

Three-Address Code IR

Announcements

● Programming Project 3 due Monday at
11:59PM.
● OH today after lecture.
● Ask questions on Piazzza!
● Ask questions via email!

● Checkpoint feedback will be returned
soon.

Where We Are

Lexical Analysis

Semantic Analysis

Syntax Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Overview for Today

● The Final Assignment
● Introduction to TAC:

● TAC for simple expressions.
● TAC for functions and function calls.
● TAC for objects.
● TAC for arrays.

● Generating TAC.
● A few low-level details.

The Final Assignment
● Goal: Generate TAC IR for Decaf programs.
● We provide a code generator to produce MIPS assembly.

● You can run your programs using spim, the MIPS simulator.

● You must also take care of some low-level details:
● Assign all parameters, local variables, and temporaries positions

in a stack frame.
● Assign all global variables positions in the global memory

segment.
● Assign all fields in a class an offset from the base of the object.

● You should not need to know MIPS to do this; all details
will be covered in lecture.

● If you have any questions on MIPS, please feel to ask!

An Important Detail

● When generating IR at this level, you do
not need to worry about optimizing it.

● It's okay to generate IR that has lots of
unnecessary assignments, redundant
computations, etc.

● We'll see how to optimize IR code later
this week and at the start of next week.
● It's tricky, but extremely cool!

Three-Address Code

● Or “TAC”
● The IR that you will be using for the final

programming project.
● High-level assembly where each

operation has at most three operands.
● Uses explicit runtime stack for function

calls.
● Uses vtables for dynamic dispatch.

Sample TAC Code

int x;
int y;

int x2 = x * x;
int y2 = y * y;
int r2 = x2 + y2;

Sample TAC Code

int x;
int y;

int x2 = x * x;
int y2 = y * y;
int r2 = x2 + y2;

x2 = x * x;
y2 = y * y;
r2 = x2 + y2;

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Sample TAC Code

int a;
int b;
int c;
int d;

a = b + c + d;
b = a * a + b * b;

_t0 = b + c;
a = _t0 + d;
_t1 = a * a;
_t2 = b * b;
b = _t1 + _t2;

Temporary Variables

● The “three” in “three-address code”
refers to the number of operands in any
instruction.

● Evaluating an expression with more than
three subexpressions requires the
introduction of temporary variables.

● This is actually a lot easier than you
might think; we'll see how to do it later
on.

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

_t0 = 5;
_t1 = 2 * b;
a = _t0 + _t1;

Sample TAC Code

int a;
int b;

a = 5 + 2 * b;

_t0 = 5;
_t1 = 2 * b;
a = _t0 + _t1;

TAC allows for
instructions with two

operands.

Simple TAC Instructions

● Variable assignment allows assignments of the
form
● var = constant;

● var1 = var2;

● var
1
 = var

2
 op var

3
;

● var
1
 = constant op var

2
;

● var1 = var2 op constant;

● var = constant
1
 op constant

2
;

● Permitted operators are +, -, *, /, %.

● How would you compile y = -x; ?

Simple TAC Instructions

● Variable assignment allows assignments of the
form
● var = constant;

● var1 = var2;

● var
1
 = var

2
 op var

3
;

● var
1
 = constant op var

2
;

● var1 = var2 op constant;

● var = constant
1
 op constant

2
;

● Permitted operators are +, -, *, /, %.

● How would you compile y = -x; ?

y = 0 – x; y = -1 * x;

One More with bools

int x;
int y;
bool b1;
bool b2;
bool b3;

b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

One More with bools

int x;
int y;
bool b1;
bool b2;
bool b3;

b1 = x + x < y
b2 = x + x == y
b3 = x + x > y

_t0 = x + x;
_t1 = y;
b1 = _t0 < _t1;

_t2 = x + x;
_t3 = y;
b2 = _t2 == _t3;

_t4 = x + x;
_t5 = y;
b3 = _t5 < _t4;

TAC with bools

● Boolean variables are represented as
integers that have zero or nonzero
values.

● In addition to the arithmetic operator,
TAC supports <, ==, ||, and &&.

● How might you compile b = (x <= y) ?

TAC with bools

● Boolean variables are represented as
integers that have zero or nonzero
values.

● In addition to the arithmetic operator,
TAC supports <, ==, ||, and &&.

● How might you compile b = (x <= y) ?
_t0 = x < y;
_t1 = x == y;
b = _t0 || _t1;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

 _t0 = x < y;
 IfZ _t0 Goto _L0;
 z = x;
 Goto _L1;
_L0:
 z = y;
_L1:
 z = z * z;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

 _t0 = x < y;
 IfZ _t0 Goto _L0;
 z = x;
 Goto _L1;
_L0:
 z = y;
_L1:
 z = z * z;

Control Flow Statements

int x;
int y;
int z;

if (x < y)
 z = x;
else
 z = y;

z = z * z;

 _t0 = x < y;
 IfZ _t0 Goto _L0;
 z = x;
 Goto _L1;
_L0:
 z = y;
_L1:
 z = z * z;

Labels

● TAC allows for named labels indicating
particular points in the code that can be
jumped to.

● There are two control flow instructions:
● Goto label;
● IfZ value Goto label;

● Note that IfZ is always paired with Goto.

Control Flow Statements

int x;
int y;

while (x < y) {
 x = x * 2;
}

y = x;

Control Flow Statements

int x;
int y;

while (x < y) {
 x = x * 2;
}

y = x;

_L0:
 _t0 = x < y;
 IfZ _t0 Goto _L1;
 x = x * 2;
 Goto _L0;
_L1:
 y = x;

A Complete Decaf Program

void main() {
 int x, y;
 int m2 = x * x + y * y;

 while (m2 > 5) {
 m2 = m2 – x;
 }
}

A Complete Decaf Program

void main() {
 int x, y;
 int m2 = x * x + y * y;

 while (m2 > 5) {
 m2 = m2 – x;
 }
}

main:
 BeginFunc 24;
 _t0 = x * x;
 _t1 = y * y;
 m2 = _t0 + _t1;
_L0:
 _t2 = 5 < m2;
 IfZ _t2 Goto _L1;
 m2 = m2 – x;
 Goto _L0;
_L1:
 EndFunc;

A Complete Decaf Program

void main() {
 int x, y;
 int m2 = x * x + y * y;

 while (m2 > 5) {
 m2 = m2 – x;
 }
}

main:
 BeginFunc 24;
 _t0 = x * x;
 _t1 = y * y;
 m2 = _t0 + _t1;
_L0:
 _t2 = 5 < m2;
 IfZ _t2 Goto _L1;
 m2 = m2 – x;
 Goto _L0;
_L1:
 EndFunc;

A Complete Decaf Program

void main() {
 int x, y;
 int m2 = x * x + y * y;

 while (m2 > 5) {
 m2 = m2 – x;
 }
}

main:
 BeginFunc 24;
 _t0 = x * x;
 _t1 = y * y;
 m2 = _t0 + _t1;
_L0:
 _t2 = 5 < m2;
 IfZ _t2 Goto _L1;
 m2 = m2 – x;
 Goto _L0;
_L1:
 EndFunc;

A Complete Decaf Program

void main() {
 int x, y;
 int m2 = x * x + y * y;

 while (m2 > 5) {
 m2 = m2 – x;
 }
}

main:
 BeginFunc 24;
 _t0 = x * x;
 _t1 = y * y;
 m2 = _t0 + _t1;
_L0:
 _t2 = 5 < m2;
 IfZ _t2 Goto _L1;
 m2 = m2 – x;
 Goto _L0;
_L1:
 EndFunc;

Compiling Functions

● Decaf functions consist of four pieces:
● A label identifying the start of the function.

– (Why?)

● A BeginFunc N; instruction reserving N
bytes of space for locals and temporaries.

● The body of the function.
● An EndFunc; instruction marking the end of

the function.
– When reached, cleans up stack frame and

returns.

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function

g(a, …, m)

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

main:
 BeginFunc 4;
 _t0 = 137;
 PushParam _t0;
 LCall _SimpleFn;
 PopParams 4;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

main:
 BeginFunc 4;
 _t0 = 137;
 PushParam _t0;
 LCall _SimpleFn;
 PopParams 4;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

main:
 BeginFunc 4;
 _t0 = 137;
 PushParam _t0;
 LCall _SimpleFn;
 PopParams 4;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

main:
 BeginFunc 4;
 _t0 = 137;
 PushParam _t0;
 LCall _SimpleFn;
 PopParams 4;
 EndFunc;

Compiling Function Calls

void SimpleFn(int z) {
 int x, y;
 x = x * y * z;
}

void main() {
 SimpleFunction(137);
}

_SimpleFn:
 BeginFunc 16;
 _t0 = x * y;
 _t1 = _t0 * z;
 x = _t1;
 EndFunc;

main:
 BeginFunc 4;
 _t0 = 137;
 PushParam _t0;
 LCall _SimpleFn;
 PopParams 4;
 EndFunc;

Stack Management in TAC

● The BeginFunc N; instruction only needs to
reserve room for local variables and
temporaries.

● The EndFunc; instruction reclaims the room
allocated with BeginFunc N;

● A single parameter is pushed onto the stack by
the caller using the PushParam var instruction.

● Space for parameters is reclaimed by the caller
using the PopParams N; instruction.
● N is measured in bytes, not number of arguments.

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M PushParam var;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

PushParam var;
PushParam var;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

PushParam var;
PushParam var;
PushParam var;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

PushParam var;
PushParam var;
PushParam var;
BeginFunc N;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function

g(a, …, m)

PushParam var;
PushParam var;
PushParam var;
BeginFunc N;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

Storage for
Locals and
Temporaries

EndFunc;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Param M

…

Param 1

PopParams N;

A Logical Decaf Stack Frame
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Stack
frame for
function
f(a, …, n)

Storage Allocation

● As described so far, TAC does not specify
where variables and temporaries are
stored.

● For the final programming project, you
will need to tell the code generator where
each variable should be stored.

● This normally would be handled during
code generation, but Just For Fun we
thought you should have some experience
handling this. ☺

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

Param M

…

Param 1

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

Param M

…

Param 1

Storage for
Locals and
Temporaries

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

Param M

…

Param 1

Storage for
Locals and
Temporaries

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

Param M

…

Param 1

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

The Frame Pointer
Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Frame
Pointer

Logical vs Physical Stack Frames

Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Logical vs Physical Stack Frames

Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Logical vs Physical Stack Frames

Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

Param N

Param N – 1

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

fp of caller

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

fp of caller

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

fp of caller

Storage for
Locals and
Temporaries

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

fp of caller

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

fp of caller

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

Param N

...

Param 1

(Mostly) Physical Stack Frames
Param N

...

Param 1

Storage for
Locals and
Temporaries

fp of caller

Frame
Pointer

The Stored Return Address

● Internally, the processor has a special register
called the program counter (PC) that stores the
address of the next instruction to execute.

● Whenever a function returns, it needs to restore
the PC so that the calling function resumes
execution where it left off.

● The address of where to return is stored in MIPS
in a special register called ra (“return address.”)

● To allow MIPS functions to call one another, each
function needs to store the previous value of ra
somewhere.

Physical Stack Frames
Param N

...

Param 1

Locals and
Temporaries

fp of caller

Frame
Pointer

ra of caller

Physical Stack Frames
Param N

...

Param 1

Locals and
Temporaries

fp of caller

Frame
Pointer

ra of caller

Param N

...

Param 1

Physical Stack Frames
Param N

...

Param 1

Locals and
Temporaries

fp of caller

Frame
Pointer

ra of caller

Param N

...

Param 1

fp of caller

Physical Stack Frames
Param N

...

Param 1

Locals and
Temporaries

fp of caller

Frame
Pointer

ra of caller

Param N

...

Param 1

fp of caller

ra of caller

Physical Stack Frames
Param N

...

Param 1

Locals and
Temporaries

fp of caller

Frame
Pointer

ra of caller

Param N

...

Param 1

fp of caller

ra of caller

Physical Stack Frames
Param N

...

Param 1

Locals and
Temporaries

fp of caller

Frame
Pointer

ra of caller

Param N

...

Param 1

fp of caller

ra of caller

Locals and
Temporaries

So What?

● In your code generator, you must assign each
local variable, parameter, and temporary
variable its own location.

● These locations occur in a particular stack
frame and are called fp-relative.

Param N

...

Param 1

Local 0

fp of caller

ra of caller

fp

● Parameters begin at address
fp + 4 and grow upward.

● Locals and temporaries begin
at address fp – 8 and grow
downward

...

Local M

fp + 0

fp + 4

...

fp + 4N

fp - 4

fp - 8

...

fp - 4 - 4M

From Your Perspective

Location* location =
 new Location(fpRelative, +4, locName);

From Your Perspective

Location* location =
 new Location(fpRelative, +4, locName);

From Your Perspective

Location* location =
 new Location(fpRelative, +4, locName);

What variable does
this refer to?

And One More Thing...

int globalVariable;

int main() {
 globalVariable = 137;
}

And One More Thing...

int globalVariable;

int main() {
 globalVariable = 137;
}

And One More Thing...

int globalVariable;

int main() {
 globalVariable = 137;
}

Where is this
stored?

The Global Pointer

● MIPS also has a register called the
global pointer (gp) that points to
globally accessible storage.

● Memory pointed at by the global pointer
is treated as an array of values that
grows upward.

● You must choose an offset into this array
for each global variable.

Global Variable 0

Global Variable 1

...

Global Variable N

gp gp + 0

gp + 4

...

gp + 4N

From Your Perspective

Location* global =
 new Location(gpRelative, +8, locName);

From Your Perspective

Location* global =
 new Location(gpRelative, +8, locName);

Summary of Memory Layout

● Most details abstracted away by IR
format.

● Remember:
● Parameters start at fp + 4 and grow upward.
● Locals start at fp – 8 and grow downward.
● Globals start at gp + 0 and grow upward.

● You will need to write code to assign
variables to these locations.

TAC for Objects, Part I

class A {
 void fn(int x) {
 int y;
 y = x;
 }
}

int main() {
 A a;
 a.fn(137);
}

TAC for Objects, Part I

class A {
 void fn(int x) {
 int y;
 y = x;
 }
}

int main() {
 A a;
 a.fn(137);
}

_A.fn:
 BeginFunc 4;
 y = x;
 EndFunc;

main:
 BeginFunc 8;
 _t0 = 137;
 PushParam _t0;
 PushParam a;
 LCall _A.fn;
 PopParams 8;
 EndFunc;

TAC for Objects, Part I

class A {
 void fn(int x) {
 int y;
 y = x;
 }
}

int main() {
 A a;
 a.fn(137);
}

_A.fn:
 BeginFunc 4;
 y = x;
 EndFunc;

main:
 BeginFunc 8;
 _t0 = 137;
 PushParam _t0;
 PushParam a;
 LCall _A.fn;
 PopParams 8;
 EndFunc;

A Reminder: Object Layout
Method 0

Field 0

Vtable*

Vtable*

...

Field N

Field 0

...

Field N

Field 0

...

Field M

Method 1

...

Method K

Method 0

Method 1

...

Method K

Method 0

...

Method L

TAC for Objects, Part II

class A {
 int y;
 int z;
 void fn(int x) {
 y = x;
 x = z;
 }
}

int main() {
 A a;
 a.fn(137);
}

TAC for Objects, Part II

class A {
 int y;
 int z;
 void fn(int x) {
 y = x;
 x = z;
 }
}

int main() {
 A a;
 a.fn(137);
}

_A.fn:
 BeginFunc 4;
 *(this + 4) = x;
 x = *(this + 8);
 EndFunc;

main:
 BeginFunc 8;
 _t0 = 137;
 PushParam _t0;
 PushParam a;
 LCall _A.fn;
 PopParams 8;
 EndFunc;

TAC for Objects, Part II

class A {
 int y;
 int z;
 void fn(int x) {
 y = x;
 x = z;
 }
}

int main() {
 A a;
 a.fn(137);
}

_A.fn:
 BeginFunc 4;
 *(this + 4) = x;
 x = *(this + 8);
 EndFunc;

main:
 BeginFunc 8;
 _t0 = 137;
 PushParam _t0;
 PushParam a;
 LCall _A.fn;
 PopParams 8;
 EndFunc;

TAC for Objects, Part II

class A {
 int y;
 int z;
 void fn(int x) {
 y = x;
 x = z;
 }
}

int main() {
 A a;
 a.fn(137);
}

_A.fn:
 BeginFunc 4;
 *(this + 4) = x;
 x = *(this + 8);
 EndFunc;

main:
 BeginFunc 8;
 _t0 = 137;
 PushParam _t0;
 PushParam a;
 LCall _A.fn;
 PopParams 8;
 EndFunc;

Memory Access in TAC

● Extend our simple assignments with
memory accesses:
● var

1
 = *var

2

● var
1
 = *(var

2
 + constant)

● *var
1
 = var

2

● *(var
1
 + constant) = var

2

● You will need to translate field accesses
into relative memory accesses.

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

_Base.hi:
 BeginFunc 4;
 _t0 = "Base";
 PushParam _t0;
 LCall _PrintString;
 PopParams 4;
 EndFunc;
Vtable Base = _Base.hi,
 ;

_Derived.hi:
 BeginFunc 4;
 _t0 = "Derived";
 PushParam _t0;
 LCall _PrintString;
 PopParams 4;
 EndFunc;
Vtable Derived = _Derived.hi,
 ;

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

_Base.hi:
 BeginFunc 4;
 _t0 = "Base";
 PushParam _t0;
 LCall _PrintString;
 PopParams 4;
 EndFunc;
Vtable Base = _Base.hi,
 ;

_Derived.hi:
 BeginFunc 4;
 _t0 = "Derived";
 PushParam _t0;
 LCall _PrintString;
 PopParams 4;
 EndFunc;
Vtable Derived = _Derived.hi,
 ;

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

_Base.hi:
 BeginFunc 4;
 _t0 = "Base";
 PushParam _t0;
 LCall _PrintString;
 PopParams 4;
 EndFunc;
Vtable Base = _Base.hi,
 ;

_Derived.hi:
 BeginFunc 4;
 _t0 = "Derived";
 PushParam _t0;
 LCall _PrintString;
 PopParams 4;
 EndFunc;
Vtable Derived = _Derived.hi,
 ;

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

TAC for Objects, Part III
class Base {
 void hi() {
 Print("Base");
 }
}

class Derived extends Base{
 void hi() {
 Print("Derived");
 }
}

int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

What's going
on here?

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

hi
Derived Vtable

Code for
Derived.hi

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Param 14

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Param 14

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Param 14

(raw memory)

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

Param 14

(raw memory)

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Allocate
Object

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Allocate
Object

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Allocate
Object

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

(raw memory)

Allocate
Object

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Allocate
Object

Set
Vtable

Load
Function

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable* Load
Function

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Param 1

Load
Function

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Param 1

Load
Function

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable*

Param 1

Load
Function

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable* Load
Function

Allocate
Object

Set
Vtable

Dissecting TAC
int main() {
 Base b;
 b = new Derived;
 b.hi();
}

main:
 BeginFunc 20;
 _t0 = 4;
 PushParam _t0;
 b = LCall _Alloc;
 PopParams 4;
 _t1 = Derived;
 *b = _t1;
 _t2 = *b;
 _t3 = *_t2;
 PushParam b;
 ACall _t3;
 PopParams 4;
 EndFunc;

fp of caller

ra of caller

hi
Derived Vtable

Code for
Derived.hi

_t0

_t1

_t2

_t3

b

4

VTable* Load
Function

Allocate
Object

Set
Vtable

OOP in TAC

● The address of an object's vtable can be
referenced via the name assigned to the vtable
(usually the object name).
● e.g. _t0 = Base;

● When creating objects, you must remember to
set the object's vtable pointer or any method
call will cause a crash at runtime.

● The ACall instruction can be used to call a
method given a pointer to the first instruction.

Generating TAC

TAC Generation

● At this stage in compilation, we have
● an AST,
● annotated with scope information,
● and annotated with type information.

● To generate TAC for the program, we do
(yet another) recursive tree traversal!
● Generate TAC for any subexpressions or

substatements.
● Using the result, generate TAC for the overall

expression.

TAC Generation for Expressions

● Define a function cgen(expr) that generates
TAC that computes an expression, stores it in a
temporary variable, then hands back the name
of that temporary.

● Define cgen directly for atomic expressions
(constants, this, identifiers, etc.).

● Define cgen recursively for compound
expressions (binary operators, function calls,
etc.)

cgen for Basic Expressions

cgen for Basic Expressions

cgen(k) = { // k is a constant
 Choose a new temporary t
 Emit(t = k);
 Return t
}

cgen for Basic Expressions

cgen(k) = { // k is a constant
 Choose a new temporary t
 Emit(t = k);
 Return t
}
cgen(id) = { // id is an identifier
 Choose a new temporary t
 Emit(t = id)
 Return t
}

cgen for Binary Operators

cgen for Binary Operators

cgen(e1 + e2) = {
 Choose a new temporary t
 Let t1 = cgen(e1)
 Let t2 = cgen(e2)
 Emit(t = t1 + t2)
 Return t
}

An Example
cgen(5 + x) = {
 Choose a new temporary t
 Let t1 = cgen(5)
 Let t2 = cgen(x)
 Emit (t = t1 + t2)
 Return t
}

An Example
cgen(5 + x) = {
 Choose a new temporary t
 Let t1 = {
 Choose a new temporary t
 Emit(t = 5)
 return t
 }
 Let t2 = cgen(x)
 Emit (t = t1 + t2)
 Return t
}

An Example
cgen(5 + x) = {
 Choose a new temporary t
 Let t1 = {
 Choose a new temporary t
 Emit(t = 5)
 return t
 }
 Let t2 = {
 Choose a new temporary t
 Emit(t = x)
 return t
 }
 Emit (t = t1 + t2)
 Return t
}

An Example
cgen(5 + x) = {
 Choose a new temporary t
 Let t1 = {
 Choose a new temporary t
 Emit(t = 5)
 return t
 }
 Let t2 = {
 Choose a new temporary t
 Emit(t = x)
 return t
 }
 Emit (t = t1 + t2)
 Return t
}

_t0 = 5
_t1 = x
_t2 = _t0 + _t1

cgen for Statements

● We can extend the cgen function to
operate over statements as well.

● Unlike cgen for expressions, cgen for
statements does not return the name of a
temporary holding a value.
● (Why?)

cgen for Simple Statements

cgen for Simple Statements

cgen(expr;) = {
 cgen(expr)
}

cgen for while loops

cgen for while loops

cgen(while (expr) stmt) = {
 Let Lbefore be a new label.
 Let Lafter be a new label.
 Emit(Lbefore:)

 Let t = cgen(expr)
 Emit(IfZ t Goto Lafter)
 cgen(stmt)
 Emit(Goto Lbefore)
 Emit(Lafter:)
}

cgen for while loops

cgen(while (expr) stmt) = {
 Let Lbefore be a new label.
 Let Lafter be a new label.
 Emit(Lbefore:)

 Let t = cgen(expr)
 Emit(IfZ t Goto Lafter)
 cgen(stmt)
 Emit(Goto Lbefore)
 Emit(Lafter:)
}

cgen for while loops

cgen(while (expr) stmt) = {
 Let Lbefore be a new label.
 Let Lafter be a new label.
 Emit(Lbefore:)

 Let t = cgen(expr)
 Emit(IfZ t Goto Lafter)
 cgen(stmt)
 Emit(Goto Lbefore)
 Emit(Lafter:)
}

cgen for while loops

cgen(while (expr) stmt) = {
 Let Lbefore be a new label.
 Let Lafter be a new label.
 Emit(Lbefore:)

 Let t = cgen(expr)
 Emit(IfZ t Goto Lafter)
 cgen(stmt)
 Emit(Goto Lbefore)
 Emit(Lafter:)
}

cgen for while loops

cgen(while (expr) stmt) = {
 Let Lbefore be a new label.
 Let Lafter be a new label.
 Emit(Lbefore:)

 Let t = cgen(expr)
 Emit(IfZ t Goto Lafter)
 cgen(stmt)
 Emit(Goto Lbefore)
 Emit(Lafter:)
}

cgen for while loops

cgen(while (expr) stmt) = {
 Let Lbefore be a new label.
 Let Lafter be a new label.
 Emit(Lbefore:)

 Let t = cgen(expr)
 Emit(IfZ t Goto Lafter)
 cgen(stmt)
 Emit(Goto Lbefore)
 Emit(Lafter:)
}

Next Time

● Intro to IR Optimization
● Basic Blocks
● Control-Flow Graphs
● Local Optimizations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177

