Context-Free Languages

Regular languages and finite automata are too simple and too restrictive to be able to handle languages that are at all complex. Using context-free grammars allows us to generate more interesting languages; much of the syntax of a high-level programming language, for example, can be described this way. In this chapter we start with the definition of a context-free grammar and look at a number of examples. A particularly simple type of context-free grammar provides another way to describe the regular languages we discussed in Chapters 2 and 3. Later in the chapter we study derivations in a context-free grammar, how a derivation might be related to the structure of the string being derived, and the presence of ambiguity in a grammar, which can complicate this relationship. We also consider a few ways that a grammar might be simplified to make it easier to answer questions about the strings in the corresponding language.

4.1 USING GRAMMAR RULES TO DEFINE A LANGUAGE

The term grammar applied to a language like English refers to the rules for constructing phrases and sentences. For us a grammar is also a set of rules, simpler than the rules of English, by which strings in a language can be generated. In the first few examples in this section, a grammar is another way to write the recursive definitions that we used in Chapter 1 to define languages.

example 4.1 The language $A n B n$

In Example 1.18, we defined the language $A n B n=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ using this recursive definition:

1. $\Lambda \in A n B n$.
2. for every $S \in A n B n, a S b \in A n B n$.

Let us think of S as a variable, representing an arbitrary string in AnBn. Rule 1, which we rewrite as $S \rightarrow \Lambda$, says that the arbitrary string could simply be Λ, obtained by substituting Λ for the variable S. To obtain any other string, we must begin with rule 2 , which we write $S \rightarrow a S b$. This rule says that a string in $A n B n$ can have the form $a S b$ (or that S can be replaced by $a S b$), where the new occurrence of S represents some other element of $A n B n$. Replacing S by $a S b$ is the first step in a derivation of the string, and the remaining steps will be further applications of rules 1 and 2 that will give a value to the new S. The derivation will continue as long as the string contains the variable S, so that in this example the last step will always be to replace S by Λ.

If α and β are strings, and α contains at least one occurrence of S, the notation

$$
\alpha \Rightarrow \beta
$$

will mean that β is obtained from α by using one of the two rules to replace a single occurrence of S by either Λ or $a S b$. Using this notation, we would write

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a a S b b b \Rightarrow a a a b b b
$$

to describe the sequence of steps (three applications of rule 2 , then one application of rule 1) we used to derive the string $a a a b b b \in A n B n$.

The notation is simplified further by writing rules 1 and 2 as

$$
S \rightarrow \Lambda \mid a S b
$$

and interpreting \mid as "or". When we write the rules of a grammar this way, we give concatenation higher precedence than |, which means in our example that the two alternatives in the formula $S \rightarrow \Lambda \mid a S b$ are Λ and $a S b, \operatorname{not} \Lambda$ and a.

The Language Expr

In Example 1.19 we considered the language Expr of algebraic expressions involving the binary operators + and $*$, left and right parentheses, and a single identifier a. We used the following recursive definition to describe Expr:

1. $a \in$ Expr.
2. For every x and y in Expr, $x+y$ and $x * y$ are in Expr.
3. For every $x \in \operatorname{Expr},(x) \in \operatorname{Expr}$.

Rule 2 involves two different letters x and y, because the two expressions being combined with either + or $*$ are not necessarily the same. However, they both represent elements of Expr, and we still need only one variable in the grammar rules corresponding to the recursive definition:

$$
S \rightarrow a|S+S| S * S \mid(S)
$$

To derive the string $a+(a * a)$, for example, we could use the sequence of steps

$$
S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+(S) \Rightarrow a+(S * S) \Rightarrow a+(a * S) \Rightarrow a+(a * a)
$$

The string $S+S$ that we obtain from the first step of this derivation suggests that the final expression should be interpreted as the sum of two subexpressions. The subexpressions we
end up with are obviously not the same, but they are both elements of Expr and can therefore both be derived from S.

A derivation of an expression in Expr is related to the way we choose to interpret the expression, and there may be several possible choices. The expression $a+a * a$, for example, has at least these two derivations:

$$
S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+S * S \Rightarrow a+a * S \Rightarrow a+a * a
$$

and

$$
S \Rightarrow S * S \Rightarrow S+S * S \Rightarrow a+S * S \Rightarrow a+a * S \Rightarrow a+a * a
$$

The first steps in these two derivations yield the strings $S+S$ and $S * S$, respectively. The first derivation suggests that the expression is the sum of two subexpressions, the second that it is the product of two subexpressions.

The rules of precedence normally adopted for algebraic expressions say, among other things, that multiplication has higher precedence than addition. If we adopt this precedence rule, then when we evaluate the expression $a+a * a$, we first evaluate the product $a * a$, so that we interpret the expression as a sum, not a product. Because there is nothing in our grammar rules to suggest that the first derivation is preferable to the second, one possible conclusion is that it might be better to use another grammar, in which every string has essentially only one derivation. We will return to this question in Section 4.4, when we discuss ambiguity in a grammar.

We have made the language Expr simple by restricting the expressions in several ways. We could easily add grammar rules to allow other operations besides + and $*$; if we wanted to allow other "atomic" expressions besides the identifier a (more general identifiers, or numeric literals such as 16 and $1.3 \mathrm{E}-2$, or both), we could add another variable, A, to get

$$
S \rightarrow A|S+S| S * S \mid(S)
$$

and then look for grammar rules beginning with A that would generate all the subexpressions we wanted. The next example involves another language L for which grammar rules generating L require more than one variable.

example 4.3 Palindromes and Nonpalindromes

We see from Example 1.18 that the language Pal of palindromes over the alphabet $\{a, b\}$ can be generated by the grammar rules

$$
S \rightarrow \Lambda|a| b|a S a| b S b
$$

What about its complement NonPal? The last two grammar rules in the definition of Pal still seem to work: For every nonpalindrome x, both $a x a$ and $b x b$ are also nonpalindromes. But a recursive definition of NonPal cannot be as simple as the one for Pal, because there is no finite set of strings comparable to $\{\Lambda, a, b\}$ that can serve as basis elements in the definition (see Exercise 4.6).

To find the crucial feature of a nonpalindrome, let's look at one, say

$$
x=a b b b b a a b a
$$

The string x is $a b y b a$, where $y=b b b a a$. Working our way in from the ends, comparing the symbol on the left with the one on the right, we wouldn't know until we got to y whether x was a palindrome or not, but once we saw that y looked like $b z a$ for some string z, it would be clear, even without looking at any symbols of z. Here is a definition of NonPal:

1. For every $A \in\{a, b\}^{*}, a A b$ and $b A a$ are elements of NonPal;
2. For every S in NonPal, $a S a$ and $b S b$ are in NonPal.

In order to obtain grammar rules generating NonPal, we can introduce A as a second variable, representing an arbitrary element of $\{a, b\}^{*}$, and use grammar rules starting with A that correspond to the recursive definition in Example 1.17. The complete set of rules for NonPal is

$$
\begin{gathered}
S \rightarrow a S a|b S b| a A b \mid b A a \\
A \rightarrow A a|A b| \Lambda
\end{gathered}
$$

A derivation of $a b b b b a a b a$ in this grammar is

$$
\begin{aligned}
S \Rightarrow a S a \Rightarrow a b S b a & \Rightarrow a b b A a b a \\
& \Rightarrow a b b A a a b a \Rightarrow a b b A b a a b a \Rightarrow a b b A b b a a b a \Rightarrow a b b b b a a b a
\end{aligned}
$$

In order to generate a language L using the kinds of grammars we are discussing, it is often necessary to include several variables. The start variable is distinguished from the others, and we will usually denote it by S. Each remaining variable can be thought of as representing an arbitrary string in some auxiliary language involved in the definition of L (the language of all strings that can be derived from that variable). We can still interpret the grammar as a recursive definition of L, except that we must extend our notion of recursion to include mutual recursion: rather than one object defined recursively in terms of itself, several objects defined recursively in terms of each other.

You can easily see how grammar rules can be used to describe simple English syntax. Many useful sentences can be generated by the rule

$$
<\text { declarative sentence }>\rightarrow<\text { subject phrase }><\text { verb phrase }><\text { object }>
$$

provided that reasonable rules are found for each of the three variables on the right. Three examples are "haste makes waste", "the ends justify the means", and "we must extend our notion" (from the last sentence in Example 4.3). You can also see how difficult it would be to find grammars of a reasonable size that would allow more sophisticated sentences without also allowing gibberish. (Try to formulate some rules to generate the preceding sentence, "You can also see how ... gibberish". Unless your approach is to provide almost as many rules as sentences, the chances are that the rules will also generate strings that aren't really English sentences.)

The syntax of programming languages is much simpler. Two types of statements in C are if statements and for statements.

$$
\text { <statement> } \rightarrow \ldots \text { | <if- statement> | <for- statement> }
$$

Assuming we are using "if statements" to include both those with else and those without, we might write

$$
\begin{aligned}
<\text { if }- \text { statement }>\rightarrow & \text { if }(<\text { expr }>)<\text { statement }>\mid \\
& \text { if }(<\text { expr }>)<\text { statement }>\text { else }<\text { statement }> \\
<\text { for }- \text { statement }>\rightarrow & \text { for }(<\text { expr }>;<\text { expr }>;<\text { expr }>)<\text { statement }>
\end{aligned}
$$

where <expr> is another variable, for which the productions would need to be described.
The logic of a program often requires that a "statement" include several statements. We can define a compound statement as follows:

```
\(<\) compound statement \(>\rightarrow\{<\) statement-sequence \(>\}\)
    <statement-sequence> \(\rightarrow \Lambda \mid\) <statement> <statement-sequence>
```

A syntax diagram such as the one in Figure 4.5 accomplishes the same thing.

Figure 4.5 I

A path through the diagram begins with $\{$, ends with \}, and traverses the loop zero or more times.

4.2 CONTEXT-FREE GRAMMARS: DEFINITIONS AND MORE EXAMPLES

Definition 4.6 Context-Free Grammars

A context-free grammar (CFG) is a 4-tuple $G=(V, \Sigma, S, P)$, where V and Σ are disjoint finite sets, $S \in V$, and P is a finite set of formulas of the form $A \rightarrow \alpha$, where $A \in V$ and $\alpha \in(V \cup \Sigma)^{*}$.

Elements of Σ are called terminal symbols, or terminals, and elements of V are variables, or nonterminals. S is the start variable, and elements of P are grammar rules, or productions.

As in Section 4.1, we will reserve the symbol \rightarrow for productions in a grammar, and we will use \Rightarrow for a step in a derivation. The notations

$$
\alpha \Rightarrow^{n} \beta \quad \text { and } \quad \alpha \Rightarrow^{*} \beta
$$

refer to a sequence of n steps and a sequence of zero or more steps, respectively, and we sometimes write

$$
\alpha \Rightarrow_{G} \beta \quad \text { or } \quad \alpha \Rightarrow_{G}^{n} \beta \quad \text { or } \quad \alpha \Rightarrow_{G}^{*} \beta
$$

to indicate explicitly that the steps involve productions in the grammar G. If $G=$ (V, Σ, S, P), the first statement means that there are strings α_{1}, α_{2}, and γ in $(V \cup \Sigma)^{*}$ and a production $A \rightarrow \gamma$ in P such that

$$
\begin{aligned}
& \alpha=\alpha_{1} A \alpha_{2} \\
& \beta=\alpha_{1} \gamma \alpha_{2}
\end{aligned}
$$

In other words, β can be obtained from α in one step by applying the production $A \rightarrow \gamma$. Whenever there is no chance of confusion, we will drop the subscript G.

In the situation we have just described, in which $\alpha=\alpha_{1} A \alpha_{2}$ and $\beta=\alpha_{1} \gamma \alpha_{2}$, the formula $\alpha \Rightarrow \beta$ represents a step in a derivation; if our definition of productions allowed $\alpha \rightarrow \beta$ to be a production, we might say that the variable A could be replaced by γ, depending on its context-i.e., depending on the values of α_{1} and α_{2}. What makes a context-free grammar context-free is that the left side of a production is a single variable and that we may apply the production to any string containing that variable, independent of the context. In Chapter 8 we will consider grammars, and productions, that are not context-free.

Definition 4.7 The Language Generated by a CFG

If $G=(V, \Sigma, S, P)$ is a CFG, the language generated by G is

$$
L(G)=\left\{x \in \Sigma^{*} \mid S \Rightarrow_{G}^{*} x\right\}
$$

A language L is a context-free language (CFL) if there is a CFG G with $L=L(G)$.

Exercises 1.65 and 4.16 both allow us to find context-free grammars for the language $A E q B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$ that use only the variable S. In this example we consider a grammar with three variables that is based on a definition involving mutual recursion.

If x is a nonnull string in $A E q B$, then either $x=a y$, where $y \in L_{b}=\left\{z \mid n_{b}(z)=\right.$ $\left.n_{a}(z)+1\right\}$, or $x=b y$, where $y \in L_{a}=\left\{z \mid n_{a}(z)=n_{b}(z)+1\right\}$. Let us use the variables A and B to represent L_{a} and L_{b}, respectively, and try to find a CFG for $A E q B$ that involves the three variables S, A, and B. So far, the appropriate productions are

$$
S \rightarrow \Lambda|a B| b A
$$

All we need are productions starting with A and B.
If a string x in L_{a} starts with a, then the remaining substring is an element of $A E q B$. What if it starts with b ? Then $x=b y$, where y has two more a 's than b 's. The crucial observation here is that every string y having two more a 's than b 's must be the concatenation of two strings y_{1} and y_{2}, each with one more a. To see this, think about the relative numbers of a 's and b 's in each prefix of y; specifically, for each prefix z, let $d(z)=n_{a}(z)-n_{b}(z)$.

The shortest prefix of y is Λ, and $d(\Lambda)$ is obviously 0 ; the longest prefix is y itself, and $d(y)=2$ by assumption. Each time we add a single symbol to a prefix, the d-value changes (either increases or decreases) by 1 . If a quantity starts at 0 , changes by 1 at each step, and ends up at 2 , it must be 1 at some point! Therefore, for some string y_{1} with $d\left(y_{1}\right)=1$, and some other string $y_{2}, y=y_{1} y_{2}$, and since $d(y)=d\left(y_{1}\right)+d\left(y_{2}\right)=2, d\left(y_{2}\right)$ must also be 1 .

The argument is exactly the same for a string in L_{b} that starts with a. We conclude that $A E q B$ is generated by the CFG with productions

$$
\begin{aligned}
& S \rightarrow \Lambda|a B| b A \\
& A \rightarrow a S \mid b A A \\
& B \rightarrow b S \mid a B B
\end{aligned}
$$

One feature of this CFG is that if we call A the start variable instead of S, it also works as a grammar generating the language L_{a}, and similarly for B and L_{b}.

We can obtain many more examples of context-free languages from the following theorem, which describes three ways of starting with CFLs and constructing new ones.

Theorem 4.9

If L_{1} and L_{2} are context-free languages over an alphabet Σ, then $L_{1} \cup L_{2}$, $L_{1} L_{2}$, and L_{1}^{*} are also CFLs.

Proof

Suppose $G_{1}=\left(V_{1}, \Sigma, S_{1}, P_{1}\right)$ generates L_{1} and $G_{2}=\left(V_{2}, \Sigma, S_{2}, P_{2}\right)$ generates L_{2}. We consider the three new languages one at a time, and in the first two cases we assume, by renaming variables if necessary, that G_{1} and G_{2} have no variables in common.

1. We construct a CFG $G_{u}=\left(V_{u}, \Sigma, S_{u}, P_{u}\right)$ generating $L_{1} \cup L_{2}$, as follows. S_{u} is a new variable not in either V_{1} or V_{2},

$$
V_{u}=V_{1} \cup V_{2} \cup\left\{S_{u}\right\}
$$

and

$$
P_{u}=P_{1} \cup P_{2} \cup\left\{S_{u} \rightarrow S_{1} \mid S_{2}\right\}
$$

For every $x \in L_{1} \cup L_{2}$, we can derive x in the grammar G_{u} by starting with either $S_{u} \rightarrow S_{1}$ or $S_{u} \rightarrow S_{2}$ and continuing with the derivation in either G_{1} or G_{2}. On the other hand, if $S_{u} \Rightarrow_{G_{U}}^{*} x$, the first step in any derivation must be either $S_{u} \Rightarrow S_{1}$ or $S_{u} \Rightarrow S_{2}$, because those are the only productions with left side S_{u}. In the first case, the remaining steps must involve productions in G_{1}, because no variables in V_{2} can appear, and so $x \in L_{1}$; similarly, in the second case $x \in L_{2}$. Therefore, $L\left(G_{u}\right)=L_{1} \cup L_{2}$.
2. To obtain $G_{c}=\left(V_{c}, \Sigma, S_{c}, P_{c}\right)$ generating $L_{1} L_{2}$, we add the single variable S_{c} to the set $V_{1} \cup V_{2}$, just as in the union, and we let

$$
P_{c}=P_{1} \cup P_{2} \cup\left\{S_{c} \rightarrow S_{1} S_{2}\right\}
$$

For a string $x=x_{1} x_{2} \in L_{1} L_{2}$, where $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$, a derivation of x in G_{c} is

$$
S c \Rightarrow S_{1} S_{2} \Rightarrow^{*} x_{1} S_{2} \Rightarrow^{*} x_{1} x_{2}
$$

where the second step (actually a sequence of steps) is a derivation of x_{1} in G_{1} and the third step is a derivation of x_{2} in G_{2}. Conversely, since the first step in any derivation in G_{c} must be $S_{c} \Rightarrow S_{1} S_{2}$, every string x derivable from S_{c} must have the form $x=x_{1} x_{2}$, where for each i, x_{i} is derivable from S_{i} in G_{c}. But because $V_{1} \cap V_{2}=\emptyset$, being derivable from S_{i} in G_{c} means being derivable from S_{i} in G_{i}, so that $x \in L_{1} L_{2}$.
3. We can define a CFG $G^{*}=(V, \Sigma, S, P)$ generating L_{1}^{*} by letting $V=V_{1} \cup\{S\}$, where S is a variable not in V_{1}, and adding productions that generate all possible strings S_{1}^{k}, where $k \geq 0$. Let

$$
P=P_{1} \cup\left\{S \rightarrow S S_{1} \mid \Lambda\right\}
$$

Every string in L_{1}^{*} is an element of $L\left(G_{1}\right)^{k}$ for some $k \geq 0$ and can therefore be obtained from S_{1}^{k}; therefore, $L_{1}^{*} \subseteq L\left(G^{*}\right)$. On the other hand, every string x in $L\left(G^{*}\right)$ must be derivable from S_{1}^{k} for some $k \geq 0$, and we may conclude that $x \in L\left(G_{1}\right)^{k} \subseteq L\left(G_{1}\right)^{*}$, because the only productions in P starting with S_{1} are the ones in G_{1}.

Let L be the language $\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\} \subseteq\{a, b, c\}^{*}$. The form of each element of L might suggest that we try expressing L as the concatenation of three languages L_{1}, L_{2}, and L_{3}, which contain strings of a 's, strings of b 's, and strings of c 's, respectively. This approach doesn't work. Both $a^{2} b^{4} c^{3}$ and $a^{3} b^{4} c^{2}$ are in L; if a^{2} were in L_{1}, b^{4} were in L_{2}, and c^{2} were in L_{3}, then $a^{2} b^{4} c^{2}$, which isn't an element of L, would be in $L_{1} L_{2} L_{3}$.

Instead, we start by noticing that $j \neq i+k$ means that either $j>i+k$ or $j<i+k$, so that L is the union

$$
L=L_{1} \cup L_{2}=\left\{a^{i} b^{j} c^{k} \mid j>i+k\right\} \cup\left\{a^{i} b^{j} c^{k} \mid j<i+k\right\}
$$

There's still no way to express L_{1} or L_{2} as a threefold concatenation using the approach we tried originally (see Exercise 4.11), but L_{1} can be expressed as a concatenation of a slightly different form. Observe that for any natural numbers i and k,

$$
a^{i} b^{i+k} c^{k}=\left(a^{i} b^{i}\right)\left(b^{k} c^{k}\right)
$$

and a string in L_{1} differs from a string like this only in having at least one extra b in the middle. In other words,

$$
L_{1}=M N P=\left\{a^{i} b^{i} \mid i \geq 0\right\}\left\{b^{m} \mid m>0\right\}\left\{b^{k} c^{k} \mid k \geq 0\right\}
$$

and it will be easy to find CFGs for the three languages M, N, and P.
L_{2} is slightly more complicated. For a string $a^{i} b^{j} c^{k}$ in L_{1}, knowing that $j>i+k$ tells us in particular that $j>i$; for a string $a^{i} b^{j} c^{k}$ in L_{2}, such that $j<i+k$, it is helpful to know either how j is related to i or how it is related to k. Let us also split L_{2} into a union of two languages:

$$
L_{2}=L_{3} \cup L_{4}=\left\{a^{i} b^{j} c^{k} \mid j<i\right\} \cup\left\{a^{i} b^{j} c^{k} \mid i \leq j<i+k\right\}
$$

Now we can use the same approach for L_{3} and L_{4} as we used for L_{1}. We can write a string in L_{3} as

$$
a^{i} b^{j} c^{k}=\left(a^{i-j}\right)\left(a^{j} b^{j}\right)\left(c^{k}\right)
$$

where $i-j>0, j \geq 0$, and $k \geq 0$ (and these inequalities are the only constraints on $i-j$, j, and k), and a string in L_{4} as

$$
a^{i} b^{j} c^{k}=\left(a^{i} b^{i}\right)\left(b^{j-i} c^{j-i}\right)\left(c^{k-j+i}\right)
$$

where $i, j-i$, and $k-j+i$ are natural numbers that are arbitrary except that $i>0$, $j-i \geq 0$, and $k-j+i>0$ (i.e., $k+i>j$). It follows that

$$
\begin{aligned}
& L_{3}=Q R T=\left\{a^{i} \mid i>0\right\}\left\{b^{i} c^{i} \mid i \geq 0\right\}\left\{c^{i} \mid i \geq 0\right\} \\
& L_{4}=U V W=\left\{a^{i} b^{i} \mid i>0\right\}\left\{b^{i} c^{i} \mid i \geq 0\right\}\left\{c^{i} \mid i>0\right\}
\end{aligned}
$$

We have now expressed L as the union of the three languages L_{1}, L_{3}, and L_{4}, and each of these three can be written as the concatenation of three languages. The context-free grammar we are looking for will have productions

$$
S \rightarrow S_{1}\left|S_{3}\right| S_{4} \quad S_{1} \rightarrow S_{M} S_{N} S_{P} \quad S_{3} \rightarrow S_{Q} S_{R} S_{T} \quad S_{4} \rightarrow S_{U} S_{V} S_{W}
$$

as well as productions that start with the nine variables $S_{M}, S_{N}, \ldots, S_{W}$. We present productions to take care of the first three of these and leave the last six to you.

$$
S_{M} \rightarrow a S_{M} b\left|\Lambda \quad S_{N} \rightarrow b S_{N}\right| b \quad S_{P} \rightarrow b S_{N} c \mid \Lambda
$$

4.3 REGULAR LANGUAGES AND REGULAR GRAMMARS

The three operations in Theorem 4.9 are the ones involved in the recursive definition of regular languages (Definition 3.1). The "basic" regular languages over an alphabet Σ (the languages \emptyset and $\{\sigma\}$, for every $\sigma \in \Sigma$) are context-free languages. These two statements provide the ingredients that would be necessary for a proof using structural induction that every regular language is a CFL.

example 4.11 A CFG Corresponding to a Regular Expression

Let $L \subseteq\{a, b\}^{*}$ be the language corresponding to the regular expression

$$
b b a(a b)^{*}+\left(a b+b a^{*} b\right)^{*} b a
$$

A literal application of the constructions in Theorem 4.9 would be tedious: the expression $a b+b a^{*} b$ alone involves all three operations, including three uses of concatenation. We don't really need to introduce separate variables for the languages $\{a\}$ and $\{b\}$, and there are other similar shortcuts to reduce the number of variables in the grammar. (Keep in mind that just as when we constructed an NFA for a given regular expression in Chapter 3, sometimes a literal application of the constructions helps to avoid errors.)

Here we might start by introducing the productions $S \rightarrow S_{1} \mid S_{2}$, since the language is a union of two languages L_{1} and L_{2}. The productions

$$
S_{1} \rightarrow S_{1} a b \mid b b a
$$

are sufficient to generate $L_{1} . L_{2}$ is complicated enough that we introduce another variable T for the language corresponding to $a b+b a^{*} b$, and the productions

$$
S_{2} \rightarrow T S_{2} \mid b a
$$

will then take care of L_{2}. Finally, the productions

$$
T \rightarrow a b|b U b \quad U \rightarrow a U| \Lambda
$$

are sufficient to generate the language represented by T. The complete CFG for L has five variables and the productions

$$
\begin{gathered}
S \rightarrow S_{1}\left|S_{2} \quad S_{1} \rightarrow S_{1} a b\right| b b a \quad S_{2} \rightarrow T S_{2} \mid b a \\
T \rightarrow a b|b U b \quad U \rightarrow a U| \Lambda
\end{gathered}
$$

Not only can every regular language be generated by a context-free grammar, but it can be generated by a CFG of a particularly simple form. To introduce this type of grammar, we consider the finite automaton in Figure 4.12, which accepts the language $\{a, b\}^{*}\{b a\}$.

Figure 4.12 I
An FA accepting $\{a, b\}^{*}\{b a\}$.

The idea behind the corresponding CFG is that states in the FA correspond to variables in the grammar, and for each transition

the grammar will have a production $T \rightarrow \sigma U$. The six transitions in the figure result in the six productions

$$
S \rightarrow a S|b A \quad A \rightarrow b A| a B \quad B \rightarrow b A \mid a S
$$

The only other productions in the grammar will be Λ-productions (i.e., the right side will be Λ), and so the current string in an uncompleted derivation will consist of a string of terminal symbols and a single variable at the end. The sequence of transitions

$$
S \xrightarrow{b} A \xrightarrow{b} A \xrightarrow{a} B \xrightarrow{a} S \xrightarrow{b} A \xrightarrow{a} B
$$

corresponds to the sequence of steps

$$
S \Rightarrow b A \Rightarrow b b A \Rightarrow b b a B \Rightarrow b b a a S \Rightarrow b b a a b A \Rightarrow b b a a b a B
$$

We can see better now how the correspondence between states and variables makes sense: a state is the way an FA "remembers" how to react to the next input symbol, and the variable at the end of the current string can be thought of as the state of the derivation-the way the derivation remembers, for each possible terminal symbol, how to generate the appropriate little piece of the string that should come next.

The way the string bbaaba is finally accepted by the FA is that the current state B is an accepting state, and the way the corresponding derivation terminates is that the variable B at the end of the current string will be replaced by Λ.

Definition 4.13 Regular Grammars

A context-free grammar $G=(V, \Sigma, S, P)$ is regular if every production is of the form $A \rightarrow \sigma B$ or $A \rightarrow \Lambda$, where $A, B \in V$ and $\sigma \in \Sigma$.

Theorem 4.14

For every language $L \subset \Sigma^{*}, L$ is regular if and only if $L=L(G)$ for some regular grammar G.

Proof

If L is a regular language, then for some finite automaton $M=\left(Q, \Sigma, q_{0}\right.$, $A, \delta), L=L(M)$. As in the grammar above for the FA in Figure 4.12, we define $G=(V, \Sigma, S, P)$ by letting V be Q, letting S be the initial state q_{0}, and letting P be the set containing a production $T \rightarrow a U$ for
every transition $\delta(T, a)=U$ in M, and a production $T \rightarrow \Lambda$ for every accepting state T of $M . G$ is a regular grammar. It is easy to see, just as in the example, that for every $x=a_{1} a_{2} \ldots a_{n}$, the transitions on these symbols that start at q_{0} end at an accepting state if and only if there is a derivation of x in G; in other words, $L=L(G)$.

In the other direction, if G is a regular grammar with $L=L(G)$, we can reverse the construction to produce $M=\left(Q, \Sigma, q_{0}, A, \delta\right) . Q$ is the set of variables of G, q_{0} is the start variable, A is the set of states (variables) for which there are Λ-productions in G, and for every production $T \rightarrow$ σU there is a transition $T \xrightarrow{\sigma} U$ in M. We cannot expect that M is an ordinary finite automaton, because for some combinations of T and a, there may be either more than one or fewer than one U for which $T \rightarrow \sigma U$ is a production. But M is an NFA, and the argument in the first part of the proof is still sufficient; for every string x, there is a sequence of transitions involving the symbols of x that starts at q_{0} and ends in an accepting state if and only if there is a derivation of x in G. Therefore, L is regular, because it is the language accepted by the NFA M.

The word regular is sometimes used to describe grammars that are slightly different from the ones in Definition 4.13. Grammars in which every production has one of the forms $A \rightarrow \sigma B, A \rightarrow \sigma$, or $A \rightarrow \Lambda$ are equivalent to finite automata in the same way that our regular grammars are. Grammars with only the first two of these types of productions generate regular languages, and for every language L, $L-\{\Lambda\}$ can be generated by such a grammar. Similarly, a language L is regular if and only if the set of nonnull strings in L can be generated by a grammar in which all productions have the form $A \rightarrow x B$ or $A \rightarrow x$, where A and B are variables and x is a nonnull string of terminals. Grammars of this last type are also called linear. Some of these variations are discussed in the exercises.

4.4|DERIVATION TREES AND AMBIGUITY

In most of our examples so far, we have been interested in what strings a contextfree grammar generates. As Example 4.2 suggests, it is also useful to consider how a string is generated by a CFG. A derivation may provide information about the structure of the string, and if a string has several possible derivations, one may be more appropriate than another.

Just as diagramming a sentence might help to exhibit its grammatical structure, drawing a tree to represent a derivation of a string helps to visualize the steps of the derivation and the corresponding structure of the string. In a derivation tree, the root node represents the start variable S. For each interior node N, the portion of the tree consisting of N and its children represents a production $A \rightarrow \alpha$ used in the derivation. N represents the variable A, and the children, from left to right, represent the symbols of α. (If the production is $A \rightarrow \Lambda$, the node N has a single child representing Λ.) Each leaf node in the tree represents either a terminal symbol

Figure 4.15 I
A derivation tree for $a+(a * a)$ in Example 4.2.
or Λ, and the string being derived is the one obtained by reading the leaf nodes from left to right.

A derivation of a string x in a CFG is a sequence of steps, and a single step is described by specifying the current string, a variable appearing in the string, a particular occurrence of that variable, and the production starting with that variable. We will adopt the phrase variable-occurrence to mean a particular occurrence of a particular variable. (For example, if S and A are variables, the string $S+A * S$ contains three variable-occurrences.) Using this terminology, we may say that a step in a derivation is determined by the current string, a particular variable-occurrence in the string, and the production to be applied to that variableoccurrence.

It is easy to see that for each derivation in a CFG, there is exactly one derivation tree. The derivation begins with the start symbol S, which corresponds to the root node of the tree, and the children of that node are determined by the first production in the derivation. At each subsequent step, a production is applied, involving a variable-occurrence corresponding to a node N in the tree; that production determines the portion of the tree consisting of N and its children. For example, the derivation

$$
S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+(S) \Rightarrow a+(S * S) \Rightarrow a+(a * S) \Rightarrow a+(a * a)
$$

in the CFG for Expr in Example 4.2 corresponds to the derivation tree in Figure 4.15 .

There are other derivations that also correspond to this tree. Every derivation of the string $a+(a * a)$ must begin

$$
S \Rightarrow S+S
$$

but now there are two possible ways to proceed, since the next step could involve either of the two occurrences of S. If we chose the rightmost one, so as to obtain $S+(S)$, we would still have two choices for the step after that.

When we said above, "if a string has several possible derivations, one may be more appropriate than another", we were referring, not to derivations that differed in this way, but to derivations corresponding to different derivation trees. Among all the derivations corresponding to the derivation tree in Figure 4.15 (see Exercise 4.30), there are no essential differences, but only differences having to do with which occurrence of S we choose for the next step. We could eliminate these choices by agreeing, at every step where the current string has more than one variable-occurrence, to use the leftmost one.

Definition 4.16 Leftmost and Rightmost Derivations

A derivation in a context-free grammar is a leftmost derivation (LMD) if, at each step, a production is applied to the leftmost variable-occurrence in the current string. A rightmost derivation (RMD) is defined similarly.

Theorem 4.17

If G is a context-free grammar, then for every $x \in L(G)$, these three statements are equivalent:

1. x has more than one derivation tree.
2. x has more than one leftmost derivation.
3. x has more than one rightmost derivation.

Proof

We will show that x has more than one derivation tree if and only if x has more than one LMD, and the equivalence involving rightmost derivations will follow similarly.

If there are two different derivation trees for the string x, each of them has a corresponding leftmost derivation. The two LMDs must be different-otherwise that derivation would correspond to two different derivation trees, and this is impossible for any derivation, leftmost or otherwise.

If there are two different leftmost derivations of x, let the corresponding derivation trees be T_{1} and T_{2}. Suppose that in the first step where the two derivations differ, this step is

$$
x A \beta \Rightarrow x \alpha_{1} \beta
$$

in one derivation and

$$
x A \beta \Rightarrow x \alpha_{2} \beta
$$

in the other. Here x is a string of terminals, because the derivations are leftmost; A is a variable; and $\alpha_{1} \neq \alpha_{2}$. In both T_{1} and T_{2} there is a node corresponding to the variable-occurrence A, and the respective portions of the two trees to the left of this node must be identical, because the leftmost derivations have been the same up to this point. These two nodes have different sets of children, and so $T_{1} \neq T_{2}$.

Definition 4.18 Ambiguity in a CFG

A context-free grammar G is ambiguous if for at least one $x \in L(G), x$ has more than one derivation tree (or, equivalently, more than one leftmost derivation).

We will return to the algebraic-expression grammar of Example 4.2 shortly, but first we consider an example of ambiguity arising from the definition of ifstatements in Example 4.4.

In the C programming language, an if-statement can be defined by these grammar rules:

$$
\begin{aligned}
S \rightarrow & \text { if }(E) S \mid \\
& \text { if }(E) S \text { else } S \\
& O S
\end{aligned}
$$

(In our notation, E is short for <expression>, S for <statement>, and $O S$ for <otherstatement>.) A statement in C that illustrates the ambiguity of these rules is

```
if (e1) if (e2) f(); else g();
```

The problem is that although in C the else should be associated with the second if, as in

```
if (e1) { if (e2) f(); else g(); }
```

there is nothing in these grammar rules to rule out the other interpretation:

```
if (e1) { if (e2) f(); } else g();
```

The two derivation trees in Figure 4.21 show the two possible interpretations of the statement; the correct one is in Figure 4.21a.

There are equivalent grammar rules that allow only the correct interpretation. One possibility is

$$
\begin{aligned}
S & \rightarrow S_{1} \mid S_{2} \\
S_{1} & \rightarrow \text { if }(E) S_{1} \text { else } S_{1} \mid O S \\
S_{2} & \rightarrow \text { if }(E) S \mid \\
& \text { if }(E) S_{1} \text { else } S_{2}
\end{aligned}
$$

These rules generate the same strings as the original ones and are unambiguous. We will not prove either fact, but you can see how the second might be true. The variable S_{1} represents a statement in which every if is matched by a corresponding else, and every statement derived from S_{2} contains at least one unmatched if. The only variable appearing before else in these rules is S_{1}; because the else cannot match any of the if s in the statement derived from S_{1}, it must match the if that appeared at the same time it did.

EXAMPLE4.20 Ambiguity in the CFG for Expr in Example 4.2

In the grammar G in Example 4.2, with productions

$$
\begin{equation*}
S \rightarrow a|S+S| S * S \mid \tag{S}
\end{equation*}
$$

the string $a+a * a$ has the two leftmost derivations

$$
\begin{aligned}
& S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+S * S \Rightarrow a+a * S \Rightarrow a+a * a \\
& S \Rightarrow S * S \Rightarrow S+S * S \Rightarrow a+S * S \Rightarrow a+a * S \Rightarrow a+a * a
\end{aligned}
$$

which correspond to the derivation trees in Figure 4.22.

(a)

(b)

Figure 4.21 I

Two possible interpretations of a dangling else.
We observed in Example 4.2 that the first of these two LMDs (or the first of the two derivation trees) matches the interpretation of $a+a * a$ as a sum, rather than as a product; one reason for the ambiguity is that the grammar allows either of the two operations + and $*$ to be given higher precedence. Just as adding braces to the C statements in Example 4.19 allowed only the correct interpretation, the addition of parentheses in this expression, to obtain $a+(a * a)$, has the same effect; the only leftmost derivation of this string is

$$
S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+(S) \Rightarrow a+(S * S) \Rightarrow a+(a * S) \Rightarrow a+(a * a)
$$

Another rule in algebra that is not enforced by this grammar is the rule that says operations of the same precedence are performed left-to-right. For this reason, both the expressions $a+a+a$ and $a * a * a$ also illustrate the ambiguity of the grammar. The first expression has the (correct) LMD

$$
S \Rightarrow S+S \Rightarrow S+S+S \Rightarrow a+S+S \Rightarrow a+a+S \Rightarrow a+a+a
$$

Figure 4.22 I
Two derivation trees for $a+a * a$ in Example 4.2.
corresponding to the interpretation $(a+a)+a$, as well as the LMD

$$
S \Rightarrow S+S \Rightarrow a+S \Rightarrow a+S+S \Rightarrow a+a+S \Rightarrow a+a+a
$$

corresponding to the other way of grouping the terms.
In order to find an unambiguous CFG G_{1} generating this language, we look for productions that do not allow any choice regarding either the precedence of the two operators or the order in which operators of the same precedence are performed. To some extent, we can ignore the parentheses at least temporarily. Let S_{1} be the start symbol of G_{1}.

Saying that multiplication should have higher precedence than addition means that when there is any doubt, an expression should be treated as a sum rather than a product. For this reason, we concentrate first on productions that will give us sums of terms. The problem with $S_{1} \rightarrow S_{1}+S_{1}$ is that if we are attempting to derive a sum of three or more terms, there are too many choices as to how many terms will come from the first S_{1} and how many from the second. Saying that additions are performed left-to-right, or that + "associates to the left", suggests that we think of a sum of n terms as another sum plus one additional term. We try

$$
S_{1} \rightarrow S_{1}+T \mid T
$$

where T represents a term-that is, an expression that may be part of a sum but is not itself a sum.

It is probably clear already that we would no longer want $S_{1} \rightarrow S_{1} * S_{1}$, even if it didn't cause the same problems as $S_{1} \rightarrow S_{1}+S_{1}$; we don't want to say that an expression can be either a sum or a product, because that was one of the sources of ambiguity. Instead, we say that terms can be products. Products of what? Factors. This suggests

$$
T \rightarrow T * F \mid F
$$

where, in the same way that $S_{1}+T$ is preferable to $T+S_{1}, T * F$ is preferable to $F * T$. We now have a hierarchy with three levels: expressions are sums of terms, and terms are products of factors. Furthermore, we have incorporated the rule that each operator associates to the left.

What remains is to deal with a and expressions with parentheses. The productions $S_{1} \rightarrow T$ and $T \rightarrow F$ allow us to have an expression with a single term and a term with a single factor; thus, although a by itself is a valid expression, it is best to call it a factor, because it is neither a product nor a sum. Similarly, an expression in parentheses should also be considered a factor. What is in the parentheses should be an expression, because once we introduce a pair of parentheses we can start all over with what's inside.

The CFG that we have now obtained is $G_{1}=\left(V, \Sigma, S_{1}, P\right)$, where $V=\left\{S_{1}, T, F\right\}$, $\Sigma=\{a,+, *,()$,$\} , and P$ contains the productions

$$
\begin{aligned}
S_{1} & \rightarrow S_{1}+T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow a \mid\left(S_{1}\right)
\end{aligned}
$$

Both halves of the statement $L(G)=L\left(G_{1}\right)$ can be proved by mathematical induction on the length of a string. The details, particularly for the statement $L(G) \subseteq L\left(G_{1}\right)$, are somewhat involved and are left to the exercises.

The rest of this section is devoted to proving that G_{1} is unambiguous. In the proof, for a string $x \in L\left(G_{1}\right)$, it is helpful to talk about a symbol in x that is within parentheses, and we want this to mean that it lies between the left and right parentheses that are introduced in a single step of a derivation of x. One might ask, however, whether there can be two derivations of x, and a symbol that has this property with respect to one of the two but not the other. The purpose of Definition 4.23 and Theorem 4.24 is to establish that this formulation is a satisfactory one and that "within parentheses" doesn't depend on which derivation we are using. In the proof of Theorem 4.24 , we will use the result obtained in Example 1.25, that balanced strings of parentheses are precisely the strings with equal numbers of left and right parentheses and no prefix having more right than left parentheses.

Definition 4.23 The Mate of a Left Parenthesis in a Balanced String

The mate of a left parenthesis in a balanced string is the first right parenthesis following it for which the string starting with the left and ending with the right has equal numbers of left and right parentheses. (Every left parenthesis in a balanced string has a mate-see Exercise 4.41.)

Theorem 4.24

For every $x \in L\left(G_{1}\right)$, every derivation of x in G_{1}, and every step of this derivation in which two parentheses are introduced, the right parenthesis is the mate of the left.

Proof

Suppose $x=x_{1}\left({ }_{0} z\right)_{0} x_{2}$, where (0_{0} and $)_{0}$ are two occurrences of parentheses that are introduced in the same step in some derivation of x. Then $F \Rightarrow\left({ }_{0} S_{1}\right)_{0} \Rightarrow^{*}\left({ }_{0} z\right)_{0}$. It follows that z is a balanced string, and by the definition of "mate", the mate of (0 cannot appear after $)_{0}$.

If it appears before $)_{0}$, however, then $\left.z=z_{1}\right)_{1} z_{2}$, for some strings z_{1} and z_{2}, where $)_{1}$ is the mate of $\left(0\right.$ and z_{1} has equal numbers of left and right parentheses. This implies that the prefix $\left.z_{1}\right)_{1}$ of z has more right parentheses than left, which is impossible if z is balanced. Therefore, $)_{0}$ is the mate of ${ }_{0}$.

Definition 4.23 and Theorem 4.24 allow us to say that "between the two parentheses produced in a single step of a derivation" is equivalent to "between some left parenthesis and its mate", so that either of these can be taken as the definition of "within parentheses".

Theorem 4.25

The context-free grammar G_{1} with productions

$$
\begin{aligned}
S_{1} & \rightarrow S_{1}+T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow a \mid\left(S_{1}\right)
\end{aligned}
$$

is unambiguous.

Proof

We prove the following statement, which implies the result: For every x derivable from one of the variables S_{1}, T, or F in G_{1}, x has only one leftmost derivation from that variable. The proof is by mathematical induction on $|x|$. The basis step, for $x=a$, is easy, because for each of the three variables, a has exactly one derivation from that variable.

The induction hypothesis is that $k \geq 1$ and that for every y derivable from S_{1}, T, or F for which $|y| \leq k, y$ has only one leftmost derivation from that variable. We wish to show that the same is true for a string $x \in L\left(G_{1}\right)$ with $|x|=k+1$.

We start with the case in which x contains at least one occurrence of + that is not within parentheses. Because the only occurrences of + in strings derivable from T or F are within parentheses, every derivation of x must begin $S_{1} \Rightarrow S_{1}+T$, and the occurrence of + in this step is the last one in x that is not within parentheses. Every leftmost derivation of x from S_{1} must then have the form

$$
S_{1} \Rightarrow S_{1}+T \Rightarrow^{*} y+T \Rightarrow^{*} y+z
$$

where the last two steps represent leftmost derivations of y from S_{1} and z from T, respectively, and the + is still the last one not within parentheses. According to the induction hypothesis, y has only one leftmost derivation from S_{1}, and z has only one from T; therefore, x has only one LMD from S_{1}.

Next we consider the case in which every occurrence of + in x is within parentheses but there is at least one occurrence of $*$ not within parentheses. Because x cannot be derived from F, every derivation of x from S_{1} must begin $S_{1} \Rightarrow T \Rightarrow T * F$, and every derivation from T must begin $T \Rightarrow T * F$. In either case, this occurrence of $*$ must be the last one in x not within parentheses. As before, the subsequent steps of every LMD must be

$$
T * F \Rightarrow^{*} y * F \Rightarrow^{*} y * z
$$

in which the derivations of y from T and z from F are both leftmost. The induction hypothesis tells us that there is only one way for each of these derivations to proceed, and that there is only one leftmost derivation of x from S_{1} or T.

Finally, suppose that every occurrence of + or $*$ in x is within parentheses. Then x can be derived from any of the three variables, but every derivation from S_{1} begins

$$
S_{1} \Rightarrow T \Rightarrow F \Rightarrow\left(S_{1}\right)
$$

and every derivation from T or F begins the same way but with the first one or two steps omitted. Therefore, $x=(y)$, where $S_{1} \Rightarrow^{*} y$. By the induction hypothesis, y has only one LMD from S_{1}, and it follows that x has only one from each of the three variables.

4.5 SIMPLIFIED FORMS AND NORMAL FORMS

Questions about the strings generated by a context-free grammar G are sometimes easier to answer if we know something about the form of the productions. Sometimes this means knowing that certain types of productions never occur, and sometimes it means knowing that every production has a certain simple form. For example, suppose we want to know whether a string x is generated by G, and we look for an answer by trying all derivations with one step, then all derivations with two steps, and so on. If we don't find a derivation that produces x, how long do we have to keep trying?

The number t of terminals in the current string of a derivation cannot decrease at any step. If G has no Λ-productions (of the form $A \rightarrow \Lambda$), then the length l of the current string can't decrease either, which means that the sum $t+l$ can't decrease. If we also know that G has no "unit productions" (of the form $A \rightarrow B$, where A and B are variables), then the sum must increase, because every step either adds a terminal or increases the number of variables. A derivation of x starts with S, for which $l+t=1$, and ends with x, for which $l+t=2|x|$; therefore, no derivation has more than $2|x|-1$ steps. If we try all derivations with this many steps or fewer and don't find one that generates x, we may conclude that $x \notin L(G)$.

In this section we show how to modify an arbitrary CFG G so that the modified grammar has no productions of either of these types but still generates $L(G)$, except possibly for the string Λ. We conclude by showing how to modify G further (eliminating both these types of productions is the first step) so as to obtain a CFG that is still essentially equivalent to G but is in Chomsky normal form, so that every production has one of two very simple forms.

A simple example will suggest the idea of the algorithm to eliminate Λ productions. Suppose one of the productions in G is

$$
A \rightarrow B C D C B
$$

and that from both the variables B and C, Λ can be derived (in one or more steps), as well as other nonnull strings of terminals. Once the algorithm has been applied, the steps that replace B and C by Λ will no longer be possible, but we must still be able to get all the nonnull strings from A that we could have gotten using these
steps. This means that we should retain the production $A \rightarrow B C D C B$, but we should add $A \rightarrow C D C B$ (because we could have replaced the first B by Λ and the other occurrences of B and C by nonnull strings), $A \rightarrow D C B, A \rightarrow C D B$, and so on-every one of the fifteen productions that result from leaving out one or more of the four occurrences of B and C in the right-hand string.

The necessary first step, of course, is to identify the variables like B and C from which Λ can be derived. We will refer to these as nullable variables. It is easy to see that the set of nullable variables can be obtained using the following recursive definition.

Definition 4.26 A Recursive Definition of the Set of

 Nullable Variables of \mathbf{G}1. Every variable A for which there is a production $A \rightarrow \Lambda$ is nullable.
2. If $A_{1}, A_{2}, \ldots, A_{k}$ are nullable variables (not necessarily distinct), and

$$
B \rightarrow A_{1} A_{2} \ldots A_{k}
$$

is a production, then B is nullable.

This definition leads immediately to an algorithm for identifying the nullable variables (see Example 1.21).

Theorem 4.27

For every context-free grammar $G=(V, \Sigma, S, P)$, the following algorithm produces a CFG $G_{1}=\left(V, \Sigma, S, P_{1}\right)$ having no Λ-productions and satisfying $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

1. Identify the nullable variables in V, and initialize P_{1} to P.
2. For every production $A \rightarrow \alpha$ in P, add to P_{1} every production obtained from this one by deleting from α one or more variable-occurrences involving a nullable variable.
3. Delete every Λ-production from P_{1}, as well as every production of the form $A \rightarrow A$.

Proof

It is obvious that G_{1} has no Λ-productions. We show that for every $A \in V$ and every nonnull $x \in \Sigma^{*}, A \Rightarrow{ }_{G}^{*} x$ if and only if $A \Rightarrow_{G_{1}}^{*} x$.

First we show, using mathematical induction on n, that for every $n \geq 1$, every $A \in V$, and every $x \in \Sigma^{*}$ with $x \neq \Lambda$, if $A \Rightarrow{ }_{G}^{n} x$, then $A \Rightarrow{ }_{G_{1}}^{*} x$. For the basis step, suppose $A \Rightarrow{ }_{G}^{1} x$. Then $A \rightarrow x$ is a production in P, and since $x \neq \Lambda$, this production is also in P_{1}.

Suppose that $k \geq 1$ and that for every $n \leq k$, every variable A, and every nonnull $x \in \Sigma^{*}$ for which $A \Rightarrow{ }_{G}^{n} x, A \Rightarrow{ }_{G_{1}}^{*} x$. Now suppose that
$A \Rightarrow{ }_{G}^{k+1} x$, for some $x \in \Sigma^{*}-\{\Lambda\}$. Let the first step in some $(k+1)$-step derivation of x from A in G be

$$
A \Rightarrow X_{1} X_{2} \ldots X_{m}
$$

where each X_{i} is either a variable or a terminal. Then $x=x_{1} x_{2} \ldots x_{m}$, where for each i, either $x_{i}=X_{i}$ (a terminal), or x_{i} is a string derivable from the variable X_{i} in k or fewer steps. When all the (nullable) variables X_{i} for which the corresponding x_{i} is Λ are deleted from the string $X_{1} X_{2} \ldots X_{m}$, there are still some X_{i} 's left, because $x \neq \Lambda$, and so the resulting production is an element of P_{1}. Furthermore, the induction hypothesis tells us that for each variable X_{i} remaining, $X_{i} \Rightarrow_{G_{1}}^{*} x_{i}$. Therefore, $A \Rightarrow_{G_{1}}^{*} x$.

For the converse, we show, using mathematical induction on n, that for every $n \geq 1$, every variable A, and every $x \in \Sigma^{*}$, if $A \Rightarrow_{G_{1}}^{n} x$, then $A \Rightarrow{ }_{G}^{*} x$. If $A \Rightarrow{ }_{G_{1}}^{1} x$, then $A \rightarrow x$ is a production in P_{1}. It follows that $A \rightarrow \alpha$ is a production in P, where α is a string from which x can be obtained by deleting zero or more occurrences of nullable variables. Therefore, $A \Rightarrow_{G}^{*} x$, because we can begin a derivation with the production $A \rightarrow \alpha$ and continue by deriving Λ from each of the nullable variables that was deleted from α to obtain x.

Suppose that $k \geq 1$, that for every $n \leq k$, every A, and every string x with $A \Rightarrow{ }_{G_{1}}^{n} x, A \Rightarrow{ }_{G}^{*} x$, and that $A \Rightarrow_{G_{1}}^{k+1} x$. Again, let the first step of some $(k+1)$-step derivation of x from A in G_{1} be

$$
A \Rightarrow X_{1} X_{2} \ldots X_{m}
$$

Then $x=x_{1} x_{2} \ldots x_{m}$, where for each i, either $x_{i}=X_{i}$ or x_{i} is a string derivable from the variable X_{i} in the grammar G_{1} in k or fewer steps. By the induction hypothesis, $X_{i} \Rightarrow{ }_{G}^{*} x_{i}$ for each i. By definition of G_{1}, there is a production $A \rightarrow \alpha$ in P so that $X_{1} X_{2} \ldots X_{m}$ can be obtained from α by deleting some variable-occurrences involving nullable variables. This implies that $A \Rightarrow{ }_{G}^{*} X_{1} X_{2} \ldots X_{m}$, and therefore that we can derive x from A in G, by first deriving $X_{1} \ldots X_{m}$ and then deriving each x_{i} from the corresponding X_{i}.

The procedure we use to eliminate unit productions from a CFG is rather similar. We first identify pairs of variables (A, B) for which $A \Rightarrow^{*} B$ (not only those for which $A \rightarrow B$ is a production); then, for each such pair (A, B), and each nonunit production $B \rightarrow \alpha$, we add the production $A \rightarrow \alpha$.

If we make the simplifying assumption that we have already eliminated Λ productions from the grammar, then a sequence of steps by which $A \Rightarrow^{*} B$ involves only unit productions. This allows us, for a variable A, to formulate the following recursive definition of an " A-derivable" variable (a variable B different from A for which $A \Rightarrow^{*} B$):

1. If $A \rightarrow B$ is a production and $B \neq A$, then B is A-derivable.
2. If C is A-derivable, $C \rightarrow B$ is a production, and $B \neq A$, then B is A-derivable.
3. No other variables are A-derivable.

Theorem 4.28

For every context-free grammar $G=(V, \Sigma, S, P)$ without Λ-productions, the CFG $G_{1}=\left(V, \Sigma, S, P_{1}\right)$ produced by the following algorithm generates the same language as G and has no unit productions.

1. Initialize P_{1} to be P, and for each $A \in V$, identify the A-derivable variables.
2. For every pair (A, B) of variables for which B is A-derivable, and every nonunit production $B \rightarrow \alpha$, add the production $A \rightarrow \alpha$ to P_{1}.
3. Delete all unit productions from P_{1}.

Proof

The proof that $L\left(G_{1}\right)=L(G)$ is a straightforward induction proof and is omitted.

Definition 4.29 Chomsky Normal Form

A context-free grammar is said to be in Chomsky normal form if every production is of one of these two types:

$$
\begin{aligned}
& A \rightarrow B C \quad \text { (where } B \text { and } C \text { are variables) } \\
& A \rightarrow \sigma \quad \text { (where } \sigma \text { is a terminal symbol) }
\end{aligned}
$$

Theorem 4.30

For every context-free grammar G, there is another CFG G_{1} in Chomsky normal form such that $L\left(G_{1}\right)=L(G)-\{\Lambda\}$.

Proof

We describe briefly the algorithm that can be used to construct the grammar G_{1}, and it is not hard to see that it generates the same language as G, except possibly for the string Λ.

The first step is to apply the algorithms presented in Theorems 4.6 and 4.7 to eliminate Λ-productions and unit productions. The second step is to introduce for every terminal symbol σ a variable X_{σ} and a production $X_{\sigma} \rightarrow \sigma$, and in every production whose right side has at least two symbols, to replace every occurrence of a terminal by the corresponding
variable. At this point, every production looks like either $A \rightarrow \sigma$ or

$$
A \rightarrow B_{1} B_{2} \ldots B_{k}
$$

where the B_{i} 's are variables and $k \geq 2$.
The last step is to replace each production having more than two variable-occurrences on the right by an equivalent set of productions, each of which has exactly two variable-occurrences. This step is described best by an example. The production

$$
A \rightarrow B A C B D C B A
$$

would be replaced by

$$
\begin{gathered}
A \rightarrow B Y_{1} \quad Y_{1} \rightarrow A Y_{2} \quad Y_{2} \rightarrow C Y_{3} \quad Y_{3} \rightarrow B Y_{4} \quad Y_{4} \rightarrow D Y_{5} \\
Y_{5} \rightarrow C Y_{6} \quad Y_{6} \rightarrow B A
\end{gathered}
$$

where the new variables Y_{1}, \ldots, Y_{6} are specific to this production and are not used anywhere else.

This example will illustrate all the algorithms described in this section: to identify nullable variables, to eliminate Λ-productions, to identify A-derivable variables for each A, to eliminate unit productions, and to convert to Chomsky normal form. Let G be the context-free grammar with productions

$$
\begin{aligned}
S & \rightarrow T U \mid V \\
T & \rightarrow a T b \mid \Lambda \\
U & \rightarrow c U \mid \Lambda \\
V & \rightarrow a V c \mid W \\
W & \rightarrow b W \mid \Lambda
\end{aligned}
$$

which can be seen to generate the language $\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.i=k\right\}$.

1. (Identifying nullable variables) The variables T, U, and W are nullable because they are involved in Λ-productions; V is nullable because of the production $V \rightarrow W$; and S is also, either because of the production $S \rightarrow T U$ or because of $S \rightarrow V$. So all the variables are!
2. (Eliminating Λ-productions) Before the Λ-productions are eliminated, the following productions are added:

$$
S \rightarrow T \quad S \rightarrow U \quad T \rightarrow a b \quad U \rightarrow c \quad V \rightarrow a c \quad W \rightarrow b
$$

After eliminating Λ-productions, we are left with

$$
\begin{gathered}
S \rightarrow T U|T| U|V \quad T \rightarrow a T b| a b \quad U \rightarrow c U \mid c \\
V \rightarrow a V c|a c| W \quad W \rightarrow b W \mid b
\end{gathered}
$$

3. (Identifying A-derivable variables, for each A) The S-derivable variables obviously include T, U, and V, and they also include W because of the production $V \rightarrow W$. The V-derivable variable is W.
4. (Eliminating unit productions) We add the productions

$$
S \rightarrow a T b|a b| c U|c| a V c|a c| b W|b \quad V \rightarrow b W| b
$$

before eliminating unit productions. At this stage, we have

$$
\begin{aligned}
S & \rightarrow T U|a T b| a b|c U| c|a V c| a c|b W| b \\
T & \rightarrow a T b \mid a b \\
U & \rightarrow c U \mid c \\
V & \rightarrow a V c|a c| b W \mid b \\
W & \rightarrow b W \mid b
\end{aligned}
$$

5. (Converting to Chomsky normal form) We replace a, b, and c by X_{a}, X_{b}, and X_{c}, respectively, in productions whose right sides are not single terminals, obtaining

$$
\begin{aligned}
S & \rightarrow T U\left|X_{a} T X_{b}\right| X_{a} X_{b}\left|X_{c} U\right| c\left|X_{a} V X_{c}\right| X_{a} X_{c}\left|X_{b} W\right| b \\
T & \rightarrow X_{a} T X_{b} \mid X_{a} X_{b} \\
U & \rightarrow X_{c} U \mid c \\
V & \rightarrow X_{a} V X_{c}\left|X_{a} X_{c}\right| X_{b} W \mid b \\
W & \rightarrow X_{b} W \mid b
\end{aligned}
$$

This grammar fails to be in Chomsky normal form only because of the productions $S \rightarrow X_{a} T X_{b}, S \rightarrow X_{a} V X_{c}, T \rightarrow X_{a} T X_{b}$, and $V \rightarrow X_{a} V X_{c}$. When we take care of these as described above, we obtain the final CFG G_{1} with productions

$$
\begin{aligned}
S & \rightarrow T U\left|X_{a} Y_{1}\right| X_{a} X_{b}\left|X_{c} U\right| c\left|X_{a} Y_{2}\right| X_{a} X_{c}\left|X_{b} W\right| b \\
Y_{1} & \rightarrow T X_{b} \\
Y_{2} & \rightarrow V X_{c} \\
T & \rightarrow X_{a} Y_{3} \mid X_{a} X_{b} \\
Y_{3} & \rightarrow T X_{b} \\
U & \rightarrow X_{c} U \mid c \\
V & \rightarrow X_{a} Y_{4}\left|X_{a} X_{c}\right| X_{b} W \mid b \\
Y_{4} & \rightarrow V X_{c} \\
W & \rightarrow X_{b} W \mid b
\end{aligned}
$$

(We obviously don't need both Y_{1} and Y_{3}, and we don't need both Y_{2} and Y_{4}, so we could simplify G_{1} slightly.)

EXERCISES

4.1. In each case below, say what language (a subset of $\{a, b\}^{*}$) is generated by the context-free grammar with the indicated productions.
a. $S \rightarrow a S|b S| \Lambda$
b. $S \rightarrow S S|b S| a$
c. $S \rightarrow S a S \mid b$
d. $S \rightarrow S a S|b| \Lambda$
e. $S \rightarrow T T \quad T \rightarrow a T|T a| b$
f. $S \rightarrow a S a|b S b| a A b|b A a \quad A \rightarrow a A a| b A b|a| b \mid \Lambda$
g. $S \rightarrow a T|b T| \Lambda \quad T \rightarrow a S \mid b S$
h. $S \rightarrow a T|b T \quad T \rightarrow a S| b S \mid \Lambda$
4.2. Find a context-free grammar corresponding to the "syntax diagram" in Figure 4.32.
4.3. In each case below, find a CFG generating the given language.
a. The set of odd-length strings in $\{a, b\}^{*}$ with middle symbol a.
b. The set of even-length strings in $\{a, b\}^{*}$ with the two middle symbols equal.
c. The set of odd-length strings in $\{a, b\}^{*}$ whose first, middle, and last symbols are all the same.
4.4. In both parts below, the productions in a CFG G are given. In each part, show first that for every string $x \in L(G), n_{a}(x)=n_{b}(x)$; then find a string $x \in\{a, b\}^{*}$ with $n_{a}(x)=n_{b}(x)$ that is not in $L(G)$.
a. $S \rightarrow \operatorname{SabS} \mid \operatorname{SbaS|\Lambda }$
b. $S \rightarrow a S b|b S a| a b S|b a S| S a b|S b a| \Lambda$

Figure 4.32 I
4.5. Consider the CFG with productions

$$
S \rightarrow a S b S c S|a S c S b S| b S a S c S|b S c S a S| c S a S b S|c S b S a S| \Lambda
$$

Does this generate the language $\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)=n_{b}(x)=n_{c}(x)\right\}$? Prove your answer.
4.6. Show that the language of all nonpalindromes over $\{a, b\}$ (see Example 4.3) cannot be generated by any CFG in which $S \rightarrow a S a \mid b S b$ are the only productions with variables on the right side.
4.7. Describe the language generated by the CFG with productions

$$
S \rightarrow S T|\Lambda \quad T \rightarrow a S| b T \mid b
$$

Give an induction proof that your answer is correct.
4.8. What language over $\{a, b\}$ does the CFG with productions

$$
S \rightarrow a a S|b b S| S a a|S b b| a b S a b|a b S b a| b a S b a|b a S a b| \Lambda
$$

generate? Prove your answer.
4.9. Suppose that $G_{1}=\left(V_{1},\{a, b\}, S_{1}, P_{1}\right)$ and $G_{2}=\left(V_{2},\{a, b\}, S_{2}, P_{2}\right)$ are CFGs and that $V_{1} \cap V_{2}=\emptyset$.
a. It is easy to see that no matter what G_{1} and G_{2} are, the CFG $G_{u}=\left(V_{u},\{a, b\}, S_{u}, P_{u}\right)$ defined by $V_{u}=V_{1} \cup V_{2}, S_{u}=S_{1}$, and $P_{u}=P_{1} \cup P_{2} \cup\left\{S_{1} \rightarrow S_{2}\right\}$ generates every string in $L\left(G_{1}\right) \cup L\left(G_{2}\right)$. Find grammars G_{1} and G_{2} (you can use $V_{1}=\left\{S_{1}\right\}$ and $V_{2}=\left\{S_{2}\right\}$) and a string $x \in L\left(G_{u}\right)$ such that $x \notin L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
b. As in part (a), the CFG $G_{c}=\left(V_{c},\{a, b\}, S_{c}, P_{c}\right)$ defined by $V_{c}=V_{1} \cup V_{2}, S_{c}=S_{1}$, and $P_{c}=P_{1} \cup P_{2} \cup\left\{S_{1} \rightarrow S_{1} S_{2}\right\}$ generates every string in $L\left(G_{1}\right) L\left(G_{2}\right)$. Find grammars G_{1} and G_{2} (again with $V_{1}=\left\{S_{1}\right\}$ and $\left.V_{2}=\left\{S_{2}\right\}\right)$ and a string $x \in L\left(G_{c}\right)$ such that $x \notin L\left(G_{1}\right) L\left(G_{2}\right)$.
c. The CFG $G^{*}=(V,\{a, b\}, S, P)$ defined by $V=V_{1}, S=S_{1}$, and $P=P_{1} \cup\left\{S_{1} \rightarrow S_{1} S_{1} \mid \Lambda\right\}$ generates every string in $L\left(G_{1}\right)^{*}$. Find a grammar G_{1} with $V_{1}=\left\{S_{1}\right\}$ and a string $x \in L\left(G^{*}\right)$ such that $x \notin L(G)^{*}$.
4.10. Find context-free grammars generating each of the languages below.
a. $\left\{a^{i} b^{j} \mid i \leq j\right\}$
b. $\left\{a^{i} b^{j} \mid i<j\right\}$
c. $\left\{a^{i} b^{j} \mid j=2 i\right\}$
d. $\left\{a^{i} b^{j} \mid i \leq j \leq 2 i\right\}$
e. $\left\{a^{i} b^{j} \mid j \leq 2 i\right\}$
f. $\left\{a^{i} b^{j} \mid j<2 i\right\}$
4.11. a. Show that the language $L=\left\{a^{i} b^{j} c^{k} \mid j>i+k\right\}$ cannot be written in the form $L=L_{1} L_{2} L_{3}$, where L_{1}, L_{2}, and L_{3} are subsets of $\{a\}^{*},\{b\}^{*}$, and $\{c\}^{*}$, respectively.
b. Show the same thing for the language $L=\left\{a^{i} b^{j} c^{k} \mid j<i+k\right\}$.
4.12. Find a context-free grammar generating the language $\left\{a^{i} b^{j} c^{k} \mid i \neq j+k\right\}$.
4.13. ${ }^{\dagger}$ Find context-free grammars generating each of these languages, and prove that your answers are correct.
a. $\left\{a^{i} b^{j} \mid i \leq j \leq 3 i / 2\right\}$
b. $\left\{a^{i} b^{j} \mid i / 2 \leq j \leq 3 i / 2\right\}$
4.14. Let L be the language generated by the CFG with productions

$$
S \rightarrow a S b|a b| S S
$$

Show that no string in L begins with $a b b$.
4.15. Show using mathematical induction that every string produced by the context-free grammar with productions

$$
S \rightarrow a|a S| b S S|S S b| S b S
$$

has more a's than b's.
4.16. Prove that the CFG with productions $S \rightarrow a S b S|a S b S| \Lambda$ generates the language $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}$.
4.17. ${ }^{\dagger}$ Show that the CFG with productions

$$
S \rightarrow a S a S b S|a S b S a S| b S a S a S \mid \Lambda
$$

generates the language $\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=2 n_{b}(x)\right\}$.
4.18. ${ }^{\dagger}$ Show that the following CFG generates the language $\left\{x \in\{a, b\}^{*} \mid\right.$

$$
\left.n_{a}(x)=2 n_{b}(x)\right\}
$$

$$
S \rightarrow S S|b T T| T b T|T T b| \Lambda \quad T \rightarrow a S|S a S| S a \mid a
$$

4.19. Let G be the CFG with productions $S \rightarrow a|a S| b S S|S S b| S b S$. Show that every x in $\{a, b\}^{*}$ with $n_{a}(x)>n_{b}(x)$ is an element of $L(G)$.
4.20. Let G be the context-free grammar with productions $S \rightarrow S a T \mid \Lambda$ $T \rightarrow T b S \mid \Lambda$. Show using mathematical induction that $L(G)$ is the language of all strings in $\{a, b\}^{*}$ that don't start with b. One direction is easy. For the other direction, it might be easiest to prove two statements simultaneously: (i) every string that doesn't start with b can be derived from S; (ii) every string that doesn't start with a can be derived from T.
4.21. Definition 3.1 and Theorem 4.9 provide the ingredients for a structuralinduction proof that every regular language is a CFL. Give the proof.
4.22. Show that if G is a context-free grammar in which every production has one of the forms $A \rightarrow a B, A \rightarrow a$, and $A \rightarrow \Lambda$ (where A and B are variables and a is a terminal), then $L(G)$ is regular. Suggestion: construct an NFA accepting $L(G)$, in which there is a state for each variable in G and one additional state F, the only accepting state.
4.23. Suppose $L \subseteq \Sigma^{*}$. Show that L is regular if and only if $L=L(G)$ for some context-free grammar G in which every production is either of the form $A \rightarrow B a$ or of the form $A \rightarrow \Lambda$, where A and B are variables and a
is a terminal. (The grammars in Definition 4.13 are sometimes called right-regular grammars, and the ones in this exercise are sometimes called left-regular.)
4.24. Let us call a context-free grammar G a grammar of type R if every production has one of the three forms $A \rightarrow a B, A \rightarrow B a$, or $A \rightarrow \Lambda$ (where A and B are variables and a is a terminal). Every regular language can be generated by a grammar of type R . Is every language that is generated by a grammar of type R regular? If so, give a proof; if not, find a counterexample.
4.25. Show that for a language $L \subseteq \Sigma^{*}$, the following statements are equivalent.
a. L is regular.
b. L can be generated by a grammar in which all productions are either of the form $A \rightarrow x B$ or of the form $A \rightarrow \Lambda$ (where A and B are variables and $x \in \Sigma^{*}$).
c. L can be generated by a grammar in which all productions are either of the form $A \rightarrow B x$ or of the form $A \rightarrow \Lambda$ (where A and B are variables and $x \in \Sigma^{*}$).
4.26. In each part, draw an NFA (which might be an FA) accepting the language generated by the CFG having the given productions.
a. $S \rightarrow a A|b C \quad A \rightarrow a S| b B \quad B \rightarrow a C \mid b A$
$C \rightarrow a B|b S| \Lambda$
b. $S \rightarrow b S|a A| \Lambda \quad A \rightarrow a A|b B| b \quad B \rightarrow b S$
4.27. Find a regular grammar generating the language $L(M)$, where M is the FA shown in Figure 4.33.
4.28. Draw an NFA accepting the language generated by the grammar with productions

$$
\begin{aligned}
& S \rightarrow a b A|b B| a b a \\
& A \rightarrow b|a B| b A \\
& B \rightarrow a B \mid a A
\end{aligned}
$$

Figure 4.33 I
4.29. Each of the following grammars, though not regular, generates a regular language. In each case, find a regular grammar generating the language.
a. $S \rightarrow S S S|a| a b$
b. $S \rightarrow A a b B \quad A \rightarrow a A|b A| \Lambda \quad B \rightarrow B a b|B b| a b \mid b$
c. $S \rightarrow A A S|a b| a a b \quad A \rightarrow a b|b a| \Lambda$
d. $S \rightarrow A B \quad A \rightarrow a A a|b A b| a|b \quad B \rightarrow a B| b B \mid \Lambda$
e. $S \rightarrow A A|B \quad A \rightarrow A A A| A b|b A| a \quad B \rightarrow b B \mid \Lambda$
4.30. a. Write the rightmost derivation of the string $a+(a * a)$ corresponding to the derivation tree in Figure 4.15.
b. How many distinct derivations (not necessarily leftmost or rightmost) does the string $a+(a * a)$ have in the CFG with productions $S \rightarrow a|S+S| S * S \mid(S)$?
4.31. Again we consider the CFG in Example 4.2, with productions $S \rightarrow a|S+S| S * S \mid(S)$.
a. How many distinct derivation trees does the string $a+(a * a) / a-a$ have in this grammar?
b. How many derivation trees are there for the string $(a+(a+a))+$ $(a+a)$?
4.32. In the CFG in the previous exercise, suppose we define n_{i} to be the number of distinct derivation trees for the string $a+a+\ldots+a$ in which there are $i a$'s. Then $n_{1}=n_{2}=1$.
a. Find a recursive formula for n_{i}, by first observing that if $i>1$ the root of a derivation tree has two children labeled S, and then considering all possibilities for the two subtrees.
b. How many derivation trees are there for the string $a+a+a+a+a$?
c. How many derivation trees are there for the string

$$
a+a+a+a+a+a+a+a+a+a ?
$$

4.33. Consider the C statements
$x=1 ; i f(a>2)$ if $(a>4) x=2 ;$ else $x=3 ;$
a. What is the resulting value of x if these statements are interpreted according to the derivation tree in Figure 4.21a and $a=3$?
b. Same question as in (a), but when $a=1$.
c. What is the resulting value of x if these statements are interpreted according to the derivation tree in Figure 4.21b and $a=3$?
d. Same question as in (c), but when $a=1$.
4.34. Show that the CFG with productions

$$
S \rightarrow a|S a| b S S|S S b| S b S
$$

is ambiguous.
4.35. Consider the context-free grammar with productions

$$
\begin{aligned}
S & \rightarrow A B \\
A & \rightarrow a A \mid \Lambda \\
B & \rightarrow a b|b B| \Lambda
\end{aligned}
$$

Every derivation of a string in this grammar must begin with the production $S \rightarrow A B$. Clearly, any string derivable from A has only one derivation from A, and likewise for B. Therefore, the grammar is unambiguous. True or false? Why?
4.36. For each part of Exercise 4.1, decide whether the grammar is ambiguous or not, and prove your answer.
4.37. Show that the CFG in Example 4.8 is ambiguous.
4.38. In each case below, show that the grammar is ambiguous, and find an equivalent unambiguous grammar.
a. $S \rightarrow S S|a| b$
b. $S \rightarrow A B A \quad A \rightarrow a A|\Lambda \quad B \rightarrow b B| \Lambda$
c. $S \rightarrow a S b|a a S b| \Lambda$
d. $S \rightarrow a S b|a b S| \Lambda$
4.39. Describe an algorithm for starting with a regular grammar and finding an equivalent unambiguous grammar.

In the exercises that follow, take as the definition of "balanced string of parentheses" the criterion in Example 1.25: The string has an equal number of left and right parentheses, and no prefix has more right than left.
4.40. a. Show that for every string x of left and right parentheses, x is a prefix of a balanced string if and only if no prefix of x has more right parentheses than left.
b. Show that the language of prefixes of balanced strings of parentheses is generated by the CFG with productions $S \rightarrow(S) S \mid(S \mid \Lambda$.
4.41. Show that every left parenthesis in a balanced string has a mate.
4.42. Show that if x is a balanced string of parentheses, then either $x=(y)$ for some balanced string y or $x=x_{1} x_{2}$ for two balanced strings x_{1} and x_{2} that are both shorter than x.
4.43. Show that if (0 is an occurrence of a left parenthesis in a balanced string, and $)_{0}$ is its mate, then (0 is the rightmost left parentheses for which the string consisting of it and $)_{0}$ and everything in between is balanced.
4.44. ${ }^{\dagger}$ Show that both of the CFGs below generate the language of balanced strings of parentheses.
a. The CFG with productions $S \rightarrow S(S) \mid \Lambda$
b. The CFG with productions $S \rightarrow(S) S \mid \Lambda$
4.45. Show that both of the CFGs in the previous exercise are unambiguous.
4.46. Let x be a string of left and right parentheses. A complete pairing of x is a partition of the parentheses of x in to pairs such that (i) each pair consists of one left parenthesis and one right parenthesis appearing somewhere after it; and (ii) the parentheses between those in a pair are themselves the union of pairs. Two parentheses in a pair are said to be mates with respect to that pairing.
a. Show that there is at most one complete pairing of a string of parentheses.
b. Show that a string of parentheses has a complete pairing if and only if it is a balanced string, and in this case the two definitions of mates coincide.
4.47. ${ }^{\dagger}$ Let G be the CFG with productions

$$
S \rightarrow S+S|S * S|(S) \mid a
$$

and G_{1} the CFG with productions

$$
S_{1} \rightarrow S_{1}+T|T \quad T \rightarrow T * F| F \quad F \rightarrow\left(S_{1}\right) \mid a
$$

(see Section 4.4).
a. Show that $L\left(G_{1}\right) \subseteq L(G)$. One approach is to use induction and to consider three cases in the induction step, corresponding to the three possible ways a derivation of the string in $L\left(G_{1}\right)$ might begin:

$$
\begin{aligned}
& S_{1} \Rightarrow S_{1}+T \\
& S_{1} \Rightarrow T \Rightarrow T * F \\
& S_{1} \Rightarrow T \Rightarrow F \Rightarrow\left(S_{1}\right)
\end{aligned}
$$

b. Show that $L(G) \subseteq L\left(G_{1}\right)$. Again three cases are appropriate in the induction step:
i. $\quad x$ has a derivation in G beginning $S \Rightarrow(S)$
ii. $\quad x$ has a derivation beginning $S \Rightarrow S+S$
iii. Every derivation of x in G begins $S \Rightarrow S * S$

In the second case it may be helpful to let $x=x_{1}+x_{2}+\ldots+x_{n}$, where each $x_{i} \in L\left(G_{1}\right)$ and n is as large as possible. In the third case it may be helpful to let $x=x_{1} * x_{2} * \ldots x_{n}$, where each $x_{i} \in L(G)$ (not $\left.L\left(G_{1}\right)\right)$ and n is as large as possible.
4.48. Show that the nullable variables defined by Definition 4.7 are precisely those variables A for which $A \Rightarrow^{*} \Lambda$.
4.49. In each case below, find a context-free grammar with no Λ-productions that generates the same language, except possibly for Λ, as the given CFG.
a. $S \rightarrow A B \mid \Lambda$
$A \rightarrow a A S b \mid a$
$B \rightarrow b S$
b. $S \rightarrow A B \mid A B C$
$A \rightarrow B A|B C| \Lambda \mid a$
$B \rightarrow A C|C B| \Lambda \mid b$
$C \rightarrow B C|A B| A \mid c$
4.50. In each case, given the context-free grammar G, find a $\mathrm{CFG} G^{\prime}$ with no Λ-productions and no unit productions that generates the language $L(G)-\{\Lambda\}$.
a. G has productions

$$
S \rightarrow A B A \quad A \rightarrow a A|\Lambda \quad B \rightarrow b B| \Lambda
$$

b. G has productions

$$
S \rightarrow a S a|b S b| \Lambda \quad A \rightarrow a B b|b B a \quad B \rightarrow a B| b B \mid \Lambda
$$

c. G has productions

$$
\begin{aligned}
& S \rightarrow A|B| C \quad A \rightarrow a A a|B \quad B \rightarrow b B| b b \\
& C \rightarrow a C a a|D \quad D \rightarrow b a D| a b D \mid a a
\end{aligned}
$$

4.51. A variable A in a context-free grammar $G=(V, \Sigma, S, P)$ is live if $A \Rightarrow^{*} x$ for some $x \in \Sigma^{*}$. Give a recursive definition, and a corresponding algorithm, for finding all live variables in G.
4.52. A variable A in a context-free grammar $G=(V, \Sigma, S, P)$ is reachable if $S \Rightarrow^{*} \alpha A \beta$ for some $\alpha, \beta \in(\Sigma \cup V)^{*}$. Give a recursive definition, and a corresponding algorithm, for finding all reachable variables in G.
4.53. ${ }^{\dagger}$ A variable A is a context-free grammar $G=(V, \Sigma, S, P)$ is useful if for some string $x \in \Sigma^{*}$, there is a derivation of x that takes the form

$$
S \Rightarrow^{*} \alpha A \beta \Rightarrow^{*} x
$$

A variable that is not useful is useless. Clearly if a variable is either not live or not reachable (see the two preceding exercises), then it is useless. The converse is not true, as the grammar with productions $S \rightarrow A B$ and $A \rightarrow a$ illustrates. (The variable A is both live and reachable but still useless.)
a. Let G be a CFG. Suppose $G 1$ is obtained by eliminating all dead variables from G and eliminating all productions in which dead variables appear. Suppose $G 2$ is then obtained from $G 1$ by eliminating all variables unreachable in $G 1$, as well as productions in which such variables appear. Show that $G 2$ contains no useless variables, and $L(G 2)=L(G)$.
b. Give an example to show that if the two steps are done in the opposite order, the resulting grammar may still have useless variables.
c. In each case, given the context-free grammar G, find an equivalent CFG with no useless variables.
i. G has productions

$$
\begin{gathered}
S \rightarrow A B C \mid B a B \\
B \rightarrow b B b \mid a \\
B \rightarrow a A|B a C| a a a \\
C \rightarrow C A \mid A C
\end{gathered}
$$

ii. G has productions

$$
\begin{gathered}
S \rightarrow A B|A C \quad A \rightarrow a A b| b A a|a \quad B \rightarrow b b A| a a B \mid A B \\
C \rightarrow a b C a|a D b \quad D \rightarrow b D| a C
\end{gathered}
$$

4.54. In each case below, given the context-free grammar G, find a CFG G_{1} in Chomsky normal form generating $L(G)-\{\Lambda\}$.
a. G has productions $S \rightarrow S S|(S)| \Lambda$
b. G has productions $S \rightarrow S(S) \mid \Lambda$
c. G has productions

$$
\begin{aligned}
& S \rightarrow A a A|C A| B a B \quad A \rightarrow a a B a|C D A| a a \mid D C \\
& B \rightarrow b B|b A B| b b|a S \quad C \rightarrow C a| b C|D \quad D \rightarrow b D| \Lambda
\end{aligned}
$$

4.55. For alphabets Σ_{1} and Σ_{2}, a homomorphism from Σ_{1}^{*} to Σ_{2}^{*} is defined in Exercise 3.53. Show that if $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ is a homomorphism and $L \subseteq \Sigma_{1}^{*}$ is a context-free language, then $f(L) \subseteq \Sigma_{2}^{*}$ is also a CFG.
4.56. ${ }^{\dagger}$ Let G be the context-free grammar with productions

$$
S \rightarrow a S|a S b S| c
$$

and let G_{1} be the one with productions

$$
S_{1} \rightarrow T|U \quad T \rightarrow a T b T| c \quad U \rightarrow a S_{1} \mid a T b U
$$

(G_{1} is a simplified version of the second grammar in Example 4.19.)
a. Show that G is ambiguous.
b. Show that G and G_{1} generate the same language.
c. Show that G_{1} is unambiguous.
4.57. ${ }^{\dagger}$ Show that if a context-free grammar is unambiguous, then the grammar obtained from it by the algorithm in Theorem 4.27 is also unambiguous.
4.58. ${ }^{\dagger}$ Show that if a context-free grammar with no Λ-productions is unambiguous, then the one obtained from it by the algorithm in Theorem 4.28 is also unambiguous.

