffering is likely to result
in a better instruction cache hit rate, as compared to demand-driven
pipelining.

b. Explain why modifying demand-driven pipelining by generating multiple
results on one call to next(), and returning them together, can improve
the instruction cache hit rate.

15.13 Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

15.14 Suggest how a document containing a word (such as “leopard”) can be in-
dexed such that it is efficiently retrieved by queries using a more general con-
cept (such as “carnivore” or “mammal”). You can assume that the concept
hierarchy is not very deep, so each concept has only a few generalizations (a
concept can, however, have a large number of specializations). You can also
assume that you are provided with a function that returns the concept for each
word in a document. Also suggest how a query using a specialized concept can
retrieve documents using a more general concept.

Exercises 739

15.15 Explain why the nested-loops join algorithm (see Section 15.5.1) would work
poorly on a database stored in a column-oriented manner. Describe an alterna-
tive algorithm that would work better, and explain why your solution is better.

15.16 Consider the following queries. For each query, indicate if column-oriented
storage is likely to be beneficial or not, and explain why.

a. Fetch ID, name and dept name of the student with ID 12345.

b. Group the takes relation by year and course id, and find the total number
of students for each (year, course id) combination.

Exercises

15.17 Suppose you need to sort a relation of 40 gigabytes, with 4-kilobyte blocks,
using a memory size of 40 megabytes. Suppose the cost of a seek is 5 millisec-
onds, while the disk transfer rate is 40 megabytes per second.

a. Find the cost of sorting the relation, in seconds, with bb = 1 and with
bb = 100.

b. In each case, how many merge passes are required?

c. Suppose a flash storage device is used instead of a disk, and it has a
latency of 20 microsecond and a transfer rate of 400 megabytes per sec-
ond. Recompute the cost of sorting the relation, in seconds, with bb = 1
and with bb = 100, in this setting.

15.18 Why is it not desirable to force users to make an explicit choice of a query-
processing strategy? Are there cases in which it is desirable for users to be aware
of the costs of competing query-processing strategies? Explain your answer.

15.19 Design a variant of the hybrid merge-join algorithm for the case where both
relations are not physically sorted, but both have a sorted secondary index on
the join attributes.

15.20 Estimate the number of block transfers and seeks required by your solution to
Exercise 15.19 for r1 ⋈ r2, where r1 and r2 are as defined in Exercise 15.3.

15.21 The hash-join algorithm as described in Section 15.5.5 computes the natural
join of two relations. Describe how to extend the hash-join algorithm to com-
pute the natural left outer join, the natural right outer join, and the natural full
outer join. (Hint: Keep extra information with each tuple in the hash index to
detect whether any tuple in the probe relation matches the tuple in the hash
index.) Try out your algorithm on the takes and student relations.

740 Chapter 15 Query Processing

15.22 Suppose you have to compute Aγsum(C)(r) as well as A,Bγsum(C)(r). Describe how
to compute these together using a single sorting of r.

15.23 Write pseudocode for an iterator that implements a version of the sort–merge
algorithm where the result of the final merge is pipelined to its consumers.
Your pseudocode must define the standard iterator functions open(), next(),
and close(). Show what state information the iterator must maintain between
calls.

15.24 Explain how to split the hybrid hash-join operator into sub-operators to model
pipelining. Also explain how this split is different from the split for a hash-join
operator.

15.25 Suppose you need to sort relation r using sort—merge and merge—join the re-
sult with an already sorted relation s.

a. Describe how the sort operator is broken into suboperators to model the
pipelining in this case.

b. The same idea is applicable even if both inputs to the merge join are the
outputs of sort—merge operations. However, the available memory has to
be shared between the two merge operations (the merge—join algorithm
itself needs very little memory). What is the effect of having to share
memory on the cost of each sort-merge operation?

Further Reading

[Graefe (1993)] presents an excellent survey of query-evaluation techniques. [Faerber
et al. (2017)] describe main-memory database implementation techniques, including
query processing techniques for main-memory databases, while [Kemper et al. (2012)]
describes techniques for query processing with in-memory columnar data. [Samet
(2006)] provides a textbook description of spatial data structures, while [Shekhar and
Chawla (2003)] provides a textbook description of spatial databases, including index-
ing and query processing techniques. Textbook descriptions of techniques for indexing
documents, and efficiently computing ranked answers to keyword queries may be found
in [Manning et al. (2008)].

Bibliography

[Faerber et al. (2017)] F. Faerber, A. Kemper, P.-A. Larson, J. Levandoski, T. Neumann, and
A. Pavlo, “Main Memory Database Systems”, Foundations and Trends in Databases, Volume
8, Number 1-2 (2017), pages 1–130.

[Graefe (1993)] G. Graefe, “Query Evaluation Techniques for Large Databases”, ACM Com-
puting Surveys, Volume 25, Number 2 (1993).

Further Reading 741

[Kemper et al. (2012)] A. Kemper, T. Neumann, F. Funke, V. Leis, and H. Mühe, “HyPer:
Adapting Columnar Main-Memory Data Management for Transaction AND Query Process-
ing”, IEEE Data Engineering Bulletin, Volume 35, Number 1 (2012), pages 46–51.

[Manning et al. (2008)] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval, Cambridge University Press (2008).

[Samet (2006)] H. Samet, Foundations of Multidimensional and Metric Data Structures, Mor-
gan Kaufmann (2006).

[Shekhar and Chawla (2003)] S. Shekhar and S. Chawla, Spatial Databases: A TOUR, Pear-
son (2003).

Credits

The photo of the sailboats in the beginning of the chapter is due to ©Pavel Nes-
vadba/Shutterstock.

	PART SIX QUERY PROCESSING AND OPTIMIZATION
	Chapter 15 Query Processing
	15.4 Sorting
	15.5 Join Operation
	15.6 Other Operations
	15.7 Evaluation of Expressions
	15.8 Query Processing in Memory
	15.9 Summary
	Exercises
	Further Reading

