
Rev.Confirming Pages

45

C
H

A
P

T
E

R
2

Finite Automata and the
Languages They Accept

I n this chapter, we introduce the first of the models of computation we will study.
A finite automaton is a model of a particularly simple computing device, which

acts as a language acceptor. We will describe how one works and look at examples
of languages that can be accepted this way. Although the examples are simple,
they illustrate how finite automata can be useful, both in computer science and
more generally. We will also see how their limitations prevent them from being
general models of computation, and exactly what might keep a language from being
accepted by a finite automaton. The simplicity of the finite automaton model makes
it possible, not only to characterize in an elegant way the languages that can be
accepted, but also to formulate an algorithm for simplifying one of these devices
as much as possible.

2.1 FINITE AUTOMATA: EXAMPLES
AND DEFINITIONS

In this section we introduce a type of computer that is simple, partly because
the output it produces in response to an input string is limited to “yes” or
“no”, but mostly because of its primitive memory capabilities during a compu-
tation.

Any computer whose outputs are either “yes” or “no” acts as a language
acceptor ; the language the computer accepts is the set of input strings that cause
it to produce the answer yes. In this chapter, instead of thinking of the computer
as receiving an input string and then producing an answer, it’s a little easier to
think of it as receiving individual input symbols, one at a time, and producing after
every one the answer for the current string of symbols that have been read so far.
Before the computer has received any input symbols, the current string is �, and

mar91469 ch02 45-91.tex 45 December 9, 2009 9:24am

Rev.Confirming Pages

46 C H A P T E R 2 Finite Automata and the Languages They Accept

there is an answer for that string too. If the current string is abbab, for example,
the computer might have produced the answers “yes, no, yes, yes, no, no” so far,
one for each of the six prefixes of abbab.

The very simplest device for accepting a language is one whose response
doesn’t even depend on the input symbols it receives. There are only two possibil-
ities: to announce at each step that the current string is accepted, and to announce
at each step that it is not accepted. These two language acceptors are easy to con-
struct, because they don’t have to remember anything about the input symbols they
have received, but of course they are not very useful. The only languages they can
accept are the entire set �∗ and the empty language ∅.

Slightly more complicated is the case in which the answer depends on the
last input symbol received and not on any symbols before that. For example, if
� = {a, b}, a device might announce every time it receives the symbol a, and only
in that case, that the current string is accepted. In this case, the language it accepts
is the set of all strings that end with a.

These are examples of a type of language acceptor called a finite automaton
(FA), or finite-state machine. At each step, a finite automaton is in one of a finite
number of states (it is a finite automaton because its set of states is finite). Its
response depends only on the current state and the current symbol. A “response”
to being in a certain state and receiving a certain input symbol is simply to enter
a certain state, possibly the same one it was already in. The FA “announces”
acceptance or rejection in the sense that its current state is either an accepting
state or a nonaccepting state. In the two trivial examples where the response is
always the same, only one state is needed. For the language of strings ending with
a, two states are sufficient, an accepting state for the strings ending with a and a
nonaccepting state for all the others.

Before a finite automaton has received any input, it is in its initial state, which
is an accepting state precisely if the null string is accepted. Once we know how
many states there are, which one is the initial state, and which ones are the accepting
states, the only other information we need in order to describe the operation of the
machine is the transition function, which specifies for each combination of state and
input symbol the state the FA enters. The transition function can be described by
either a table of values or (the way we will use most often) a transition diagram. In
the diagram, states are represented by circles, transitions are represented by arrows
with input symbols as labels,

p q
a

and accepting states are designated by double instead of single circles.

mar91469 ch02 45-91.tex 46 December 9, 2009 9:24am

Rev.Confirming Pages

2.1 Finite Automata: Examples and Definitions 47

The initial state will have an arrow pointing to it that doesn’t come from another
state.

An FA can proceed through the input, automaton-like, by just remembering
at each step what state it’s in and changing states in response to input symbols in
accordance with the transition function. With the diagram, we can trace the compu-
tation for a particular input string by simply following the arrows that correspond
to the symbols of the string.

EXAMPLE 2.1

A Finite Automaton Accepting the Language of Strings
Ending in aa

In order to accept the language

L1 = {x ∈ {a, b}∗ | x ends with aa}
an FA can operate with three states, corresponding to the number of consecutive a’s that
must still be received next in order to produce a string in L1: two, because the current
string does not end with a; one, because the current string ends in a but not in aa; or none,
because the current string is already in L1. It is easy to see that a transition diagram can be
drawn as in Figure 2.2.

In state q0, the input symbol b doesn’t represent any progress toward obtaining a string
in L1, and it causes the finite automaton to stay in q0; input a allows it to go to q1. In q1, the
input b undoes whatever progress we had made and takes us back to q0, while an a gives
us a string in L1. In q2, the accepting state, input a allows us to stay in q2, because the last
two symbols of the current string are still both a, and b sends us back to the initial state q0.

b

a

b

b

a

aq0 q2q1

Figure 2.2
An FA accepting the strings ending
with aa.

EXAMPLE 2.3

An FA Accepting the Language of Strings Ending in b and Not
Containing the Substring aa

Let L2 be the language

L2 = {x ∈ {a, b}∗ | x ends with b and does not contain the substring aa}

mar91469 ch02 45-91.tex 47 December 9, 2009 9:24am

Rev.Confirming Pages

48 C H A P T E R 2 Finite Automata and the Languages They Accept

a

b a
b

b

aq0 q1

a, b

q2

q3

Figure 2.4
An FA accepting the strings end-
ing with b and not containing aa.

In Example 2.1, no matter what the current string is, if the next two input symbols are both
a, the FA ends up in an accepting state. In accepting L2, if the next two input symbols
are a’s, not only do we want to end up in a nonaccepting state, but we want to make sure
that from that nonaccepting state we can never reach an accepting state. We can copy the
previous example by having three states q0, q1, and q2, in which the current strings don’t
end in a, end in exactly one a, and end in two a’s, respectively. This time all three are
nonaccepting states, and from q2 both transitions return to q2, so that once our FA reaches
this state it will never return to an accepting state.

The only other state we need is an accepting state q3. Once the FA reaches this state,
by receiving the symbol b in either q0 or q1, it stays there as long as it continues to receive
b’s and moves to q1 on input a. The transition diagram for this FA is shown in Figure 2.4.

EXAMPLE 2.5 An FA Illustrating a String Search Algorithm

Suppose we have a set of strings over {a, b} and we want to identify all the ones containing a
particular substring, say abbaab. A reasonable way to go about it is to build an FA accepting
the language

L3 = {x ∈ {a, b}∗ | x contains the substring abbaab}
and use it to test each string in the set. Once we have the FA, the number of steps required
to test each string is no more than the number of symbols in the string, so that we can be
confident this is an efficient approach.

The idea behind the FA is the same as in Example 2.1, but using a string with both
a’s and b’s will make it easier to identify the underlying principle. We can start by drawing
this diagram:

q0 q1
a q2

b q3
b q4

a q5
a b q6

For each i, the FA will be in state qi whenever the current string ends with the prefix of
abbaab having length i and not with any longer prefix. Now we just have to try to add
transitions to complete the diagram. The transitions leaving q6 simply return to q6, because
this FA should accept the strings containing, not ending with, abbaab. For each i < 6, we
already have one transition from qi , and we have to decide where to send the other one.

mar91469 ch02 45-91.tex 48 December 9, 2009 9:24am

Rev.Confirming Pages

2.1 Finite Automata: Examples and Definitions 49

q0
a b

a

a a b

b

b

a

b

a, bab

q1 q2 q3 q4 q5 q6

Figure 2.6
An FA accepting the strings containing the substring abbaab.

Consider i = 4. One string that causes the FA to be in state q4 is abba, and we must
decide what state corresponds to the string abbab. Because abbab ends with ab, and not
with any longer prefix of abbaab, the transition should go to q2. The other cases are similar,
and the resulting FA is shown in Figure 2.6.

If we want an FA accepting all the strings ending in abbaab, instead of all the strings
containing this substring, we can use the transition diagram in Figure 2.6 with different
transitions from the accepting state. The transition on input a should go from state q6 to
some earlier state corresponding to a prefix of abbaab. Which prefix? The answer is a, the
longest one that is a suffix of abbaaba. In other words, we can proceed as if we were drawing
the FA accepting the set of strings containing abbaabb and after six symbols we received
input a instead of b. Similarly, the transition from q6 on input b should go to state q3.

EXAMPLE 2.7

An FA Accepting Binary Representations of Integers
Divisible by 3

We consider the language L of strings over the alphabet {0, 1} that are the binary represen-
tations of natural numbers divisible by 3. Another way of saying that n is divisible by 3 is
to say that n mod 3, the remainder when n is divided by 3, is 0. This seems to suggest that
the only information concerning the current string x that we really need to remember is the
remainder when the number represented by x is divided by 3.

The question is, if we know the remainder when the number represented by x is divided
by 3, is that enough to find the remainders when the numbers represented by x0 and x1 are
divided by 3? And that raises the question: What are the numbers represented by x0 and x1?

Just as adding 0 to the end of a decimal representation corresponds to multiplying by
ten, adding 0 to the end of a binary representation corresponds to multiplying by 2. Just as
adding 1 to the end of a decimal representation corresponds to multiplying by ten and then
adding 1 (example: 39011 = 10 ∗ 3901 + 1), adding 1 to the end of a binary representation
corresponds to multiplying by 2 and then adding 1 (example: 1110 represents 14, and 11101
represents 29).

Now we are ready to answer the first question: If x represents n, and n mod 3 is r ,
then what are 2n mod 3 and (2n + 1) mod 3? It is almost correct that the answers are 2r

and 2r + 1; the only problem is that these numbers may be 3 or bigger, and in that case we
must do another mod 3 operation.

These facts are enough for us to construct our FA. We begin with states corresponding
to remainders 0, 1, and 2. The only one of these that is an accepting state is 0, because
remainder 0 means that the integer is divisible by 3, and the transitions from these states

mar91469 ch02 45-91.tex 49 December 9, 2009 9:24am

Rev.Confirming Pages

50 C H A P T E R 2 Finite Automata and the Languages They Accept

10

0, 10

0 1 2

1

1

1

0

0

0, 1

Figure 2.8
An FA accepting binary representations of integers
divisible by 3.

follow the rules outlined above. These states do not include the initial state, because the
null string doesn’t qualify as a binary representation of a natural number, or the accepting
state corresponding to the string 0. We will disallow leading 0’s in binary representations,
except for the number 0 itself, and so we need one more state for the strings that start with
0 and have more than one digit. The resulting transition diagram is shown in Figure 2.8.

EXAMPLE 2.9 Lexical Analysis

Another real-world problem for which finite automata are ideally suited is lexical analysis,
the first step in compiling a program written in a high-level language.

Before a C compiler can begin to determine whether a string such as

main(){ double b=41.3; b *= 4; ...

satisfies the many rules for the syntax of C, it must be able to break up the string into tokens,
which are the indecomposable units of the program. Tokens include reserved words (in this
example, “main” and “double”), punctuation symbols, identifiers, operators, various types
of parentheses and brackets, numeric literals such as “41.3” and “4”, and a few others.

Programming languages differ in their sets of reserved words, as well as in their rules
for other kinds of tokens. For example, “41.” is a legal token in C but not in Pascal, which
requires a numeric literal to have at least one digit on both sides of a decimal point.

In any particular language, the rules for constructing tokens are reasonably simple.
Testing a substring to see whether it represents a valid token can be done by a finite
automaton in software form; once this is done, the string of alphabet symbols can be replaced
by a sequence of tokens, each one represented in a form that is easier for the compiler to
use in its later processing.

We will illustrate a lexical-analysis FA for a C-like language in a greatly simplified case,
in which the only tokens are identifiers, semicolons, the assignment operator =, the reserved
word aa, and numeric literals consisting of one or more digits and possibly a decimal point.
An identifier will start with a lowercase letter and will contain only lowercase letters and/or
digits. Saying that aa is reserved means that it cannot be an identifier, although longer
identifiers might begin with aa or contain it as a substring. The job of the FA will be to
accept strings that consist of one or more consecutive tokens. (The FA will not be required

mar91469 ch02 45-91.tex 50 December 9, 2009 9:24am

Rev.Confirming Pages

2.1 Finite Automata: Examples and Definitions 51

to determine whether a particular sequence of tokens makes sense; that job will have to be
performed at a later stage in the compilation.) The FA will be in an accepting state each
time it finishes reading another legal token, and the state will be one that is reserved for a
particular type of token; in this sense, the lexical analyzer will be able to classify the tokens.

Another way to simplify the transition diagram considerably is to make another assump-
tion: that two consecutive tokens are always separated by a blank space.

The crucial transitions of the FA are shown in Figure 2.10. The input alphabet is the
set containing the 26 lowercase letters, the 10 digits, a semicolon, an equals sign, a decimal
point, and the blank space �. We have used a few abbreviations: D for any numerical digit,
L for any lowercase letter other than a, M for any numerical digit or letter other than a,
and N for any letter or digit. You can check that all possible transitions from the initial state
are shown. From every other state, transitions not shown go to a “reject” state, from which
all transitions return to that state; no attempt is made to continue the lexical analysis once
an error is detected.

The two portions of the diagram that require a little care are the ones involving tokens
with more than one symbol. State 3 corresponds to the identifier a, state 4 to the reserved
word aa, and state 5 to any other identifier. Transitions to state 5 are possible from state
3 with any letter or digit except a, from states 4 or 5 with any letter or digit, and from
the initial state with any letter other than a. State 6 corresponds to numeric literals without
decimal points and state 7 to those with decimal points. State 8 is not an accepting state,
because a numeric literal must have at least one digit.

This FA could be incorporated into lexical-analysis software as follows. Each time a
symbol causes the FA to make a transition out of the initial state, we mark that symbol in the
string; each time we are in one of the accepting states and receive a blank space, we mark

1

Δ
Δ Δ

Δ

Δ

Δ
Δ

=
4

3

;

.

.

5

6

7

8

N

D

Na
a

L M

D

D

D

2

Figure 2.10
An FA illustrating a simplified version of lexical analysis.

mar91469 ch02 45-91.tex 51 December 9, 2009 9:24am

Rev.Confirming Pages

52 C H A P T E R 2 Finite Automata and the Languages They Accept

the symbol just before the blank; and the token, whose type is identified by the accepting
state, is represented by the substring that starts with the first of these two symbols and ends
with the second.

The restriction that tokens be separated by blanks makes the job of recognizing the
beginnings and ends of tokens very simple, but in practice there is no such rule, and we could
construct an FA without it. The transition diagram would be considerably more cluttered;
the FA would not be in the initial state at the beginning of each token, and many more
transitions between the other states would be needed.

Without a blank space to tell us where a token ends, we would normally adopt the
convention that each token extends as far as possible. A substring like “=2b3aa1” would
then be interpreted as containing two tokens, “=” and “2”, and at least the first five symbols
of a third. There are substrings, such as “3...2”, that cannot be part of any legal string.
There are others, like “1.2..3”, that can but only if the extending-as-far-as-possible policy
is abandoned. Rejecting this particular string is probably acceptable anyway, because no way
of breaking it into tokens is compatible with the syntax of C.

See Example 3.5 for more discussion of tokens and lexical analysis.

Giving the following official definition of a finite automaton and developing
some related notation will make it easier to talk about these devices precisely.

Definition 2.11 A Finite Automaton

A finite automaton (FA) is a 5-tuple (Q, �, q0, A, δ), where

Q is a finite set of states ;

� is a finite input alphabet ;

q0 ∈ Q is the initial state;

A ⊆ Q is the set of accepting states;

δ : Q × � → Q is the transition function.

For any element q of Q and any symbol σ ∈ �, we interpret δ(q, σ)

as the state to which the FA moves, if it is in state q and receives the
input σ .

The first line of the definition deserves a comment. What does it mean to say
that a simple computer is a 5-tuple? This is simply a formalism that allows us to
define an FA in a concise way. Describing a finite automaton precisely requires us
to specify five things, and it is easier to say

Let M = (Q, �, q0, A, δ) be an FA

than it is to say

Let M be an FA with state set Q, input alphabet �, initial state q0, set of
accepting states A, and transition function δ.

mar91469 ch02 45-91.tex 52 December 9, 2009 9:24am

Rev.Confirming Pages

2.1 Finite Automata: Examples and Definitions 53

We write δ(q, σ) to mean the state an FA M goes to from q after receiving the
input symbol σ . The next step is to extend the notation to allow a corresponding
expression δ∗(q, x) that will represent the state the FA ends up in if it starts out
in state q and receives the string x of input symbols. In other words, we want
to define an “extended transition function” δ∗ from Q × �∗ to Q. The easiest
way to define it is recursively, using the recursive definition of �∗ in Example
1.17. We begin by defining δ∗(q, �), and since we don’t expect the state of M

to change as a result of getting the input string �, we give the expression the
value q.

Definition 2.12 The Extended Transition Function δδδ∗

Let M = (Q, �, q0, A, δ) be a finite automaton. We define the extended
transition function

δ∗ : Q × �∗ → Q

as follows:

1. For every q ∈ Q, δ∗(q,�) = q

2. For every q ∈ Q, every y ∈ �∗, and every σ ∈ �,

δ∗(q, yσ) = δ(δ∗(q, y), σ)

The recursive part of the definition says that we can evaluate δ∗(q, x) if we
know that x = yσ , for some string y and some symbol σ , and if we know what
state the FA is in after starting in q and processing the symbols of y. We do it by
just starting in that state and applying one last transition, the one corresponding to
the symbol σ . For example, if M contains the transitions

p q
a

r
b

s
c

Figure 2.13

then

δ∗(p, abc) = δ(δ∗(p, ab), c)

= δ(δ(δ∗(p, a), b), c)

= δ(δ(δ∗(p, �a), b), c)

= δ(δ(δ(δ∗(p, �), a), b), c)

= δ(δ(δ(p, a), b), c)

= δ(δ(q, b), c)

= δ(r, c)

= s

Looking at the diagram, of course, we can get the same answer by just follow-
ing the arrows. The point of this derivation is not that it’s always the simplest

mar91469 ch02 45-91.tex 53 December 9, 2009 9:24am

Rev.Confirming Pages

54 C H A P T E R 2 Finite Automata and the Languages They Accept

way to find the answer by hand, but that the recursive definition is a reasonable
way of defining the extended transition function, and that the definition provides a
systematic algorithm.

Other properties you would expect δ∗ to satisfy can be derived from our def-
inition. For example, a natural generalization of the recursive statement in the
definition is the formula

δ∗(q, xy) = δ∗(δ∗(q, x), y)

which is true for every state q and every two strings x and y in �∗. The proof is by
structural induction on y and is similar to the proof of the formula r(xy) = r(y)r(x)

in Example 1.27.
The extended transition function makes it possible to say concisely what it

means for an FA to accept a string or a language.

Definition 2.14 Acceptance by a Finite Automaton

Let M = (Q, �, q0, A, δ) be an FA, and let x ∈ �∗. The string x is
accepted by M if

δ∗(q0, x) ∈ A

and is rejected by M otherwise. The language accepted by M is the set

L(M) = {x ∈ �∗ | x is accepted by M}
If L is a language over �, L is accepted by M if and only if L = L(M).

Notice what the last statement in Definition 2.14 does not say. It doesn’t say
that L is accepted by M if every string in L is accepted by M . To take this as
the definition would not be useful (it’s easy to describe a one-state FA that accepts
every string in �∗). A finite automaton accepting a language L does its job by
distinguishing between strings in L and strings not in L: accepting the strings in
L and rejecting all the others.

2.2 ACCEPTING THE UNION,
INTERSECTION, OR DIFFERENCE
OF TWO LANGUAGES

Suppose L1 and L2 are both languages over �. If x ∈ �∗, then knowing whether
x ∈ L1 and whether x ∈ L2 is enough to determine whether x ∈ L1 ∪ L2. This
means that if we have one algorithm to accept L1 and another to accept L2, we
can easily formulate an algorithm to accept L1 ∪ L2. In this section we will show
that if we actually have finite automata accepting L1 and L2, then there is a finite
automaton accepting L1 ∪ L2, and that the same approach also gives us FAs accept-
ing L1 ∩ L2 and L1 − L2.

mar91469 ch02 45-91.tex 54 December 9, 2009 9:24am

Rev.Confirming Pages

2.2 Accepting the Union, Intersection, or Difference of Two Languages 55

The idea is to construct an FA that effectively executes the two original ones
simultaneously, one whose current state records the current states of both. This
isn’t difficult; we can simply use “states” that are ordered pairs (p, q), where p

and q are states in the two original FAs.

Theorem 2.15
Suppose M1 = (Q1, �, q1, A1, δ1) and M2 = (Q2, �, q2, A2, δ2) are finite
automata accepting L1 and L2, respectively. Let M be the FA (Q, �, q0,
A, δ), where

Q = Q1 × Q2

q0 = (q1, q2)

and the transition function δ is defined by the formula

δ((p, q), σ) = (δ1(p, σ), δ2(q, σ))

for every p ∈ Q1, every q ∈ Q2, and every σ ∈ �. Then

1. If A = {(p, q) | p ∈ A1 or q ∈ A2}, M accepts the language L1 ∪ L2.
2. If A = {(p, q) | p ∈ A1 and q ∈ A2}, M accepts the language L1 ∩ L2.
3. If A = {(p, q) | p ∈ A1 and q /∈ A2}, M accepts the language L1 − L2.

Proof
We consider statement 1, and the other two are similar. The way the
transition function δ is defined allows us to say that at any point during
the operation of M , if (p, q) is the current state, then p and q are the
current states of M1 and M2, respectively. This will follow immediately
from the formula

δ∗(q0, x) = (δ∗
1(q1, x), δ∗

2(q2, x))

which is true for every x ∈ �∗. The proof is by structural induction on
x and is left to Exercise 2.12. For every string x, x is accepted by M

precisely if δ∗(q0, x) ∈ A, and according to the definition of A in state-
ment 1 and the formula for δ∗, this is true precisely if δ∗

1(q1, x) ∈ A1 or
δ∗

2(q2, x) ∈ A2—i.e., precisely if x ∈ L1 ∪ L2.

As we will see in Example 2.16, we don’t always need to include every ordered
pair in the state set of the composite FA.

EXAMPLE 2.16Constructing an FA Accepting L1 ∩ L2

Let L1 and L2 be the languages

L1 = {x ∈ {a, b}∗ | aa is not a substring of x}
L2 = {x ∈ {a, b}∗ | x ends with ab}

mar91469 ch02 45-91.tex 55 December 9, 2009 9:24am

Rev.Confirming Pages

56 C H A P T E R 2 Finite Automata and the Languages They Accept

Finite automata M1 and M2 accepting these languages are easy to obtain and are
shown in Figure 2.17a. The construction in Theorem 2.15 produces an FA with the nine
states shown in Figure 2.17b. Rather than drawing all eighteen transitions, we start at the
initial state (A, P), draw the two transitions to (B,Q) and (A, P) using the definition of
δ in the theorem, and continue in this way, at each step drawing transitions from a state
that has already been reached by some other transition. At some point, we have six states
such that every transition from one of these six goes to one of these six. Since none of the
remaining three states is reachable from any of the first six, we can leave them out.

If we want our finite automaton to accept L1 ∪ L2, then we designate as accepting
states the ordered pairs among the remaining six that involve at least one of the accepting
states A, B, and R. The result is shown in Figure 2.17c.

If instead we want to accept L1 ∩ L2, then the only accepting state is (A,R), since
(B,R) was one of the three omitted. This allows us to simplify the FA even further. None
of the three states (C, P), (C,Q), and (C,R) is accepting, and every transition from one
of these three goes to one of these three; therefore, we can combine them all into a single
nonaccepting state. An FA accepting L1 ∩ L2 is shown in Figure 2.17d. The FA we would get
for L1 − L2 is similar and also has just four states, but in that case two are accepting states.

A B C

a

b

b
a

a, b

b

aP Q R

b a

(a)

(d)

a

b

(c)

(b)

b b

AP

BQ

a

b

a

a

a

b a b

b

a

CQ

CR

CP

b

a

b

a

a

b

a, b

AP

AQ

AR

BP

BQ

BR

CP

CQ

CR

b b

ba

a

a

a

a

b b

a

b

AR

Figure 2.17
Constructing an FA to accept the intersection of two languages.

mar91469 ch02 45-91.tex 56 December 9, 2009 9:24am

Rev.Confirming Pages

2.2 Accepting the Union, Intersection, or Difference of Two Languages 57

EXAMPLE 2.18An FA Accepting Strings That Contain Either ab or bba

Figure 2.19a shows FAs M1 and M2 accepting L1 = {x ∈ {a, b}∗ | x contains the substring
ab} and L2 = {x ∈ {a, b}∗ | x contains the substring bba}, respectively. They are both
obtained by the technique described in Example 2.5. Using Theorem 2.15 to construct an
FA accepting L1 ∪ L2 could result in one with twelve states, but Figure 2.19b illustrates an
approach that seems likely to require considerably fewer. If it works, the FA will need only
the states we’ve drawn, and the two paths to the accepting state will correspond to strings
in L1 and strings in L2, respectively.

This approach does work; the five states shown are sufficient, and it is not difficult
to complete the transitions from the three intermediate states. Instead, let’s see whether the
construction in the theorem gives us the same answer or one more complicated. Figure 2.19c
shows a partially completed diagram; to complete it, we must draw the transitions from (3, q)

and (2, s) and any additional states that may be required. So far we have six states, and you
can check that (3, p), (3, r), and (3, s) will also appear if we continue this way. Notice,
however, that because states 3 and s are accepting, and transitions from either state return
to that state, every state we add will be an ordered pair involving 3 or s or both, and every
transition from one of these accepting states will return to one. The conclusion is that we
can combine (3, q) and (2, s) and we don’t need any more states; the final diagram is in
Figure 2.19d.

ba

b

321

a a, b

a, b

a, b

ab
srp

a b

b

a
q

(a) (b)

(c) (d)

a

b

bb

a
2, p

1, q
a

2, s

b

1, r

a

1, p

3, q

b

a

a

a

b

a b

1, q 1, r

2, p

1, p
b

a, b

b

ab

a b

Figure 2.19
Constructing an FA to accept strings containing either ab or bba.

mar91469 ch02 45-91.tex 57 December 9, 2009 9:24am

Rev.Confirming Pages

58 C H A P T E R 2 Finite Automata and the Languages They Accept

The construction in Theorem 2.15 will always work, but the FA it produces
may not be the simplest possible. Fortunately, if we need the simplest possible
one, we don’t need to rely on the somewhat unsystematic methods in these two
examples; we will see in Section 2.6 how to start with an arbitary FA and find one
with the fewest possible states accepting the same language.

2.3 DISTINGUISHING ONE STRING FROM
ANOTHER

The finite automaton M in Example 2.1, accepting the language L of strings in
{a, b}∗ ending with aa, had three states, corresponding to the three possible numbers
of a’s still needed to have a string in L. As simple as this sounds, it’s worth taking
a closer look. Could the FA be constructed with fewer than three states? And can
we be sure that three are enough? These are different questions; we will answer
the first in this section and return to the second in Section 2.5.

Any FA with three states ignores, or forgets, almost all the information per-
taining to the current string. In the case of M , it makes no difference whether the
current string is aba or aabbabbabaaaba; the only relevant feature of these two
strings is that both end with a and neither ends with aa. However, it does make a
difference whether the current string is aba or ab, even though neither string is in
L. It makes a difference because of what input symbols might come next. If the
next input symbol is a, the current string at that point would be abaa in the first
case and aba in the second; one string is in L and the other isn’t. The FA has to
be able to distinguish aba and ab now, so that in case the next input symbol is a it
will be able to distinguish the two corresponding longer strings. We will describe
the difference between aba and ab by saying that they are distinguishable with
respect to L: there is at least one string z such that of the two strings abaz and
abz, one is in L and the other isn’t.

Definition 2.20 Strings Distinguishable with Respect to L

If L is a language over the alphabet �, and x and y are strings in �∗,
then x and y are distinguishable with respect to L, or L-distinguishable,
if there is a string z ∈ �∗ such that either xz ∈ L and yz /∈ L, or xz /∈ L

and yz ∈ L. A string z having this property is said to distinguish x and
y with respect to L. An equivalent formulation is to say that x and y are
L-distinguishable if L/x 	= L/y, where

L/x = {z ∈ �∗ | xz ∈ L}
The two strings x and y are L-indistinguishable if L/x = L/y, which
means that for every z ∈ �∗, xz ∈ L if and only if yz ∈ L.

The strings in a set S ⊆ �∗ are pairwise L-distinguishable if for
every pair x, y of distinct strings in S, x and y are L-distinguishable.

mar91469 ch02 45-91.tex 58 December 9, 2009 9:24am

Rev.Confirming Pages

2.3 Distinguishing One String from Another 59

The crucial fact about two L-distinguishable strings, or more generally about
a set of pairwise L-distinguishable strings, is given in Theorem 2.21, and it will
provide the answer to the first question we asked in the first paragraph.

Theorem 2.21
Suppose M = (Q, �, q0, A, δ) is an FA accepting the language L ⊆ �∗. If
x and y are two strings in �∗ that are L-distinguishable, then δ∗(q0, x) 	=
δ∗(q0, y). For every n ≥ 2, if there is a set of n pairwise L-distinguishable
strings in �∗, then Q must contain at least n states.

Proof
If x and y are L-distinguishable, then for some string z, one of the strings
xz, yz is in L and the other isn’t. Because M accepts L, this means that
one of the states δ∗(q0, xz), δ∗(q0, yz) is an accepting state and the other
isn’t. In particular,

δ∗(q0, xz) 	= δ∗(q0, yz)

According to Exercise 2.5, however,

δ∗(q0, xz) = δ∗(δ∗(q0, x), z)

δ∗(q0, yz) = δ∗(δ∗(q0, y), z)

Because the left sides are different, the right sides must be also, and so
δ∗(q0, x) 	= δ∗(q0, y).

The second statement in the theorem follows from the first: If M had
fewer than n states, then at least two of the n strings would cause M

to end up in the same state, but this is impossible if the two strings are
L-distinguishable.

Returning to our example, we can now say why there must be three states
in an FA accepting L, the language of strings ending with aa. We already have
an FA with three states accepting L. Three states are actually necessary if there
are three pairwise L-distinguishable strings, and we can find three such strings by
choosing one corresponding to each state. We choose �, a, and aa. The string a

distinguishes � and a, because �a /∈ L and aa ∈ L; the string � distinguishes �

and aa; and it also distinguishes a and aa.
As the next example illustrates, the first statement in Theorem 2.21 can be

useful in constructing a finite automaton to accept a language, because it can help
us decide at each step whether a transition should go to a state we already have or
whether we need to add another state.

EXAMPLE 2.22Constructing an FA to Accept {aa, aab}∗{b}
Let L be the language {aa, aab}∗{b}. In Chapter 3 we will study a systematic way to con-
struct finite automata for languages like this one. It may not be obvious at this stage that

mar91469 ch02 45-91.tex 59 December 9, 2009 9:24am

Rev.Confirming Pages

60 C H A P T E R 2 Finite Automata and the Languages They Accept

it will even be possible, but we will proceed by adding states as needed and hope that we
will eventually have enough.

The null string is not in L, and so the initial state should not be an accepting state.
The string b is in L, the string a is not, and the two strings � and a are L-distinguishable
because �ab /∈ L and aab ∈ L. We have therefore determined that we need at least the
states in Figure 2.23a.

The language L contains b but no other strings beginning with b. It also contains no
strings beginning with ab. These two observations suggest that we introduce a state s to take
care of all strings that fail for either reason to be a prefix of an element of L (Fig.2.23b).
Notice that if two strings are L-distinguishable, at least one of them must be a prefix of an
element of L; therefore, two strings ending up in state s cannot be L-distinguishable. All
transitions from s will return to s.

Suppose the FA is in state p and receives the input a. It can’t stay in p, because the
strings a and aa are distinguished relative to L by the string ab. It can’t return to the initial
state, because � and aa are L-distinguishable. Therefore, we need a new state t . From t ,
the input b must lead to an accepting state, because aab ∈ L; this accepting state cannot
be r , because aab and a are L-distinguishable; call the new accepting state u. One of the
strings that gets the FA to state u is aab. If we receive another b in state u, the situation is
the same as for an initial b; aabb and b are both in L, but neither is a prefix of any longer
string in L. We can therefore let δ(u, b) = r .

a, b

a, bbp s

a b

b

b

a
a

a

t

r

u

q0

a, b

a, bbp s

a b

r

q0

p

a b

r

q0

(a) (b)

(c)

Figure 2.23
Constructing an FA to accept {aa, aab}∗{b}.

mar91469 ch02 45-91.tex 60 December 9, 2009 9:24am

Rev.Confirming Pages

2.3 Distinguishing One String from Another 61

We have yet to define δ(t, a) and δ(u, a). States t and u can be thought of as representing
the end of one of the strings aa and aab. (The reason u is an accepting state is that one of
these two strings, aab, also happens to be the other one followed by b.) In either case, if
the next symbol is a, we should view it as the first symbol in another occurrence of one
of these two strings. For this reason, we can define δ(t, a) = δ(u, a) = p, and we arrive at
the FA shown in Figure 2.23c.

It may be clear already that because we added each state only if necessary, the FA
we have constructed is the one with the fewest possible states. If we had not constructed
it ourselves, we could use Theorem 2.21 to show this. The FA has six states, and apply-
ing the second statement in the theorem seems to require that we produce six pairwise
L-distinguishable strings. Coming up with six strings is easy—we can choose one cor-
responding to each state—but verifying directly that they are pairwise L-distinguishable
requires looking at all 21 choices of two of them. A slightly easier approach, since there
are four nonaccepting states and two accepting states, is to show that the four strings that
are not in L are pairwise L-distinguishable and the two strings in L are L-distinguishable.
The argument in the proof of the theorem can easily be adapted to show that every FA
accepting L must then have at least four nonaccepting states and two accepting states. This
way we have to consider only seven sets of two strings and for each set find a string that
distinguishes the two relative to L.

EXAMPLE 2.24An FA Accepting Strings with a in the nth Symbol from the End

Suppose n is a positive integer, and Ln is the language of strings in {a, b}∗ with at least n

symbols and an a in the nth position from the end.
The first observation about accepting this language is that if a finite automaton “remem-

bers” the most recent n input symbols it has received, or remembers the entire current string
as long as its length is less than n, then it has enough information to continue making correct
decisions. Another way to say this is that no symbol that was received more than n symbols
ago should play any part in deciding whether the current string is accepted.

We can also see that if i < n and x is any string of length i, then the string bn−ix can
be treated the same as x by an FA accepting Ln. For example, suppose n = 5 and x = baa.
Neither of the strings bbbaa and baa is in L5, three more symbols are required in both cases
before an element of L5 will be obtained, and from that point on the two current strings
will always agree in the last five symbols. As a result, an FA accepting Ln will require no
more than 2n states, the number of strings of length n.

Finally, if we can show that the strings of length n are pairwise Ln-distinguishable,
Theorem 2.21 will tell us that we need this many states. Let x and y be distinct strings of
length n. They must differ in the ith symbol (from the left), for some i with 1 ≤ i ≤ n.
Every string z of length i − 1 distinguishes these two relative to Ln, because xz and yz

differ in the ith symbol, which is the nth symbol from the right.
Figure 2.25 shows an FA with four states accepting L2. The labeling technique we have

used here also works for n > 2; if each state is identified with a string x of length n, and
x = σ1y where |y| = n − 1, the transition function can be described by the formula

δ(σ1y, σ) = yσ

mar91469 ch02 45-91.tex 61 December 9, 2009 9:24am

Rev.Confirming Pages

62 C H A P T E R 2 Finite Automata and the Languages They Accept

ab aa

b
b a

b

a

abb ba

a

b

Figure 2.25
An FA accepting Ln in the case n = 2.

We can carry the second statement of Theorem 2.21 one step further, by consid-
ering a language L for which there are infinitely many pairwise L-distinguishable
strings.

Theorem 2.26
For every language L ⊆ �∗, if there is an infinite set S of pairwise L-
distinguishable strings, then L cannot be accepted by a finite automaton.

Proof
If S is infinite, then for every n, S has a subset with n elements. If M

were a finite automaton accepting L, then Theorem 2.21 would say that
for every n, M would have at least n states. No finite automaton can have
this property!

It is not hard to find languages with the property in Theorem 2.26. In
Example 2.27 we take L to be the language Pal from Example 1.18, the set of palin-
dromes over {a,b}. Not only is there an infinite set of pairwise L-distinguishable
strings, but all the strings in {a,b}∗ are pairwise L-distinguishable.

EXAMPLE 2.27

For Every Pair x, y of Distinct Strings in {a,b}∗, x and y Are
Distinguishable with Respect to Pal

First suppose that x 	= y and |x| = |y|. Then xr , the reverse of x, distinguishes the two with
respect to Pal, because xxr ∈ Pal and yxr /∈ Pal. If |x| 	= |y|, we assume x is shorter. If
x is not a prefix of y, then xxr ∈ Pal and yxr /∈ Pal. If x is a prefix of y, then y = xz

for some nonnull string z. If we choose the symbol σ (either a or b) so that zσ is not a
palindrome, then xσxr ∈ Pal and yσxr = xzσxr /∈ Pal.

An explanation for this property of Pal is easy to find. If a computer is trying to accept
Pal, has read the string x, and starts to receive the symbols of another string z, it can’t
be expected to decide whether z is the reverse of x unless it can actually remember every
symbol of x. The only thing a finite automaton M can remember is what state it’s in, and
there are only a finite number of states. If x is a sufficiently long string, remembering every
symbol of x is too much to expect of M .

mar91469 ch02 45-91.tex 62 December 9, 2009 9:24am

Rev.Confirming Pages

2.4 The Pumping Lemma 63

2.4 THE PUMPING LEMMA
A finite automaton accepting a language operates in a very simple way. Not sur-
prisingly, the languages that can be accepted in this way are “simple” languages,
but it is not yet clear exactly what this means. In this section, we will see one
property that every language accepted by an FA must have.

Suppose that M = (Q, �, q0, A, δ) is an FA accepting L ⊆ �∗ and that Q has
n elements. If x is a string in L with |x| = n − 1, so that x has n distinct prefixes,
it is still conceivable that M is in a different state after processing every one. If
|x| ≥ n, however, then by the time M has read the symbols of x, it must have
entered some state twice; there must be two different prefixes u and uv (saying
they are different is the same as saying that v 	= �) such that

δ∗(q0, u) = δ∗(q0, uv)

This means that if x ∈ L and w is the string satisfying x = uvw, then we
have the situation illustrated by Figure 2.28. In the course of reading the sym-
bols of x = uvw, M moves from the initial state to an accepting state by following
a path that contains a loop, corresponding to the symbols of v. There may be
more than one such loop, and more than one such way of breaking x into three
pieces u, v, and w; but at least one of the loops must have been completed by
the time M has read the first n symbols of x. In other words, for at least one
of the choices of u, v, and w such that x = uvw and v corresponds to a loop,
|uv| ≤ n.

The reason this is worth noticing is that it tells us there must be many more
strings besides x that are also accepted by M and are therefore in L: strings that
cause M to follow the same path but traverse the loop a different number of times.
The string obtained from x by omitting the substring v is in L, because M doesn’t
have to traverse the loop at all. For each i ≥ 2, the string uviw is in L, because
M can take the loop i times before proceeding to the accepting state.

The statement we have now proved is known as the Pumping Lemma for
Regular Languages. “Pumping” refers to the idea of pumping up the string x by
inserting additional copies of the string v (but remember that we also get one of
the new strings by leaving out v). “Regular” won’t be defined until Chapter 3, but
we will see after we define regular languages that they turn out to be precisely the
ones that can be accepted by finite automata.

q0

v

u

w

Figure 2.28
What the three strings u, v, and w in
the pumping lemma might look like.

mar91469 ch02 45-91.tex 63 December 9, 2009 9:24am

Rev.Confirming Pages

64 C H A P T E R 2 Finite Automata and the Languages They Accept

Theorem 2.29 The Pumping Lemma for Regular Languages
Suppose L is a language over the alphabet �. If L is accepted by a finite
automaton M = (Q, �, q0, A, δ), and if n is the number of states of M ,
then for every x ∈ L satisfying |x| ≥ n, there are three strings u, v, and
w such that x = uvw and the following three conditions are true:

1. |uv| ≤ n.
2. |v| > 0 (i.e., v 	= �).
3. For every i ≥ 0, the string uviw also belongs to L.

Later in this section we will find ways of applying this result for a language
L that is accepted by an FA. But the most common application is to show that
a language cannot be accepted by an FA, by showing that it doesn’t have the
property described in the pumping lemma.

A proof using the pumping lemma that L cannot be accepted by a finite
automaton is a proof by contradiction. We assume, for the sake of contradic-
tion, that L can be accepted by M , an FA with n states, and we try to select
a string in L with length at least n so that statements 1–3 lead to a contradic-
tion. There are a few places in the proof where it’s easy to go wrong, so before
looking at an example, we consider points at which we have to be particularly
careful.

Before we can think about applying statements 1–3, we must have a string x ∈
L with |x| ≥ n. What is n? It’s the number of states in M , but we don’t know what
M is—the whole point of the proof is to show that it can’t exist! In other words,
our choice of x must involve n. We can’t say “let x = aababaabbab”, because
there’s no reason to expect that 11 ≥ n. Instead, we might say “let x = anba2n”,
or “let x = bn+1anb”, or something comparable, depending on L.

The pumping lemma tells us some properties that every string in L satisfies,
as long as its length is at least n. It is very possible that for some choices of x, the
fact that x has these properties does not produce any contradiction. If we don’t get
a contradiction, we haven’t proved anything, and so we look for a string x that will
produce one. For example, if we are trying to show that the language of palindromes
over {a, b} cannot be accepted by an FA, there is no point in considering a string
x containing only a’s, because all the new strings that we will get by using the
pumping lemma will also contain only a’s, and they’re all palindromes too. No
contradiction!

Once we find a string x that looks promising, the pumping lemma says that
there is some way of breaking x into shorter strings u, v, and w satisfying the
three conditions. It doesn’t tell us what these shorter strings are, only that they
satisfy conditions 1–3. If x = anbnan, we can’t say “let u = a10, v = an−10, and
w = bnan”. It’s not enough to show that some choices for u, v, and w produce a
contradiction—we have to show that we must get a contradiction, no matter what
u, v, and w are, as long as they satisfy conditions 1–3.

Let’s try an example.

mar91469 ch02 45-91.tex 64 December 9, 2009 9:24am

Rev.Confirming Pages

2.4 The Pumping Lemma 65

EXAMPLE 2.30The Language AnBn

Let L be the language AnBn introduced in Example 1.18:

L = {aibi | i ≥ 0}
It would be surprising if AnBn could be accepted by an FA; if the beginning input symbols
are a’s, a computer accepting L surely needs to remember how many of them there are,
because otherwise, once the input switches to b’s, it won’t be able to compare the two
numbers.

Suppose for the sake of contradiction that there is an FA M having n states and accepting
L. We choose x = anbn. Then x ∈ L and |x| ≥ n. Therefore, by the pumping lemma, there
are strings u, v, and w such that x = uvw and the conditions 1–3 in the theorem are true.

Because |uv| ≤ n (by condition 1) and the first n symbols of x are a’s (because of the
way we chose x), all the symbols in u and v must be a’s. Therefore, v = ak for some k > 0
(by condition 2). We can get a contradiction from statement 3 by using any number i other
than 1, because uviw will still have exactly n b’s but will no longer have exactly n a’s. The
string uv2w, for example, is an+kbn, obtained by inserting k additional a’s into the first part
of x. This is a contradiction, because the pumping lemma says uv2w ∈ L, but n + k 	= n.

Not only does the string uv2w fail to be in L, but it also fails to be in the bigger
language AEqB containing all strings in {a, b}∗ with the same number of a’s as b’s. Our
proof, therefore, is also a proof that AEqB cannot be accepted by an FA.

EXAMPLE 2.31The Language {x ∈ {a, b}∗ | na(x) > nb(x)}
Let L be the language

L = {x ∈ {a, b}∗ | na(x) > nb(x)}
The first sentence of a proof using the pumping lemma is always the same: Suppose for
the sake of contradiction that there is an FA M that accepts L and has n states. There are
more possibilities for x than in the previous example; we will suggest several choices, all
of which satisfy |x| ≥ n but some of which work better than others in the proof.

First we try x = bna2n. Then certainly x ∈ L and |x| ≥ n. By the pumping lemma,
x = uvw for some strings u, v, and w satisfying conditions 1–3. Just as in Example 2.30,
it follows from conditions 1 and 2 that v = bk for some k > 0. We can get a contradiction
from condition 3 by considering uviw, where i is large enough that nb(uviw) ≥ na(uviw).
Since |v| ≥ 1, i = n + 1 is guaranteed to be large enough. The string uvn+1w has at least n

more b’s than x does, and therefore at least 2n b’s, but it still has exactly 2n a’s.
Suppose that instead of bna2n we choose x = a2nbn. This time x = uvw, where v is

a string of one or more a’s and uviw ∈ L for every i ≥ 0. The way to get a contradiction
now is to consider uv0w, which has fewer a’s than x does. Unfortunately, this produces a
contradiction only if |v| = n. Since we don’t know what |v| is, the proof will not work for
this choice of x.

The problem is not that x contains a’s before b’s; rather, it is that the original numbers
of a’s and b’s are too far apart to guarantee a contradiction. Getting a contradiction in this
case means making an inequality fail; if we start with a string in which the inequality is

mar91469 ch02 45-91.tex 65 December 9, 2009 9:24am

Rev.Confirming Pages

66 C H A P T E R 2 Finite Automata and the Languages They Accept

just barely satisfied, then ideally any change in the right direction will cause it to fail. A
better choice, for example, is x = an+1bn. (If we had used x = bnan+1 instead of bna2n for
our first choice, we could have used i = 2 instead of i = n to get a contradiction.)

Letting x = (ab)na is also a bad choice, but for a different reason. We know that
x = uvw for some strings u, v, and w satisfying conditions 1–3, but now we don’t have
enough information about the string v. It might be (ab)ka for some k, so that uv0w produces a
contradiction; it might be (ba)kb, so that uv2w produces a contradiction; or it might be either
(ab)k or (ba)k, so that changing the number of copies of v doesn’t change the relationship
between na and nb and doesn’t give us a contradiction.

EXAMPLE 2.32 The Language L = {ai 2 | i ≥ 0}
Whether a string of a’s is an element of L depends only on its length; in this sense, our
proof will be more about numbers than about strings.

Suppose L can be accepted by an FA M with n states. Let us choose x to be the
string an2

. Then according to the pumping lemma, x = uvw for some strings u, v, and w

satisfying conditions 1–3. Conditions 1 and 2 tell us that 0 < |v| ≤ n. Therefore,

n2 = |uvw| < |uv2w| = n2 + |v| ≤ n2 + n < n2 + 2n + 1 = (n + 1)2

This is a contradiction, because condition 3 says that |uv2w| must be i2 for some integer i,
but there is no integer i whose square is strictly between n2 and (n + 1)2.

EXAMPLE 2.33 Languages Related to Programming Languages

Almost exactly the same pumping-lemma proof that we used in Example 2.30 to show AnBn
cannot be accepted by a finite automaton also works for several other languages, including
several that a compiler for a high-level programming language must be able to accept. These
include both the languages Balanced and Expr introduced in Example 1.19, because (m)n

is a balanced string, and (ma)n is a legal expression, if and only if m = n.
Another example is the set L of legal C programs. We don’t need to know much about

the syntax of C to show that this language can’t be accepted by an FA—only that the string

main(){{{ ... }}}

with m occurrences of “{” and n occurrences of “}”, is a legal C program precisely if m = n.
As usual, we start our proof by assuming that L is accepted by some FA with n states and
letting x be the string main() {n}n. If x = uvw, and these three strings satisfy conditions
1–3, then the easiest way to obtain a contradiction is to use i = 0 in condition 3. The string v

cannot contain any right brackets because of condition 1; if the shorter string uw is missing
any of the symbols in “main()”, then it doesn’t have the legal header necessary for a C
program, and if it is missing any of the left brackets, then the two numbers don’t match.

As the pumping lemma demonstrates, one way to answer questions about a
language is to examine a finite automaton that accepts it. In particular, for languages
that can be accepted by FAs, there are several decision problems (questions with

mar91469 ch02 45-91.tex 66 December 9, 2009 9:24am

Rev.Confirming Pages

2.4 The Pumping Lemma 67

yes-or-no answers) we can answer this way, and some some of them have decision
algorithms that take advantage of the pumping lemma.

EXAMPLE 2.34

Decision Problems Involving Languages Accepted
by Finite Automata

The most fundamental question about a language L is which strings belong to it. The mem-
bership problem for a language L accepted by an FA M asks, for an arbitrary string x over
the input alphabet of M , whether x ∈ L(M). We can think of the problem as specific to M ,
so that an instance of the problem is a particular string x; we might also ask the question for
an arbitrary M and an arbitrary x, and consider an instance to be an ordered pair (M, x). In
either case, the way a finite automaton works makes it easy to find a decision algorithm for
the problem. Knowing the string x and the specifications for M = (Q,�, q0, A, δ) allows
us to compute the state δ∗(q0, x) and check to see whether it is an element of A.

The two problems below are examples of other questions we might ask about L(M):

1. Given an FA M = (Q,�, q0, A, δ), is L(M) nonempty?
2. Given an FA M = (Q,�, q0, A, δ), is L(M) infinite?

One way for the language L(M) to be empty is for A to be empty, but this is not
the only way. The real question is not whether M has any accepting states, but whether it
has any that are reachable from q0. The same algorithm that we used in Example 1.21 to
find the set of cities reachable from city S can be used here; another algorithm that is less
efficient but easier to describe is the following.

■ Decision Algorithm for Problem 1
Let n be the number of states of M . Try strings in order of length, to see whether any
are accepted by M; L(M) 	= ∅ if and only if there is a string of length less than n that is
accepted, where n is the number of states of M .

The reason this algorithm works is that according to the pumping lemma, for every
string x ∈ L(M) with |x| ≥ n, there is a shorter string in L(M), the one obtained by omitting
the middle portion v. Therefore, it is impossible for the shortest string accepted by M to
have length n or more.

It may be less obvious that an approach like this will work for problem 2, but again
we can use the pumping lemma. If n is the number of states of M , and x is a string in
L(M) with |x| ≥ n, then there are infinitely many longer strings in L(M). On the other
hand, if x ∈ L(M) and |x| ≥ 2n, then x = uvw for some strings u, v, and w satisfying the
conditions in the pumping lemma, and uv0w = uw is a shorter string in L(M) whose length
is still n or more, because |v| ≤ n. In other words, if there is a string in L with length at
least n, the shortest such string must have length less than 2n. It follows that the algorithm
below, which is undoubtedly inefficient, is a decision algorithm for problem 2.

■ Decision Algorithm for Problem 2
Try strings in order of length, starting with strings of length n, to see whether any are
accepted by M . L(M) is infinite if and only if a string x is found with n ≤ |x| < 2n.

mar91469 ch02 45-91.tex 67 December 9, 2009 9:24am

Rev.Confirming Pages

68 C H A P T E R 2 Finite Automata and the Languages They Accept

2.5 HOW TO BUILD A SIMPLE COMPUTER
USING EQUIVALENCE CLASSES

In Section 2.3 we considered a three-state finite automaton M accepting L, the
set of strings over {a, b} that end with aa. We showed that three states were
necessary by finding three pairwise L-distinguishable strings, one for each state
of M . Now we are interested in why three states are enough. Of course, if M

really does accept L, then three are enough; we can check that this is the case
by showing that if x and y are two strings that cause M to end up in the
same state, then M doesn’t need to distinguish them, because they are not L-
distinguishable.

Each state of M corresponds to a set of strings, and we described the three sets
in Example 2.1: the strings that do not end with a, the strings that end with a but
not aa, and the strings in L. If x is a string in the second set, for example, then for
every string z, xz ∈ L precisely if z = a or z itself ends in aa. We don’t need to
know what x is in order to say this, only that x ends with a but not aa. Therefore,
no two strings in this set are L-distinguishable. A similar argument works for each
of the other two sets.

We will use “L-indistinguishable” to mean not L-distinguishable. We can now
say that if S is any one of these three sets, then

1. Any two strings in S are L-indistinguishable.

2. No string of S is L-indistinguishable from a string not in S.

If the “L-indistinguishability” relation is an equivalence relation, then as we pointed
out at the end of Section 1.3, these two statements about a set S say precisely that
S is one of the equivalence classes. The relation is indeed an equivalence rela-
tion. Remember that x and y are L-indistinguishable if and only if L/x = L/y

(see Definition 2.20); this characterization makes it easy to see that the rela-
tion is reflexive, symmetric, and transitive, because the equality relation has these
properties.

Definition 2.35 The L-Indistinguishability Relation

For a language L ⊆ {a, b}∗, we define the relation IL (an equivalence
relation) on �∗ as follows: For x, y ∈ �∗,

xILy if and only if x and y are L-indistinguishable

In the case of the language L of strings ending with aa, we started with the
three-state FA and concluded that for each state, the corresponding set was one of
the equivalence classes of IL. What if we didn’t have an FA but had figured out
what the equivalence classes were, and that there were only three?

mar91469 ch02 45-91.tex 68 December 9, 2009 9:24am

Rev.Confirming Pages

2.5 How to Build a Simple Computer Using Equivalence Classes 69

Strings Not
Ending in a

Strings Ending
in a but

Not in aa

Strings
Ending in aa

Then we would have at least the first important ingredient of a finite automaton
accepting L: a finite set, whose elements we could call states. Calling a set of strings
a state is reasonable, because we already had in mind an association between a state
and the set of strings that led the FA to that state. But in case it seems questionable,
states don’t have to be anything special—they only have to be representable by
circles (or, as above, rectangles), with some coherent way of defining an initial
state, a set of accepting states, and a transition function.

Once we start to describe this FA, the details fall into place. The initial state
should be the equivalence class containing the string �, because � is one of the
strings corresponding to the initial state of any FA. Because we want the FA to
accept L, the accepting states (in this case, only one) should be the equivalence
classes containing elements of L.

Let us take one case to illustrate how the transitions can be defined. The third
equivalence class is the set containing strings ending with aa. If we choose an
arbitrary element, say abaa, we have one string that we want to correspond to that
state. If the next input symbol is b, then the current string that results is abaab.
Now we simply have to determine which of the three sets this string belongs to,
and the answer is the first. You can see in the other cases as well that what we end
up with is the diagram shown in Figure 2.2.

That’s almost all there is to the construction of the FA, although there are one
or two subtleties in the proof of Theorem 2.36. The other half of the theorem says
that there is an FA accepting L only if the set of equivalence classes of IL is finite.
The two parts therefore give us an if-and-only-if characterization of the languages
that can be accepted by finite automata. The pumping lemma in Section 2.4 does
not; we will see in Example 2.39 that there are languages L for which, although
L is not accepted by any FA, the pumping lemma does not allow us to prove this
and Theorem 2.36 does.

Theorem 2.36
If L ⊆ �∗ can be accepted by a finite automaton, then the set QL of
equivalence classes of the relation IL on �∗ is finite. Conversely, if the
set QL is finite, then the finite automaton ML = (QL, �, q0, A, δ) accepts
L, where q0 = [�], A = {q ∈ QL | q ⊆ L}, and for every x ∈ �∗ and
every a ∈ �,

δ([x], a) = [xa]

Finally, ML has the fewest states of any FA accepting L.

mar91469 ch02 45-91.tex 69 December 9, 2009 9:24am

Rev.Confirming Pages

70 C H A P T E R 2 Finite Automata and the Languages They Accept

Proof
If QL is infinite, then a set S containing exactly one string from each
equivalence class is an infinite set of pairwise L-distinguishable strings.
If there were an FA accepting L, it would have k states, for some k; but S

has k + 1 pairwise L-distinguishable strings, and it follows from Theorem
2.21 that every FA accepting L must have at least k + 1 states. Therefore,
there is no FA accepting L.

If QL is finite, on the other hand, we want to show that the FA ML

accepts L. First, however, we must consider the question of whether the
definition of ML even makes sense. The formula δ([x], a) = [xa] is sup-
posed to assign an equivalence class (exactly one) to the ordered pair
([x], a). The equivalence class [x] containing the string x might also con-
tain another string y, so that [x] = [y]. In order for the formula to be a
sensible definition of δ, it should be true that in this case

[xa] = δ([x], a) = δ([y], a) = [ya]

The question, then, is whether the statement [x] = [y] implies the state-
ment [xa] = [ya]. Fortunately, it does. If [x] = [y], then xILy, which
means that for every string z′, xz′ and yz′ are either both in L or both
not in L; therefore, for every z, xaz and yaz are either both in L or
both not in L (because of the previous statement with z′ = az), and so
xaILya.

The next step in the proof is to verify that with this definition of δ,
the formula

δ∗([x], y) = [xy]

holds for every two strings x, y ∈ �∗. This is a straightforward proof by
structural induction on y, which uses the definition of δ for this FA and
the definition of δ∗ for any FA.

From this formula, it follows that

δ∗(q0, x) = δ∗([�], x) = [x]

It follows from our definition of A that x is accepted by ML if and only
if [x] ⊆ L. What we want is that x is accepted if and only if x ∈ L, and
so we must show that [x] ⊆ L if and only if x ∈ L. If the first statement
is true, then the second is, because x ∈ [x]. On the other hand, if x ∈ L,
and y is any element of [x], then yILx. Since x� ∈ L, and x and y are
L-indistinguishable, y� = y ∈ L. Therefore, [x] ⊆ L.

A set containing one element from each equivalence class of IL is a set
of pairwise L-distinguishable strings. Therefore, by the second statement
of Theorem 2.21, every FA accepting L must have at least as many states
as there are equivalence classes. ML, with exactly this number of states,
has the fewest possible.

mar91469 ch02 45-91.tex 70 December 9, 2009 9:24am

Rev.Confirming Pages

2.5 How to Build a Simple Computer Using Equivalence Classes 71

The statement that L can be accepted by an FA if and only if the set of
equivalence classes of IL is finite is known as the Myhill-Nerode Theorem.

As a practical matter, if we are trying to construct a finite automaton to accept
a language L, it is often easier to attack the problem directly, as in Example
2.22, than to determine the equivalence classes of IL. Theorem 2.36 is interesting
because it can be interpreted as an answer to the question of how much a computer
accepting a language L needs to remember about the current string x. It can forget
everything about x except the equivalence class it belongs to. The theorem provides
an elegant description of an “abstract” finite automaton accepting a language, and
we will see in the next section that it will help us if we already have an FA and
are trying to simplify it by eliminating all the unnecessary states.

If identifying equivalence classes is not always the easiest way to construct an
FA accepting a language L, identifying the equivalence classes from an existing
FA M = (Q, �, q0, A, δ) is relatively straightforward. For each state q, we define

Lq = {x ∈ �∗ | δ∗(q0, x) = q}
Every one of the sets Lq is a subset of some equivalence class of IL; other-
wise (if for some q, Lq contained strings in two different equivalence classes),
there would be two L-distinguishable strings that caused M to end up in the
same state, which would contradict Theorem 2.21. It follows that the number of
equivalence classes is no larger than the number of states. If M has the property
that strings corresponding to different states are L-distinguishable, then the two
numbers are the same, and the equivalence classes are precisely the sets Lq , just
as for the language of strings ending in aa discussed at the beginning of this
section.

It is possible that an FA M accepting L has more states than IL has equivalence
classes. This means that for at least one equivalence class S, there are two different
states q1 and q2 such that Lq1 and Lq2 are both subsets of S. We will see in
the next section that in this case M has more states than it needs, and we will
obtain an algorithm to simplify M by combining states wherever possible. The sets
Lq for the simplified FA are the equivalence classes of IL, as in the preceding
paragraph.

In the next example in this section, we return to the language AnBn and
calculate the equivalence classes. We have already used the pumping lemma to
show there is no FA accepting this language (Example 2.30), so we will not be
surprised to find that there are infinitely many equivalence classes.

EXAMPLE 2.37The Equivalence Classes of IL, Where L = AnBn

As we observed in Example 2.30, accepting AnBn = {anbn | n ≥ 0} requires that we remem-
ber how many a’s we have read, so that we can compare that number to the number of b’s. A
precise way to say this is that two different strings of a’s are L-distinguishable: if i 	= j , then
aibi ∈ L and ajbi /∈ L. Therefore, the equivalence classes [aj] are all distinct. If we were
interested only in showing that the set of equivalence classes is infinite, we could stop here.

mar91469 ch02 45-91.tex 71 December 9, 2009 9:24am

Rev.Confirming Pages

72 C H A P T E R 2 Finite Automata and the Languages They Accept

Exactly what are the elements of [aj]? Not only is the string aj L-distinguishable from
ai , but it is L-distinguishable from every other string x: A string that distinguishes the two
is abj+1, because ajabj+1 ∈ L and xabj+1 /∈ L. Therefore, there are no other strings in the
set [aj], and

[aj] = {aj }
Each of the strings ai is a prefix of an element of L. Other prefixes of elements of

L include elements of L themselves and strings of the form aibj where i > j . All other
strings in {a, b}∗ are nonprefixes of elements of L.

Two nonnull elements of L are L-indistinguishable, because if a string other than � is
appended to the end of either one, the result is not in L; and every nonnull string in L can
be distinguished from every string not in L by the string �. Therefore, the set L − {�} is
an equivalence class of IL.

The set of nonprefixes of elements of L is another equivalence class: No two nonprefixes
can be distinguished relative to L, and if xy ∈ L, then the string y distinguishes x from
every nonprefix.

We are left with the strings aibj with i > j > 0. Let’s consider an example, say x =
a7b3. The only string z with xz ∈ L is b4. However, there are many other strings y that
share this property with x; every string ai+4bi with i > 0 does. The equivalence class
[a7b3] is the set {ai+4bi | i > 0} = {a5b, a6b2, a7b3, . . .}. Similarly, for every k > 0, the set
{ai+kbi | i > 0} is an equivalence class.

To summarize, L and the set of nonprefixes of elements of L are two equivalence classes
that are infinite sets. For each j ≥ 0, the set with the single element aj is an equivalence
class; and for every k > 0, the infinite set {ak+ibi | i > 0} is an equivalence class. We have
now accounted for all the strings in {a, b}∗.

EXAMPLE 2.38 The Equivalence Classes of IL, Where L = {an2 |n ∈ N}
We show that if L is the language in Example 2.36 of strings in {a}∗ with length a per-
fect square, then the elements of {a}∗ are pairwise L-distinguishable. Suppose i and j are
two integers with 0 ≤ i < j ; we look for a positive integer k so that j + k is a perfect
square and i + k is not, so that ajak ∈ L and aiak 	∈ L. Let k = (j + 1)2 − j = j 2 + j + 1.
Then j + k = (j + 1)2 but i + k = j 2 + i + j + 1 > j 2, so that i + k falls between j 2 and
(j + 1)2.

The language Pal ⊆ {a, b}∗ (Examples 1.18 and 2.31) was the first one we found for
which no equivalence class of IL has more than one element. That example was perhaps
a little more dramatic than this one, in which the argument depends only on the length
of the string. Of course, palindromes over a one-symbol alphabet are not very interesting.
If we took L to be the set of all strings in {a, b}∗ with length a perfect square, each
equivalence class would correspond to a natural number n and would contain all strings of
that length.

According to the pumping lemma, if L is accepted by an FA M , then there
is a number n, depending on M , such that we can draw some conclusions about

mar91469 ch02 45-91.tex 72 December 9, 2009 9:24am

Rev.Confirming Pages

2.6 Minimizing the Number of States in a Finite Automaton 73

every string in L with length at least n. In the applications in Section 2.4, we didn’t
need to know where the number n came from, only that it existed. If there is no
such number (that is, if the assumption that there is leads to a contradiction), then
L cannot be accepted by an FA. If there is such a number—never mind where it
comes from—does it follow that there is an FA accepting L? The answer is no, as
the following slightly complicated example illustrates.

EXAMPLE 2.39

A Language Can Satisfy the Conclusions of the Pumping Lemma
and Still Not Be Accepted by a Finite Automaton

Consider the language

L = {aibj cj | i ≥ 1 and j ≥ 0} ∪ {bj ck | j ≥ 0 and k ≥ 0}
Strings in L contain a’s, then b’s, then c’s; if there is at least one a in the string, then the
number of b’s and the number of c’s have to be the same, and otherwise they don’t.

We will show that for the number n = 1, the statement in the pumping lemma is true
for L. Suppose x ∈ L and |x| ≥ 1. If there is at least one a in the string x, and x = aibj cj ,
we can define

u = � v = a w = ai−1bj cj

Every string of the form uviw is still of the form akbj cj and is therefore still an element
of L, whether k is 0 or not. If x is bicj , on the other hand, then again we define u to be
� and v to be the first symbol in x, which is either b or c. It is also true in this case that
uviw ∈ L for every i ≥ 0.

We can use Theorem 2.26 to show that there is no finite automaton accepting our
language L, because there is an infinite set of pairwise L-distinguishable strings. If S is the
set {abn | n ≥ 0}, any two distinct elements abm and abn are distinguished by the string cm.

2.6 MINIMIZING THE NUMBER OF STATES
IN A FINITE AUTOMATON

Suppose we have a finite automaton M = (Q, �, q0, A, δ) accepting L ⊆ �∗. For
a state q of M , we have introduced the notation Lq to denote the set of strings that
cause M to be in state q:

Lq = {x ∈ �∗ | δ∗(q0, x) = q}
The first step in reducing the number of states of M as much as possible is to
eliminate every state q for which Lq = ∅, along with transitions from these states.
None of these states is reachable from the initial state, and eliminating them does
not change the language accepted by M . For the remainder of this section, we
assume that all the states of M are reachable from q0.

We have defined an equivalence relation on �∗, the L-indistinguishability
relation IL, and we have seen that for each state q in M , all the strings in Lq are
L-indistinguishable. In other words, the set Lq is a subset of one of the equivalence
classes of Lq .

mar91469 ch02 45-91.tex 73 December 9, 2009 9:24am

Rev.Confirming Pages

74 C H A P T E R 2 Finite Automata and the Languages They Accept

The finite automaton we described in Theorem 2.36, with the fewest states of
any FA accepting L, is the one in which each state corresponds precisely to (accord-
ing to our definition, is) one of the equivalence classes of IL. For each state q in this
FA, Lq is as large as possible—it contains every string in some equivalence class
of IL. Every FA in which this statement doesn’t hold has more states than it needs.
There are states p and q such that the strings in Lp are L-indistinguishable from
those in Lq ; if M doesn’t need to distinguish between these two types of strings,
then q can be eliminated, and the set Lp can be enlarged by adding the strings
in Lq .

The equivalence relation on �∗ gives us an equivalence relation ≡ on the set
Q of states of M . For p, q ∈ Q,

p ≡ q if and only if strings in Lp are L-indistinguishable from strings in Lq

This is the same as saying

p ≡ q if and only if Lp and Lq are subsets of the same equivalence class of IL

Two strings x and y are L-distinguishable if for some string z, exactly one of
the two strings xz, yz is in L. Two states p and q fail to be equivalent if strings
x and y corresponding to p and q, respectively, are L-distinguishable, and this
means:

p 	≡ q if and only if, for some string z, exactly one of the states

δ∗(p, z), δ∗(q, z) is in A

In order to simplify M by eliminating unnecessary states, we just need to
identify the unordered pairs (p, q) for which the two states can be combined into
one. The definition of p 	≡ q makes it easier to identify the pairs (p, q) for which
p and q cannot be combined, the ones for which p 	≡ q. We look systematically
for a string z that might distinguish the states p and q (or distinguish a string in
Lp from one in Lq). With this in mind, we let SM be the set of such unordered
pairs.

SM is the set of unordered pairs (p, q) of distinct states satisfying p 	≡ q

A Recursive Definition of SM

The set SM can be defined as follows:

1. For every pair (p, q) with p 	= q, if exactly one of the two states is in A,
(p, q) ∈ SM .

2. For every pair (r, s) of distinct states, if there is a symbol σ ∈ � such that
the pair (δ(r, σ), δ(s, σ)) is in SM , then (r, s) ∈ SM .

In the basis statement we get the pairs of states that can be distinguished by
�. If the states δ(r, σ) and δ(s, σ) are distinguished by the string z, then the states
r and s are distinguished by the string σz; as a result, if the states r and s can be

mar91469 ch02 45-91.tex 74 December 9, 2009 9:24am

Rev.Confirming Pages

2.6 Minimizing the Number of States in a Finite Automaton 75

distinguished by a string of length n, then the pair (r, s) can be added to the set
by using the recursive part of the definition n or fewer times.

Because the set SM is finite, this recursive definition provides an algorithm for
identifying the elements of SM .

Algorithm 2.40 Identifying the Pairs (p, q) with p �≡ q List all unordered pairs
of distinct states (p, q). Make a sequence of passes through these pairs as follows.
On the first pass, mark each pair (p, q) for which exactly one of the two states
p and q is in A. On each subsequent pass, examine each unmarked pair (r, s); if
there is a symbol σ ∈ � such that δ(r, σ) = p, δ(s, σ) = q, and the pair (p, q)

has already been marked, then mark (r, s).
After a pass in which no new pairs are marked, stop. At that point, the marked

pairs (p, q) are precisely those for which p 	≡ q. ■

Algorithm 2.40 is the crucial ingredient in the algorithm to simplify the FA
by minimizing the number of states. When Algorithm 2.40 terminates, every pair
(p, q) that remains unmarked represents two states that can be combined into one,
because the corresponding sets Lp and Lq are subsets of the same equivalence
class. It may happen that every pair ends up marked; this means that for distinct
states p and q, strings in p are already L-distinguishable from strings in q, and M

already has the fewest states possible.
We finish up by making one final pass through the states. The first state to

be considered represents an equivalence class, or a state in our new minimal FA.
After that, a state q represents a new equivalence class, or a new state, only if
the pair (p, q) is marked for every state p considered previously. Each time we
consider a state q that does not produce a new state in the minimal FA, because it
is equivalent to a previous state p, we will add it to the set of original states that
are being combined with p.

Once we have the states in the resulting minimum-state FA, determining the
transitions is straightforward. Example 2.41 illustrates the algorithm.

EXAMPLE 2.41Applying the Minimization Algorithm

Figure 2.42a shows a finite automaton with ten states, numbered 0–9, and Figure 2.42b shows
the unordered pairs (p, q) with p 	= q. The pairs marked 1 are the ones marked on pass
1, in which exactly one state is an accepting state, and those marked 2 or 3 are the ones
marked on the second or third pass. In this example, the third pass is the last one on which
new pairs were marked.

How many passes are required and which pairs are marked on each one may depend
on the order in which the pairs are considered during each pass. The results in Figure 2.42b
are obtained by proceeding one vertical column at a time, and considering the pairs in each
column from top to bottom.

The pair (6, 3) is one of the pairs marked on the first pass, since 3 is an accepting state
and 6 is not. When the pair (7, 2) is considered on the second pass, it is marked because
δ(7, a) = 6 and δ(2, a) = 3. When the pair (9, 3) is considered later on the second pass, it is

mar91469 ch02 45-91.tex 75 December 9, 2009 9:24am

Rev.Confirming Pages

76 C H A P T E R 2 Finite Automata and the Languages They Accept

8

9

3

4

b

b

b

b

b

b
b

bb

b

a

a
a

a

a
a

a
a

a

a

1

0

7

6

2

5

1

2

3

4

5

6

7

8

9

2

2

1

1

2

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

1

2

1

1

1

3

2

2

1

1

1

1

1

1 2

0 1 2 3 4 5 6 7 8

(a) (b)

b

b

b

a

a
a a

9

3,4,8

bb

a

1,2,5

0

6,7

(c)

Figure 2.42
Minimizing the number of states in an FA.

also marked, because δ(9, a) = 7 and δ(3, a) = 2. The pair (7, 5) is marked on the second
pass. We have δ(9, a) = 7 and δ(4, a) = 5, but (9, 4) was considered earlier on the second
pass, and so it is not marked until the third pass.

With the information from Figure 2.42b, we can determine the states in the minimal
FA as follows. State 0 will be a new state. State 1 will be a new state, because the pair
(1, 0) is marked. State 2 will not, because (2, 1) is unmarked, which means we combine
states 2 and 1. State 3 will be a new state. State 4 will be combined with 3. State 5 will be
combined with states 1 and 2, because both (5, 1) and (5, 2) are unmarked. State 6 will be
a new state; state 7 is combined with state 6; state 8 is combined with 3 and 4; and state 9
is a new state. At this point, we have the five states shown in Figure 2.42c.

If we designate each state in the FA by the set of states in the original FA that were
combined to produce it, we can compute the transitions from the new state by considering

mar91469 ch02 45-91.tex 76 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 77

any of the elements of that set. For example, one of the new states is {1, 2, 5}; in the original
FA, δ(1, a) = 8, which tells us that the a-transition from {1, 2, 5} goes to {3, 4, 8}. (If there
are any inconsistencies, such as δ(5, a) not being an element of {3, 4, 8}, then we’ve made
a mistake somewhere!)

EXERCISES
2.1. In each part below, draw an FA accepting the indicated language over

{a, b}.
a. The language of all strings containing exactly two a’s.

b. The language of all strings containing at least two a’s.

c. The language of all strings that do not end with ab.

d. The language of all strings that begin or end with aa or bb.

e. The language of all strings not containing the substring aa.

f. The language of all strings in which the number of a’s is even.

g. The language of all strings in which both the number of a’s and the
number of b’s are even.

h. The language of all strings containing no more than one occurrence of
the string aa. (The string aaa contains two occurrences of aa.)

i. The language of all strings in which every a (if there are any) is
followed immediately by bb.

j. The language of all strings containing both bb and aba as substrings.

k. The language of all strings containing both aba and bab as substrings.

2.2. For each of the FAs pictured in Fig. 2.43, give a simple verbal description
of the language it accepts.

2.3. a. Draw a transition diagram for an FA that accepts the string abaa and
no other strings.

b. For a string x ∈ {a, b}∗ with |x| = n, how many states are required for
an FA accepting x and no other strings? For each of these states,
describe the strings that cause the FA to be in that state.

c. For a string x ∈ {a, b}∗ with |x| = n, how many states are required for
an FA accepting the language of all strings in {a, b}∗ that begin with
x? For each of these states, describe the strings that cause the FA to be
in that state.

2.4. Example 2.7 describes an FA accepting L3, the set of strings in {0, 1}∗ that
are binary representations of integers divisible by 3. Draw a transition
diagram for an FA accepting L5.

2.5. Suppose M = (Q, �, q0, A, δ) is an FA, q is an element of Q, and x and
y are strings in �∗. Using structural induction on y, prove the formula

δ∗(q, xy) = δ∗(δ∗(q, x), y)

mar91469 ch02 45-91.tex 77 December 9, 2009 9:24am

Rev.Confirming Pages

78 C H A P T E R 2 Finite Automata and the Languages They Accept

I II III IV V

(a)

a b

b a a, b

a

b

I II III IV V

(b)

a b
b

a

b a

a

b

b

a

b

a

I II III IV V

(c)

a b aa

a, b

VI

II

a

a

b

b

a, b

a, b

I II III

IV

(d)

b

b

a

ab
b

I

a, b

b

a

b
a

aII

III

IV

(e)

b

Figure 2.43

2.6. Suppose M = (Q, �, q0, A, δ) is an FA, q is an element of Q, and
δ(q, σ) = q for every σ ∈ �. Show using structural induction that for
every x ∈ �∗, δ∗(q, x) = q.

2.7. Let M = (Q, �, q0, A, δ) be an FA. Let M1 = (Q, �, q0, R, δ), where R

is the set of states p in Q for which δ∗(p, z) ∈ A for some string z. What

mar91469 ch02 45-91.tex 78 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 79

is the relationship between the language accepted by M1 and the language
accepted by M? Prove your answer.

2.8. Let M = (Q, �, q0, A, δ) be an FA. Below are other conceivable methods
of defining the extended transition function δ∗ (see Definition 2.12). In
each case, determine whether it is in fact a valid definition of a function
on the set Q × �∗, and why. If it is, show using mathematical induction
that it defines the same function that Definition 2.12 does.

a. For every q ∈ Q, δ∗(q, �) = q; for every y ∈ �∗, σ ∈ �, and q ∈ Q,
δ∗(q, yσ) = δ∗(δ∗(q, y), σ).

b. For every q ∈ Q, δ∗(q, �) = q; for every y ∈ �∗, σ ∈ �, and q ∈ Q,
δ∗(q, σy) = δ∗(δ(q, σ), y).

c. For every q ∈ Q, δ∗(q, �) = q; for every q ∈ Q and every σ ∈ �,
δ∗(q, σ) = δ(q, σ); for every q ∈ Q, and every x and y in �∗,
δ∗(q, xy) = δ∗(δ∗(q, x), y).

2.9. In order to test a string for membership in a language like the one in
Example 2.1, we need to examine only the last few symbols. More
precisely, there is an integer n and a set S of strings of length n such that
for every string x of length n or greater, x is in the language if and only if
x = yz for some z ∈ S.

a. Show that every language L having this property can be accepted by
an FA.

b. Show that every finite language has this property.

c. Give an example of an infinite language that can be accepted by an FA
but does not have this property.

2.10. Let M1 and M2 be the FAs pictured in Figure 2.44, accepting languages
L1 and L2, respectively.
Draw FAs accepting the following languages.

a. L1 ∪ L2

b. L1 ∩ L2

c. L1 − L2

2.11. (For this problem, refer to the proof of Theorem 2.15.) Show that for
every x ∈ �∗ and every (p, q) ∈ Q, δ∗((p, q), x) = (δ∗

1(p, x), δ∗
2(q, x)).

ab

b

b

a
aA B

(a)

CM1

a, ba

b

a
b

X Y ZM2

(b)

Figure 2.44

mar91469 ch02 45-91.tex 79 December 9, 2009 9:24am

Rev.Confirming Pages

80 C H A P T E R 2 Finite Automata and the Languages They Accept

2.12. For each of the following languages, draw an FA accepting it.

a. {a, b}∗{a}
b. {bb, ba}∗
c. {a, b}∗{b, aa}{a, b}∗
d. {bbb, baa}∗{a}
e. {a} ∪ {b}{a}∗ ∪ {a}{b}∗{a}
f. {a, b}∗{ab, bba}
g. {b, bba}∗{a}
h. {aba, aa}∗{ba}∗

2.13. For the FA pictured in Fig. 2.17d, show that there cannot be any other
FA with fewer states accepting the same language. (See Example 2.24,
in which the same result is established for the FA accepting the language
Ln.)

2.14. Let z be a fixed string of length n over the alphabet {a, b}. Using the
argument in Example 2.5, we can find an FA with n + 1 states accepting
the language of all strings in {a, b}∗ that end in z. The states correspond
to the n + 1 distinct prefixes of z. Show that there can be no FA with
fewer than n + 1 states accepting this language.

2.15. Suppose L is a subset of {a, b}∗. If x0, x1, . . . is a sequence of distinct
strings in {a, b}∗ such that for every n ≥ 0, xn and xn+1 are
L-distinguishable, does it follow that the strings x0, x1, . . . are pairwise
L-distinguishable? Either give a proof that it does follow, or find an
example of a language L and strings x0, x1, . . . that represent a
counterexample.

2.16. Let L ⊆ {a, b}∗ be an infinite language, and for each n ≥ 0, let
Ln = {x ∈ L | |x| = n}. Denote by s(n) the number of states an FA must
have in order to accept Ln. What is the smallest that s(n) can be if
Ln 	= ∅? Give an example of an infinite language L ⊆ {a, b}∗ such that for
every n satisfying Ln 	= ∅, s(n) is this minimum number.

2.17. Let L be the language AnBn = {anbn | n ≥ 0}.
a. Find two distinct strings x and y in {a, b}∗ that are not

L-distinguishable.

b. Find an infinite set of pairwise L-distinguishable strings.

2.18. Let n be a positive integer and L = {x ∈ {a, b}∗ | |x| = n and
na(x) = nb(x)}. What is the minimum number of states in any FA that
accepts L? Give reasons for your answer.

2.19. Let n be a positive integer, and let L be the set of all strings in Pal of
length 2n. In other words,

L = {xxr | x ∈ {a, b}n}

mar91469 ch02 45-91.tex 80 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 81

What is the minimum number of states in any FA that accepts L? Give
reasons for your answer.

2.20. Suppose L and L1 are both languages over �, and M is an FA with
alphabet �. Let us say that M accepts L relative to L1 if M accepts every
string in the set L ∩ L1 and rejects every string in the set L1 − L. Note
that this is not in general the same as saying that M accepts the language
L ∩ L1.

Now suppose each of the languages L1, L2, . . . (subsets of �∗)
can be accepted by an FA, Li ⊆ Li+1 for each i, and ∪∞

i=1Li = �∗. For
each i, let ni be the minimum number of states required to accept L

relative to Li . If there is no FA accepting L relative to Li , we say ni

is ∞.

a. Show that for each i, ni ≤ ni+1.

b. Show that if the sequence ni is bounded (i.e., there is a constant C

such that ni ≤ C for every i), then L can be accepted by an FA. Show
in particular that if there is some fixed FA M that accepts L relative to
Li for every i, then M accepts L.

2.21. For each of the following languages L ⊆ {a, b}∗, show that the elements
of the infinite set {an | n ≥ 0} are pairwise L-distinguishable.

a. L = {anba2n | n ≥ 0}
b. L = {aibjak | k > i + j}
c. L = {aibj | j = i or j = 2i}
d. L = {aibj | j is a multiple of i}
e. L = {x ∈ {a, b}∗ | na(x) < 2nb(x)}
f. L = {x ∈ {a, b}∗ | no prefix of x has more b’s than a’s}
g. L = {an3 | n ≥ 1}
h. L = {ww | w ∈ {a, b}∗}

2.22. For each of the languages in Exercise 2.21, use the pumping lemma to
show that it cannot be accepted by an FA.

2.23. By ignoring some of the details in the statement of the pumping lemma,
we can easily get these two weaker statements.

I. If L ⊆ �∗ is an infinite language that can be accepted by an FA, then
there are strings u, v, and w such that |v| > 0 and uviw ∈ L for every
i ≥ 0.

II. If L ⊆ �∗ is an infinite language that can be accepted by an FA, then
there are integers p and q such that q > 0 and for every i ≥ 0, L

contains a string of length p + iq.

For each language L in Exercise 2.21, decide whether statement II is
enough to show that L cannot be accepted by an FA, and explain your

mar91469 ch02 45-91.tex 81 December 9, 2009 9:24am

Rev.Confirming Pages

82 C H A P T E R 2 Finite Automata and the Languages They Accept

answer. If statement II is not sufficient, decide whether statement I is, and
explain your answer.

2.24. Prove the following generalization of the pumping lemma, which can
sometimes make it unnecessary to break the proof into cases. If L can be
accepted by an FA, then there is an integer n such that for any x ∈ L, and
any way of writing x as x = x1x2x3 with |x2| = n, there are strings u, v,
and w such that

a. x2 = uvw

b. |v| > 0

c. For every m ≥ 0, x1uvmwx3 ∈ L

2.25. Find a language L ⊆ {a, b}∗ such that, in order to prove that L cannot be
accepted by an FA, the pumping lemma is not sufficient but the statement
in Exercise 2.24 is.

2.26. The pumping lemma says that if M accepts a language L, and if n is the
number of states of M , then for every x ∈ L satisfying |x| ≥ n, Show
that the statement provides no information if L is finite: If M accepts a
finite language L, and n is the number of states of M , then L can contain
no strings of length n or greater.

2.27. Describe decision algorithms to answer each of the following questions.

a. Given two FAs M1 and M2, are there any strings that are accepted by
neither?

b. Given an FA M = (Q, �, q0, A, δ) and a state q ∈ Q, is there an x

with |x| > 0 such that δ∗(q, x) = q?

c. Given an FA M accepting a language L, and given two strings x and
y, are x and y distinguishable with respect to L?

d. Given an FA M accepting a language L, and a string x, is x a prefix of
an element of L?

e. Given an FA M accepting a language L, and a string x, is x a suffix of
an element of L?

f. Given an FA M accepting a language L, and a string x, is x a
substring of an element of L?

g. Given two FAs M1 and M2, is L(M1) a subset of L(M2)?

h. Given two FAs M1 and M2, is every element of L(M1) a prefix of an
element of L(M2)?

2.28. Suppose L is a language over {a, b}, and there is a fixed integer k such
that for every x ∈ �∗, xz ∈ L for some string z with |z| ≤ k. Does it
follow that there is an FA accepting L? Why or why not?

2.29. For each statement below, decide whether it is true or false. If it is true,
prove it. If it is not true, give a counterexample. All parts refer to
languages over the alphabet {a, b}.
a. If L1 ⊆ L2, and L1 cannot be accepted by an FA, then L2 cannot.

b. If L1 ⊆ L2, and L2 cannot be accepted by an FA, then L1 cannot.

mar91469 ch02 45-91.tex 82 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 83

c. If neither L1 nor L2 can be accepted by an FA, then L1 ∪ L2 cannot.

d. If neither L1 nor L2 can be accepted by an FA, then L1 ∩ L2 cannot.

e. If L cannot be accepted by an FA, then L′ cannot.

f. If L1 can be accepted by an FA and L2 cannot, then L1 ∪ L2 cannot.

g. If L1 can be accepted by an FA, L2 cannot, and L1 ∩ L2 can, then
L1 ∪ L2 cannot.

h. If L1 can be accepted by an FA and neither L2 nor L1 ∩ L2 can, then
L1 ∪ L2 cannot.

i. If each of the languages L1, L2, . . . can be accepted by an FA, then
∪∞

n=1Ln can.

j. If none of the languages L1, L2, . . . can be accepted by an FA, and
Li ⊆ Li+1 for each i, then ∪∞

n=1Ln cannot be accepted by an FA.

2.30. †A set S of nonnegative integers is an arithmetic progression if for some
integers n and p,

S = {n + ip | i ≥ 0}
Let A be a subset of {a}∗, and let S = {|x| | x ∈ A}.
a. Show that if S is an arithmetic progression, then A can be accepted by

an FA.

b. Show that if A can be accepted by an FA, then S is the union of a
finite number of arithmetic progressions.

2.31. †This exercise involves languages of the form

L = {x ∈ {a, b}∗ | na(x) = f (nb(x))}
for some function f from the set of natural numbers to itself. Example
2.30 shows that if f is the function defined by f (n) = n, then L cannot
be accepted by an FA. If f is any constant function (e.g., f (n) = 4), there
is an FA accepting L. One might ask whether this is still true when f is
not restricted quite so severely.

a. Show that if L can be accepted by an FA, the function f must be
bounded (for some integer B, f (n) ≤ B for every n). (Suggestion:
suppose not, and apply the pumping lemma to strings of the form
af (n)bn.)

b. Show that if f (n) = n mod 2, then L can be accepted by an FA.

c. The function f in part (b) is an eventually periodic function; that is,
there are integers n0 and p, with p > 0, such that for every n ≥ n0,
f (n) = f (n + p). Show that if f is any eventually periodic function,
L can be accepted by an FA.

d. Show that if L can be accepted by an FA, then f must be eventually
periodic. (Suggestion: as in part (a), find a class of strings to which
you can apply the pumping lemma.)

2.32. For which languages L ⊆ {a, b}∗ does the equivalence relation IL have
exactly one equivalence class?

mar91469 ch02 45-91.tex 83 December 9, 2009 9:24am

Rev.Confirming Pages

84 C H A P T E R 2 Finite Automata and the Languages They Accept

2.33. Let x be a string of length n in {a, b}∗, and let L = {x}. How many
equivalence classes does IL have? Describe them.

2.34. Show that if L ⊆ �∗, and there is a string x ∈ �∗ that is not a prefix of
an element of L, then the set of all strings that are not prefixes of
elements of L is an infinite set that is one of the equivalence classes
of IL.

2.35. Let L ⊆ �∗ be any language. Show that if [�] (the equivalence class of
IL containing �) is not {�}, then it is infinite.

2.36. For a certain language L ⊆ {a, b}∗, IL has exactly four equivalence
classes. They are [�], [a], [ab], and [b]. It is also true that the three
strings a, aa, and abb are all equivalent, and that the two strings b and
aba are equivalent. Finally, ab ∈ L, but � and a are not in L, and b is
not even a prefix of any element of L. Draw an FA accepting L.

2.37. Suppose L ⊆ {a, b}∗ and IL has three equivalence classes. Suppose they
can be described as the three sets [a], [aa], and [aaa], and also as the
three sets [b], [bb], and [bbb]. How many possibilities are there for the
language L? For each one, draw a transition diagram for an FA
accepting it.

2.38. In each part, find every possible language L ⊆ {a, b}∗ for which the
equivalence classes of IL are the three given sets.

a. {a, b}∗{b}, {a, b}∗{ba}, {�, a} ∪ {a, b}∗{aa}
b. ({a, b}{a}∗{b})∗, ({a, b}{a}∗{b})∗{a}{a}∗, ({a, b}∗{a}∗{b})∗{b}{a}∗
c. {�}, {a}({b} ∪ {a}{a}∗{b})∗, {b}({a} ∪ {b}{b}∗{a})∗

2.39. In Example 2.37, if the language is changed to {anbn | n > 0}, so that it
does not contain �, are there any changes in the partition of {a, b}∗
corresponding to IL? Explain.

2.40. Consider the language L = AEqB = {x ∈ {a, b}∗ | na(x) = nb(x)}.
a. Show that if na(x) − nb(x) = na(y) − nb(y), then x IL y.

b. Show that if na(x) − nb(x) 	= na(y) − nb(y), then x and y are
L-distinguishable.

c. Describe all the equivalence classes of IL.

2.41. Let L ⊆ �∗ be a language, and let L1 be the set of prefixes of elements of
L. What is the relationship, if any, between the two partitions of �∗

corresponding to the equivalence relations IL and IL1 , respectively?
Explain.

2.42. a. List all the subsets A of {a, b}∗ having the property that for some
language L ⊆ {a, b}∗ for which IL has exactly two equivalence classes,
A = [�].

b. For each set A that is one of your answers to (a), how many distinct
languages L are there such that IL has two equivalence classes and [�]
is A?

2.43. Let L = {ww | w ∈ {a, b}∗}. Describe all the equivalence classes of IL.

mar91469 ch02 45-91.tex 84 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 85

2.44. Let L be the language Balanced of balanced strings of parentheses.
Describe all the equivalence classes of IL.

2.45. †Let L be the language of all fully parenthesized algebraic expressions
involving the operator + and the identifier a. (L can be defined
recursively by saying that a ∈ L and (x + y) ∈ L for every x and y in L.)
Describe all the equivalence classes of IL.

2.46. †For a language L over �, and two strings x and y in �∗ that are
L-distinguishable, let

dL,x,y = min{|z| | z distinguishes x and y with respect to L}
a. For the language L = {x ∈ {a, b}∗ | x ends in aba}, find the maximum

of the numbers dL,x,y over all possible pairs of L-distinguishable
strings x and y.

b. If L is the language of balanced strings of parentheses, and if x and y

are L-distinguishable strings with |x| = m and |y| = n, find an upper
bound involving m and n on the numbers dL,x,y .

2.47. For an arbitrary string x ∈ {a, b}∗, denote by x∼ the string obtained by
replacing all a’s by b’s and vice versa. For example, �∼ = � and
(abb)∼ = baa.

a. Define

L = {xx∼ | x ∈ {a, b}∗}
Determine the equivalence classes of IL.

b. Define

L1 = {xy | x ∈ {a, b}∗ and y is either x or x∼}
Determine the equivalence classes of IL1 .

2.48. †Let L = {x ∈ {a, b}∗ | nb(x) is an integer multiple of na(x)}. Determine
the equivalence classes of IL.

2.49. Let L be a language over �. We know that IL is a right-invariant
equivalence relation; i.e., for any x and y in �∗ and any a ∈ �, if x IL y,
then xa IL ya. It follows from Theorem 2.36 that if the set of equivalence
classes of IL is finite, L can be accepted by an FA, and in this case L is
the union of some (zero or more) of these equivalence classes. Show that
if R is any right-invariant equivalence relation such that the set of
equivalence classes of R is finite and L is the union of some of the
equivalence classes of R, then L can be accepted by an FA.

2.50. †If P is a partition of {a, b}∗ (a collection of pairwise disjoint subsets
whose union is {a, b}∗), then there is an equivalence relation R on {a, b}∗
whose equivalence classes are precisely the subsets in P . Let us say that
P is right-invariant if the resulting equivalence relation is.

a. Show that for a subset S of {a, b}∗, S is one of the subsets of some
right-invariant partition (not necessarily a finite partition) of {a, b}∗ if

mar91469 ch02 45-91.tex 85 December 9, 2009 9:24am

Rev.Confirming Pages

86 C H A P T E R 2 Finite Automata and the Languages They Accept

and only if the following condition is satisfied: for every x, y ∈ S, and
every z ∈ {a, b}∗, xz and yz are either both in S or both not in S.

b. To what simpler condition does this one reduce in the case where S is
a finite set?

c. Show that if a finite set S satisfies this condition, then there is a finite
right-invariant partition having S as one of its subsets.

d. For an arbitrary set S satisfying the condition in part (a), there might
be no finite right-invariant partition having S as one of its subsets.
Characterize those sets S for which there is.

2.51. For two languages L1 and L2 over �, we define the quotient of L1 and
L2 to be the language

L1/L2 = {x | for some y ∈ L2, xy ∈ L1}
Show that if L1 can be accepted by an FA and L2 is any language, then
L1/L2 can be accepted by an FA.

2.52. Suppose L is a language over �, and x1, x2, . . . , xn are strings that are
pairwise L-distinguishable. How many distinct strings are necessary in
order to distinguish between the xi’s? In other words, what is the smallest
number k such that for some set {z1, z2, . . . , zk}, any two distinct xi’s are
distinguished, relative to L, by some zl? Prove your answer. (Here is a
way of thinking about the question that may make it easier. Think of the
xi’s as points on a piece of paper, and think of the zl’s as cans of paint,
each zl representing a different primary color. Saying that zl distinguishes
xi and xj means that one of those two points is colored with that primary
color and the other isn’t. We allow a single point to have more than one
primary color applied to it, and we assume that two distinct combinations
of primary colors produce different resulting colors. Then the question is,
how many different primary colors are needed in order to color the points
so that no two points end up the same color?)

2.53. Suppose M = (Q, �, q0, A, δ) is an FA accepting L. We know that if
p, q ∈ Q and p 	≡ q, then there is a string z such that exactly one of the
two states δ∗(p, z) and δ∗(q, z) is in A. Show that there is an integer n

such that for every p and q with p 	≡ q, such a z can be found whose
length is no greater than n, and say what n is.

2.54. Show that L can be accepted by an FA if and only if there is an integer n

such that, for every pair of L-distinguishable strings, the two strings can
be distinguished by a string of length ≤ n. (Use the two previous
exercises.)

2.55. For each of the FAs pictured in Fig. 2.45, use the minimization algorithm
described in Section 2.6 to find a minimum-state FA recognizing the same
language. (It’s possible that the given FA may already be minimal.)

2.56. Suppose that in applying the minimization algorithm in Section 2.6, we
establish some fixed order in which to process the pairs, and we follow the
same order on each pass.

mar91469 ch02 45-91.tex 86 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 87

(e)

(c) (d)

(f)

(b)

ab b b

1 4 62 5

3

a

a

a

b

b

a

(a)

b

a
b

b

a
a

3 4

51

2

a

a

a

b

b

b

a

b

b
b

1 36 7

4 5

2

aa

aa

a

a

b

b

b

b

a

b

1

3

7

6

5

4

2

a

b

a
b

a

a

b
b

a

b

a

b

a

b

1

3

7

6

5

4

2
a

b

a

a

a

b

b
b

a

b

b

a

a

b

1

3

7

6

5

4

a

b

a
b

a

a

b
b

a

b

a

b

2

Figure 2.45

mar91469 ch02 45-91.tex 87 December 9, 2009 9:24am

Rev.Confirming Pages

88 C H A P T E R 2 Finite Automata and the Languages They Accept

2

9

64

3
b

b

b

b

b

a

a

a
a a

a

5a

a a
b

b

bb

1

(g)

8

7

Figure 2.45
Continued

a. What is the maximum number of passes that might be required?
Describe an FA, and an ordering of the pairs, that would require this
number.

b. Is there always a fixed order (depending on M) that would guarantee
that no pairs are marked after the first pass, so that the algorithm
terminates after two passes?

2.57. Each case below defines a language over {a, b}. In each case, decide
whether the language can be accepted by an FA, and prove that your
answer is correct.

a. The set of all strings x beginning with a nonnull string of the
form ww.

b. The set of all strings x containing some nonnull substring of the
form ww.

c. The set of all strings x having some nonnull substring of the form
www. (You may assume the following fact: there are arbitrarily long
strings in {a, b}∗ that do not contain any nonnull substring of the form
www.)

d. The set of odd-length strings with middle symbol a.

e. The set of even-length strings of length at least 2 with the two middle
symbols equal.

f. The set of strings of the form xyx for some x with |x| ≥ 1.

g. The set of non-palindromes.

h. The set of strings in which the number of a’s is a perfect square.

i. The set of strings having the property that in every prefix, the number
of a’s and the number of b’s differ by no more than 2.

mar91469 ch02 45-91.tex 88 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 89

j. The set of strings having the property that in some prefix, the number
of a’s is 3 more than the number of b’s.

k. The set of strings in which the number of a’s and the number of b’s
are both divisible by 5.

l. The set of strings x for which there is an integer k > 1 (possibly
depending on x) such that the number of a’s in x and the number of
b’s in x are both divisible by k.

m. (Assuming that L can be accepted by an FA), Max(L) = {x ∈ L |
there is no nonnull string y so that xy ∈ L}.

n. (Assuming that L can be accepted by an FA), Min(L) = {x ∈ L | no
prefix of x other than x itself is in L}.

2.58. Find an example of a language L ⊆ {a, b}∗ such that L∗ cannot be
accepted by an FA.

2.59. Find an example of a language L over {a, b} such that L cannot be
accepted by an FA but L∗ can.

2.60. Find an example of a language L over {a, b} such that L cannot be
accepted by an FA but LL can.

2.61. †Show that if L is any language over a one-symbol alphabet, then L∗ can
be accepted by an FA.

2.62. †Consider the two FAs in Fig. 2.46.
If you examine them closely you can see that they are really identical,
except that the states have different names: state p corresponds to state A,
q corresponds to B, and r corresponds to C. Let us describe this
correspondence by the “relabeling function” i; that is, i(p) = A,
i(q) = B, i(r) = C. What does it mean to say that under this
correspondence, the two FAs are “really identical”? It means several
things: First, the initial states correspond to each other; second, a state is
an accepting state if and only if the corresponding state is; and finally, the
transitions among the states of the first FA are the same as those among
the corresponding states of the other. For example, if δ1 and δ2 are the
transition functions, then

δ1(p, a) = p and δ2(i(p), a) = i(p)

δ1(p, b) = q and δ2(i(p), b) = i(q)

p

a

q r

a

b

a

b

b

a

A

C

AR

a

a b

B

b

b

Figure 2.46

mar91469 ch02 45-91.tex 89 December 9, 2009 9:24am

Rev.Confirming Pages

90 C H A P T E R 2 Finite Automata and the Languages They Accept

These formulas can be rewritten

δ2(i(p), a) = i(δ1(p, a)) and δ2(i(p), b) = i(δ1(p, b))

and these and all the other relevant formulas can be summarized by the
general formula

δ2(i(s), σ) = i(δ1(s, σ)) for every state s and alphabet symbol σ

In general, if M1 = (Q1, �, q1, A1, δ1) and M2 = (Q2, �, q2, A2, δ2) are
FAs, and i : Q1 → Q2 is a bijection (i.e., one-to-one and onto), we say
that i is an isomorphism from M1 to M2 if these conditions are satisfied:

i. i(q1) = q2

ii. for every q ∈ Q1, i(q) ∈ A2 if and only if q ∈ A1

iii. for every q ∈ Q1 and every σ ∈ �, i(δ1(q, σ)) = δ2(i(q), σ)

and we say M1 is isomorphic to M2 if there is an isomorphism from M1

to M2. This is simply a precise way of saying that M1 and M2 are
“essentially the same”.

a. Show that the relation ∼ on the set of FAs over �, defined by
M1 ∼ M2 if M1 is isomorphic to M2, is an equivalence relation.

b. Show that if i is an isomorphism from M1 to M2 (notation as above),
then for every q ∈ Q1 and x ∈ �∗,

i(δ∗
1(q, x)) = δ∗

2(i(q), x)

c. Show that two isomorphic FAs accept the same language.

d. How many one-state FAs over the alphabet {a, b} are there, no two of
which are isomorphic?

e. How many pairwise nonisomorphic two-state FAs over {a, b} are there,
in which both states are reachable from the initial state and at least one
state is accepting?

f. How many distinct languages are accepted by the FAs in the previous
part?

g. Show that the FAs described by these two transition tables are
isomorphic. The states are 1–6 in the first, A–F in the second; the
initial states are 1 and A, respectively; the accepting states in the first
FA are 5 and 6, and D and E in the second.

q δ1(q, a) δ1(q, b)

1 3 5
2 4 2
3 1 6
4 4 3
5 2 4
6 3 4

q δ2(q, a) δ2(q, b)

A B E
B A D
C C B
D B C
E F C
F C F

mar91469 ch02 45-91.tex 90 December 9, 2009 9:24am

Rev.Confirming Pages

Exercises 91

2.63. Suppose that M1 = (Q1, �, q1, A1, δ1) and M2 = (Q2, �, q2, A2, δ2) are
both FAs accepting the language L, and that both have as few states as
possible. Show that M1 and M2 are isomorphic (see Exercise 2.62). Note
that in both cases, the sets Lq forming the partition of �∗ are precisely the
equivalence classes of IL. This tells you how to come up with a bijection
from Q1 to Q2. What you must do next is to show that the other
conditions of an isomorphism are satisfied.

2.64. Use Exercise 2.63 to describe another decision algorithm to answer the
question “Given two FAs, do they accept the same language?”

mar91469 ch02 45-91.tex 91 December 9, 2009 9:24am

Rev.Confirming Pages

92

C
H

A
P

T
E

R
3

Regular Expressions,
Nondeterminism, and Kleene’s

Theorem

A simple way of describing a language is to describe a finite automaton that
accepts it. As with the models of computation we will study later, an alter-

native approach is to use some appropriate notation to describe how the strings of
the language can be generated. Languages that can be accepted by finite automata
are the same as regular languages, which can be represented by formulas called
regular expressions involving the operations of union, concatenation, and Kleene
star. In the case of finite automata, demonstrating this equivalence (by proving the
two parts of Kleene’s theorem) is simplified considerably by introducing nondeter-
minism, which will also play a part in the computational models we will study later.
Here, although allowing nondeterminism seems at first to enhance the accepting
power of these devices, we will see that it can be eliminated.

3.1 REGULAR LANGUAGES AND REGULAR
EXPRESSIONS

Three of the languages over {a, b} that we considered in Chapter 2 are L1, the lan-
guage of strings ending in aa; L2, the language of strings containing either the sub-
string ab or the substring bba; and L3, the language {aa, aab}∗{b}. Like L3, both
L1 and L2 can be expressed by a formula involving the operations of union, con-
catenation, and Kleene ∗: L1 is {a, b}∗{aa} and L2 is {a, b}∗({ab} ∪ {bba}){a, b}∗.
Languages that have formulas like these are called regular languages. In this sec-
tion we give a recursive definition of the set of regular languages over an alphabet
�, and later in this chapter we show that these are precisely the languages that can
be accepted by a finite automaton.

mar91469 ch03 92-129.tex 92 December 31, 2009 9:37am

Rev.Confirming Pages

3.1 Regular Languages and Regular Expressions 93

Definition 3.1 Regular Languages over an Alphabet ���

If � is an alphabet, the set R of regular languages over � is defined as
follows.

1. The language ∅ is an element of R, and for every a ∈ �, the language {a} is
in R.

2. For any two languages L1 and L2 in R, the three languages

L1 ∪ L2, L1L2, and L∗
1

are elements of R.

The language {�} is a regular language over �, because ∅∗ = {�}. If � =
{a, b}, then L1 = {a, b}∗{aa} can be obtained from the definition by starting with
the two languages {a} and {b} and then using the recursive statement in the defini-
tion four times: The language {a, b} is the union {a} ∪ {b}; {aa} is the concatenation
{a}{a}; {a, b}∗ is obtained by applying the Kleene star operation to {a, b}; and the
final language is the concatenation of {a, b}∗ and {aa}.

A regular language over � has an explicit formula. A regular expression for
the language is a slightly more user-friendly formula. The only differences are that
in a regular expression, parentheses replace {} and are omitted whenever the rules
of precedence allow it, and the union symbol ∪ is replaced by +. Here are a few
examples (see Example 3.5 for a discussion of the last one):

Regular Language Corresponding Regular Expression
∅ ∅
{�} �

{a, b}∗ (a + b)∗

{aab}∗{a, ab} (aab)∗(a + ab)

({aa, bb} ∪ {ab, ba}{aa, bb}∗{ab, ba})∗ (aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

When we write a regular expression like � or aab, which contains neither
+ nor ∗ and corresponds to a one-element language, the regular expression looks
just like the string it represents. A more general regular expression involving one
or both of these operations can’t be mistaken for a string; we can think of it
as representing the general form of strings in the language. A regular expression
describes a regular language, and a regular language can be described by a regular
expression.

We say that two regular expressions are equal if the languages they describe
are equal. Some regular-expression identities are more obvious than others. The
formula

(a∗b∗)∗ = (a + b)∗

mar91469 ch03 92-129.tex 93 December 31, 2009 9:37am

Rev.Confirming Pages

94 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

is true because the language corresponding to a∗b∗ contains both a and b. The
formula

(a + b)∗ab(a + b)∗ + b∗a∗ = (a + b)∗

is true because the first term on the left side corresponds to the strings in {a, b}∗
that contain the substring ab and the second term, b∗a∗, corresponds to the strings
that don’t.

EXAMPLE 3.2 The Language of Strings in {a, b}∗ with an Odd Number of a’s

A string with an odd number of a’s has at least one a, and the additional a’s can be grouped
into pairs. There can be arbitrarily many b’s before the first a, between any two consecutive
a’s, and after the last a. The expression

b∗ab∗(ab∗a)∗b∗

is not correct, because it doesn’t allow b’s between the second a in one of the repeating
pairs ab∗a and the first a in the next pair. One correct regular expression describing the
language is

b∗ab∗(ab∗ab∗)∗

The expression

b∗a(b∗ab∗ab∗)∗

is also not correct, because it doesn’t allow strings with just one a to end with b, and the
expression

b∗a(b∗ab∗a)∗b∗

corrects the mistake. Another correct expression is

b∗a(b + ab∗a)∗

All of these could also be written with the single a on the right, as in

(b + ab∗a)∗ab∗

EXAMPLE 3.3

The Language of Strings in {a, b}∗ Ending with b and Not
Containing aa

If a string does not contain the substring aa, then every a in the string either is followed
immediately by b or is the last symbol in the string. If the string ends with b, then every
a is followed immediately by b. Therefore, every string in the language L of strings that
end with b and do not contain aa matches the regular expression (b + ab)∗. This regular
expression does not describe L, however, because it allows the null string, which does not
end with b. At least one of the two strings b and ab must occur, and so a regular expression
for L is

(b + ab)∗(b + ab)

mar91469 ch03 92-129.tex 94 December 31, 2009 9:37am

Rev.Confirming Pages

3.1 Regular Languages and Regular Expressions 95

EXAMPLE 3.4

Strings in {a,b}∗ in Which Both the Number of a’s and the Number
of b’s Are Even

One of the regular expressions given in Example 3.2, b∗a(b + ab∗a)∗, describes the language
of strings with an odd number of a’s, and the final portion of it, (b + ab∗a)∗, describes the
language of strings with an even number of a’s. We can interpret the two terms inside the
parentheses as representing the two possible ways of adding to the string without changing
the parity (the evenness or oddness) of the number of a’s: adding a string that has no a’s,
and adding a string that has two a’s. Every string x with an even number of a’s has a prefix
matching one of these two terms, and x can be decomposed into nonoverlapping substrings
that match one of these terms.

Let L be the subset of {a, b}∗ containing the strings x for which both na(x) and nb(x)

are even. Every element of L has even length. We can use the same approach to find a
regular expression for L, but this time it’s sufficient to consider substrings of even length.
The easiest way to add a string of even length without changing the parity of the number
of a’s or the number of b’s is to add aa or bb. If a nonnull string x ∈ L does not begin
with one of these, then it starts with either ab or ba, and the shortest substring following
this that restores the evenness of na and nb must also end with ab or ba, because its length
is even and strings of the form aa and bb don’t change the parity of na or nb.

The conclusion is that every nonnull string in L has a prefix that matches the regular
expression

aa + bb + (ab + ba)(aa + bb)∗(ab + ba)

and that a regular expression for L is

(aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

EXAMPLE 3.5Regular Expressions and Programming Languages

In Example 2.9 we built a finite automaton to carry out a very simple version of lexical
analysis: breaking up a part of a computer program into tokens, which are the basic building
blocks from which the expressions or statements are constructed. The last two sections of this
chapter are devoted to proving that finite automata can accept exactly the same languages
that regular expressions can describe, and in this example we construct regular expressions
for two classes of tokens.

An identifier in the C programming language is a string of length 1 or more that
contains only letters, digits, and underscores (“ ”) and does not begin with a digit. If we
use the abbreviations l for “letter,” either uppercase or lowercase, and d for “digit,” then l

stands for the regular expression

a + b + c + . . . + z + A + B + . . . + Z

and d for the regular expression

0 + 1 + 2 + · · · + 9

(which has nothing to do with the integer 45), and a regular expression for the language of
C identifiers is

(l +)(l + d +)∗

mar91469 ch03 92-129.tex 95 December 31, 2009 9:37am

Rev.Confirming Pages

96 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

Next we look for a regular expression to describe the language of numeric “literals,”
which typically includes strings such as 14, +1, −12, 14.3, −.99, 16., 3E14, −1.00E2,
4.1E−1, and .3E+2. Let us assume that such an expression may or may not begin with a
plus sign or a minus sign; it will contain one or more decimal digits, and possibly a decimal
point, and it may or may not end with a subexpression starting with E. If there is such a
subexpression, the portion after E may or may not begin with a sign and will contain one
or more decimal digits.

Our regular expression will involve the abbreviations d and l introduced above, and
we will use s to stand for “sign” (either � or a plus sign or a minus sign) and p for a
decimal point. It is not hard to convince yourself that a regular expression covering all the
possibilities is

s(dd∗(� + pd∗) + pdd∗)(� + Esdd∗)

In some programming languages, numeric literals are not allowed to contain a decimal
point unless there is at least one digit on both sides. A regular expression incorporating this
requirement is

sdd∗(� + pdd∗)(� + Esdd∗)

Other tokens in a high-level language can also be described by regular expressions,
in most cases even simpler than the ones in this example. Lexical analysis is the first
phase in compiling a high-level-language program. There are programs called lexical-
analyzer generators; the input provided to such a program is a set of regular expres-
sions describing the structure of tokens, and the output produced by the program is a
software version of an FA that can be incorporated as a token-recognizing module in a
compiler. One of the most widely used lexical-analyzer generators is lex, a tool pro-
vided in the Unix operating system. It can be used in many situations that require the
processing of structured input, but it is often used together with yacc, another Unix
tool. The lexical analyzer produced by lex creates a string of tokens; and the parser
produced by yacc, on the basis of grammar rules provided as input, is able to deter-
mine the syntactic structure of the token string. (yacc stands for yet another compiler
compiler.)

Regular expressions come up in Unix in other ways as well. The Unix text editor
allows the user to specify a regular expression and searches for patterns in the text that
match it. Other commands such as grep (global regular expression print) and egrep

(extended global regular expression print) allow a user to search a file for strings that match
a specified regular expression.

3.2 NONDETERMINISTIC
FINITE AUTOMATA

The goal in the rest this chapter is to prove that regular languages, defined in
Section 3.1, are precisely the languages accepted by finite automata. In order
to do this, we will introduce a more general “device,” a nondeterministic finite
automaton. The advantage of this approach is that it’s much easier to start with
an arbitrary regular expression and draw a transition diagram for something

mar91469 ch03 92-129.tex 96 December 31, 2009 9:37am

Rev.Confirming Pages

3.2 Nondeterministic Finite Automata 97

that accepts the corresponding language and has an obvious connection to the
regular expression. The only problem is that the something might not be a
finite automaton, although it has a superficial resemblance to one, and we have
to figure out how to interpret it in order to think of it as a physical device
at all.

EXAMPLE 3.6Accepting the Language {aa,aab}∗{b})
There is a close resemblance between the diagram in Figure 3.7 and the regular expression
(aa + aab)∗b. The top loop corresponds to aa, the bottom one corresponds to aab, and
the remaining b-transition corresponds to the last b in the regular expression. To the extent
that we think of it as a transition diagram like that of an FA, its resemblance to the regular
expression suggests that the string aaaabaab, for example, should be accepted, because it
allows us to start at q0, take the top loop once, the bottom loop once, the top loop again,
and finish up with the transition to the accepting state.

This diagram, however, is not the transition diagram for an FA, because there are
three transitions from q0 and fewer than two from several other states. The input string
aaaabaab allows us to reach the accepting state, but it also allows us to follow, or at least
start to follow, other paths that don’t result in acceptance. We can imagine an idealized
“device” that would work by using the input symbols to follow paths shown in the diagram,
making arbitrary choices at certain points. It has to be nondeterministic, in the sense that
the path it follows is not determined by the input string. (If the first input symbol is a, it
chooses whether to start up the top path or down the bottom one.) Even if there were a
way to build a physical device that acted like this, it wouldn’t accept this language in the
same way that an FA could. Suppose we watched it process a string x. If it ended up in
the accepting state at the end, we could say that x was in the language; if it didn’t, all
we could say for sure is that the moves it chose to make did not lead to the accepting
state.

b

a

a

a

b

a

q4

q1

q0

q2 q3

Figure 3.7
Using nondeterminism to accept
{aa,aab}∗{b}.

mar91469 ch03 92-129.tex 97 December 31, 2009 9:37am

Rev.Confirming Pages

98 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

Allowing nondeterminism, by relaxing the rules for an FA, makes it easy to draw
diagrams corresponding to regular expressions. However, we should no longer think of
the diagram as representing an explicit algorithm for accepting the language, because an
algorithm refers to a sequence of steps that are determined by the input and would be the
same no matter how many times the algorithm was executed on the same input.

If the diagram doesn’t represent an explicit accepting algorithm, what good is it? One
way to answer this is to think of the diagram as describing a number of different sequences
of steps that might be followed. We can visualize these sequences for the input string
aaaabaab by drawing a computation tree, pictured in Figure 3.8.

A level of the tree corresponds to the input (the prefix of the entire input string)
read so far, and the states appearing on this level are those in which the device could be,
depending on the choices it has made so far. Two paths in the tree, such as the one that

q1

q0

a a

a a

q4

q2

q3

q1

q0

q0

a a

a

b b

a

q2

q3

q4

q1

q0

q0

a a

a

b

q1

b

a

q2

q3

Figure 3.8
The computation tree for Figure 3.7 and
the input string aaaabaab.

mar91469 ch03 92-129.tex 98 December 31, 2009 9:37am

Rev.Confirming Pages

3.2 Nondeterministic Finite Automata 99

starts by treating the initial a as the first symbol of aab, terminate prematurely, because
the next input symbol does not allow a move from the current state. One path, which
corresponds to interpreting the input string as (aa)(aab)(aab), allows all the input to be
read and ends up in a nonaccepting state. The path in which the device makes the “correct”
choice at each step ends up at the accepting state when all the input symbols have been
read.

If we had the transition diagram in Figure 3.7 and were trying to use it to accept
the language, we could systematically keep track of the current sequence of steps, and
use a backtracking strategy whenever we couldn’t proceed any further or finished in a
nonaccepting state. The result would, in effect, be to search the computation tree using
a depth-first search. In the next section we will see how to develop an ordinary finite
automaton that effectively executes a breadth-first search of the tree, by keeping track after
each input symbol of all the possible states the various sequences of steps could have led
us to.

EXAMPLE 3.9Accepting the Language {aab}∗{a,aba}∗
In this example we consider the regular expression (aab)∗(a + aba)∗. The techniques
of Example 3.6 don’t provide a simple way to draw a transition diagram related to the
regular expression, but Figure 3.10 illustrates another type of nondeterminism that
does.

The new feature is a “�-transition,” which allows the device to change state with no
input. If the input a is received in state 0, there are three options: take the transition from
state 0 corresponding to the a in aab; move to state 3 and take the transition corresponding
to a; and move to state 3 and take the transition corresponding to the a in aba. The diagram
shows two a-transitions from state 3, but because of the �-transition, we would have a
choice of moves even if there were only one.

Figure 3.11 shows a computation tree illustrating the possible sequences of moves for
the input string aababa. The �-transition is drawn as a horizontal arrow, so that as in the
previous example, a new level of the tree corresponds to a new input symbol.

a

b

a

ba

a

4

0

5

Λ
3

a
1 2

Figure 3.10
Using nondeterminism to accept
{aab}∗{a, aba}∗.

mar91469 ch03 92-129.tex 99 December 31, 2009 9:37am

Rev.Confirming Pages

100 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

a

0

1

a

2

b

a a

0

b

5

a

3

3 4

a a

3

3

a

3

4

Λ

Λ

3

b

5
a

a

4

3

Figure 3.11
The computation tree for Figure 3.10 and
the input string aababa.

The string is accepted, because the device can choose to take the first loop, execute the
�-transition, and take the longer loop from state 3.

The transition diagrams in our first two examples show four of the five ingre-
dients of an ordinary finite automaton. The one that must be handled differently is
the transition function δ. For a state q and an alphabet symbol σ , it is no longer
correct to say that δ(q, σ) is a state: There may be no transitions from state q on
input σ , or one, or more than one. There may also be �-transitions. We can incor-
porate both of these features by making two changes: first, enlarging the domain
of δ to include ordered pairs (q, �) as well as the pairs in Q × �; and second,
making the values of δ sets of states instead of individual states.

Definition 3.12 A Nondeterministic Finite Automaton

A nondeterministic finite automaton (NFA) is a 5-tuple (Q, �, q0, A, δ),
where

Q is a finite set of states;

� is a finite input alphabet;

mar91469 ch03 92-129.tex 100 December 31, 2009 9:37am

Rev.Confirming Pages

3.2 Nondeterministic Finite Automata 101

q0 ∈ Q is the initial state;

A ⊆ Q is the set of accepting states;

δ : Q × (� ∪ {�}) → 2Q is the transition function.

For every element q of Q and every element σ of � ∪ {�}, we interpret
δ(q, σ) as the set of states to which the FA can move, if it is in state q and
receives the input σ , or, if σ = �, the set of states other than q to which
the NFA can move from state q without receiving any input symbol.

In Example 3.9, for example, δ(0, a) = {1}, δ(0, �) = {3}, δ(0, b) = ∅, and
δ(0, a) = {3, 4}.

In the case of an NFA M = (Q, �, q0, A, δ), we want δ∗(q, x) to tell us all the
states M can get to by starting at q and using the symbols in the string x. We can
still define the function δ∗ recursively, but the mathematical notation required to
express this precisely is a little more involved, particularly if M has �-transitions.

In order to define δ∗(q, xσ), where x ∈ �∗ and σ ∈ �, we start by considering
δ∗(q, x), just as in the simple case of an ordinary FA. This is now a set of states,
and for each state p in this set, δ(p, σ) is itself a set. In order to include all the
possibilities, we need to consider

⋃
{δ(p, a) | p ∈ δ∗(q, x)}

Finally, we must keep in mind that in the case of �-transitions, “using all the
symbols in the string x” really means using all the symbols in x and perhaps �-
transitions where they are possible. In the recursive step of the definition of δ∗,
once we have the union we have just described, we must consider all the additional
states we might be able to reach from elements of this union, using nothing but
�-transitions.

You can probably see at this point how the following definition will be helpful
in our discussion.

Definition 3.13 The ���-Closure of a Set of States

Suppose M = (Q, �, q0, A, δ) is an NFA, and S ⊆ Q is a set of states.
The �-closure of S is the set �(S) that can be defined recursively as
follows.

1. S ⊆ �(S).
2. For every q ∈ �(S), δ(q, �) ⊆ �(S).

In exactly the same way as in Example 1.21, we can convert the recursive
definition of �(S) into an algorithm for evaluating it, as follows.

mar91469 ch03 92-129.tex 101 December 31, 2009 9:37am

Rev.Confirming Pages

102 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

Algorithm to Calculate ���(S) Initialize T to be S. Make a sequence of passes,
in each pass considering every q ∈ T and adding to T every state in δ(q, �) that
is not already an element. Stop after the first pass in which T is not changed. The
final value of T is �(S). ■

A state is in �(S) if it is an element of S or can be reached from an element
of S using one or more �-transitions.

With the help of Definition 3.13 we can now define the extended transition
function δ∗ for a nondeterministic finite automaton.

Definition 3.14 The Extended Transition Function δδδ∗∗∗ for an
NFA, and the Definition of Acceptance

Let M = (Q, �, q0, A, δ) be an NFA. We define the extended transition
function

δ∗ : Q × �∗ → 2Q

as follows:

1. For every q ∈ Q, δ∗(q,�) = �({q}).
2. For every q ∈ Q, every y ∈ �∗, and every σ ∈ �,

δ∗(q, yσ) = �
(⋃

{δ(p, σ) | p ∈ δ∗(q, y)}
)

A string x ∈ �∗ is accepted by M if δ∗(q0, x) ∩ A 	= ∅. The language
L(M) accepted by M is the set of all strings accepted by M .

For the NFA in Example 3.9, which has only one �-transition, it is easy
to evaluate δ∗(aababa) by looking at the computation tree in Figure 3.11. The
two states on the first level of the diagram are 0 and 3, the elements of the
�-closure of {0}. The states on the third level, for example, are 2, 3, and 4,
because δ∗(0, aa) = {2, 3, 4}. When we apply the recursive part of the definition
to evaluate δ∗(0, aab), we first evaluate⋃

{δ(p, b) | p ∈ {2, 3, 4}} = δ(2, b) ∪ δ(3, b) ∪ δ(4, b) = {0} ∪ ∅ ∪ {5}
= {0, 5}

and then we compute the �-closure of this set, which contains the additional
element 3.

For an NFA M with no �-transitions, both statements in the definition can be
simplified, because for every subset S of Q, �(S) = S.

We illustrate the definition once more in a slightly more extended example.

EXAMPLE 3.15 Applying the Definitions of �(S) and δ∗

We start by evaluating the �-closure of the set {v} in the NFA whose transition diagram is
shown in Figure 3.16. When we apply the algorithm derived from Definition 3.13, after one

mar91469 ch03 92-129.tex 102 December 31, 2009 9:37am

Rev.Confirming Pages

3.2 Nondeterministic Finite Automata 103

w

b

Λq0

a b

t

a

ba u v

Λ

Λ

ab srp

Λ

Λ

Figure 3.16
Evaluating the extended transition function when there are
�-transitions.

pass T is {v, w}, after two passes it is {v, w, q0}, after three passes it is {v, w, q0, p, t}, and
during the next pass it remains unchanged. The set �({s}) is therefore {v,w, q0, p, t}.

If we want to apply the definition of δ∗ to evaluate δ∗(q0, aba), the easiest way is to
begin with �, the shortest prefix of aba, and work our way up one symbol at a time.

δ∗(q0,�) = �({q0})
= {q0, p, t}

δ∗(q0, a) = �
(⋃

{δ(k, a) | k ∈ δ∗(q0, �)}
)

= � (δ(q0, a) ∪ δ(p, a) ∪ δ(t, a))

= � (∅ ∪ {p} ∪ {u})
= �({p, u})
= {p, u}

δ∗(q0, ab) = �
(⋃

{δ(k, b) | k ∈ {p, u}}
)

= �(δ(p, b) ∪ δ(u, b))

= �({r, v})
= {r, v,w, q0, p, t}

δ∗(q0, aba) = �
(⋃

{δ(k, a) | k ∈ {r, v,w, q0, p, t}}
)

= �(δ(r, a) ∪ δ(v, a) ∪ δ(w, a) ∪ δ(q0, a) ∪ δ(p, a) ∪ δ(t, a))

= �({s} ∪ {v} ∪ ∅ ∪ ∅ ∪ {p} ∪ {u})
= �({s, v, p, u})
= {s, v, p, u,w, q0, t}

mar91469 ch03 92-129.tex 103 December 31, 2009 9:37am

Rev.Confirming Pages

104 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

The evaluation of �({r, v}) is very similar to that of �({v}), since there are no �-transitions
from r , and the evaluation of �({s, v, p, u}) is also similar. Because δ∗(q0, aba) contains
the accepting state w, the string aba is accepted.

A state r is an element of δ∗(q, x) if in the transition diagram there is a path from q to
r , in which there are transitions for every symbol in x and the next transition at each step
corresponds either to the next symbol in x or to �. In simple examples, including this one,
you may feel that it’s easier to evaluate δ∗ by looking at the diagram and determining by
inspection what states you can get to. One reason for having a precise recursive definition of
δ∗ and a systematic algorithm for evaluating it is that otherwise it’s easy to overlook things.

3.3 THE NONDETERMINISM IN AN NFA CAN
BE ELIMINATED

We have observed nondeterminism in two slightly different forms in our discussion
of NFAs. It is most apparent if there is a state q and an alphabet symbol σ such
that several different transitions are possible in state q on input σ . A choice of
moves can also occur as a result of �-transitions, because there may be states from
which the NFA can make either a transition on an input symbol or one on no input.

We will see in this section that both types of nondeterminism can be eliminated.
The idea in the second case is to introduce new transitions so that we no longer
need �-transitions: In every case where there is no σ -transition from p to q but the
NFA can go from p to q by using one or more �’s as well as σ , we will introduce
the σ -transition. The resulting NFA may have even more nondeterminism of the
first type than before, but it will be able to accept the same strings without using
�-transitions.

The way we eliminate nondeterminism from an NFA having no �-transitions
is simply to define it away, by finding an appropriate definition of state. We have
used this technique twice before, in Section 2.2 when we considered states that
were ordered pairs, and in Section 2.5 when we defined a state to be a set of
strings. Here a similar approach is already suggested by the way we define the
transition function of an NFA, whose value is a set of states. If we say that for
an element p of a set S ⊆ Q, the transition on input σ can possibly go to several
states, it sounds like nondeterminism; if we say that starting with an element of
the set S, the set of states to which we can go on input σ is⋃

{δ(p, σ) | p ∈ S}
and if both S and this set qualify as states in our new definition, then it sounds as
though we have eliminated the nondeterminism. The only question then is whether
the FA we obtain accepts the same strings as the NFA we started with.

Theorem 3.17
For every language L ⊆ �∗ accepted by an NFA M = (Q, �, q0, A, δ),
there is an NFA M1 with no �-transitions that also accepts L.

mar91469 ch03 92-129.tex 104 December 31, 2009 9:37am

Rev.Confirming Pages

3.3 The Nondeterminism in an NFA Can Be Eliminated 105

Proof
As we have already mentioned, we may need to add transitions in order
to guarantee that the same strings will be accepted even when the
�-transitions are eliminated. In addition, if q0 /∈ A but � ∈ L, we will also
make q0 an accepting state of M1 in order to guarantee that M1 accepts �.

We define

M1 = (Q, �, q0, A1, δ1)

where for every q ∈ Q, δ1(q, �) = ∅, and for every q ∈ Q and every
σ ∈ �,

δ1(q, σ) = δ∗(q, σ)

Finally, we define

A1 =
{

A ∪ {q0} if � ∈ L

A if not

For every state q and every x ∈ �∗, the way we have defined the extended
transition function δ∗ for the NFA M tells us that δ∗(q, x) is the set of
states M can reach by using the symbols of x together with �-transitions.
The point of our definition of δ1 is that we want δ∗

1(q, x) to be the same
set, even though M1 has no �-transitions. This may not be true for x = �,
because δ∗(q, �) = �({q}) and δ1(q, �) = {q}; this is the reason for the
definition of A1 above. We sketch the proof that for every q and every x

with |x| ≥ 1,

δ∗
1(q, x) = δ∗(q, x)

The proof is by structural induction on x. If x = a ∈ �, then by defi-
nition of δ1, δ1(q, x) = δ∗(q, x), and because M1 has no �-transitions,
δ1(q, x) = δ∗

1(q, x) (see Exercise 3.24).
Suppose that for some y with |y| ≥ 1, δ∗

1(q, y) = δ∗(q, y) for every
state q, and let σ be an arbitrary element of �.

δ∗
1(q, yσ) =

⋃
{δ1(p, σ) | p ∈ δ∗

1(q, y)}
=

⋃
{δ1(p, σ) | p ∈ δ∗(q, y)} (by the induction hypothesis)

=
⋃

{δ∗(p, σ) | p ∈ δ∗(q, y)} (by definition of δ1)

The last step in the induction proof is to check that this last expression is
indeed δ∗(q, yσ). This is a special case of the general formula

δ∗(q, yz) =
⋃

{δ∗(p, z) | p ∈ δ∗(q, y)}
See Exercise 3.30 for the details.

Now we can verify that L(M1) = L(M) = L. If the string � is accep-
ted by M , then it is accepted by M1, because in this case q0 ∈ A1 by def-
inition. If � /∈ L(M), then A = A1; therefore, q0 /∈ A1, and � /∈ L(M1).

mar91469 ch03 92-129.tex 105 December 31, 2009 9:37am

Rev.Confirming Pages

106 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

Suppose that |x| ≥ 1. If x ∈ L(M), then δ∗(q0, x) contains an element
of A; therefore, since δ∗(q0, x) = δ∗

1(q0, x) and A ⊆ A1, x ∈ L(M1).
Now suppose |x| ≥ 1 and x ∈ L(M1). Then δ∗

1(q0, x) contains an
element of A1. The state q0 is in A1 only if � ∈ L; therefore, if δ∗

1(q0, x)

(which is the same as δ∗(q0, x)) contains q0, it also contains every element
of A in �({q0}). In any case, if x ∈ L(M1), then δ∗

1(q0, x) must contain
an element of A, which implies that x ∈ L(M).

Theorem 3.18
For every language L ⊆ �∗ accepted by an NFA M = (Q, �, q0, A, δ),
there is an FA M1 = (Q1, �, q1, A1, δ1) that also accepts L.

Proof
Because of Theorem 3.17, it is sufficient to prove the theorem in the case
when M has no �-transitions. The formulas defining δ∗ are simplified
accordingly: δ∗(q, �) = {q} and δ∗(q, xσ) = ∪{δ(p, σ) | p ∈ δ∗(q, x)}.

The finite automaton M1 can be defined as follows, using the subset
construction: The states of M1 are sets of states of M , or

Q1 = 2Q

The initial state q1 of Q1 is {q0}. For every q ∈ Q1 and every σ ∈ �,

δ1(q, σ) =
⋃

{δ(p, σ) | p ∈ q}
and the accepting states of M1 are defined by the formula

A1 = {q ∈ Q1 | q ∩ A 	= ∅}
The last definition is the correct one, because a string x should be accepted
by M1 if, when the NFA M processes x, there is at least one state it might
end up in that is an element of A.

There is no doubt that M1 is an ordinary finite automaton. The expres-
sion δ∗

1(q1, x), however, is a set of states of M—not because M1 is
nondeterministic, but because we have defined states of M1 to be sets
of states of M . The fact that the two devices accept the same language
follows from the fact that for every x ∈ �∗,

δ∗
1(q1, x) = δ∗(q0, x)

and we now prove this formula using structural induction on x. We must
keep in mind during the proof that δ∗

1 and δ∗ are defined in different ways,
because M1 is an FA and M is an NFA.

If x = �, then

δ∗
1(q1, x) = δ∗

1(q1, �)

= q1 (by the definition of δ∗
1)

mar91469 ch03 92-129.tex 106 December 31, 2009 9:37am

Rev.Confirming Pages

3.3 The Nondeterminism in an NFA Can Be Eliminated 107

= {q0} (by the definition of q1)

= δ∗(q0, �) (by the definition of δ∗)

= δ∗(q0, x)

The induction hypothesis is that x is a string for which δ∗
1(q1, x) =

δ∗(q0, x), and we must show that for every σ ∈ �, δ∗
1(q1, xσ) = δ∗(q0, xσ).

δ∗
1(q1, xσ) = δ1(δ

∗
1(q1, x), σ) (by the definition of δ∗

1)

= δ1(δ
∗(q0, x), σ) (by the induction hypothesis)

=
⋃

{δ(p, σ) | p ∈ δ∗(q0, x)} (by the definition of δ1)

= δ∗(q0, xσ) (by the definition of δ∗)

A string x is accepted by M1 precisely if δ∗
1(q1, x) ∈ A1. We know now

that this is true if and only if δ∗(q0, x) ∈ A1; and according to the defi-
nition of A1, this is true if and only if δ∗(q0, x) ∩ A 	= ∅. Therefore, x is
accepted by M1 if and only if x is accepted by M .

We present three examples: one that illustrates the construction in Theorem
3.17, one that illustrates the subset construction in Theorem 3.18, and one in which
we use both to convert an NFA with �-transitions to an ordinary FA.

EXAMPLE 3.19Eliminating �-Transitions from an NFA

Figure 3.20a shows the transition diagram for an NFA M with �-transitions; it is not
hard to see that it accepts the language corresponding to the regular expression (a∗ab

(ba)∗)∗. We show in tabular form the values of the transition function δ, as well as the
values δ∗(q, a) and δ∗(q, b) that will give us the transition function δ1 in the resulting
NFA M1.

q δδδ(q, a) δδδ(q, b) δδδ(q,���) δδδ∗∗∗(q, a) δδδ∗∗∗(q, b)

1 ∅ ∅ {2} {2, 3} ∅
2 {2, 3} ∅ ∅ {2, 3} ∅
3 ∅ {4} ∅ ∅ {1, 2, 4}
4 ∅ {5} {1} {2, 3} {5}
5 {4} ∅ ∅ {1, 2, 4} ∅

For example, the value δ∗(5, a) is the set {1, 2, 4}, because δ(5, a) = {4} and there are
�-transitions from 4 to 1 and from 1 to 2.

Figure 3.20b shows the NFA M1, whose transition function has the values in the last
two columns of the table. In this example, the initial state of M is already an accepting
state, and so drawing the new transitions and eliminating the �-transitions are the only
steps required to obtain M1.

mar91469 ch03 92-129.tex 107 December 31, 2009 9:37am

Rev.Confirming Pages

108 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

1

a

a

5

b

b a

2 3 4

Λ

Λ

1

a

a

b

5

b

a

b a

a

a

a

a

b2 3 4
a

(a)

(b)

Figure 3.20
Eliminating �-transitions from an NFA.

EXAMPLE 3.21 Using the Subset Construction to Eliminate Nondeterminism

We consider the NFA M = (Q, {a, b}, 0, A, δ) in Example 3.6, shown in Figure 3.7. Instead
of labeling states as qi , here we will use only the subscript i. We will describe the FA
M1 = (2Q, {a, b}, {0}, A1, δ1) obtained from the construction in the proof of Theorem 3.18.
Because a set with n elements has 2n subsets, using this construction might require an
exponential increase in the number of states. As this example will illustrate, we can often
get by with fewer by considering only the states of M1 (subsets of Q) that are reachable
from {0}, the initial state of M1.

It is helpful, and in fact recommended, to use a transition table for δ in order to obtain
the values of δ1. The table is shown below.

q δδδ(q, a) δδδ(q, b)

0 {1, 2} {4}
1 {0} ∅
2 {3} ∅
3 ∅ {0}
4 ∅ ∅

The transition diagram for M1 is shown in Figure 3.22. For example, δ1({1, 2}, a) =
δ(1, a) ∪ δ(2, a) = {0, 3}. If you compare Figure 3.22 to Figure 2.23c, you will see that
they are the same except for the way the states are labeled. The subset construction doesn’t
always produce the FA with the fewest possible states, but in this example it does.

mar91469 ch03 92-129.tex 108 December 31, 2009 9:37am

Rev.Confirming Pages

3.3 The Nondeterminism in an NFA Can Be Eliminated 109

a, b

a, bb1, 2

a b

b

b

a
a

a

0, 3

4

0, 4

0

Figure 3.22
Applying the subset construc-
tion to the NFA in Example
3.21.

EXAMPLE 3.23Converting an NFA with �-Transitions to an FA

For the NFA pictured in Figure 3.24a, we show the transition function in tabular form below,
as well as the transition function for the resulting NFA without �-transitions. It is pictured
in Figure 3.24b.

q δδδ(q, a) δδδ(q, b) δδδ(q,���) δδδ∗∗∗(q, a) δδδ∗∗∗(q, b)

1 {1} ∅ {2, 4} {1, 2, 3, 4, 5} {4, 5}
2 {3} {5} ∅ {3} {5}
3 ∅ {2} ∅ ∅ {2}
4 {5} {4} ∅ {5} {4}
5 ∅ ∅ ∅ ∅ ∅

b

1

a
a

3

Λ

5

4

Λ b

b

2

b

1

a
a

3

5

4

b

b

2

(a)

a a

a

a

a, b

a, b

(b)

Figure 3.24
Converting an NFA to an FA.

mar91469 ch03 92-129.tex 109 December 31, 2009 9:37am

Rev.Confirming Pages

110 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

a

1

a

a
3512345 245

3

25

4

45

a, b a

a

a

a

a

a, b

b

b

b

b

b

b

b

b

(c)

f

Figure 3.24
Continued

The subset construction gives us a slightly greater variety of subsets this time, but
still considerably fewer than the total number of subsets of Q. The final FA is shown in
Figure 3.24c.

3.4 KLEENE’S THEOREM, PART 1
If we are trying to construct a device that accepts a regular language L, we can
proceed one state at a time, as in Example 2.22, deciding at each step which
strings it is necessary to distinguish. Adding each additional state may get harder
as the number of states grows, but if we know somehow that there is an FA
accepting L, we can be sure that the procedure will eventually terminate and
produce one.

We have examples to show that for certain regular expressions, nondetermin-
ism simplifies the problem of drawing an accepting device. In this section we will
use nondeterminism to show that we can do this for every regular expression. Fur-
thermore, we now have algorithms to convert the resulting NFA to an FA. The
conclusion will be that on the one hand, the state-by-state approach will always
work; and on the other hand, there is a systematic procedure that is also guaranteed
to work and may be more straightforward.

The general result is one half of Kleene’s theorem, which says that regular
languages are the languages that can be accepted by finite automata. We will discuss
the first half in this section and the second in Section 3.5.

mar91469 ch03 92-129.tex 110 December 31, 2009 9:37am

Rev.Confirming Pages

3.4 Kleene’s Theorem, Part 1 111

Theorem 3.25 Kleene’s Theorem, Part 1
For every alphabet �, every regular language over � can be accepted by
a finite automaton.

Proof
Because of Theorems 3.17 and 3.18, it’s enough to show that every regular
language over � can be accepted by an NFA. The set of regular languages
over � is defined recursively in Definition 3.1, and we will prove the
theorem by structural induction.

The languages ∅ and {σ } (where σ ∈ �) can be accepted by the two
NFAs in Figure 3.26, respectively. The induction hypothesis is that L1

and L2 are both regular languages over � and that for both i = 1 and
i = 2, Li can be accepted by an NFA Mi = (Qi, �, qi, Ai, δi). We can
assume, by renaming states if necessary, that Q1 and Q2 are disjoint. In
the induction step we must show that there are NFAs accepting the three
languages L(M1) ∪ L(M2), L(M1)L(M2), and L(M1)

∗.
In each case we will give an informal definition and a diagram show-

ing the idea of the construction. For simplicity, each diagram shows the
two NFAs M1 and M2 as having two accepting states, both distinct from
the initial state.

An NFA Mu accepting L(M1) ∪ L(M2) is shown in Figure 3.27a.
Its states are those of M1 and M2 and one additional state qu that is the
initial state. The transitions include all the ones in M1 and M2 as well
as �-transitions from qu to q1 and q2, the initial states of M1 and M2.
Finally, the accepting states are simply the states in A1 ∪ A2.

If x ∈ L(M1), for example, Mu can accept x by taking the �-transition
from qu to q1 and then executing the moves that would allow M1 to accept
x. On the other hand, if x is any string accepted by Mu, there is a path
from qu to an element of A1 or A2. The first transition in the path must
be a �-transition, which takes Mu to q1 or q2. Because Q1 ∩ Q2 = ∅, the
remainder of the path causes x to be accepted either by M1 or by M2.

An NFA Mc accepting L(M1)L(M2) is shown in Figure 3.27b. No
new states need to be added to those of M1 and M2. The initial state is q1,
and the accepting states are the elements of A2. The transitions include
all those of M1 and M2 and a new �-transition from every element of
A1 to q2. If x is the string x1x2, where xi is accepted by Mi for each i,
then Mc can process x by moving from q1 to a state in A1 using �’s and
the symbols of x1, taking the �-transition to q2, and moving to a state in
A2 using �’s and the symbols of x2. Conversely, if x is a string accepted

s
and

Figure 3.26

mar91469 ch03 92-129.tex 111 December 31, 2009 9:37am

Rev.Confirming Pages

112 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

Λ
q1

qu

f1

'

q2

f1

'f2

f2 'f2

f2
qc = q1

f1
q2

f1

(a) (b)

qk

f1

Λ

Λ

Λ

Λ

Λ

Λ

f1'

q1

(c)

'

Figure 3.27
Schematic diagram for Kleene’s theorem, Part 1.

by Mc, then at some point during the computation, Mc must execute the
�-transition from an element of A1 to q2. If x1 is the prefix of x whose
symbols have been processed at that point, then x1 must be accepted by
M1; the remaining suffix of x is accepted by M2, because it corresponds
to a path from q2 to an element of A2 that cannot involve any transitions
other than those of M2.

Finally, an NFA Mk accepting L(M1)
∗ is shown in Figure 3.27c.

Its states are the elements of Q1 and a new initial state qk that is also
the only accepting state. The transitions are those of M1, a �-transition
from qk to q1, and a �-transition from every element of A1 to qk . We
can see by structural induction that every element of L(M1)

∗ is accepted.
The null string is, because qk is an accepting state. Now suppose that
x ∈ L(M1)

∗ is accepted and that y ∈ L(M1). When M∗ is in a state in
A1 after processing x, it can take a �-transition to qk and another to q1,
process y so as to end up in an element of A1, and finish up by returning
to qk with a �-transition. Therefore, xy is accepted by M∗.

We can argue in the opposite direction by using mathematical induc-
tion on the number of times M∗ enters the state qk in the process of
accepting a string. If M∗ visits qk only once in accepting x, then x = �,
which is an element of L(M1)

∗. If we assume that n ≥ 1 and that every
string accepted by M∗ that causes M∗ to enter qk n or fewer times is in
L(M1)

∗, then consider a string x that causes M∗ to enter qk n + 1 times

mar91469 ch03 92-129.tex 112 December 31, 2009 9:37am

Rev.Confirming Pages

3.4 Kleene’s Theorem, Part 1 113

and is accepted. Let x1 be the prefix of x that is accepted when M∗

enters qk the nth time, and let x2 be the remaining part of x. By the
induction hypothesis, x1 ∈ L(M1)

∗. In processing x2, M∗ moves to q1 on
a �-transition and then from q1 to an element of A1 using �-transitions
in addition to the symbols of x2. Therefore, x2 ∈ L(M1), and it follows
that x ∈ L(M1)

∗.

EXAMPLE 3.28An NFA Corresponding to ((aa + b)∗(aba)∗bab)∗

The three portions of the induction step in the proof of Theorem 3.25 provide algorithms
for constructing an NFA corresponding to an arbitrary regular expression. These can be
combined into a general algorithm that could be used to automate the process.

The transition diagram in Figure 3.29a shows a literal application of the three algorithms
in the case of the regular expression ((aa + b)∗(aba)∗bab)∗. In this case there is no need
for all the �-transitions that are called for by the algorithms, and a simplified NFA is

Λ

Λ

a
Λ

Λ
Λ

Λ

Λ

b

a

Λ

Λ

a Λ

Λ

b Λ a

Λ

Λ

a Λ b
Λ

b

a

b b

b

a

Λ Λ

a

a

a

b

(a)

(b)

Figure 3.29
Constructing an NFA for the regular expression ((aa + b)∗(aba)∗bab)∗.

mar91469 ch03 92-129.tex 113 December 31, 2009 9:37am

Rev.Confirming Pages

114 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

shown in Figure 3.29b. At least two �-transitions are still helpful in order to preserve the
resemblance between the transition diagram and the regular expression. The algorithms can
often be shortened in examples, but for each step where one of them calls for an extra state
and/or a �-transition, there are examples to show that dispensing with the extra state or the
transition doesn’t always work (see Exercises 3.45–3.48).

3.5 KLEENE’S THEOREM, PART 2
In this section we prove that if L is accepted by a finite automaton, then L is
regular. The proof will provide an algorithm for starting with an FA that accepts
L and finding a regular expression that describes L.

Theorem 3.30 Kleene’s Theorem, Part 2
For every finite automaton M = (Q, �, q0, A, δ), the language L(M) is
regular.

Proof
For states p and q, we introduce the notation L(p, q) for the language

L(p, q) = {x ∈ �∗ | δ∗(p, x) = q}
If we can show that for every p and q in Q, L(p, q) is regular, then it
will follow that L(M) is, because

L(M) =
⋃

{L(q0, q) | q ∈ A}
and the union of a finite collection of regular languages is regular.

We will show that each language L(p, q) is regular by expressing it
in terms of simpler languages that are regular. Strings in L(p, q) cause
M to move from p to q in any manner whatsoever. One way to think
about simpler ways of moving from p to q is to think about the number
of transitions involved; the problem with this approach is that there is no
upper limit to this number, and so no obvious way to obtain a final regular
expression. A similar approach that is more promising is to consider the
distinct states through which M passes as it moves from p to q. We can
start by considering how M can go from p to q without going through
any states, and at each step add one more state to the set through which
M is allowed to go. This procedure will terminate when we have enlarged
the set to include all possible states.

If x ∈ L(p, q), we say x causes M to go from p to q through a state
r if there are nonnull strings x1 and x2 such that x = x1x2, δ∗(p, x1) = r ,
and δ∗(r, x2) = q. In using a string of length 1 to go from p to q, M does
not go through any state. (If M loops from p back to p on the symbol a,
it does not go through p even though the string a causes it to leave p and
enter p.) In using a string of length n ≥ 2, it goes through a state n − 1
times, but if n > 2 these states may not be distinct.

mar91469 ch03 92-129.tex 114 December 31, 2009 9:37am

Rev.Confirming Pages

3.5 Kleene’s Theorem, Part 2 115

Now we assume that Q has n elements and that they are numbered
from 1 to n. For p, q ∈ Q and j ≥ 0, we let L(p, q, j) be the set of
strings in L(p, q) that cause M to go from p to q without going through
any state numbered higher than j .

The set L(p, q, 0) is the set of strings that allow M to go from p to
q without going through any state at all. This includes the set of alphabet
symbols σ for which δ(p, σ) = q, and in the case when p = q it also
includes the string �. In any case, L(p, q, 0) is a finite set of strings and
therefore regular.

Suppose that for some number k ≥ 0, L(p, q, k) is regular for every
p and every q in Q, and consider how a string can be in L(p, q, k + 1).
The easiest way is for it to be in L(p, q, k), because if M goes through no
state numbered higher than k, it certainly goes through no state numbered
higher than k + 1. The other strings in L(p, q, k + 1) are those that cause
M to go from p to q by going through state k + 1 and no higher-numbered
states. A path of this type goes from p to k + 1; it may return to k + 1
one or more times; and it finishes by going from k + 1 to q (see Figure
3.31). On each of these individual portions, the path starts or stops at state
k + 1 but doesn’t go through any state numbered higher than k.

Every string in L(p, q, k + 1) can be described in one of these two
ways, and every string that has one of these two forms is in L(p, q, k + 1).
The resulting formula is

L(p, q, k + 1) = L(p, q, k) ∪ L(p, k + 1, k)L(k + 1, k + 1, k)∗

L(k + 1, q, k)

We have the ingredients, both for a proof by mathematical induction
that L(p, q) is regular and for an algorithm to obtain a regular expression
for this language. L(p, q, 0) can be described by a regular expression;
for each k < n, L(p, q, k + 1) is described by the formula above; and
L(p, q, n) = L(p, q), because the condition that the path go through no
state numbered higher than n is no restriction at all if there are no states
numbered higher than n. As we observed at the beginning of the proof, the
last step in obtaining a regular expression for L(M) is to use the + opera-
tion to combine the expressions for the languages L(q0, q), where q ∈ A.

p
qk +1

Figure 3.31
Going from p to q by going through k + 1.

mar91469 ch03 92-129.tex 115 December 31, 2009 9:37am

Rev.Confirming Pages

116 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

EXAMPLE 3.32 Finding a Regular Expression Corresponding to an FA

Let M be the finite automaton pictured in Figure 3.33.
If we let r(i, j, k) denote a regular expression corresponding to the language L(i, j, k)

described in the proof of Theorem 3.30, then L(M) is described by the regular expression
r(M), where

r(M) = r(1, 1, 3) + r(1, 2, 3)

We might try calculating this expression from the top down, at least until we can see how
many of the terms r(i, j, k) we will need that involve smaller values of k. The recursive
formula in the proof of the theorem tells us that

r(1, 1, 3) = r(1, 1, 2) + r(1, 3, 2)r(3, 3, 2)∗r(3, 1, 2)

r(1, 2, 3) = r(1, 2, 2) + r(1, 3, 2)r(3, 3, 2)∗r(3, 2, 2)

Applying the formula to the expressions r(i, j, 2) that we apparently need, we obtain

r(1, 1, 2) = r(1, 1, 1) + r(1, 2, 1)r(2, 2, 1)∗r(2, 1, 1)

r(1, 3, 2) = r(1, 3, 1) + r(1, 2, 1)r(2, 2, 1)∗r(2, 3, 1)

r(3, 3, 2) = r(3, 3, 1) + r(3, 2, 1)r(2, 2, 1)∗r(2, 3, 1)

r(3, 1, 2) = r(3, 1, 1) + r(3, 2, 1)r(2, 2, 1)∗r(2, 1, 1)

r(1, 2, 2) = r(1, 2, 1) + r(1, 2, 1)r(2, 2, 1)∗r(2, 2, 1)

r(3, 2, 2) = r(3, 2, 1) + r(3, 2, 1)r(2, 2, 1)∗r(2, 2, 1)

At this point it is clear that we need every one of the expressions r(i, j, 1), and we
now start at the bottom and work our way up. The three tables below show the expressions
r(i, j, 0), r(i, j, 1), and r(i, j, 2) for all combinations of i and j . (Only six of the nine
entries in the last table are required.)

p r(p, 1, 0) r(p, 2, 0) r(p, 3, 0)

1 a + � b ∅
2 a � b

3 a b �

a

1

2

3

a

aa

b

bb

Figure 3.33
An FA for which we
want an equivalent regu-
lar expression.

mar91469 ch03 92-129.tex 116 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 117

p r(p, 1, 1) r(p, 2, 1) r(p, 3, 1)

1 a∗ a∗b ∅
2 aa∗ � + aa∗b b

3 aa∗ a∗b �

p r(p, 1, 2) r(p, 2, 2) r(p, 3, 2)

1 a∗(baa∗)∗ a∗(baa∗)∗b a∗(baa∗)∗bb

2 aa∗(baa∗)∗ (aa∗b)∗ (aa∗b)∗b
3 aa∗ + a∗baa∗(baa∗)∗ a∗b(aa∗b)∗ � + a∗b(aa∗b)∗b

For example,

r(2, 2, 1) = r(2, 2, 0) + r(2, 1, 0)r(1, 1, 0)∗r(1, 2, 0)

= � + (a)(a + �)∗(b)

= � + aa∗b

r(3, 1, 2) = r(3, 1, 1) + r(3, 2, 1)r(2, 2, 1)∗r(2, 1, 1)

= aa∗ + (a∗b)(� + aa∗b)∗(aa∗)

= aa∗ + a∗b(aa∗b)∗aa∗

= aa∗ + a∗baa∗(baa∗)∗

The terms required for the final regular expression can now be obtained from the last
table. As you can see, these expressions get very involved, even though we have already
made some attempts to simplify them. There is no guarantee that the final regular expression
is the simplest possible (it seems clear in this case that it is not), but at least we have a
systematic way of generating a regular expression corresponding to L(M).

EXERCISES
3.1. In each case below, find a string of minimum length in {a, b}∗ not in the

language corresponding to the given regular expression.

a. b∗(ab)∗a∗

b. (a∗ + b∗)(a∗ + b∗)(a∗ + b∗)
c. a∗(baa∗)∗b∗

d. b∗(a + ba)∗b∗

3.2. Consider the two regular expressions

r = a∗ + b∗ s = ab∗ + ba∗ + b∗a + (a∗b)∗

a. Find a string corresponding to r but not to s.

b. Find a string corresponding to s but not to r .

c. Find a string corresponding to both r and s.

d. Find a string in {a, b}∗ corresponding to neither r nor s.

mar91469 ch03 92-129.tex 117 December 31, 2009 9:37am

Rev.Confirming Pages

118 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

3.3. Let r and s be arbitrary regular expressions over the alphabet �. In each
case below, find a simpler equivalent regular expression.

a. r(r∗r + r∗) + r∗

b. (r + �)∗

c. (r + s)∗rs(r + s)∗ + s∗r∗

3.4. It is not difficult to show using mathematical induction that for every
integer n ≥ 2, there are nonnegative integers i and j such that
n = 2i + 3j . With this in mind, simplify the regular expression
(aa + aaa)(aa + aaa)∗.

3.5. In each case below, give a simple description of the smallest set of
languages that contains all the “basic” languages ∅, {�}, and {σ } (for
every σ ∈ �) and is closed under the specified operations.

a. union

b. concatenation

c. union and concatenation

3.6. Suppose w and z are strings in {a, b}∗. Find regular expressions
corresponding to each of the languages defined recursively below.

a. � ∈ L; for every x ∈ L, then wx and xz are elements of L.

b. a ∈ L; for every x ∈ L, wx, xw, and xz are elements of L.

c. � ∈ L; a ∈ L; for every x ∈ L, wx and zx are in L.

3.7. Find a regular expression corresponding to each of the following subsets
of {a, b}∗.

a. The language of all strings containing exactly two a’s.

b. The language of all strings containing at least two a’s.

c. The language of all strings that do not end with ab.

d. The language of all strings that begin or end with aa or bb.

e. The language of all strings not containing the substring aa.

f. The language of all strings in which the number of a’s is even.

g. The language of all strings containing no more than one occurrence of
the string aa. (The string aaa should be viewed as containing two
occurrences of aa.)

h. The language of all strings in which every a is followed immediately
by bb.

i. The language of all strings containing both bb and aba as substrings.

j. The language of all strings not containing the substring aaa.

k. The language of all strings not containing the substring bba.

l. The language of all strings containing both bab and aba as
substrings.

m. The language of all strings in which the number of a’s is even and the
number of b’s is odd.

mar91469 ch03 92-129.tex 118 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 119

n. The language of all strings in which both the number of a’s and the
number of b’s are odd.

3.8. a. The regular expression (b + ab)∗(a + ab)∗ describes the set of all
strings in {a, b}∗ not containing the substring x for
any x. (Fill in the blanks appropriately.)

b. The regular expression (a + b)∗(aa∗bb∗aa∗ + bb∗aa∗bb∗)
(a + b)∗ describes the set of all strings in {a, b}∗ containing both
the substrings and . (Fill in the blanks
appropriately.)

3.9. Show that every finite language is regular.
3.10. a. If L is the language corresponding to the regular expression

(aab + bbaba)∗baba, find a regular expression corresponding to
Lr = {xr | x ∈ L}.

b. Using the example in part (a) as a model, give a recursive definition
(based on Definition 3.1) of the reverse er of a regular expression e.

c. Show that for every regular expression e, if the language L

corresponds to e, then Lr corresponds to er .

3.11. The star height of a regular expression r over �, denoted by sh(r), is
defined as follows:

i. sh(∅) = 0.

ii. sh(�) = 0.

iii. sh(σ) = 0 for every σ ∈ �.

iv. sh((rs)) = sh((r + s)) = max(sh(r), sh(s)).

v. sh((r∗)) = sh(r) + 1.

Find the star heights of the following regular expressions.

a. (a(a + a∗aa) + aaa)∗

b. (((a + a∗aa)aa)∗ + aaaaaa∗)∗

3.12. For both the regular expressions in the previous exercise, find an
equivalent regular expression of star height 1.

3.13. Let c and d be regular expressions over �.

a. Show that the formula r = c + rd, involving the variable r , is true if
the regular expression cd∗ is substituted for r .

b. Show that if � is not in the language corresponding to d, then any
regular expression r satisfying r = c + rd corresponds to the same
language as cd∗.

3.14. Describe precisely an algorithm that could be used to eliminate the symbol
∅ from any regular expression that does not correspond to the empty
language.

3.15. Describe an algorithm that could be used to eliminate the symbol � from
any regular expression whose corresponding language does not contain the
null string.

mar91469 ch03 92-129.tex 119 December 31, 2009 9:37am

Rev.Confirming Pages

120 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

3.16. The order of a regular language L is the smallest integer k for which
Lk = Lk+1, if there is one, and ∞ otherwise.

a. Show that the order of L is finite if and only if there is an integer k

such that Lk = L∗, and that in this case the order of L is the smallest k

such that Lk = L∗.

b. What is the order of the regular language {�} ∪ {aa}{aaa}∗?

c. What is the order of the regular language {a} ∪ {aa}{aaa}∗?

d. What is the order of the language corresponding to the regular
expression (� + b∗a)(b + ab∗ab∗a)∗?

3.17. †A generalized regular expression is defined the same way as an ordinary
regular expression, except that two additional operations, intersection and
complement, are allowed. So, for example, the generalized regular
expression abb∅′ ∩ (∅′aaa∅′)′ represents the set of all strings in {a, b}∗
that start with abb and don’t contain the substring aaa.

a. Show that the subset {aba}∗ of {a, b}∗ can be described by a
generalized regular expression with no occurrences of ∗.

b. Can the subset {aaa}∗ be described this way? Give reasons for your
answer.

3.18. Figure 3.34, at the bottom of this page, shows a transition diagram for an
NFA. For each string below, say whether the NFA accepts it.

a. aba

b. abab

c. aaabbb

3.19. Find a regular expression corresponding to the language accepted by the
NFA pictured in Figure 3.34. You should be able to do it without applying
Kleene’s theorem: First find a regular expression describing the most
general way of reaching state 4 the first time, and then find a regular
expression describing the most general way, starting in state 4, of moving
to state 4 the next time.

3.20. For each of the NFAs shown in Figure 3.35 on the next page, find a
regular expression corresponding to the language it accepts.

3.21. On the next page, after Figure 3.35, is the transition table for an NFA with
states 1–5 and input alphabet {a, b}. There are no �-transitions.

321 4

b

b

aa

a, bΛa Λ
5

Figure 3.34

mar91469 ch03 92-129.tex 120 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 121

a b

a

a

a

Λ

b

b

b
a

a

a

a

a

b
a

(a)

b

Λ

(b)

a a

a

a

a

b

b

(c)

Λ

a

b

a

a b

Λb

Λ

Figure 3.35

q δδδ(q, a) δδδ(q, b)

1 {1, 2} {1}
2 {3} {3}
3 {4} {4}
4 {5} ∅
5 ∅ {5}

a. Draw a transition diagram.

b. Calculate δ∗(1, ab).

c. Calculate δ∗(1, abaab).

3.22. A transition table is given for an NFA with seven states.

q δδδ(q, a) δδδ(q, b) δδδ(q,���)

1 ∅ ∅ {2}
2 {3} ∅ {5}
3 ∅ {4} ∅
4 {4} ∅ {1}
5 ∅ {6, 7} ∅
6 {5} ∅ ∅
7 ∅ ∅ {1}

mar91469 ch03 92-129.tex 121 December 31, 2009 9:37am

Rev.Confirming Pages

122 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

Find:

a. �({2, 3})
b. �({1})
c. �({3, 4})
d. δ∗(1, ba)

e. δ∗(1, ab)

f. δ∗(1, ababa)

3.23. A transition table is given for another NFA with seven states.

q δδδ(q, a) δδδ(q, b) δδδ(q,���)

1 {5} ∅ {4}
2 {1} ∅ ∅
3 ∅ {2} ∅
4 ∅ {7} {3}
5 ∅ ∅ {1}
6 ∅ {5} {4}
7 {6} ∅ ∅

Calculate δ∗(1, ba).

3.24. Let M = (Q, �, q0, A, δ) be an NFA with no �-transitions. Show that for
every q ∈ Q and every σ ∈ �, δ∗(q, σ) = δ(q, σ).

3.25. It is easy to see that if M = (Q, �, q0, A, δ) is an FA accepting L, then
the FA M ′ = (Q, �, q0, Q − A, δ) accepts L′ (the FA obtained from
Theorem 2.15 by writing L′ = �∗ − L is essentially M ′). Does this still
work if M is an NFA? If so, prove it. If not, find a counterexample.

3.26. In Definition 3.14, δ∗ is defined recursively in an NFA by first defining
δ∗(q, �) and then defining δ∗(q, yσ), where y ∈ �∗ and σ ∈ �. Give an
acceptable recursive definition in which the recursive part of the definition
defines δ∗(q, σy) instead.

3.27. Which of the following, if any, would be a correct substitute for the
second part of Definition 3.14? Give reasons for your answer.

a. δ∗(q, σy) = �(
⋃{δ∗(r, y) | r ∈ δ(q, σ)})

b. δ∗(q, σy) = ⋃{�(δ∗(r, y)) | r ∈ δ(q, σ)}
c. δ∗(q, σy) = ⋃{δ∗(r, y) | r ∈ �(δ(q, σ))}
d. δ∗(q, σy) = ⋃{�(δ∗(r, y)) | r ∈ �(δ(q, σ))}

3.28. Let M = (Q, �, q0, A, δ) be an NFA. This exercise involves properties of
the �-closure of a set S. Since �(S) is defined recursively, structural
induction can be used to show that �(S) is a subset of some other set.

a. Show that if S and T are subsets of Q for which S ⊆ T , then
�(S) ⊆ �(T).

b. Show that for any S ⊆ Q, �(�(S)) = �(S).

mar91469 ch03 92-129.tex 122 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 123

c. Show that if S, T ⊆ Q, then �(S ∪ T) = �(S) ∪ �(T).

d. Show that if S ⊆ Q, then �(S) = ⋃{�({p}) | p ∈ S}.
e. Draw a transition diagram to illustrate the fact that �(S ∩ T) and

�(S) ∩ �(T) are not always the same. Which is always a subset of the
other?

f. Draw a transition diagram illustrating the fact that �(S ′) and �(S)′ are
not always the same. Which is always a subset of the other? Under
what circumstances are they equal?

3.29. Let M = (Q, �, q0, A, δ) be an NFA. A set S ⊆ Q is called �-closed if
�(S) = S.

a. Show that the union of two �-closed sets is �-closed.

b. Show that the intersection of two �-closed sets is �-closed.

c. Show that for any subset S of Q, �(S) is the smallest �-closed set of
which S is a subset.

3.30. †Let M = (Q, �, q0, A, δ) be an NFA. Show that for every q ∈ Q and
every x, y ∈ �∗,

δ∗(q, xy) =
⋃

{δ∗(r, y) | r ∈ δ∗(q, x)}

3.31. Let M = (Q, �, q0, A, δ) be an FA, and let M1 = (Q, �, q0, A, δ1) be the
NFA with no �-transitions for which δ1(q, σ) = {δ(q, σ)} for every q ∈ Q

and σ ∈ �. Show that for every q ∈ Q and x ∈ �∗, δ∗
1(q, x) = {δ(q, x)}.

Recall that the two functions δ∗ and δ∗
1 are defined differently.

3.32. Let M = (Q, �, q0, A, δ) be an NFA accepting a language L. Assume that
there are no transitions to q0, that A has only one element, qf , and that
there are no transitions from qf .

a. Let M1 be obtained from M by adding �-transitions from q0 to every
state that is reachable from q0 in M . (If p and q are states, q is
reachable from p if there is a string x ∈ �∗ such that q ∈ δ∗(p, x).)
Describe (in terms of L) the language accepted by M1.

b. Let M2 be obtained from M by adding �-transitions to qf from every
state from which qf is reachable in M . Describe in terms of L the
language accepted by M2.

c. Let M3 be obtained from M by adding both the �-transitions in (a)
and those in (b). Describe the language accepted by M3.

3.33. Give an example of a regular language L containing � that cannot be
accepted by any NFA having only one accepting state and no
�-transitions, and show that your answer is correct.

3.34. Can every regular language not containing � be accepted by an NFA
having only one accepting state and no �-transitions? Prove your answer.

3.35. Let M = (Q, �, q0, A, δ) be an NFA, let m be the maximum size of any
of the sets δ∗(q, σ) for q ∈ Q and σ ∈ �, and let x be a string of length n

over the input alphabet.

mar91469 ch03 92-129.tex 123 December 31, 2009 9:37am

Rev.Confirming Pages

124 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

(b)

1 4 5

a

ab b

b
Λ

Λ

Λ
32

2

(a)

1 2 3

4

a

a b

1

5

3
b

1

3

2

b
a

a

a
Λ

Λ

Λ

Λ

Λ

Λ

(c)

4

4

b

a

a

a

a

(d)

(e)

1

4

2 3

5 6

b

a

bb

a

Figure 3.36

a. What is the maximum number of distinct paths that there might be in
the computation tree corresponding to x?

b. In order to determine whether x is accepted by M , it is sufficient to
replace the complete computation tree by one that is perhaps smaller,
obtained by “pruning” the original one so that no level of the tree
contains more nodes than the number of states in M (and no level
contains more nodes than there are at that level of the original tree).
Explain why this is possible, and how it might be done.

3.36. Let M = (Q, �, q0, A, δ) be an NFA. The NFA M1 obtained by
eliminating �-transitions from M might have more accepting states than
M , because the initial state q0 is made an accepting state if
�({q0}) ∩ A 	= ∅. Explain why it is not necessary to make all the states q

for which �({q}) ∩ A 	= ∅ accepting states in M1.

3.37. In each part of Figure 3.36 is pictured an NFA. Use the algorithm
described in the proof of Theorem 3.17 to draw an NFA with no
�-transitions accepting the same language.

3.38. Each part of Figure 3.37 pictures an NFA. Using the subset construction,
draw an FA accepting the same language. Label the final picture so as to
make it clear how it was obtained from the subset construction.

mar91469 ch03 92-129.tex 124 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 125

ba

a, b

321

a, b

baa, b

b

4321

a a, b

1 2 3

a, b

(b)

a a

a

b

1

2

3

4

b

bb

b

a

1

2

3

a

a
a

b

45a a

(d)

a a
1 2 3

ba

a b

54

(f)

a

1

2

3a

a a
b

b

b

45

(g)

a b

(a)

(c)

(e)

b

b

b b

b

Figure 3.37

3.39. Suppose L ⊆ �∗ is a regular language. If every FA accepting L has at
least n states, then every NFA accepting L has at least states. (Fill in
the blank, and explain your answer.)

3.40. Each part of Figure 3.38 shows an NFA. Draw an FA accepting the same
language.

3.41. For each of the following regular expressions, draw an NFA accepting the
corresponding language, so that there is a recognizable correspondence
between the regular expression and the transition diagram.

a. (b + bba)∗a
b. (a + b)∗(abb + ababa)(a + b)∗

mar91469 ch03 92-129.tex 125 December 31, 2009 9:37am

Rev.Confirming Pages

126 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

a

1

Λ

Λ Λ

2

3

4

5 6 7

a

a

b

b

1

2

3

a b

4

5

6

a

b

b

a

b

b

Λ

(a) (b)

b

a

Figure 3.38

c. (a + b)(ab)∗(abb)∗

d. (a + b)∗(abba∗ + (ab)∗ba)

e. (a∗bb)∗ + bb∗a∗

3.42. For part (e) of Exercise 3.41, draw the NFA that is obtained by a literal
application of Kleene’s theorem, without any simplifications.

3.43. Suppose M = (Q, �, q0, A, δ) is an NFA accepting a language L. Let M1

be the NFA obtained from M by adding �-transitions from each element
of A to q0. Describe (in terms of L) the language L(M1).

3.44. Suppose M = (Q, �, q0, A, δ) is an NFA accepting a language L.

a. Describe how to construct an NFA M1 with no transitions to its initial
state so that M1 also accepts L.

b. Describe how to construct an NFA M2 with exactly one accepting state
and no transitions from that state, so that M2 also accepts L.

3.45. Suppose M is an NFA with exactly one accepting state qf that accepts the
language L ⊆ {a, b}∗. In order to find NFAs accepting the languages
{a}∗L and L{a}∗, we might try adding a-transitions from q0 to itself and
from qf to itself, respectively. Draw transition diagrams to show that
neither technique always works.

3.46. In the construction of Mu in the proof of Theorem 3.25, consider this
alternative to the construction described: Instead of a new state qu and
�-transitions from it to q1 and q2, make q1 the initial state of the new
NFA, and create a �-transition from it to q2. Either prove that this works
in general, or give an example in which it fails.

3.47. In the construction of Mc in the proof of Theorem 3.25, consider the
simplified case in which M1 has only one accepting state. Suppose that we
eliminate the �-transition from the accepting state of M1 to q2, and merge
these two states into one. Either show that this would always work in this
case, or give an example in which it fails.

3.48. In the construction of M∗ in the proof of Theorem 3.25, suppose that
instead of adding a new state q0, with �-transitions from it to q1 and to it

mar91469 ch03 92-129.tex 126 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 127

a

a

a

a

bb bb

(a)

b

b

(b)

b

a

a

a

Figure 3.39

from each accepting state of Q1, we make q1 both the initial state and the
accepting state, and create �-transitions from each accepting state of M1

to q0. Either show that this works in general, or give an example in which
it fails.

3.49. Figure 3.39 shows FAs M1 and M2 accepting languages L1 and L2,
respectively. Draw NFAs accepting each of the following languages, using
the constructions in the proof of Theorem 3.25.

a. L∗
2 ∪ L1

b. L2L
∗
1

c. L1L2 ∪ (L2L1)
∗

3.50. Draw NFAs with no �-transitions accepting L1L2 and L2L1, where L1

and L2 are as in Exercise 3.49. Do this by connecting the two given
diagrams directly, by arrows with appropriate labels.

3.51. Use the algorithm of Theorem 3.30 to find a regular expression
corresponding to each of the FAs shown in Figure 3.40. In each case, if
the FA has n states, construct tables showing L(p, q, j) for each j with
0 ≤ j ≤ n − 1.

3.52. Suppose M is an FA with the three states 1, 2, and 3, and 1 is both the
initial state and the only accepting state. The expressions r(p, q, 2)

corresponding to the languages L(p, q, 2) are shown in the table below.
Write a regular expression describing L(M).

p r(p, 1, 2) r(p, 2, 2) r(p, 3, 2)

1 � aa∗ b + aa∗b
2 ∅ a∗ a∗b
3 a aaa∗ � + b + ab + aaa∗b

3.53. Suppose �1 and �2 are alphabets, and the function f : �∗
1 → �∗

2 is a
homomorphism; i.e., f (xy) = f (x)f (y) for every x, y ∈ �∗

1 .

a. Show that f (�) = �.

mar91469 ch03 92-129.tex 127 December 31, 2009 9:37am

Rev.Confirming Pages

128 C H A P T E R 3 Regular Expressions, Nondeterminism, and Kleene’s Theorem

1 b
b

a

a

bb
a

a

a

2

3

1 2 3

b

a, b

2

3

1

4

b
a

a, b

a, b

a, b

2

3

1

4

a

b

b b

b
a

a

(d)(c)

(b)(a)

a

Figure 3.40

b. Show that if L ⊆ �∗
1 is regular, then f (L) is regular. (f (L) is the set

{y ∈ �∗
2 | y = f (x) for some x ∈ L}.)

c. Show that if L ⊆ �∗
2 is regular, then f −1(L) is regular. (f −1(L) is the

set {x ∈ �∗
1 | f (x) ∈ L}.)

3.54. Suppose M = (Q, �, q0, A, δ) is an NFA. For two (not necessarily
distinct) states p and q, we define the regular expression e(p, q) as
follows: e(p, q) = l + r1 + r2 + · · · + rk , where l is either � (if δ(p, �)

contains q) or ∅, and the ri’s are all the elements σ of � for which
δ(p, σ) contains q. It’s possible for e(p, q) to be ∅, if there are no
transitions from p to q; otherwise, e(p, q) represents the “most general”
transition from p to q.

If we generalize this by allowing e(p, q) to be an arbitrary regular
expression over �, we get what is called an expression graph. If p and q

are two states in an expression graph G, and x ∈ �∗, we say that x allows
G to move from p to q if there are states p0, p1, . . . , pm, with p0 = p

and pm = q, such that x corresponds to the regular expression
e(p0, p1)e(p1, p2) . . . e(pn−1, pn). This allows us to say how G accepts a
string x (x allows G to move from the initial state to an accepting state),
and therefore to talk about the language accepted by G. It is easy to see
that in the special case where G is simply an NFA, the two definitions for
the language accepted by G coincide. It is also not hard to convince

mar91469 ch03 92-129.tex 128 December 31, 2009 9:37am

Rev.Confirming Pages

Exercises 129

yourself, using Theorem 3.25, that for any expression graph G, the
language accepted by G can be accepted by an NFA.

We can use the idea of an expression graph to obtain an alternate
proof of Theorem 3.30, as follows. Starting with an FA M accepting L,
we may easily convert it to an NFA M1 accepting L, so that M1 has no
transitions to its initial state q0, exactly one accepting state qf (which is
different from q0), and no transitions from qf . The remainder of the proof
is to specify a reduction technique to reduce by one the number of states
other than q0 and qf , obtaining an equivalent expression graph at each
step, until q0 and qf are the only states remaining. The regular expression
e(q0, qf) then describes the language accepted. If p is the state to be
eliminated, the reduction step involves redefining e(q, r) for every pair of
states q and r other than p.

Describe in more detail how this reduction can be done. Then apply
this technique to the FAs in Figure 3.40 to obtain regular expressions
corresponding to their languages.

mar91469 ch03 92-129.tex 129 December 31, 2009 9:37am

