CHAPTEHR

Context-Free Languages

egular languages and finite automata are too simple and too restrictive to be
R able to handle languages that are at all complex. Using context-free grammars
allows us to generate more interesting languages; much of the syntax of a high-level
programming language, for example, can be described this way. In this chapter
we start with the definition of a context-free grammar and look at a number of
examples. A particularly simple type of context-free grammar provides another
way to describe the regular languages we discussed in Chapters 2 and 3. Later
in the chapter we study derivations in a context-free grammar, how a derivation
might be related to the structure of the string being derived, and the presence of
ambiguity in a grammar, which can complicate this relationship. We also consider a
few ways that a grammar might be simplified to make it easier to answer questions
about the strings in the corresponding language.

4.1 |USING GRAMMAR RULES TO DEFINE A
LANGUAGE

The term grammar applied to a language like English refers to the rules for con-
structing phrases and sentences. For us a grammar is also a set of rules, simpler
than the rules of English, by which strings in a language can be generated. In the
first few examples in this section, a grammar is another way to write the recursive
definitions that we used in Chapter 1 to define languages.

m The language AnBn

In Example 1.18, we defined the language AnBn = {a"b" | n > 0} using this recursive
definition:

1. A € AnBn.
2. for every S € AnBn, aSb € AnBn.

130

4.1 Using Grammar Rules to Define a Language

Let us think of S as a variable, representing an arbitrary string in AnBn. Rule 1,
which we rewrite as S — A, says that the arbitrary string could simply be A, obtained by
substituting A for the variable S. To obtain any other string, we must begin with rule 2,
which we write S — aSb. This rule says that a string in AnBn can have the form aSb
(or that S can be replaced by aSbh), where the new occurrence of S represents some other
element of AnBn. Replacing S by aSb is the first step in a derivation of the string, and the
remaining steps will be further applications of rules 1 and 2 that will give a value to the
new S. The derivation will continue as long as the string contains the variable S, so that in
this example the last step will always be to replace S by A.

If @ and B are strings, and « contains at least one occurrence of S, the notation

a=p

will mean that $ is obtained from o« by using one of the two rules to replace a single
occurrence of S by either A or aSb. Using this notation, we would write

S = aSh = aaSbb = aaaSbbb = aaabbb

to describe the sequence of steps (three applications of rule 2, then one application of rule
1) we used to derive the string aaabbb € AnBn.
The notation is simplified further by writing rules 1 and 2 as

S— A|aSb

and interpreting | as “or”. When we write the rules of a grammar this way, we give con-
catenation higher precedence than |, which means in our example that the two alternatives
in the formula S — A | aSb are A and aSbh, not A and a.

The Language Expr

In Example 1.19 we considered the language Expr of algebraic expressions involving the
binary operators + and =, left and right parentheses, and a single identifier a. We used the
following recursive definition to describe Expr:

1. a € Expr.
2. Forevery x and y in Expr, x +y and x x y are in Expr.
3. For every x € Expr, (x) € Expr.

Rule 2 involves two different letters x and y, because the two expressions being combined
with either 4+ or * are not necessarily the same. However, they both represent elements
of Expr, and we still need only one variable in the grammar rules corresponding to the
recursive definition:

S—=alS+S|ISxS5](S)
To derive the string a + (a * a), for example, we could use the sequence of steps
S=>=S4+S=a+S=a+S)=a+S*xS)=a+@xS)=a+ (ax*xa)

The string S 4 S that we obtain from the first step of this derivation suggests that the final
expression should be interpreted as the sum of two subexpressions. The subexpressions we

131

132

CHAPTER 4 Context-Free Languages

end up with are obviously not the same, but they are both elements of Expr and can therefore
both be derived from S.

A derivation of an expression in Expr is related to the way we choose to interpret
the expression, and there may be several possible choices. The expression a + a * a, for
example, has at least these two derivations:

S=5S+S=2a+S=2a+SxS=a+axS=a+axa
and
S=5xS=85+85xS=2a+S*S=a+axS=a+axa

The first steps in these two derivations yield the strings S 4+ S and S * S, respectively. The
first derivation suggests that the expression is the sum of two subexpressions, the second
that it is the product of two subexpressions.

The rules of precedence normally adopted for algebraic expressions say, among other
things, that multiplication has higher precedence than addition. If we adopt this precedence
rule, then when we evaluate the expression a + a * a, we first evaluate the product a * a,
so that we interpret the expression as a sum, not a product. Because there is nothing in our
grammar rules to suggest that the first derivation is preferable to the second, one possible
conclusion is that it might be better to use another grammar, in which every string has
essentially only one derivation. We will return to this question in Section 4.4, when we
discuss ambiguity in a grammar.

We have made the language Expr simple by restricting the expressions in several ways.
We could easily add grammar rules to allow other operations besides + and x*; if we wanted
to allow other “atomic” expressions besides the identifier ¢ (more general identifiers, or
numeric literals such as 16 and 1.3E—2, or both), we could add another variable, A, to get

S—>A[S+S|5*xS5](S)

and then look for grammar rules beginning with A that would generate all the subexpres-
sions we wanted. The next example involves another language L for which grammar rules
generating L require more than one variable.

Palindromes and Nonpalindromes

We see from Example 1.18 that the language Pal of palindromes over the alphabet {a, b}
can be generated by the grammar rules

S— Ala|b|aSa| bSb

What about its complement NonPal? The last two grammar rules in the definition of Pal
still seem to work: For every nonpalindrome x, both axa and bxb are also nonpalindromes.
But a recursive definition of NonPal cannot be as simple as the one for Pal, because there
is no finite set of strings comparable to {A, a, b} that can serve as basis elements in the
definition (see Exercise 4.6).

To find the crucial feature of a nonpalindrome, let’s look at one, say

x = abbbbaaba

4.1 Using Grammar Rules to Define a Language

The string x is abyba, where y = bbbaa. Working our way in from the ends, comparing the
symbol on the left with the one on the right, we wouldn’t know until we got to y whether
x was a palindrome or not, but once we saw that y looked like bza for some string z, it
would be clear, even without looking at any symbols of z. Here is a definition of NonPal:

1. For every A € {a, b}*, aAb and bAa are elements of NonPal,;
2. For every S in NonPal, aSa and bSb are in NonPal.

In order to obtain grammar rules generating NonPal, we can introduce A as a second
variable, representing an arbitrary element of {a, b}*, and use grammar rules starting with
A that correspond to the recursive definition in Example 1.17. The complete set of rules for
NonPal is

S — aSa | bSb | aAb | bAa
A— Aa | Ab | A

A derivation of abbbbaaba in this grammar is

S = aSa = abSba = abbAaba
= abbAaaba = abbAbaaba = abbAbbaaba = abbbbaaba

In order to generate a language L using the kinds of grammars we are discussing, it is
often necessary to include several variables. The start variable is distinguished from the
others, and we will usually denote it by S. Each remaining variable can be thought of as
representing an arbitrary string in some auxiliary language involved in the definition of L
(the language of all strings that can be derived from that variable). We can still interpret the
grammar as a recursive definition of L, except that we must extend our notion of recursion
to include mutual recursion: rather than one object defined recursively in terms of itself,
several objects defined recursively in terms of each other.

English and Programming-Language Syntax

133

EXAMPLE4.4

You can easily see how grammar rules can be used to describe simple English syntax. Many
useful sentences can be generated by the rule

<declarative sentence> — <subject phrase> <verb phrase> <object>

provided that reasonable rules are found for each of the three variables on the right. Three
examples are “haste makes waste”, “the ends justify the means”, and “we must extend our
notion” (from the last sentence in Example 4.3). You can also see how difficult it would be
to find grammars of a reasonable size that would allow more sophisticated sentences without
also allowing gibberish. (Try to formulate some rules to generate the preceding sentence,
“You can also see how ... gibberish”. Unless your approach is to provide almost as many
rules as sentences, the chances are that the rules will also generate strings that aren’t really
English sentences.)

The syntax of programming languages is much simpler. Two types of statements in C
are if statements and for statements.

<statement> — ... | <if — statement> | <for — statement>

134 CHAPTER 4 Context-Free Languages

Assuming we are using “if statements” to include both those with else and those without,
we might write
<if — statement> — if (<expr>) <statement> |
if (<expr>) <statement> else <statement>
< for — statement> — for (<expr>; <expr>; <expr>) <statement>
where <expr> is another variable, for which the productions would need to be described.
The logic of a program often requires that a “statement” include several statements.
We can define a compound statement as follows:
<compound statement> — { <statement-sequence> }

<statement-sequence> — A | <statement> <statement-sequence>

A syntax diagram such as the one in Figure 4.5 accomplishes the same thing.

— { > } —
<—<-(statement)4)

Figure 4.5 |

A path through the diagram begins with {, ends with }, and traverses the loop zero or more
times.

4.2 | CONTEXT-FREE GRAMMARS:
DEFINITIONS AND MORE EXAMPLES

Definition 4.6 Context-Free Grammars

A context-free grammar (CFG) is a 4-tuple G = (V, X, S, P), where V
and X are disjoint finite sets, S € V, and P is a finite set of formulas of
the form A — «, where A € V and o € (V U X)*.

Elements of ¥ are called terminal symbols, or terminals, and elements
of V are variables, or nonterminals. S is the start variable, and elements
of P are grammar rules, or productions.

As in Section 4.1, we will reserve the symbol — for productions in a grammar,
and we will use = for a step in a derivation. The notations

a="p and a="p

refer to a sequence of n steps and a sequence of zero or more steps, respectively,
and we sometimes write

o= B or a =% or a=g;p

4.2 Context-Free Grammars: Definitions and More Examples

to indicate explicitly that the steps involve productions in the grammar G. If G =
(V, %, S8, P), the first statement means that there are strings o, ap, and y in
(VU X)* and a production A — y in P such that

o =ajAar
B=aya

In other words, § can be obtained from « in one step by applying the pro-
duction A — y. Whenever there is no chance of confusion, we will drop the
subscript G.

In the situation we have just described, in which o« = ajAay and B8 = a1y oy,
the formula « = B represents a step in a derivation; if our definition of productions
allowed « — B to be a production, we might say that the variable A could be
replaced by y, depending on its context—i.e., depending on the values of «; and
or. What makes a context-free grammar context-free is that the left side of a
production is a single variable and that we may apply the production to any string
containing that variable, independent of the context. In Chapter 8 we will consider
grammars, and productions, that are not context-free.

Definition 4.7 The Language Generated by a CFG

If G=(V,X%,S, P)is a CFG, the language generated by G is
L(G)={xe x| S=¢x}

A language L is a context-free language (CFL) if there is a CFG G with
L = L(G).

The Language AEgQB

135

EXAMPLE4.8

Exercises 1.65 and 4.16 both allow us to find context-free grammars for the language
AEgB = {x € {a, b}* | n,(x) = np(x)} that use only the variable S. In this example we
consider a grammar with three variables that is based on a definition involving mutual
recursion.

If x is a nonnull string in AEgB, then either x = ay, where y € L, = {z | ny(z) =
n,(z) + 1}, or x = by, where y € L, = {z | n,(z) = n,(z) + 1}. Let us use the variables A
and B to represent L, and L, respectively, and try to find a CFG for AEgB that involves
the three variables S, A, and B. So far, the appropriate productions are

S— A |aB|bA

All we need are productions starting with A and B.

If a string x in L, starts with a, then the remaining substring is an element of AEgB.
What if it starts with »? Then x = by, where y has two more a’s than b’s. The crucial obser-
vation here is that every string y having two more a’s than b’s must be the concatenation of
two strings y; and y,, each with one more a. To see this, think about the relative numbers
of a’s and b’s in each prefix of y; specifically, for each prefix z, let d(z) = n,(z) — ny(2)-

136

CHAPTER 4 Context-Free Languages

The shortest prefix of y is A, and d(A) is obviously 0; the longest prefix is y itself, and
d(y) = 2 by assumption. Each time we add a single symbol to a prefix, the d-value changes
(either increases or decreases) by 1. If a quantity starts at 0, changes by 1 at each step, and
ends up at 2, it must be 1 at some point! Therefore, for some string y; with d(y,) =1,
and some other string y,, y = y1y2, and since d(y) = d(y;) + d(y2) = 2, d(y,) must also
be 1.

The argument is exactly the same for a string in L, that starts with a. We conclude
that AEgB is generated by the CFG with productions

S— A|aB | bA
A — aS | bAA
B — bS | aBB

One feature of this CFG is that if we call A the start variable instead of S, it also works as
a grammar generating the language L,, and similarly for B and L,.

We can obtain many more examples of context-free languages from the fol-
lowing theorem, which describes three ways of starting with CFLs and constructing
new ones.

Theorem 4.9

If L, and L, are context-free languages over an alphabet X, then L; U L,,
LiL, and L7 are also CFLs.

Proof

Suppose G| = (V;, 2, S;, P;) generates L and G, = (Va, X, S», P») gen-
erates L,. We consider the three new languages one at a time, and in the
first two cases we assume, by renaming variables if necessary, that G
and G, have no variables in common.

1. We construct a CFG G, = (V,, X, S,, P,) generating L, U L,, as follows.
S, is a new variable not in either V; or V,,

Vu:V1UV2U{Su}
and
P,=PUPU{S, — S| S}

For every x € Ly U L,, we can derive x in the grammar G, by starting with
either S, — S; or S, — S, and continuing with the derivation in either G,
or G,. On the other hand, if S, :>*(‘;U x, the first step in any derivation must
be either S, = S; or S, = S,, because those are the only productions with
left side S,. In the first case, the remaining steps must involve productions in
G, because no variables in V, can appear, and so x € L;; similarly, in the
second case x € L,. Therefore, L(G,) = L; U L,.

4.2 Context-Free Grammars: Definitions and More Examples

2. To obtain G, = (V,, X, S., P.) generating L,L,, we add the single variable
S, to the set V, U V;, just as in the union, and we let

PC=P1UP2U{SC_>SIS2}

For a string x = x1x, € L1L,, where x; € L, and x, € L,, a derivation of x
in G, is
Sc = S1Sz =>* xlSz i* X1X2

where the second step (actually a sequence of steps) is a derivation of x; in
G, and the third step is a derivation of x, in G,. Conversely, since the first
step in any derivation in G, must be S, = S 5,, every string x derivable
from S. must have the form x = x;x,, where for each i, x; is derivable from
S; in G.. But because V; NV, = @, being derivable from S; in G. means
being derivable from S; in G;, so that x € L,L,.

3. We can define a CFG G* = (V, X, S, P) generating L} by letting
V =V, U{S}, where S is a variable not in V;, and adding productions that
generate all possible strings S¥, where k > 0. Let

Every string in L} is an element of L(G;)* for some k > 0 and can
therefore be obtained from S’f; therefore, L} € L(G*). On the other hand,
every string x in L(G*) must be derivable from S{‘ for some k£ > 0, and we
may conclude that x € L(G)* € L(G,)*, because the only productions in P

starting with S; are the ones in G;.

The Language {ab/ck | j+# i+ k}

137

EXAMPLE4.10

Let L be the language {a'b/c* | j # i +k} C {a, b, c}*. The form of each element of L
might suggest that we try expressing L as the concatenation of three languages L;, L,,
and Li, which contain strings of a’s, strings of b’s, and strings of c¢’s, respectively. This
approach doesn’t work. Both a?b*c® and a’b*c? are in L; if a> were in L, b* were in L,,
and ¢? were in L, then a’b*c?, which isn’t an element of L, would be in L L,L5.

Instead, we start by noticing that j # i + k means that either j > i +k or j <i +k,

so that L is the union
L=L UL, ={a'bic* | j>i+klU{a'b/c*|j<i+k)
There’s still no way to express L; or L, as a threefold concatenation using the approach we

tried originally (see Exercise 4.11), but L, can be expressed as a concatenation of a slightly
different form. Observe that for any natural numbers i and k,

al btk — (aibi)(bkck)
and a string in L, differs from a string like this only in having at least one extra b in the
middle. In other words,
Li=MNP ={a'b |i=>0}{p" | m>0} (b | k=0
and it will be easy to find CFGs for the three languages M, N, and P.

138

CHAPTER 4 Context-Free Languages

L, is slightly more complicated. For a string a’b/c* in L, knowing that j > i + k tells
us in particular that j > i; for a string a’b’c* in L,, such that j <i +k, it is helpful to
know either how j is related to i or how it is related to k. Let us also split L, into a union
of two languages:

Ly=L;ULy={a'bic* | j<i} U {adbc|i<j<i+k)
Now we can use the same approach for L3 and L4 as we used for L. We can write a string
in L3 as
a'b’ct = (@) (@'b’) (")
where i — j > 0, j > 0, and k > 0 (and these inequalities are the only constraints on i — j,
Jj, and k), and a string in L4 as
a'bick = (@'b’y (BT (kT

where i, j —i, and kK — j +i are natural numbers that are arbitrary except that i > 0,
j—i>0,and k — j+i >0 (ie., k+i > j). It follows that

Ly=QRT ={a' |i>0}{bc"|i=>0}{c|i=>0)

Ly=UVW ={a'b' |i>0}{bc"|i=0}{c|i>0}
We have now expressed L as the union of the three languages L, L3, and L4, and each of

these three can be written as the concatenation of three languages. The context-free grammar
we are looking for will have productions

S — S] | S3 | S4 S] — SMSNSP S3 — SQSRST S4 e SUSVSW

as well as productions that start with the nine variables Sy, Sy, ..., Sw. We present pro-
ductions to take care of the first three of these and leave the last six to you.

Sy — aSyb | A Sy —=>bSy | b Sp — bSyc | A

4.3 | REGULAR LANGUAGES AND REGULAR
GRAMMARS

The three operations in Theorem 4.9 are the ones involved in the recursive defini-
tion of regular languages (Definition 3.1). The “basic” regular languages over an
alphabet ¥ (the languages ¥ and {o}, for every o € X) are context-free languages.
These two statements provide the ingredients that would be necessary for a proof
using structural induction that every regular language is a CFL.

A CFG Corresponding to a Regular Expression

Let L C {a, b}* be the language corresponding to the regular expression

bba(ab)* + (ab + ba*b)*ba

4.3 Regular Languages and Regular Grammars 139

A literal application of the constructions in Theorem 4.9 would be tedious: the expres-
sion ab + ba*b alone involves all three operations, including three uses of concatena-
tion. We don’t really need to introduce separate variables for the languages {a} and {b},
and there are other similar shortcuts to reduce the number of variables in the grammar.
(Keep in mind that just as when we constructed an NFA for a given regular expres-
sion in Chapter 3, sometimes a literal application of the constructions helps to avoid
errors.)

Here we might start by introducing the productions S — §; | S,, since the language is
a union of two languages L; and L,. The productions

S1 — Siab | bba

are sufficient to generate L. L, is complicated enough that we introduce another variable
T for the language corresponding to ab 4 ba*b, and the productions

S, — TS, | ba
will then take care of L,. Finally, the productions

T — ab | bUDb U—aU | A

are sufficient to generate the language represented by 7'. The complete CFG for L has five
variables and the productions

S—> 818 S, — Siab | bba S, — TS, | ba
T — ab | bUDb U—aU | A

Not only can every regular language be generated by a context-free grammar,
but it can be generated by a CFG of a particularly simple form. To introduce this
type of grammar, we consider the finite automaton in Figure 4.12, which accepts
the language {a, b}*{ba}.

Figure 4.12|
An FA accepting {a, b}*{ba}.

140

CHAPTER 4 Context-Free Languages

The idea behind the corresponding CFG is that states in the FA correspond to
variables in the grammar, and for each transition

O——©

the grammar will have a production T — o U. The six transitions in the figure
result in the six productions

S —aS | bA A — bA | aB B — bA | aS

The only other productions in the grammar will be A-productions (i.e., the right
side will be A), and so the current string in an uncompleted derivation will consist
of a string of terminal symbols and a single variable at the end. The sequence of
transitions

SAALASBSs3 A% B
corresponds to the sequence of steps
S = bA = bbA = bbaB = bbaaS = bbaabA = bbaabaB

We can see better now how the correspondence between states and variables makes
sense: a state is the way an FA “remembers” how to react to the next input symbol,
and the variable at the end of the current string can be thought of as the state
of the derivation—the way the derivation remembers, for each possible terminal
symbol, how to generate the appropriate little piece of the string that should come
next.

The way the string bbaaba is finally accepted by the FA is that the current
state B is an accepting state, and the way the corresponding derivation terminates
is that the variable B at the end of the current string will be replaced by A.

Definition 4.13 Regular Grammars

A context-free grammar G = (V, X, S, P) is regular if every production
is of the foom A —- o B or A — A, where A, B€ V and o € X.

Theorem 4.14
For every language L C ¥*, L is regular if and only if L = L(G) for
some regular grammar G.

Proof

If L is a regular language, then for some finite automaton M = (Q, %, qo,
A,$8), L = L(M). As in the grammar above for the FA in Figure 4.12,
we define G = (V, X, S, P) by letting V be Q, letting S be the initial
state gp, and letting P be the set containing a production 7 — aU for

4.4 Derivation Trees and Ambiguity

every transition §(7,a) = U in M, and a production 7 — A for every
accepting state 7 of M. G is a regular grammar. It is easy to see, just
as in the example, that for every x = aja, . .. a,, the transitions on these
symbols that start at go end at an accepting state if and only if there is a
derivation of x in G; in other words, L = L(G).

In the other direction, if G is a regular grammar with L = L(G), we
can reverse the construction to produce M = (Q, X, qo, A, §). Q is the set
of variables of G, g is the start variable, A is the set of states (variables)
for which there are A-productions in G, and for every production 7" —
oU there is a transition T —> U in M. We cannot expect that M is an
ordinary finite automaton, because for some combinations of 7" and a,
there may be either more than one or fewer than one U for which T — o U
is a production. But M is an NFA, and the argument in the first part of the
proof is still sufficient; for every string x, there is a sequence of transitions
involving the symbols of x that starts at go and ends in an accepting state
if and only if there is a derivation of x in G. Therefore, L is regular,
because it is the language accepted by the NFA M.

The word regular is sometimes used to describe grammars that are slightly
different from the ones in Definition 4.13. Grammars in which every production has
one of the forms A - 0B, A — o, or A — A are equivalent to finite automata in
the same way that our regular grammars are. Grammars with only the first two of
these types of productions generate regular languages, and for every language L,
L — {A} can be generated by such a grammar. Similarly, a language L is regular if
and only if the set of nonnull strings in L can be generated by a grammar in which
all productions have the form A — xB or A — x, where A and B are variables
and x is a nonnull string of terminals. Grammars of this last type are also called
linear. Some of these variations are discussed in the exercises.

4.4 | DERIVATION TREES AND AMBIGUITY

In most of our examples so far, we have been interested in what strings a context-
free grammar generates. As Example 4.2 suggests, it is also useful to consider how
a string is generated by a CFG. A derivation may provide information about the
structure of the string, and if a string has several possible derivations, one may be
more appropriate than another.

Just as diagramming a sentence might help to exhibit its grammatical structure,
drawing a tree to represent a derivation of a string helps to visualize the steps of
the derivation and the corresponding structure of the string. In a derivation tree,
the root node represents the start variable S. For each interior node N, the portion
of the tree consisting of N and its children represents a production A — « used
in the derivation. N represents the variable A, and the children, from left to right,
represent the symbols of «. (If the production is A — A, the node N has a single
child representing A.) Each leaf node in the tree represents either a terminal symbol

141

142

Figure 4.15|
A derivation
tree for

a+ (a*a)in
Example 4.2.

CHAPTER 4 Context-Free Languages

or A, and the string being derived is the one obtained by reading the leaf nodes
from left to right.

A derivation of a string x in a CFG is a sequence of steps, and a single
step is described by specifying the current string, a variable appearing in the
string, a particular occurrence of that variable, and the production starting with
that variable. We will adopt the phrase variable-occurrence to mean a particular
occurrence of a particular variable. (For example, if S and A are variables, the
string S + A % S contains three variable-occurrences.) Using this terminology, we
may say that a step in a derivation is determined by the current string, a particular
variable-occurrence in the string, and the production to be applied to that variable-
occurrence.

It is easy to see that for each derivation in a CFG, there is exactly one deriva-
tion tree. The derivation begins with the start symbol S, which corresponds to
the root node of the tree, and the children of that node are determined by the
first production in the derivation. At each subsequent step, a production is applied,
involving a variable-occurrence corresponding to a node N in the tree; that pro-
duction determines the portion of the tree consisting of N and its children. For
example, the derivation

S=54+48S=2a+S=a+S)=a+SxS)=>a+@xS)=a+ (a*a)

in the CFG for Expr in Example 4.2 corresponds to the derivation tree in Fig-
ure 4.15.

There are other derivations that also correspond to this tree. Every derivation
of the string a + (a * a) must begin

S§=S85+S

but now there are two possible ways to proceed, since the next step could involve
either of the two occurrences of S. If we chose the rightmost one, so as to obtain
S+ (S), we would still have two choices for the step after that.

When we said above, “if a string has several possible derivations, one may
be more appropriate than another”, we were referring, not to derivations that dif-
fered in this way, but to derivations corresponding to different derivation trees.
Among all the derivations corresponding to the derivation tree in Figure 4.15 (see
Exercise 4.30), there are no essential differences, but only differences having to
do with which occurrence of S we choose for the next step. We could eliminate
these choices by agreeing, at every step where the current string has more than one
variable-occurrence, to use the leftmost one.

Definition 4.16 Leftmost and Rightmost Derivations

A derivation in a context-free grammar is a leftmost derivation (LMD) if,
at each step, a production is applied to the leftmost variable-occurrence
in the current string. A rightmost derivation (RMD) is defined similarly.

4.4 Derivation Trees and Ambiguity 143

Theorem 4.17
If G is a context-free grammar, then for every x € L(G), these three
statements are equivalent:

1. x has more than one derivation tree.
2. x has more than one leftmost derivation.
3. x has more than one rightmost derivation.

Proof

We will show that x has more than one derivation tree if and only if x has
more than one LMD, and the equivalence involving rightmost derivations
will follow similarly.

If there are two different derivation trees for the string x, each of
them has a corresponding leftmost derivation. The two LMDs must be
different—otherwise that derivation would correspond to two different
derivation trees, and this is impossible for any derivation, leftmost or
otherwise.

If there are two different leftmost derivations of x, let the correspond-
ing derivation trees be 77 and 75. Suppose that in the first step where the
two derivations differ, this step is

xAB = xap
in one derivation and

xXAB = xaf

in the other. Here x is a string of terminals, because the derivations are
leftmost; A is a variable; and «; # «;. In both 7} and 7, there is a node
corresponding to the variable-occurrence A, and the respective portions
of the two trees to the left of this node must be identical, because the
leftmost derivations have been the same up to this point. These two nodes
have different sets of children, and so T; # T5.

Definition 4.18 Ambiguity in a CFG

A context-free grammar G is ambiguous if for at least one x € L(G), x
has more than one derivation tree (or, equivalently, more than one leftmost
derivation).

We will return to the algebraic-expression grammar of Example 4.2 shortly,
but first we consider an example of ambiguity arising from the definition of if-
statements in Example 4.4.

144

EXAMPLE4.19

CHAPTER 4 Context-Free Languages

The Dangling else

EXAMPLE4.20

In the C programming language, an if-statement can be defined by these grammar rules:
S > if (E)S |
if (E)S elseS |
oS

(In our notation, E is short for <expression>, § for <statement>, and OS for
<otherstatement>.) A statement in C that illustrates the ambiguity of these rules is

if (el) 1if (e2) £(); else g();

The problem is that although in C the else should be associated with the second if, as in
if (el) { if (e2) £(); else g(); }

there is nothing in these grammar rules to rule out the other interpretation:
if (el) { 1if (e2) £(); } else g();

The two derivation trees in Figure 4.21 show the two possible interpretations of the statement;
the correct one is in Figure 4.21a.
There are equivalent grammar rules that allow only the correct interpretation. One

possibility is

S >S5

S —>if (E) S else S | OS

S, —>if (E) S|

if (CE) S else S

These rules generate the same strings as the original ones and are unambiguous. We will not
prove either fact, but you can see how the second might be true. The variable S; represents a
statement in which every if is matched by a corresponding else, and every statement derived
from S, contains at least one unmatched if. The only variable appearing before else in these

rules is S;; because the else cannot match any of the if s in the statement derived from S,
it must match the if that appeared at the same time it did.

Ambiguity in the CFG for Expr in Example 4.2

In the grammar G in Example 4.2, with productions
S—alS+S|ISxS5]()
the string @ + a * a has the two leftmost derivations

S=S+S=2a+S=a+S«xS=a+axS=a+axa
S=8%xS=>85+8S*S=>a+S*«S=>a+axS=a+axa

which correspond to the derivation trees in Figure 4.22.

4.4 Derivation Trees and Ambiguity

S
if (E) S
el if (E) S else S
e2 () g();
(a)
S
if (E) S else S
el if (E) S g();
e2 ()

(b)

Figure 4.21 |
Two possible interpretations of a dangling else.

We observed in Example 4.2 that the first of these two LMDs (or the first of the two
derivation trees) matches the interpretation of a@ 4+ a * a as a sum, rather than as a product;
one reason for the ambiguity is that the grammar allows either of the two operations +
and * to be given higher precedence. Just as adding braces to the C statements in Example
4.19 allowed only the correct interpretation, the addition of parentheses in this expression,
to obtain a + (a * a), has the same effect; the only leftmost derivation of this string is

S=S5S+S=a+S=2a+S)=a+S*xS)=>a+@xS)=>a+ (ax*xa)

Another rule in algebra that is not enforced by this grammar is the rule that says
operations of the same precedence are performed left-to-right. For this reason, both the
expressions a + a + a and a * a * a also illustrate the ambiguity of the grammar. The first
expression has the (correct) LMD

S=254+S=25+5+S=a+S+S=a+a+S=>a+a+a

145

(@)

N\

S

S

/1
/N

a

a a

(b)

Figure 4.22 |
Two derivation
trees for
a+a=*ain
Example 4.2.

146

CHAPTER 4 Context-Free Languages

corresponding to the interpretation (a + a) + a, as well as the LMD
S=S5S+S=a+S=2a+S+S=a+a+S=>a+a+ta

corresponding to the other way of grouping the terms.

In order to find an unambiguous CFG G, generating this language, we look for pro-
ductions that do not allow any choice regarding either the precedence of the two operators
or the order in which operators of the same precedence are performed. To some extent, we
can ignore the parentheses at least temporarily. Let S; be the start symbol of G;.

Saying that multiplication should have higher precedence than addition means that when
there is any doubt, an expression should be treated as a sum rather than a product. For this
reason, we concentrate first on productions that will give us sums of terms. The problem with
S1 — S+ S is that if we are attempting to derive a sum of three or more terms, there are
too many choices as to how many terms will come from the first §; and how many from the
second. Saying that additions are performed left-to-right, or that 4+ “associates to the left”,
suggests that we think of a sum of n terms as another sum plus one additional term. We try

S]—)S1+T|T

where T represents a term—that is, an expression that may be part of a sum but is not itself
a sum.

It is probably clear already that we would no longer want S§; — S, * Sy, even if it didn’t
cause the same problems as S; — S; 4+ S;; we don’t want to say that an expression can be
either a sum or a product, because that was one of the sources of ambiguity. Instead, we
say that terms can be products. Products of what? Factors. This suggests

T—>TxF|F

where, in the same way that S; + T is preferable to T + Sy, T * F is preferable to F' x T.
We now have a hierarchy with three levels: expressions are sums of terms, and terms are
products of factors. Furthermore, we have incorporated the rule that each operator associates
to the left.

What remains is to deal with a and expressions with parentheses. The productions
Sy — T and T — F allow us to have an expression with a single term and a term with a
single factor; thus, although a by itself is a valid expression, it is best to call it a factor,
because it is neither a product nor a sum. Similarly, an expression in parentheses should
also be considered a factor. What is in the parentheses should be an expression, because
once we introduce a pair of parentheses we can start all over with what’s inside.

The CFG that we have now obtained is G, = (V, X, Sy, P), where V = {S,, T, F},
Y ={a,+, *, (,)}, and P contains the productions

Si—=S$+T|T
T—->TxF|F
F—al(S)
Both halves of the statement L(G) = L(G,) can be proved by mathematical induction

on the length of a string. The details, particularly for the statement L(G) € L(G,), are
somewhat involved and are left to the exercises.

4.4 Derivation Trees and Ambiguity

The rest of this section is devoted to proving that G, is unambiguous. In the proof,
for a string x € L(G,), it is helpful to talk about a symbol in x that is within parenthe-
ses, and we want this to mean that it lies between the left and right parentheses that are
introduced in a single step of a derivation of x. One might ask, however, whether there
can be two derivations of x, and a symbol that has this property with respect to one of
the two but not the other. The purpose of Definition 4.23 and Theorem 4.24 is to estab-
lish that this formulation is a satisfactory one and that “within parentheses” doesn’t depend
on which derivation we are using. In the proof of Theorem 4.24, we will use the result
obtained in Example 1.25, that balanced strings of parentheses are precisely the strings
with equal numbers of left and right parentheses and no prefix having more right than left
parentheses.

147

Definition 4.23 The Mate of a Left Parenthesis

in a Balanced String

The mate of a left parenthesis in a balanced string is the first right paren-
thesis following it for which the string starting with the left
and ending with the right has equal numbers of left and right parentheses.
(Every left parenthesis in a balanced string has a mate—see
Exercise 4.41.)

Theorem 4.24

For every x € L(G)), every derivation of x in G, and every step of this
derivation in which two parentheses are introduced, the right parenthesis
is the mate of the left.

Proof

Suppose x = x;(9z)ox2, Where (y and)o are two occurrences of parenthe-
ses that are introduced in the same step in some derivation of x. Then
F = (0S1)o =™ (02)o- It follows that z is a balanced string, and by the
definition of “mate”, the mate of () cannot appear after).

If it appears before)o, however, then z = z1)z,, for some strings z;
and zp, where); is the mate of (o and z; has equal numbers of left and
right parentheses. This implies that the prefix z;); of z has more right
parentheses than left, which is impossible if z is balanced. Therefore,)q
is the mate of (j.

Definition 4.23 and Theorem 4.24 allow us to say that “between the two
parentheses produced in a single step of a derivation” is equivalent to “between
some left parenthesis and its mate”, so that either of these can be taken as the
definition of “within parentheses”.

148 CHAPTER 4 Context-Free Languages

Theorem 4.25
The context-free grammar G| with productions

S1—>S1+T|T
T >Tx*F|F
F—al(S)

is unambiguous.

Proof

We prove the following statement, which implies the result: For every
x derivable from one of the variables S;, 7, or F in G, x has only
one leftmost derivation from that variable. The proof is by mathematical
induction on |x|. The basis step, for x = a, is easy, because for each of
the three variables, a has exactly one derivation from that variable.

The induction hypothesis is that £ > 1 and that for every y derivable
from S, T, or F for which |y| <k, y has only one leftmost derivation
from that variable. We wish to show that the same is true for a string
x € L(Gy) with |x| =k + 1.

We start with the case in which x contains at least one occurrence of
+ that is not within parentheses. Because the only occurrences of + in
strings derivable from 7 or F are within parentheses, every derivation of
x must begin S} = S| + T, and the occurrence of + in this step is the
last one in x that is not within parentheses. Every leftmost derivation of
x from S; must then have the form

Si=8+T=>"y+T="y+z

where the last two steps represent leftmost derivations of y from §; and z
from T, respectively, and the 4 is still the last one not within parentheses.
According to the induction hypothesis, y has only one leftmost derivation
from S, and z has only one from T'; therefore, x has only one LMD
from S;.

Next we consider the case in which every occurrence of + in x is
within parentheses but there is at least one occurrence of % not within
parentheses. Because x cannot be derived from F, every derivation of x
from S; must begin S} = 7 = T x F, and every derivation from 7" must
begin T = T * F. In either case, this occurrence of * must be the last
one in x not within parentheses. As before, the subsequent steps of every
LMD must be

T*F="yxF="yxz

in which the derivations of y from 7" and z from F are both leftmost. The
induction hypothesis tells us that there is only one way for each of these
derivations to proceed, and that there is only one leftmost derivation of x
from S; or T.

4.5 Simplified Forms and Normal Forms

Finally, suppose that every occurrence of + or * in x is within paren-
theses. Then x can be derived from any of the three variables, but every
derivation from S; begins

Si=T=F=(5)

and every derivation from 7 or F begins the same way but with the first
one or two steps omitted. Therefore, x = (y), where S; =" y. By the
induction hypothesis, y has only one LMD from S, and it follows that x
has only one from each of the three variables.

4.5 |SIMPLIFIED FORMS AND NORMAL
FORMS

Questions about the strings generated by a context-free grammar G are some-
times easier to answer if we know something about the form of the productions.
Sometimes this means knowing that certain types of productions never occur, and
sometimes it means knowing that every production has a certain simple form. For
example, suppose we want to know whether a string x is generated by G, and we
look for an answer by trying all derivations with one step, then all derivations with
two steps, and so on. If we don’t find a derivation that produces x, how long do
we have to keep trying?

The number ¢ of terminals in the current string of a derivation cannot decrease
at any step. If G has no A-productions (of the form A — A), then the length [
of the current string can’t decrease either, which means that the sum ¢ +/ can’t
decrease. If we also know that G has no “unit productions” (of the form A — B,
where A and B are variables), then the sum must increase, because every step
either adds a terminal or increases the number of variables. A derivation of x starts
with S, for which [+¢ = 1, and ends with x, for which [+ ¢ = 2|x|; therefore, no
derivation has more than 2|x| — I steps. If we try all derivations with this many
steps or fewer and don’t find one that generates x, we may conclude that x ¢ L(G).

In this section we show how to modify an arbitrary CFG G so that the modified
grammar has no productions of either of these types but still generates L(G), except
possibly for the string A. We conclude by showing how to modify G further
(eliminating both these types of productions is the first step) so as to obtain a CFG
that is still essentially equivalent to G but is in Chomsky normal form, so that every
production has one of two very simple forms.

A simple example will suggest the idea of the algorithm to eliminate A-
productions. Suppose one of the productions in G is

A — BCDCB

and that from both the variables B and C, A can be derived (in one or more steps),
as well as other nonnull strings of terminals. Once the algorithm has been applied,
the steps that replace B and C by A will no longer be possible, but we must still
be able to get all the nonnull strings from A that we could have gotten using these

149

150

CHAPTER 4 Context-Free Languages

steps. This means that we should retain the production A — BCDCB, but we
should add A — CDCB (because we could have replaced the first B by A and
the other occurrences of B and C by nonnull strings), A - DCB, A — CDB,
and so on—every one of the fifteen productions that result from leaving out one
or more of the four occurrences of B and C in the right-hand string.

The necessary first step, of course, is to identify the variables like B and C
from which A can be derived. We will refer to these as nullable variables. It is
easy to see that the set of nullable variables can be obtained using the following
recursive definition.

Definition 4.26 A Recursive Definition of the Set of

Nullable Variables of G

1. Every variable A for which there is a production A — A is nullable.
2. If Ay, Ay, ..., A, are nullable variables (not necessarily distinct), and

B—)AlAz...Ak

is a production, then B is nullable.

This definition leads immediately to an algorithm for identifying the nullable
variables (see Example 1.21).

Theorem 4.27

For every context-free grammar G = (V, X, S, P), the following algo-
rithm produces a CFG G; = (V, X, S, P;) having no A-productions and
satisfying L(G) = L(G) — {A}.

1. Identify the nullable variables in V, and initialize P; to P.

2. For every production A — « in P, add to P, every production obtained
from this one by deleting from o one or more variable-occurrences involving
a nullable variable.

3. Delete every A-production from P;, as well as every production of the form
A — A.

Proof
It is obvious that G| has no A-productions. We show that for every A € V
and every nonnull x € £*, A = x if and only if A =7 x.

First we show, using mathematical induction on n, that for every
n>1, every AeV, and every x € ¥* with x # A, if A =7, x, then
A =§, x. For the basis step, suppose A :% x. Then A — x is a produc-
tion in P, and since x # A, this production is also in P;.

Suppose that £ > 1 and that for every n < k, every variable A, and

every nonnull x € ¥* for which A = x, A = x. Now suppose that

4.5 Simplified Forms and Normal Forms

A :>’g;+‘ x, for some x € ¥* — {A}. Let the first step in some (k + 1)-step

derivation of x from A in G be
A= X1 Xy... X,

where each X; is either a variable or a terminal. Then x = x;x5 ...,
where for each i, either x; = X; (a terminal), or x; is a string deriv-
able from the variable X; in k or fewer steps. When all the (nullable)
variables X; for which the corresponding x; is A are deleted from the
string XX, ...X,,, there are still some X;’s left, because x # A, and
so the resulting production is an element of P;. Furthermore, the induc-
tion hypothesis tells us that for each variable X; remaining, X; =g, x;.
Therefore, A =>’gl X.

For the converse, we show, using mathematical induction on r, that
for every n > 1, every variable A, and every x € X*, if A :>’(‘;l x, then
A= x. If A= x, then A — x is a production in P;. It follows that
A — o is a production in P, where « is a string from which x can
be obtained by deleting zero or more occurrences of nullable variables.
Therefore, A =, x, because we can begin a derivation with the pro-
duction A — « and continue by deriving A from each of the nullable
variables that was deleted from « to obtain x.

Suppose that k > 1, that for every n < k, every A, and every string
x with A =%, x, A =% x, and that A :>’(‘;]r1 x. Again, let the first step
of some (k + 1)-step derivation of x from A in G, be

A= X1 Xy... X,

Then x = x1x;...x,, where for each i, either x; = X; or x; is a string
derivable from the variable X; in the grammar G in k or fewer steps. By
the induction hypothesis, X; =7 x; for each i. By definition of G, there
is a production A — « in P so that XX, ... X,, can be obtained from «
by deleting some variable-occurrences involving nullable variables. This
implies that A =7, XX, ...X,,, and therefore that we can derive x from
A in G, by first deriving X ... X,, and then deriving each x; from the
corresponding X;.

The procedure we use to eliminate unit productions from a CFG is rather
similar. We first identify pairs of variables (A, B) for which A =* B (not only
those for which A — B is a production); then, for each such pair (A, B), and each
nonunit production B — «, we add the production A — «.

If we make the simplifying assumption that we have already eliminated A-
productions from the grammar, then a sequence of steps by which A =* B involves
only unit productions. This allows us, for a variable A, to formulate the following
recursive definition of an “A-derivable” variable (a variable B different from A for
which A =* B):

151

152 CHAPTER 4 Context-Free Languages

1. If A — B is a production and B # A, then B is A-derivable.

2. If C is A-derivable, C — B is a production, and B # A, then B is
A-derivable.

3. No other variables are A-derivable.

Theorem 4.28

For every context-free grammar G = (V, X, S, P) without A-productions,
the CFG G, = (V, 2, S, P;) produced by the following algorithm gener-
ates the same language as G and has no unit productions.

1. Initialize P, to be P, and for each A € V, identify the A-derivable variables.

2. For every pair (A, B) of variables for which B is A-derivable, and every
nonunit production B — «, add the production A — « to P;.

3. Delete all unit productions from P;.

Proof
The proof that L(G) = L(G) is a straightforward induction proof and is
omitted.

Definition 4.29 Chomsky Normal Form

A context-free grammar is said to be in Chomsky normal form if every
production is of one of these two types:

A — BC (where B and C are variables)
A — o (where o is a terminal symbol)

Theorem 4.30
For every context-free grammar G, there is another CFG G, in Chomsky
normal form such that L(G,) = L(G) — {A}.

Proof

We describe briefly the algorithm that can be used to construct the gram-
mar G, and it is not hard to see that it generates the same language as
G, except possibly for the string A.

The first step is to apply the algorithms presented in Theorems 4.6
and 4.7 to eliminate A-productions and unit productions. The second step
is to introduce for every terminal symbol o a variable X, and a produc-
tion X, — o, and in every production whose right side has at least two
symbols, to replace every occurrence of a terminal by the corresponding

4.5 Simplified Forms and Normal Forms

variable. At this point, every production looks like either A — o or
A— B 1 Bz 6o Bk

where the B;’s are variables and k£ > 2.

The last step is to replace each production having more than two
variable-occurrences on the right by an equivalent set of productions, each
of which has exactly two variable-occurrences. This step is described best
by an example. The production

A — BACBDCBA
would be replaced by
A— BY, Y — AY, Y, —> CYs Y3 —> BY, Y,— DY;s
Ys - CYs Yo — BA

where the new variables Y1, ..., Y are specific to this production and are
not used anywhere else.

Converting a CFG to Chomsky Normal Form

153

This example will illustrate all the algorithms described in this section: to identify nullable
variables, to eliminate A-productions, to identify A-derivable variables for each A, to elim-
inate unit productions, and to convert to Chomsky normal form. Let G be the context-free

grammar with productions

S—>TU |V
T —aTb | A
U—cU| A
VoaVc| W
W — bW | A
which can be seen to generate the language {a’b/c* | i = j or i = k).
1. (Identifying nullable variables) The variables 7', U, and W are nullable because they
are involved in A-productions; V is nullable because of the production V — W; and
S is also, either because of the production § — T U or because of S — V. So all the
variables are!
2. (Eliminating A-productions) Before the A-productions are eliminated, the following

productions are added:
S—>T S—>U T — ab U—c V —ac W —b
After eliminating A-productions, we are left with

S—=TU |T|U|V T — aTb | ab U—cU|c
V—o>aVc|ac|W W — bW |b

154 CHAPTER 4 Context-Free Languages

3. (Identifying A-derivable variables, for each A) The S-derivable variables obviously
include 7', U, and V, and they also include W because of the production V — W.
The V-derivable variable is W.

4. (Eliminating unit productions) We add the productions

S—aTb|ab|cU |c|aVc|ac|bW |b V->bW|b
before eliminating unit productions. At this stage, we have
S—TU |aTb |ab|cU |c|aVc|ac|bW |b
T — aTb | ab
U—cU]|c
V—>aVc|ac| bW | b
W — bW | b

5. (Converting to Chomsky normal form) We replace a, b, and ¢ by X,, X,, and X,
respectively, in productions whose right sides are not single terminals, obtaining

S— TU | XoTXy | XoXy | XU | ¢ | XaVXe | XX | XoW | b
T — X.TXy | XoX,

U— X.U]|c

V= X, VX. | XuX. | X,W | b

W — X,W | b

This grammar fails to be in Chomsky normal form only because of the productions
S —> X, TX,, S —> X,VX., T - X,TX,, and V — X,V X.. When we take care of
these as described above, we obtain the final CFG G, with productions

S—>TU | XoY1 | XoXp | XU | ¢ | XYoo | XoXe | XoW | b

Y, > TX,

Y, > VX,

T — X.Y5| X, X,

Y; > TX,

U— X.U|c

V= XYy | XX | XoW | b
Y,—> VX,

W — X,W|b

(We obviously don’t need both Y; and Y3, and we don’t need both Y, and Yy, so we
could simplify G, slightly.)

EXERCISES

4.1. In each case below, say what language (a subset of {a, b}*) is generated
by the context-free grammar with the indicated productions.

4.2

4.3.

44.

Exercises

S—aS|bS|A

S— SS|bS|a

S — SaS | b

S—SaS|b| A

S—>TT T —aT | Ta|b

S — aSa | bSb | aAb | bAa A — aAa |bAb |a | b | A
S —aT | bT | A T —aS|bS

S — aT | bT T —aS|bS|A

Find a context-free grammar corresponding to the “syntax diagram” in
Figure 4.32.

In each case below, find a CFG generating the given language.

Fr oo e o

a. The set of odd-length strings in {a, b}* with middle symbol a.

b. The set of even-length strings in {a, b}* with the two middle symbols
equal.

c. The set of odd-length strings in {a, b}* whose first, middle, and last
symbols are all the same.

In both parts below, the productions in a CFG G are given. In each part,

show first that for every string x € L(G), n,(x) = n,(x); then find a string

x € {a, b}* with n,(x) = n,(x) that is not in L(G).

a. S — SabS | ShaS | A

b. S— aSb | bSa | abS | baS | Sab | Sba | A

Figure 4.32|

155

156 CHAPTER 4 Context-Free Languages

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

Consider the CFG with productions
S — aSbScS | aScSbS | bSaScS | bScSaS | ¢SaSbS | ¢cSbSaS | A

Does this generate the language {x € {a, b, c}* | n,(x) = n,(x) = n.(x)}?
Prove your answer.

Show that the language of all nonpalindromes over {a, b} (see Example
4.3) cannot be generated by any CFG in which S — aSa | bSb are the
only productions with variables on the right side.

Describe the language generated by the CFG with productions
S— ST | A T —aS|bT | b

Give an induction proof that your answer is correct.
What language over {a, b} does the CFG with productions

S — aaS | bbS | Saa | Sbb | abSab | abSba | baSba | baSab | A

generate? Prove your answer.

Suppose that G| = (Vy, {a, b}, Si, P1) and G, = (V,, {a, b}, S», P>) are

CFGs and that Vi NV, = (.

a. It is easy to see that no matter what G| and G, are, the CFG
G, =V, {a, b}, S,, P,) defined by V, =V, UV, §, =S, and
P, = PiU P, U{S; — S} generates every string in L(G) U L(G>).
Find grammars G| and G, (you can use V; = {S;} and V, = {$,}) and
a string x € L(G,) such that x ¢ L(G) U L(G»).

b. As in part (a), the CFG G, = (V,, {a, b}, S;, P.) defined by
Ve=ViUV,, S, =S8,and P. = P, U P, U{S| — S§,5,} generates
every string in L(G)L(G;). Find grammars G| and G, (again with
Vi = {85} and V, = {$,}) and a string x € L(G.) such that
x & L(G)L(G?).

c. The CFG G* = (V, {a, b}, S, P) defined by V =V, S = §;, and
P =P U{S — 5151 | A} generates every string in L(G;)*. Find a
grammar G; with V; = {S;} and a string x € L(G*) such that
x ¢ L(G)*.

Find context-free grammars generating each of the languages below.

a. {a'b! | i < j}

b. {a'b/ |i < j)

c. {a'bl | j=2i}

d. {d'b/ |i<j<2i)

e. {aibl | j <2i)

f. {a'b/ | j < 2i}

a. Show that the language L = {a'b/c* | j > i + k} cannot be written in

the form L = L L,L3, where Ly, L,, and L3 are subsets of {a}*, {b}*,
and {c}*, respectively.
b. Show the same thing for the language L = {a'b/c* | j < i + k}.

4.12.
4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

Exercises

Find a context-free grammar generating the language {a’b/c* | i # j + k}.
TFind context-free grammars generating each of these languages, and
prove that your answers are correct.

a. {a'b’/ | i <j<3i/2}

b. {a'b/ |ij2 < j <3i/2}

Let L be the language generated by the CFG with productions

S—aSb|ab | SS

Show that no string in L begins with abb.

Show using mathematical induction that every string produced by the
context-free grammar with productions

S—alaS|bSS|SSh|SbS

has more a’s than b’s.

Prove that the CFG with productions S — aSbS | aSbS | A generates the
language L = {x € {a, b}* | n,(x) = np(x)}.

TShow that the CFG with productions

S — aSaSbhS | aSbSaS | bSaSaS | A

generates the language {x € {a, b} | n,(x) = 2n,(x)}.
TShow that the following CFG generates the language {x € {a, b}* |
nq(x) = 2np(x)}.

S — SS|bTT |TbT |TTh|A T — aS|SaS|Sa|a

Let G be the CFG with productions S — a | aS | bSS | SSb | SbS. Show
that every x in {a, b}* with n,(x) > n,(x) is an element of L(G).

Let G be the context-free grammar with productions S — SaT | A

T — TbS | A. Show using mathematical induction that L(G) is the
language of all strings in {a, b}* that don’t start with b. One direction is
easy. For the other direction, it might be easiest to prove two statements
simultaneously: (i) every string that doesn’t start with b can be derived
from S; (i) every string that doesn’t start with a can be derived

from T.

Definition 3.1 and Theorem 4.9 provide the ingredients for a structural-
induction proof that every regular language is a CFL. Give the proof.
Show that if G is a context-free grammar in which every production has
one of the forms A — aB, A — a, and A — A (where A and B are
variables and a is a terminal), then L(G) is regular. Suggestion: construct
an NFA accepting L(G), in which there is a state for each variable in G
and one additional state F', the only accepting state.

Suppose L € X*. Show that L is regular if and only if L = L(G) for
some context-free grammar G in which every production is either of the
form A — Ba or of the form A — A, where A and B are variables and a

157

158

CHAPTER 4 Context-Free Languages

4.24.

4.25.

4.26.

4.27.

4.28.

is a terminal. (The grammars in Definition 4.13 are sometimes called
right-regular grammars, and the ones in this exercise are sometimes called
left-regular.)

Let us call a context-free grammar G a grammar of type R if every
production has one of the three forms A — aB, A — Ba,or A — A
(where A and B are variables and a is a terminal). Every regular language
can be generated by a grammar of type R. Is every language that is
generated by a grammar of type R regular? If so, give a proof; if not, find
a counterexample.

Show that for a language L C X*, the following statements are equivalent.

a. L is regular.

b. L can be generated by a grammar in which all productions are either of
the form A — x B or of the foom A — A (where A and B are
variables and x € X%).

c. L can be generated by a grammar in which all productions are either of
the form A — Bx or of the foom A — A (where A and B are
variables and x € X*).

In each part, draw an NFA (which might be an FA) accepting the language

generated by the CFG having the given productions.

a. S—aA | bC A—aS | bB B — aC | bA
C—aB |bS| A

b. S—=bS|aA | A A—aA |bB | b B — bS

Find a regular grammar generating the language L (M), where M is the
FA shown in Figure 4.33.

Draw an NFA accepting the language generated by the grammar with
productions

S — abA | bB | aba
A—b|aB | bA
B — aB | aA

Figure 4.33|

4.29.

4.30.

4.31.

4.32.

4.33.

4.34.

Exercises

Each of the following grammars, though not regular, generates a regular
language. In each case, find a regular grammar generating the language.

a. §S— SSS|a|ab

b. S — AabB A—aA | DA | A B — Bab | Bb | ab | b
S — AAS | ab | aab A—ab | ba| A

S — AB A —aAa |bAb |a | b B —aB |bB| A

S— AA | B A— AAA | Ab | bA | a B —bB| A
Write the rightmost derivation of the string a + (a * a) corresponding
to the derivation tree in Figure 4.15.

B0 a0

b. How many distinct derivations (not necessarily leftmost or rightmost)
does the string a + (a * a) have in the CFG with productions
S—al|S+S|SxS]|(5)?

Again we consider the CFG in Example 4.2, with productions

S—=a|S+S|5%S]|(S).

a. How many distinct derivation trees does the string a + (a xa)/a — a
have in this grammar?

b. How many derivation trees are there for the string (a + (a + a))+
(a +a)?

In the CFG in the previous exercise, suppose we define n; to be the

number of distinct derivation trees for the string a +a + ...+ a in which

there are i a’s. Then n; = n, = 1.

a. Find a recursive formula for n;, by first observing that if i > 1 the root
of a derivation tree has two children labeled S, and then considering all
possibilities for the two subtrees.

b. How many derivation trees are there for the string a +a +a +a + a?

c. How many derivation trees are there for the string
at+a+a+a+at+a+a+a+a+a?
Consider the C statements

x =1; if (a > 2) if (a > 4) x = 2; else x = 3;

a. What is the resulting value of x if these statements are interpreted
according to the derivation tree in Figure 4.21a and a = 3?

b. Same question as in (a), but when a = 1.

c. What is the resulting value of x if these statements are interpreted
according to the derivation tree in Figure 4.21b and a = 3?

d. Same question as in (c), but when a = 1.
Show that the CFG with productions

S—a|Sa|bSS|SSh|SbS

is ambiguous.

159

160

CHAPTER 4 Context-Free Languages

4.35.

4.36.

4.37.
4.38.

4.39.

Consider the context-free grammar with productions

S — AB
A—aA| A
B —ab | bB | A

Every derivation of a string in this grammar must begin with the
production S — AB. Clearly, any string derivable from A has only one
derivation from A, and likewise for B. Therefore, the grammar is
unambiguous. True or false? Why?

For each part of Exercise 4.1, decide whether the grammar is ambiguous
or not, and prove your answer.

Show that the CFG in Example 4.8 is ambiguous.

In each case below, show that the grammar is ambiguous, and find an
equivalent unambiguous grammar.

a. S—>SS|alb

b. S— ABA A—aA | A B — bB | A
c. S—aSb|aaSb| A

d S—aSb|abS | A

Describe an algorithm for starting with a regular grammar and finding an
equivalent unambiguous grammar.

In the exercises that follow, take as the definition of “balanced string of paren-
theses” the criterion in Example 1.25: The string has an equal number of left and
right parentheses, and no prefix has more right than left.

4.40.

4.41.
4.42.

4.43.

4.44.

4.4s.

a. Show that for every string x of left and right parentheses, x is a prefix
of a balanced string if and only if no prefix of x has more right
parentheses than left.

b. Show that the language of prefixes of balanced strings of parentheses is
generated by the CFG with productions S — (S)S | (S | A.

Show that every left parenthesis in a balanced string has a mate.

Show that if x is a balanced string of parentheses, then either x = (y) for

some balanced string y or x = x;x, for two balanced strings x; and x;

that are both shorter than x.

Show that if (y is an occurrence of a left parenthesis in a balanced string,

and), is its mate, then (is the rightmost left parentheses for which the

string consisting of it and) and everything in between is balanced.

TShow that both of the CFGs below generate the language of balanced

strings of parentheses.

a. The CFG with productions § — S(S) | A

b. The CFG with productions § — (S)S | A

Show that both of the CFGs in the previous exercise are unambiguous.

4.46.

4.47.

4.48.

4.49.

Exercises

Let x be a string of left and right parentheses. A complete pairing of x is
a partition of the parentheses of x in to pairs such that (i) each pair
consists of one left parenthesis and one right parenthesis appearing
somewhere after it; and (ii) the parentheses between those in a pair are
themselves the union of pairs. Two parentheses in a pair are said to be
mates with respect to that pairing.

a. Show that there is at most one complete pairing of a string of
parentheses.

b. Show that a string of parentheses has a complete pairing if and only if
it is a balanced string, and in this case the two definitions of mates
coincide.

"Let G be the CFG with productions
S—>S54+S|S%xS|(S) |a
and G, the CFG with productions
S > S +T|T T—>T+F|F F—(S)|a

(see Section 4.4).

a. Show that L(G;) € L(G). One approach is to use induction and to
consider three cases in the induction step, corresponding to the three
possible ways a derivation of the string in L(G) might begin:

Si=8+T
Si=T = TxF
Si=T = F = (5)
b. Show that L(G) € L(G). Again three cases are appropriate in the
induction step:
i. x has a derivation in G beginning S = (S)
ii. x has a derivation beginning S = S + S
iii. Every derivation of x in G begins S = S % §
In the second case it may be helpful to let x = x| +x; + ... + X,
where each x; € L(G) and n is as large as possible. In the third case
it may be helpful to let x = x; * x; % ...x,, where each x; € L(G) (not
L(G)) and n is as large as possible.
Show that the nullable variables defined by Definition 4.7 are precisely
those variables A for which A =* A.

In each case below, find a context-free grammar with no A-productions
that generates the same language, except possibly for A, as the given CFG.
a. S— AB | A A — aASb | a B — bS
b. S— AB | ABC

A— BA|BC|A|a

B— AC|CB|A|b

C—-BC|AB|A|c

161

162

CHAPTER 4 Context-Free Languages

4.50.

4.51.

4.52.

4.53.

In each case, given the context-free grammar G, find a CFG G’ with no
A-productions and no unit productions that generates the language
L(G) — {A}.
a. G has productions
S — ABA A — aA | A B — bB | A
b. G has productions
S — aSa |bSb | A A — aBb | bBa B — aB |bB | A

c. G has productions

S - A|B|C A — aAa | B B — bB | bb

C — aCaa | D D — baD | abD | aa

A variable A in a context-free grammar G = (V, X, S, P) is live if

A =* x for some x € £*. Give a recursive definition, and a corresponding
algorithm, for finding all live variables in G.

A variable A in a context-free grammar G = (V, X, S, P) is reachable if
S =* aAB for some «, B € (X U V)*. Give a recursive definition, and a
corresponding algorithm, for finding all reachable variables in G.

TA variable A is a context-free grammar G = (V, X, S, P) is useful if for
some string x € X*, there is a derivation of x that takes the form

S =" aAB =" x
A variable that is not useful is useless. Clearly if a variable is either not
live or not reachable (see the two preceding exercises), then it is useless.
The converse is not true, as the grammar with productions S — AB and

A — a illustrates. (The variable A is both live and reachable but still
useless.)

a. Let G be a CFG. Suppose G1 is obtained by eliminating all dead
variables from G and eliminating all productions in which dead
variables appear. Suppose G2 is then obtained from G1 by eliminating
all variables unreachable in G1, as well as productions in which such
variables appear. Show that G2 contains no useless variables, and
L(G2) = L(G).

b. Give an example to show that if the two steps are done in the opposite
order, the resulting grammar may still have useless variables.

c. In each case, given the context-free grammar G, find an equivalent
CFG with no useless variables.

i. G has productions
S — ABC | BaB A — aA | BaC | aaa
B — bBb|a C - CA|AC
ii. G has productions
S — AB| AC A — aAb|bAa|a B — bbA|aaB | AB
C — abCa | aDb D — bD |aC

4.54.

4.55.

4.56.

4.57.

4.58.

Exercises

In each case below, given the context-free grammar G, find a CFG G| in
Chomsky normal form generating L(G) — {A}.

a. G has productions § — SS | (S) | A
b. G has productions § — S(S) | A
c. G has productions

S - AaA|CA| BaB A — aaBa | CDA |aa | DC
B — bB|bAB|bb|aS C — Ca|bC|D D — bD|A
For alphabets X and X, a homomorphism from X} to X3 is defined in

Exercise 3.53. Show that if f : ¥ — X7 is a homomorphism and
L C X7 is a context-free language, then f(L) € X7 is also a CFG.

"Let G be the context-free grammar with productions
S—aS|aSbS | c
and let G be the one with productions
Si—=T|U T — aTbhT | c U— a8, | aTbU

(G is a simplified version of the second grammar in Example 4.19.)
a. Show that G is ambiguous.

b. Show that G and G generate the same language.

c. Show that G| is unambiguous.

TShow that if a context-free grammar is unambiguous, then the grammar
obtained from it by the algorithm in Theorem 4.27 is also unambiguous.
TShow that if a context-free grammar with no A-productions is
unambiguous, then the one obtained from it by the algorithm in
Theorem 4.28 is also unambiguous.

163

