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Announcements

● Programming Project 3 due Monday at 
11:59PM.
● OH today after lecture.
● Ask questions on Piazzza!
● Ask questions via email!

● Checkpoint feedback will be returned 
soon.



  

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code



  

Overview for Today

● The Final Assignment
● Introduction to TAC:

● TAC for simple expressions.
● TAC for functions and function calls.
● TAC for objects.
● TAC for arrays.

● Generating TAC.
● A few low-level details.



  

The Final Assignment
● Goal: Generate TAC IR for Decaf programs.
● We provide a code generator to produce MIPS assembly.

● You can run your programs using spim, the MIPS simulator.

● You must also take care of some low-level details:
● Assign all parameters, local variables, and temporaries positions 

in a stack frame.
● Assign all global variables positions in the global memory 

segment.
● Assign all fields in a class an offset from the base of the object.

● You should not need to know MIPS to do this; all details 
will be covered in lecture.

● If you have any questions on MIPS, please feel to ask!



  

An Important Detail

● When generating IR at this level, you do 
not need to worry about optimizing it.

● It's okay to generate IR that has lots of 
unnecessary assignments, redundant 
computations, etc.

● We'll see how to optimize IR code later 
this week and at the start of next week.
● It's tricky, but extremely cool!



  

Three-Address Code

● Or “TAC”
● The IR that you will be using for the final 

programming project.
● High-level assembly where each 

operation has at most three operands.
● Uses explicit runtime stack for function 

calls.
● Uses vtables for dynamic dispatch.



  

Sample TAC Code

int x;
int y;

int x2 = x * x;
int y2 = y * y;
int r2 = x2 + y2;



  

Sample TAC Code

int x;
int y;

int x2 = x * x;
int y2 = y * y;
int r2 = x2 + y2;

x2 = x * x;
y2 = y * y;
r2 = x2 + y2;



  

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;



  

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;



  

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;



  

Temporary Variables

● The “three” in “three-address code” 
refers to the number of operands in any 
instruction.

● Evaluating an expression with more than 
three subexpressions requires the 
introduction of temporary variables.

● This is actually a lot easier than you 
might think; we'll see how to do it later 
on.



  

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;



  

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

_t0 = 5;
_t1 = 2 * b;
a = _t0 + _t1;



  

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

_t0 = 5;
_t1 = 2 * b;
a = _t0 + _t1;

TAC allows for 
instructions with two 

operands.



  

Simple TAC Instructions

● Variable assignment allows assignments of the 
form
● var = constant;

● var1 = var2;

● var
1
 = var

2
 op var

3
;

● var
1
 = constant op var

2
;

● var1 = var2 op constant;

● var = constant
1
 op constant

2
;

● Permitted operators are +, -, *, /, %.

● How would you compile y = -x; ?



  

Simple TAC Instructions

● Variable assignment allows assignments of the 
form
● var = constant;

● var1 = var2;

● var
1
 = var

2
 op var

3
;

● var
1
 = constant op var

2
;

● var1 = var2 op constant;

● var = constant
1
 op constant

2
;

● Permitted operators are +, -, *, /, %.

● How would you compile y = -x; ?

y = 0 – x; y = -1 * x;



  

One More with bools

int x;
int y;
bool b1;
bool b2;
bool b3;

b1 = x + x < y
b2 = x + x == y
b3 = x + x > y



  

One More with bools

int x;
int y;
bool b1;
bool b2;
bool b3;

b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

_t0 = x + x;
_t1 = y;
b1 = _t0 < _t1;

_t2 = x + x;
_t3 = y;
b2 = _t2 == _t3;

_t4 = x + x;
_t5 = y;
b3 = _t5 < _t4;



  

TAC with bools

● Boolean variables are represented as 
integers that have zero or nonzero 
values.

● In addition to the arithmetic operator, 
TAC supports <, ==, ||, and &&.

● How might you compile b = (x <= y) ?



  

TAC with bools

● Boolean variables are represented as 
integers that have zero or nonzero 
values.

● In addition to the arithmetic operator, 
TAC supports <, ==, ||, and &&.

● How might you compile b = (x <= y) ?
_t0 = x < y;
_t1 = x == y;
b = _t0 || _t1;



  

Control Flow Statements

int x;
int y;
int z;

if (x < y)
   z = x;
else
   z = y;

z = z * z;



  

Control Flow Statements

int x;
int y;
int z;

if (x < y)
   z = x;
else
   z = y;

z = z * z;

    _t0 = x < y;
    IfZ _t0 Goto _L0;
    z = x;
    Goto _L1;
_L0:
    z = y;
_L1:
    z = z * z;



  

Control Flow Statements

int x;
int y;
int z;

if (x < y)
   z = x;
else
   z = y;

z = z * z;

    _t0 = x < y;
    IfZ _t0 Goto _L0;
    z = x;
    Goto _L1;
_L0:
    z = y;
_L1:
    z = z * z;



  

Control Flow Statements

int x;
int y;
int z;

if (x < y)
   z = x;
else
   z = y;

z = z * z;

    _t0 = x < y;
    IfZ _t0 Goto _L0;
    z = x;
    Goto _L1;
_L0:
    z = y;
_L1:
    z = z * z;



  

Labels

● TAC allows for named labels indicating 
particular points in the code that can be 
jumped to.

● There are two control flow instructions:
● Goto label;
● IfZ value Goto label;

● Note that IfZ is always paired with Goto.



  

Control Flow Statements

int x;
int y;

while (x < y) {
   x = x * 2;
}

y = x;



  

Control Flow Statements

int x;
int y;

while (x < y) {
   x = x * 2;
}

y = x;

_L0:
    _t0 = x < y;
    IfZ _t0 Goto _L1;
    x = x * 2;
    Goto _L0;
_L1:
    y = x;



  

A Complete Decaf Program

void main() {
   int x, y;
   int m2 = x * x + y * y;

   while (m2 > 5) {
      m2 = m2 – x;
   }
}



  

A Complete Decaf Program

void main() {
   int x, y;
   int m2 = x * x + y * y;

   while (m2 > 5) {
      m2 = m2 – x;
   }
}

main:
   BeginFunc 24;
   _t0 = x * x;
   _t1 = y * y;
   m2 = _t0 + _t1;
_L0:
   _t2 = 5 < m2;
   IfZ _t2 Goto _L1;
   m2 = m2 – x;
   Goto _L0;
_L1:
   EndFunc;
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A Complete Decaf Program

void main() {
   int x, y;
   int m2 = x * x + y * y;

   while (m2 > 5) {
      m2 = m2 – x;
   }
}

main:
   BeginFunc 24;
   _t0 = x * x;
   _t1 = y * y;
   m2 = _t0 + _t1;
_L0:
   _t2 = 5 < m2;
   IfZ _t2 Goto _L1;
   m2 = m2 – x;
   Goto _L0;
_L1:
   EndFunc;



  

Compiling Functions

● Decaf functions consist of four pieces:
● A label identifying the start of the function.

– (Why?)

● A BeginFunc N; instruction reserving N 
bytes of space for locals and temporaries.

● The body of the function.
● An EndFunc; instruction marking the end of 

the function.
– When reached, cleans up stack frame and 

returns.



  

A Logical Decaf Stack Frame
Param N      

Param N – 1

...

Param 1      

Storage for 
Locals and 
Temporaries

Stack 
frame for 
function 
f(a, …, n)
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Compiling Function Calls

void SimpleFn(int z) {
    int x, y;
    x = x * y * z;
}

void main() {
   SimpleFunction(137);
}



  

Compiling Function Calls

void SimpleFn(int z) {
    int x, y;
    x = x * y * z;
}

void main() {
   SimpleFunction(137);
}

_SimpleFn:
   BeginFunc 16;
   _t0 = x * y;
   _t1 = _t0 * z;
   x = _t1;
   EndFunc;
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Compiling Function Calls
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Compiling Function Calls

void SimpleFn(int z) {
    int x, y;
    x = x * y * z;
}

void main() {
   SimpleFunction(137);
}

_SimpleFn:
   BeginFunc 16;
   _t0 = x * y;
   _t1 = _t0 * z;
   x = _t1;
   EndFunc;

main:
   BeginFunc 4;
   _t0 = 137;
   PushParam _t0;
   LCall _SimpleFn;
   PopParams 4;
   EndFunc;
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Compiling Function Calls

void SimpleFn(int z) {
    int x, y;
    x = x * y * z;
}

void main() {
   SimpleFunction(137);
}

_SimpleFn:
   BeginFunc 16;
   _t0 = x * y;
   _t1 = _t0 * z;
   x = _t1;
   EndFunc;

main:
   BeginFunc 4;
   _t0 = 137;
   PushParam _t0;
   LCall _SimpleFn;
   PopParams 4;
   EndFunc;



  

Stack Management in TAC

● The BeginFunc N; instruction only needs to 
reserve room for local variables and 
temporaries.

● The EndFunc; instruction reclaims the room 
allocated with BeginFunc N;

● A single parameter is pushed onto the stack by 
the caller using the PushParam var instruction.

● Space for parameters is reclaimed by the caller 
using the PopParams N; instruction.
● N is measured in bytes, not number of arguments.
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Storage Allocation

● As described so far, TAC does not specify 
where variables and temporaries are 
stored.

● For the final programming project, you 
will need to tell the code generator where 
each variable should be stored.

● This normally would be handled during 
code generation, but Just For Fun we 
thought you should have some experience 
handling this. ☺
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The Stored Return Address

● Internally, the processor has a special register 
called the program counter (PC) that stores the 
address of the next instruction to execute.

● Whenever a function returns, it needs to restore 
the PC so that the calling function resumes 
execution where it left off.

● The address of where to return is stored in MIPS 
in a special register called ra (“return address.”)

● To allow MIPS functions to call one another, each 
function needs to store the previous value of ra 
somewhere.
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So What?

● In your code generator, you must assign each 
local variable, parameter, and temporary 
variable its own location.

● These locations occur in a particular stack 
frame and are called fp-relative.

Param N 

...

Param 1

Local 0

fp of caller

ra of caller

fp

● Parameters begin at address 
fp + 4 and grow upward.

● Locals and temporaries begin 
at address fp – 8 and grow 
downward

...

Local M

fp + 0

fp + 4

...

fp + 4N

fp - 4

fp - 8

...

fp - 4 - 4M



  

From Your Perspective

Location* location = 
    new Location(fpRelative, +4, locName);
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From Your Perspective

Location* location = 
    new Location(fpRelative, +4, locName);

What variable does 
this refer to?



  

And One More Thing...

int globalVariable;

int main() {
    globalVariable = 137;
}



  

And One More Thing...

int globalVariable;

int main() {
    globalVariable = 137;
}



  

And One More Thing...

int globalVariable;

int main() {
    globalVariable = 137;
}

Where is this 
stored?



  

The Global Pointer

● MIPS also has a register called the 
global pointer (gp) that points to 
globally accessible storage.

● Memory pointed at by the global pointer 
is treated as an array of values that 
grows upward.

● You must choose an offset into this array 
for each global variable.

Global Variable 0

Global Variable 1

...

Global Variable N

gp gp + 0

gp + 4

...

gp + 4N



  

From Your Perspective

Location* global = 
    new Location(gpRelative, +8, locName);



  

From Your Perspective

Location* global = 
    new Location(gpRelative, +8, locName);



  

Summary of Memory Layout

● Most details abstracted away by IR 
format.

● Remember:
● Parameters start at fp + 4 and grow upward.
● Locals start at fp – 8 and grow downward.
● Globals start at gp + 0 and grow upward.

● You will need to write code to assign 
variables to these locations.



  

TAC for Objects, Part I

class A {
    void fn(int x) {
        int y;
        y = x;
    }
}

int main() {
    A a;
    a.fn(137);
}



  

TAC for Objects, Part I

class A {
    void fn(int x) {
        int y;
        y = x;
    }
}

int main() {
    A a;
    a.fn(137);
}

_A.fn:
    BeginFunc 4;
    y = x;
    EndFunc;

main:
    BeginFunc 8;
    _t0 = 137;
    PushParam _t0;
    PushParam a;
    LCall _A.fn;
    PopParams 8;
    EndFunc;
    
    



  

TAC for Objects, Part I

class A {
    void fn(int x) {
        int y;
        y = x;
    }
}

int main() {
    A a;
    a.fn(137);
}

_A.fn:
    BeginFunc 4;
    y = x;
    EndFunc;

main:
    BeginFunc 8;
    _t0 = 137;
    PushParam _t0;
    PushParam a;
    LCall _A.fn;
    PopParams 8;
    EndFunc;
    
    



  

A Reminder: Object Layout
Method 0

Field 0

Vtable*

Vtable*

...

Field N

Field 0

...

Field N

Field 0

...

Field M

Method 1

...

Method K

Method 0

Method 1

...

Method K

Method 0

...

Method L



  

TAC for Objects, Part II

class A {
    int y;
    int z;
    void fn(int x) {
        y = x;
        x = z;
    }
}

int main() {
    A a;
    a.fn(137);
}



  

TAC for Objects, Part II

class A {
    int y;
    int z;
    void fn(int x) {
        y = x;
        x = z;
    }
}

int main() {
    A a;
    a.fn(137);
}

_A.fn:
    BeginFunc 4;
    *(this + 4) = x;
    x = *(this + 8);
    EndFunc;

main:
    BeginFunc 8;
    _t0 = 137;
    PushParam _t0;
    PushParam a;
    LCall _A.fn;
    PopParams 8;
    EndFunc;
    
    



  

TAC for Objects, Part II

class A {
    int y;
    int z;
    void fn(int x) {
        y = x;
        x = z;
    }
}

int main() {
    A a;
    a.fn(137);
}

_A.fn:
    BeginFunc 4;
    *(this + 4) = x;
    x = *(this + 8);
    EndFunc;

main:
    BeginFunc 8;
    _t0 = 137;
    PushParam _t0;
    PushParam a;
    LCall _A.fn;
    PopParams 8;
    EndFunc;
    
    



  

TAC for Objects, Part II

class A {
    int y;
    int z;
    void fn(int x) {
        y = x;
        x = z;
    }
}

int main() {
    A a;
    a.fn(137);
}

_A.fn:
    BeginFunc 4;
    *(this + 4) = x;
    x = *(this + 8);
    EndFunc;

main:
    BeginFunc 8;
    _t0 = 137;
    PushParam _t0;
    PushParam a;
    LCall _A.fn;
    PopParams 8;
    EndFunc;
    
    



  

Memory Access in TAC

● Extend our simple assignments with 
memory accesses:
● var

1
 = *var

2

● var
1
 = *(var

2
 + constant)

● *var
1
 = var

2

● *(var
1
 + constant) = var

2

● You will need to translate field accesses 
into relative memory accesses.



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}

_Base.hi:
    BeginFunc 4;
    _t0 = "Base";
    PushParam _t0;
    LCall _PrintString;
    PopParams 4;
    EndFunc;
Vtable Base = _Base.hi,
    ;

_Derived.hi:
    BeginFunc 4;
    _t0 = "Derived";
    PushParam _t0;
    LCall _PrintString;
    PopParams 4;
    EndFunc;
Vtable Derived = _Derived.hi,
    ;



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}

_Base.hi:
    BeginFunc 4;
    _t0 = "Base";
    PushParam _t0;
    LCall _PrintString;
    PopParams 4;
    EndFunc;
Vtable Base = _Base.hi,
    ;

_Derived.hi:
    BeginFunc 4;
    _t0 = "Derived";
    PushParam _t0;
    LCall _PrintString;
    PopParams 4;
    EndFunc;
Vtable Derived = _Derived.hi,
    ;



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}

_Base.hi:
    BeginFunc 4;
    _t0 = "Base";
    PushParam _t0;
    LCall _PrintString;
    PopParams 4;
    EndFunc;
Vtable Base = _Base.hi,
    ;

_Derived.hi:
    BeginFunc 4;
    _t0 = "Derived";
    PushParam _t0;
    LCall _PrintString;
    PopParams 4;
    EndFunc;
Vtable Derived = _Derived.hi,
    ;



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;



  

TAC for Objects, Part III
class Base {
  void hi() {
    Print("Base");
  }
}

class Derived extends Base{
  void hi() {
    Print("Derived");
  }
}

int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

What's going 
on here?



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

hi
Derived Vtable

Code for
Derived.hi



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Param 14



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
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    PushParam _t0;
    b = LCall _Alloc;
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    _t1 = Derived;
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    PushParam b;
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fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0
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_t3

b

4
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
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    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
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    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Param 14

(raw memory)



  

Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
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    PopParams 4;
    EndFunc;
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Derived Vtable
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Derived.hi
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
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main:
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Dissecting TAC
int main() {
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
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main:
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Derived Vtable
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Derived.hi
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4

(raw memory)
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
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main:
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Dissecting TAC
int main() {
    Base b;
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main:
    BeginFunc 20;
    _t0 = 4;
    PushParam _t0;
    b = LCall _Alloc;
    PopParams 4;
    _t1 = Derived;
    *b = _t1;
    _t2 = *b;
    _t3 = *_t2;
    PushParam b;
    ACall _t3;
    PopParams 4;
    EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Allocate
Object



  

Dissecting TAC
int main() {
    Base b;
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Dissecting TAC
int main() {
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Dissecting TAC
int main() {
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
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Dissecting TAC
int main() {
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Dissecting TAC
int main() {
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Dissecting TAC
int main() {
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Dissecting TAC
int main() {
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main:
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
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main:
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
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main:
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Dissecting TAC
int main() {
    Base b;
    b = new Derived;
    b.hi();
}

main:
    BeginFunc 20;
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OOP in TAC

● The address of an object's vtable can be 
referenced via the name assigned to the vtable 
(usually the object name).
● e.g. _t0 = Base; 

● When creating objects, you must remember to 
set the object's vtable pointer or any method 
call will cause a crash at runtime.

● The ACall instruction can be used to call a 
method given a pointer to the first instruction.



  

Generating TAC



  

TAC Generation

● At this stage in compilation, we have
● an AST,
● annotated with scope information,
● and annotated with type information.

● To generate TAC for the program, we do 
(yet another) recursive tree traversal!
● Generate TAC for any subexpressions or 

substatements.
● Using the result, generate TAC for the overall 

expression.



  

TAC Generation for Expressions

● Define a function cgen(expr) that generates 
TAC that computes an expression, stores it in a 
temporary variable, then hands back the name 
of that temporary.

● Define cgen directly for atomic expressions 
(constants, this, identifiers, etc.).

● Define cgen recursively for compound 
expressions (binary operators, function calls, 
etc.)



  

cgen for Basic Expressions



  

cgen for Basic Expressions

cgen(k) = { // k is a constant
     Choose a new temporary t
     Emit( t = k );
     Return t
}



  

cgen for Basic Expressions

cgen(k) = { // k is a constant
     Choose a new temporary t
     Emit( t = k );
     Return t
}
cgen(id) = { // id is an identifier
     Choose a new temporary t
     Emit( t = id )
     Return t
}



  

cgen for Binary Operators



  

cgen for Binary Operators

cgen(e1 + e2) = {
     Choose a new temporary t
     Let t1 = cgen(e1)
     Let t2 = cgen(e2)
     Emit( t = t1 + t2 )
     Return t
}



  

An Example
cgen(5 + x) = {
     Choose a new temporary t
     Let t1 = cgen(5)
     Let t2 = cgen(x)
     Emit (t = t1 + t2)
     Return t
}



  

An Example
cgen(5 + x) = {
     Choose a new temporary t
     Let t1 = {
          Choose a new temporary t
          Emit( t = 5 )
          return t
     }
     Let t2 = cgen(x)
     Emit (t = t1 + t2)
     Return t
}



  

An Example
cgen(5 + x) = {
     Choose a new temporary t
     Let t1 = {
          Choose a new temporary t
          Emit( t = 5 )
          return t
     }
     Let t2 = {
          Choose a new temporary t
          Emit( t = x )
          return t
     }
     Emit (t = t1 + t2)
     Return t
}



  

An Example
cgen(5 + x) = {
     Choose a new temporary t
     Let t1 = {
          Choose a new temporary t
          Emit( t = 5 )
          return t
     }
     Let t2 = {
          Choose a new temporary t
          Emit( t = x )
          return t
     }
     Emit (t = t1 + t2)
     Return t
}

_t0 = 5
_t1 = x
_t2 = _t0 + _t1



  

cgen for Statements

● We can extend the cgen function to 
operate over statements as well.

● Unlike cgen for expressions, cgen for 
statements does not return the name of a 
temporary holding a value.
● (Why?)



  

cgen for Simple Statements



  

cgen for Simple Statements

cgen(expr;) = {
     cgen(expr)
}



  

cgen for while loops



  

cgen for while loops

cgen(while (expr) stmt) = {
     Let Lbefore be a new label.
     Let Lafter be a new label.
     Emit( Lbefore:)

     Let t = cgen(expr)
     Emit( IfZ t Goto Lafter )
     cgen(stmt)
     Emit( Goto Lbefore )
     Emit( Lafter: )
}
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     Emit( Goto Lbefore )
     Emit( Lafter: )
}
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cgen for while loops

cgen(while (expr) stmt) = {
     Let Lbefore be a new label.
     Let Lafter be a new label.
     Emit( Lbefore:)

     Let t = cgen(expr)
     Emit( IfZ t Goto Lafter )
     cgen(stmt)
     Emit( Goto Lbefore )
     Emit( Lafter: )
}



  

cgen for while loops

cgen(while (expr) stmt) = {
     Let Lbefore be a new label.
     Let Lafter be a new label.
     Emit( Lbefore:)

     Let t = cgen(expr)
     Emit( IfZ t Goto Lafter )
     cgen(stmt)
     Emit( Goto Lbefore )
     Emit( Lafter: )
}



  

Next Time

● Intro to IR Optimization
● Basic Blocks
● Control-Flow Graphs
● Local Optimizations
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