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PREDGOVOR

Jezgro je vezani sistem elementamih Zestica u kome ove inter
aguu svim poznatim interakcijama. Zahvaljujuéi tome ponafanje jezgara
veoma je raznovrsno a nukleamna fizika je verovatno najslofenija fizicka
disciplina. UdZbenitka literatura o nuklearnoj fizici je vrlo obimna. Ovde
je ulinjen pokusaj da se sve oblasti koje se inade proudavaju u okvirima
tradicionalnih op$th kurseva nuklearne fizike obrade kroz reSavanje
najlefée susretanih elementarnih problema na koje se nailazi pri bavjenju
ovim predmetom. Da bi udtbenik mogao nezavisno da se koristi
postavke problema dovolino su potpune i detaline, a za slutaj da se
problem ipak ne mo¥e samostalno rediti data su i reSenja svih zadataka.

Verujemo da ée ovako koncipirani ud?benik biti koristan dodatak
postojedim  konvencionalnim udzbenicima i da ¢e pomoéi da se kod stu-
denata ove znalajne oblasti fizike formiraju operativnija i prakti¥nija
znanja no 3t bi to inafe bio sluZaj.

Svakom ko nam bude pomogao da buduéa izdanja bolje odgo-
vore tom cilju unapred smo zahvalni.

Beograd, Juli 1996. AUTOR/
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Glava A

Opste osobine jezgara




l Al | Energija veze jezgra uslovljena dejstvom jakih nuklearnih sila raste propor-
. cionalno sa masenim brojem A dok energija kulonovog odbijanja raste proporcio-
nalno sa Z (Z+-1) ~ Z2 (videti semiempirijsku formulu za energiju veze). Pri Z =~ 120
energija kulonovog odbijanja postaje reda velidine energije nuklearnog privladenja,
energija veze teZi nuli i jezgro ne moZe da postoji kao stabilan sistem (zanemarili
3mo sve vrste nestabilnosti koje ovo sprefavaju i ranije).
Pokazati da su nuklearni i atomski kriterijum ovde usaglaSeni; kada bi tefa jezgra
i postojala oko njih se ne bi mogao da formira stabilni elektronski omota usled
kreacije elektronsko — pozitronskih parova u polju sopstvenog jezgra.

! A2 l Bakarna folija debljine 1,5 mg/cm2 obasjava se kolimisanim snopom o &e-
stica iz raspada 210Po (E,=5,3 MeV) koji pada normalno na foliju. Za uglove
rasejanja $>>6° rasejava se 19 svih « Cestica. Pretpostavljajuéi daje rasejanje isklju-
¢ivo Rutherford-ovog tipa naéi naclektrisanje jezgra bakra.

I A3 l Thomsonov model atoma pretpostavlja da je naelektrisanje atoma uniformno
rasporedeno po celoj zapremini atoma; po sferi radijusa R=10-8 cm. Na osnovu
ove pretpostavke naci koliku maksimalnu energiju moZe da dobije « &estica emito-
vana iz ovakvog sistema i time pokazati da model najverovatnije ne odgovara
eksperimentalnoj stvarnosti.

| A4 | U okviru mezonske teorije nuklearnih sila nukleone mo¥emo shvatiti kao

odgovarajude »gole« nukleone okruZene oblakom (atmosferom) virtuelnih n-mezona.
Virtuelni procesi koji se neprekidno deavaju su, dakle, tipa:

paxntmt i nzzp-+n-

Ovakva struktura nukleona moZe da di jednostavno i konmsistentno objanjenje
simultano za »anomalne« magnetne momente i protona i neutrona:

p=-+2,7928 py
Ln=—1,9103 )

Pretpostaviv§i da nukleon odredeno vreme provede u stanju golog (idealnog) nukle-
ona (sa magnetnim momentima pf=py i pf=0) i odredeno vreme u disociranom
stanju na goli nukleon i pion u skladu sa gore navedenim virtuelnim procesima,
pokazati da se ova vremena Zivota u jednom, odnosno drugom stanju, za proton
i neutron u potpunosti slaZu. .
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A5 | Za odredivanje atomskih masa izotopa &esto se u masenoj spektroskopiji

koristi mstod masenih dubleta. Metod se sastoji u merenju razlike masa jona istog
masenog broja. Ako su poznate razlike masa sledeéih dubleta:

m=0,—S§
n=C4—80 (12C, \H, 160, 325)
2 =CH4———O

odrediti:

a) mase atoma sumpora, ugljenika i vodonika u masenoj skali u kojoj je 160=16
atomskih jedinica mase,

b) mase.atoma vodonika, kiseonika i sumpora u masenoj skali u kojoj je 12C=12
atomskih jedinica mase.

A6 | Izradunati ( u ajm i eV) defekte masa jezgara 3H i 3He i objasniti zadto se
azlikuju? Mase 3H, 3He i neutrona su:
,016049 ajm, 3,01630 ajm i 1,008665 ajm respektivno.

o "1

] A7 ' a) Naéi izraz za odre:iivanje defekta mase jezgra preko dekrementa mase

odgovarajuéih atoma.’

b) Izradunati defekte masa jezgara sledeéih atoma: 4He, 12C, 160, 23Na, 59Co
1974y i 2387,

A8 l Vezivne energije jezgara 12C i 4He su 92,16 i 28,30 MeV. Razlika izmedu

zbira masa jezgara 12C i 4He i mase jezgra 160 iznosi 0,00769 ajm. Odrediti vezivau
 energiju jezgra 160.

IA9 I Pri sintezi jezgara 6Li i 2H obrazuju se dve alfa Cestice. Energije veze po
nukleonu u 6Li, 2H i 4He su: 5,33, 1,11 i 7,08 MeV respektivno. Izradunati energiju
koja se oslobada pri datom procesu.

|A10| Polazeéi od pretpostavke da je razlika vezivnih energija za ogledalska jezgra
posledica elektrostatske interakcije medu protonima naéi za ogledalski par3Si—#p
polupre&nik jezgra. Uporediti dobijenu vrednost sa vredno3¢u koja se dobija
pomodu formule
R=1,5x10"134-13 cm

|A11l Polaze¢i od semiempirijske formule za masu jezgra nadi izraz koji daje
zavisnost izmedu Z i 4 za sva beta stabilna jezgra. Pomoc¢u dobijenog izraza odrediti
redni broj Z bzta stabilnog jezgra za izobarne lance sa masenim brojem (A4) 23, 89
i 114

|A12| Poznato je da vezivne energije jezgara sistematski variraju zavisno od toga
da li jezgro ima paran broj protona (ili neutrona) ili ne. Ova varijacija vezivne ener-
gije, poznata kao. energija sparivanja, iznosi:

A Z parno, N neparno
3= 0 A neparno
—A Z neparno, N neparno
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Pretpostavljajudi da je vezivna energija jezgra B (Z, N) glatka funkcija Z i N, kada
se zanemari efekt sparivanja, izralunati parametar A ako su poznate empirijske
vrednosti vezivnih energija sledeéih izotopa: (N—2, Z); (N—1, Z); (N, 2)i (N+1, Z)
gde su N i Z parni brojevi.

|A13l Dvonukleonski sistemi imaju sledeée karakteristike:

Dvoneutron Deuteron Dvoproton
n—n n—p p—p

Masa . 2,014741
Vezivna energija B § 2,22 MeV '%
Spin (totalni mom. imp.) @ 1 z

o
Magnetni moment [ g 0,3574 py g

3 o
Kvadrupolni moment Q > 2,73 x 10727 em? é
Srednji Zivot 8 © 2
Pobudena stanja nema

Objasniti kvalitativno za¥to dva protona ili dva neutrona nemaju vezanih stanja
veé je deuteron jedino moguée vezano stanje dvaju nukleona.

IA14‘ U prethodnom zadatku smo videli da u prvoj aproksimaciji nema potrebe
za doprinosom orbitnog momenta impulsa da bi se objasnila stvarna vrednost
magnztnog momznta deuterona i da nas je 35 stanje kao osnovno stanje deuterona
zadovoljilo. Sliéna je situacija i sa kvadrupolnim momentom koji je neobi¢no mali
(u teZim, takozvanim deformisanim jezgrima, Q je reda barna !) i-sugerira gotovo
sfernu simetriju sistema tj. L==0 §to zna&i opet 3.5 stanje (videti zadatak A25 koji
daje izraz za Q). Znadi da je potrebna veoma mala primesa stanja viSeg orbitnog
momenta impulsa (koje nije sferno simetriéno) da bi se dobile dobre vrednosti i za
magnetni i za kvadrupolni moment.

No, kao §to je poznato, centralne sile (potencijali) ne mogu dati stanja me3anog
orbitnog momenta impulsa; opste reSenje svih centralnih potencijala je oblika
Rat (r) Y1 (9, 9). sa svojstvenom vredno$éu energije Eni. Do sada smo, u proflom
zadatku, videli da nam osim unapred o&ekivanog isto radijalnog centralno simetri&-
nog dela potencijala ¥i(r) treba i, takode céntralno simetriéni &lan, koji bi zavisio

od madusobne orijentacije spinova ¥, (r) f ($1, 83). Oba su ova &lana, me:@utimZ
sferno simstri¢na i ne zadovoljavaju gore navedene uslove. Uvodimo dakle i tredi
&lan, necantralni deo nuklearnog dvogsstidnog potencijala na niskim energijama, koji
ima oblik:
3D @D 7
Vyp(r) Sy, =Vr() [_17”2"" —01:0;

(analogan klasinom izrazu za energiju interakcije dva dipola). Ovaj se &lan naziva
jo3 i tenzorskom interakcijom jer zavisi od orijentacije spinova interagujucih estica
u odnosu na pravac koji ih spaja. On povezuje spinske i prostorne koordinate Cestica
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pa tako spreZe orbitne i spinske momente impulsa. Tako orbitni moment impulsa
vife nije konstanta kretanja (totalni jestel) i svako stanje datog totalnog momenta
impulsa J postaje linearna kombinacija stanja razliSitog orbitnog momenta impulsa.
Nac¢i koja smeda stanja predstavlja osnovno stanje deuterijuma pod dejstvom ovakve
necentralne interakcije. i

lAlSi Na osnovu studija osnovnih osobina dvonukleonskih sisterma utvrdujemo
da dvotestitna nuklearna interakcija odgovorna za ove osobine mora da ima oblik:

V=V (4 V()1 G o))+ V() [——~—3 ©un e 3 32]
r

MeV, = Takode smo videli da se u prvoj aproksimaciji mo-
5 1 id p maciji mo
0 22  Germ] Zemo zadovoljiti samo centralnim delom potenci-
singlet jala. Ako ga napiSemo eksplicitno u obliku:
-/, —
-14 c Vo=Vi{(r)+Vi(r) 61 03
triplet ngéi kanretan oblik singletnog i tripletnog poten-
—~ Ve cijala i prodisk.l_ltovati slaganje sa oblicima ovih
-38 ___.__J potencijala dobijenih iz eksperimenata sa raseja-
AAS njem neutrona na protonima (zad. E.14), a pri-

kazanih na slici, kao i sa zakljuécima zadatka Al.

|A16I Sistem od dva nukleona spre¥e se u centralno simetri¢nom nuklearnom
polju (LS) spregom. (Spinovi &estica sabiraju se u ukupni spin S, a orbitalni momenti
'lm;')ulsa. destica u ukupni orbitalni moment impulsa L. Ukupni moment impulsa
(spin) sistema (J) jednak je tada »vektorskom« zbiru LiS).

Pokazati da za fiksirano J postoje Zetiri razlidita stanja sistema.

Napisati sva moguéa stanja sistema dva nukleona za prve tri vrednosti totalnog
momenta impulsa J, :

Napomena:

Koq (LS) sprege za oznafavanje stanja sistema koristi s¢ oznaka 2§ L, Umesto
broja L najceS¢e se upotrebljavaju velika slova i stare spektroskopske oznake

L=0, 1, 2, 3, 4
s P D F G

|A17 »Tenzorski« deo nukleon-nukleonske interakcije prikazuje se tradicionalno
u obliku:

o+ 1) (6,0 r) - —
Vr()S,, sa Su=3(—‘—_)r_§.£__)__al 3,

gde su r relativno rastojanje izmedu dva nukleona, a :;1 i ;2 su Paulijevi spinski
operatori nukle.ona i 2. Tzraziti operator S|, pomoéu ukupnog spina dva nukle-
ona §. Pokazati da operator S, zavisi samo od uglova i ¢ (aneiodr).
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|A18| Poku3avajuéi da objasni saturacioni karkter nuklearnih sila Heisenberg je
pretpostavio da su ove tipa »sila izmene« (sliéne molekularnim hemijskim silama).
Posle Yukawine teorije nuklearnih sila i otkri¢a n-mezonskog izotripleta kao kvanata
polja jakih interakcija postao je

jasan moguéi mehanizam ostvarenja nukt.1 nuk.2_| nuklt nuki.2
ovakvih sila. Izmena virtuelnih nae- )

lektrisanih piona, prikazana na slicx, p @ . n O @
odigledno je ekvivalentna zameni a N
prostornih koordinata &estica (izme- O <O O @ <O @
na mesta). Sile ovog tipa zovu se :

Majoraninim. Pri interakciji obig- O @ @ O
nim centralnim silama ¥ (r) Schro- e

dingerova jednagina za dve Cestice, re k., gtefo b s

u sistemu centra masa, prema Wig- 243 myc € mc?

neru, ima. oblik: 6l AE~my ¥ cestica, virtuetnas

(ﬁmivzw)q»(rl T 510 8 =V () G 7o 510 )

Pri interakciji Majoraninim silama rezultat na desnoj strani jednadine nije samo
mnoZenje Y sa V' (r) ve¢ i zamena prostornih koordinata interagujuéih &estica:

k2 — - —
(;- V’—I-E) Y(rys 1y 8 )=V O Y (ry 1y 5,5 8)
Operator energije interakcije mo¥emo, dakle, predstaviti u obliku ¥ (r) P} gde
je Pi Majoranin operator definisan dejstvom:

12, = —~ > .
Pagdp (rys 15 513 ) = (13, 7y, 535 55)

(Postoje jo§ dve vrste sila izmene; Bartlettove i Heisenbergovq. Prve se ostvaruju
izmenom virtuelnih neutralnih piona i izmenjuju spinske koordinate estica a druge
zamenjuju i prostorne i spinske koordinate).

. . o . . . . 12 .
Iz opstih razmatranja naéi svojstvene vrednosti Majora}nmog operatora {’M i,
pod pretpostavkom da su nuklearne sile delimiéno Majoraninog tipa, objasniti

-saturacioni karakter nuklearnih sila koji se najociglednije oditava u &injenici da

stabilni petonukleonski sistemi ne postoje (i 5Li i SHe imaju periode poluraspada
~10-21s! i u celoj karti stabilnih jezgara samo mesta sa A==5i A=8 su praznal).
Objasniti kvalitativno za§to jezgra ne kolabiraju pod dejstvom jakih nuklearnih
priviagnih sila (za$to zapremine nisu jo¥ manje od stvarnih).

IA19| Deuteron se sastoji od &estica pribliZno istih masa mp =~ ma=m tako da je
redukovana masa sistema pw=m/2. Sila izmedu nukleona je privlaéna i kratkog
dometa i, zadovoljavajuci se u prvoj aproksimaciji 35 stanjem kao osnovnim stanjem
deuterona, moZemo je smatrati centralnom silom; silom koja deluje duZ pravca
koji spaja nukleone. Posto je sila priviaina potencijal je u dometu sila negativan
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a van njega jednak nuli. Najjednostavniji ovakav potencijal je pravougla potenci-
jalna jama oblika:

ro(domet)

Vo 2a r<r,
Vir) = L I
O za r>r,

-Vo

A19

Kao i uvek, radimo u sistemu centra masa, tj. dvodesti€ni problem svodimo na kre-
tanje jedne &estice sa redukovanom masom u centralnom polju (mada ovde defini-
sanog »tefkog« centra polja nema!) jer je jednoestiéni problem jedini koji umemo
egzaktno da reSimo. Svojstvena refenja ovakvog jednodestiénog problema predstav-
ljaju moguda stanja nukleona koji se postujuéi Paulijev princip po njima razmestaju,
u prvoj aproksimaciji ne interagujuéi viSe medu sobom jer su svoje interakcione
sposobnosti »potrodili« na stvaranje potencijalne jame (naziremo prilaz modela
ljusaka). Znajuéi da energija veze deuterona iznosi B=2,225 MeV refiti Schrﬁdinger-.
ovn jednadinu redukevanog dvodestiénog problema za gornji potencijal i naci
talasnu funkciju osnovnog stanja deuterona. Naéi zatim vezu izmedn dometa inter-
akcije ro i dubine potencijalne jame ¥,. Naéi dubinu jame ¥, ako se za ro uzme
vrednost 2x 10713 cm. ‘

IAZO I U tablici su date vrednosti koje opisuju podetni (strmo uzlazni) deo krive
energije veze po nukleonu u funkeiji masenog broja 4; kao i broj parnih veza medu
nukléonima: i

‘B energ. veze MeV] N : .
———— broj parnih veza medu nukleonima
JEZGRO A nukleon [ nukl 1P
2x1
2H 1,112 " =1
3x2
SH : 2,827 7~ 3
’ 4%3
‘He 7,074 =6

Aproksimirajuéi radijalnu talasnu funkciju osnovnog stanja deuterona funkcijom
u(r)y=Ce=r
naéi verovatnoéu da protoa i neutron u deuteronu budu na uzajamnom rastojanju »

veéem od dometa nuklearnih sila (rg). Na osnovu ovoga kvalitativno objasniti
podatke date u gornjoj tabeli. .

OPSTE ‘OSOBINE. JEZGARA ‘9

| A21]| U nuklearnim tablicama gesto se navode vrednosti magnetnih momenata
izotopa (obino osnovnih stanja). Velidina magnetnog momenta izra¥ava se u
nuklearnim magnetonima y=el/2 mye. U teorijskim razmatranjima (sa konkretnim
modelskim funkcijama nukleona (i jezgra)), magnetni moment definifemo kao
ogekivanu vrednost operatora magnetnog momenta za stanje sa definisanim spi-
nom J i njegovom maksimalnom projekcijom M=1J, tj.:

eh
2m,c

= (| 3 Gt £ 8. 197

gde su px i S.¢ operatori projekcija orbitalnog momenta impulsa i spina k-tog
nukleoqa, g Ziromagnetni faktori (g,=0 za neutron, g;=1 za proton, 2,=5,58 za
proton i g,=—3,89 za neutron). Sumiranje se vrdi po svim nukleonima. Napisati
operator magnetnog momenta deuterona izraZen preko operatora J;. Pretpostavlja-
judi da je deuteron preteZno u 3§ stanju sa malom primesom 3D, stanja izraSunati
iz poznate vrednosti magnetnog momenta deuterona (0,8574 wy) primesu 3D,
stanja.,
Napomena: —
Iskoristiti . . ~ L.J »
sKoristiti operatorski identitet: L, = " g, .

J

lA22’ Neka je magnetni moment jezgra:

—

- .1 -
(.Lj=y.l—}— gde ]g I spin jezgra

a srednja vrednost magnetnog polja atomskih elektrona na mestu jezgra:

-

(‘3@:} = —const %

gde je J rezultuju¢i moment impulsa atomskih elektrona.
Ova dva polja interaguju (hiperfina interakcija) energijom:

Uy = —pyCFE,y.

Usled ove interakeije term 4Fy/, u atomu 59Co je osmostruko rascepan. Naéi spin
ovog jezgra.

|A23' Term 2D3/, atoma 209B; je hiperfinom interakcijom pocepan na &etiri kom-
ponente. Odnos intervala (razmaka) medu ovim komponentama je ~6 :5:4.
Odrediti spin jezgra i broj komponenata hiperfinog cepanja spektralne linije
251/2-—2D3/5 ako je izborno pravilo u atomskim prelazima AF=0, -t 1 (¥ je totalni
moment impulsa atoma).
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IA24| Odnos intenziteta hiperfinih komponenata (rastavijenih svega 0,021 A!)
spektralne linije 2P /3 — 25{/2 u atomu 23Ng iznosi ~10 : 6 (linija 5890 A iz &u-
venog Zutog dubleta). Ako je cepanje terma 2P/, zanemarljivo, naéi spin jezgra
23Na.

IAZS Naci energiju Coulombove interakcije jezgra Z, homogene gustine naelek-
trisanja p (X, Y, Z), i tatkastog naelektrisanja e u tadki 4 (x, y, z) ako je rastojanje
izmedu njihovih centara mnogo vece od radijusa jezgra R. Nula koordinatnog si-
stema smestena je u centar jezgra a z osa poklapa se sa pravcem momenta impulsa
jezgra (zbog rotacije jezgra oko z ose distribucija naelektrisanja je, u srednjem, osno
(9) simetri€na i izbor x i y ose nije kritiCan). Naéi Coulombov potencijal jezgra
-u tafki B(0,0,z=r) i prodiskutovati rezultat.

| A26| Nadéi kvadrupolni moment homogeno naelektrisanog elipsoidalnog jezgra
(oblika cigare) male i velike poluose a i b respektivno. Osa z kolinearna je sa velikom
poluosom.”

| A27| Pretpostavljajuéi da jezgro 176Lu ima oblik rotacionog elipsoida bliskog
sferi naci odnos velike poluose prema maloj (b/a) ako je poznata vrednost njegovog
kvadrupolnog momenta, Q¢=7 barna.

lAZBI Nuklearni elektriéni kvadrupolni moment uslovljen samo jednim protonom
definisan je kao odekivana vrednost kvadrupolnog operatora @,¢=3z2—r2 u
stanju sa maksimalnom projekcijom spina (stanje maksimalne orijentacije). Pret-
postavijaju¢i da je proton opisan jednolestitnom talasnom funkcijom,
Rni(r) Y, (9, @) a, (gde je o spinska funkcija koja odgovara spinu »gore«) naci
vrednost kvadrupolnog momenta. Proceniti zatim kvadrupolni moment za proton
u stanju  dsp (=2, j=I+1/2) za jezgro sa radijusom 5 fm.

Napomena:

5 ! .
quYzo Y,dQ= —\/;{; 53

|A29l Eksperimentalni podaci iz rasejanja naelektrisanih festica na jezgru, pri-
marno, odreduju dva parametra jezgra: radijus (R) i povriinsku debljinu jezgra (1),
definisanu kao interval poluprenika na kome gustina naelektrisanja (mase) spadne
sa 90% na 10% centralne vrednosti p,.

Raspodela naelektrisanja u jezgru dobijena iz eksperimenata sa rasejanjem nae-
lektrisanih Cestica moZe da se predstavi funkcijom:

I+e

Ako parametar a iznosi 0,54 fm (za sva jezgra sa 4> 16), odrediti povriinsku deb- -

ljinu jezgra.
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.A30! Funkcionalna zavisnost gustine nukleona od polupreénika jezgra prikazana
je upro$éeno na slici. Vrednosti parametara R

S su: § 0
R=1,1 AY3 fermi : —| 25—
28=2,5 fermi. 5
Odrediti parametar gustine p,, pa izradunati 3.,/2 R
zatim broj nukleona koji se nalazi u oblasti B

promenljive gustine (»blizu« povrSine jezgra) za
jezgro sa masenim brojem 4=216. A30

IABI | Model fermi-gasa razmatra jezgro kao gas neinteragujuéih protona i neutrona
zatvorenih u potencijalnu jamu dimenzija jezgra. Pomoéu ovog modela moze se
naéi priblizna dubina nuklearne potencijalne jame; moZe se objasniti poveéanje
gustine nuklearnih stanja sa energijom; emisija estice moZe se shvatiti kao proces
»isparavanja« nukleona. Ekscitacija jezgra, tj. stepen do koga su popunjena vifa
energetska stanja, moZe se shvatiti ako se gasu pripie odredena temperatura. Na
temperaturi =0 (osnovno stanje) broj stanja do najvifeg popunjenog stanja jednak
je ba¥ ukupnom broju nukleona 4 (nukleoni su fermioni te za njih vaZi Paulijev
princip, odnosno Fermi-Diracova statistika). Opisemo li, dakle, jezgro kao nukleon-
ski gas zatvoren u kutiju dimenzija jezgra tada ¢e nukleon na najvifem energetskom
stanju na T'=0 jmati maksimalni impuls p ., =p;.

Naéi ovu vrednost impulsa kao i maksimalnu kinetitku energiju nukleona Er a
odatle i dubinu nuklearne potencijalne jame za proizvoljno jezgro sa 4 nukleona.
Na primeru nekog lakog jezgra prodiskutovati rezultat i objasniti kvalitativno
razliku izmedu oblika jame za protone i neutrone.

l A32] U modelu fermi-gasa naéi srednju kinetiku energiju po nukleonu i na osnovu
toga pokazati da nukleone u jezgru zaista moZemo tretirati nerelativisticki.

|A33| Jezgra poseduju mnogo pobudenih stanja. Niska pobudena stanja mogu
se pripisati ekscitaciji jedne Cestice (kao u atomu). Visoka stanja su, pak, sasvim
razli¢ita; energija pobudenja ovde se deli na veéi broj nukleona. Nukleon u pobu-
denom stanju nije vi¥e u fermijevom moru (po energiji ili impulsu). Energija eksci-
tacije £* podiZe nuklearnu temperaturu na vrednost 7. Za fermi-gas od 4 nukleona
izmedi njih postoji veza:

E*=const AT2.

Na osnovu ovakvog statistickog prilaza pokazati da gustina pobudenih stanja
raste sa energijom ekscitacije, kao i sa brojem nukleona i na¢i zakon ovog porasta.



' | RA1| Radijus prie Bohrove orbite elektrona u atomu jednak je:

hZ
mZe?

o=

sa porastom Z on opada. Na nekoj vrednosti Z on ¢ée postati reda Komptonove
talasne duZine elektrona

a1
nie

i njegova neodredenost poloZaja bice istog tog reda veli¢ine. 1z relacija neodredenost
donja granica njegovog impulsa bice

h &
Ap:pmln};&"“ =—7—\;=mc
i donja granica energije:
E

min>'ﬂc2

§to je dovoljno (po redu veligine) da elektron u polju sopstvenog jezgra kreira elek-
tronsko-pozitronski par. Takav atom, dakle, nece biti stabilan. Potreban uslov za
njegovu stabilnost je znadi:
2
I < h

mZe* me

ZSES=-!— ~137
et o

$to se podudara sa nuklearnim kriterijumom.

I RA2 I Presek za Kulonovo rasejanje u prostorni ugao 4Q pod uglom & u odnosu
na upadni pravac (diferencijalni presek, tj. broj ovako rasejanih &estica u odnosu
- na ukupan broj upadnih &estica) je:
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gde'je n br9j jezgara mete po cm?, Problem je oigledno ¢ simetrican pa je ukupan
broj « &estica koji se rasgjao pod uglovima $>6° jednak:

1800

dN Ze?\2 9

—=p| sin™%— 2 wsin & d 9.

N (2E) j 2 T
60

Posle trigonometrijskih transformacija pod integralom i uvodenja smene sin (9 /2=y
dobijamo:

1
dN Ze? \2 72 ot
— N 8= -3 dy=4,58 x 103
N (2Ea) [y 7 "YE
0,0523
odakle je:
z2-ypr 1 a3
N 4,58 x 10% ne*
tj.: :

Zo, =29
§to je tacna vrednost,

I RA3 | Ako « Cestica radijalno napusta atom tada se njena putanja deli na deo
unutar (r=r1<<R) i van jezgra (r==r,>>R). Dok se nalazi unutar jezgra na nju deluje
polie &, koje nalazimo iz Gaussove teoreme:

8 S=4mqg=8, - dnri=dmp ¥,

§to uz:
p==q/V==(Z~—2)e/—g—7v:R3
daje:
(Z—2)e
&‘“T’:

Sila na « Cesticu je dakle F=2e @, pa je prirast kineticke energije na ovom delu
puta:

R &
E, =derl ~z-2%
o

Kada napusti jezgro na nju ée delovati polje:

koje na ovom delu puta daje prirast energije:
o @
Ez=f1ﬂ‘a'rz=2(zm2)-lE

R
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Konaéno je:
N i 2
Ea=El+E2=3(Z—-2)%.

Vidimo, prvo, da energija « estice opada linearno sa Z, $to nije sludaj i, drugo,
da su te energije za faktor 103 premale (reda keV umesto MeV za Z>100) t¢ da
bi atom morao imati mnogo manji radijus (jade polje) da bi obezbedio observirane
energije destica.

' l RA4| Neka je ¢ dsla jedinice vremena proton goli proton sa pf=1 i (I—f)
dela jedinice vremana u disociranom stanju na goli neutron sa pi=0i =+ mezon.
U srednjem e, dakle, biti:

pp=1tpp+ (1= 1) (e + 15).
efi m, eh

m
=t —f = Py 6,6 uy
2my e my 2m,c my

Kako je:

Mpy = &

po=[+(1—06.6] py=2,79 pry

i, kona¢no, t=0,68. Proton je, znadi, ~2/3 vremena goli proton a 1/3 vremena
u disociranom stanju.

Sliéno, ako pretpostavimo da je T vremena neutron goli neutron a (1-—T) vremena
disociran na goli proton i =~ mezon, imaéemo: '

=Tl +(1=T) (e +p5)
=(1—T) (iy—6,6 ) =—191

tj. T'=0,66. (alternativno, mogli smo T u ovoj relaciji zameniti sa vredno$éu za ¢ i
dobiti magnetni moment neutrona sa sasvim zadovoljavajuom tacno¥éu !). Ova
jednakost vremena ¢ i T’ govori nam da je postulirana jednakost protona i neutrona
u pogledu jakih interakcija i sa ovog glediSta ispravna kao i da gornja slika strukture
nukleona verovatno dobro opisuje realnost.

dobijamo:

RAS ] U zadatku su date razlike masa jona, i one su do na malu razliku energija
veza elektrona (reda e¢V) jednake razlikama masa atoma. U skali u kojoj je 160=
=16 ajm dobijamo: ¢

Mg=32—m, Mc=124+"""1

4p—n+m
My=14+-—"——
" 16
dok u skali u kojoj je 12C==12 ajm
Mo=16+m;n , Ms==32—m+2n
2p+m—n

My=1+

12
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RA6| Defekt mase jezgra, koje se sastoji od Z protona i 4—Z neutrona, iznosi
AM; (Z, Ay=Zmy+(A—Z) mn—M; (Z, 4)
gde je m, masa protona, m, masa neutrona i My (Z, A)' masa jezgra. S druge strane je:
M;(Z, A)=My (Z, A)—Zm,+B.(Z)

gde je M, (Z, A) masa atoma, m, masa elektronai B, (Z) vezivna energija elektrona,
B, (Z) za lake elemente iznosi nekoliko eV a za teSke oko 1 MeV, i u odnosu na
M;(Z, A) je mala veliina te se moZe i zanemariti. Prema tome izraz za defekt mase
jezgra postaje .

AM;(Z, A)=Z Ms ({H)+(A—Z) ma—Ma(Z, 4)

gde je M, (1H) masa vodonikovog atoma.
Na osnovu dobijenog izraza se nalazi da defekt mase jezgra 3H iznosi

AM;(1,3)=9,12% 10~3 ajm=38,49 MeV
a za 3He
AM;(2,3)=8,3x 1073 ajm=7,73 MeV.

Vidi se da je vezivna energija 3H veda od vezivne energije 3He. To znati da su nukle-
oni u 3He slabije vezani nego kod 3H. Razlika energije veze iznosi 0,76 MeV. Da
bismo objasnili ovu razliku razmotriéemo sile koje deluju medu nukleonima, Kcd
3H imamo dve sile izazvane (n—p) interakcijom i jednu silu izazvanu (n—n) inter-
akcijom. Kod 3He imamo dve sile tipa (n—p) i jednu silu tipa (p—p). Na osnovu
napred iznetog moZe se napisati:

(n—n)=(p—p)-+0,76 MeV

Iz ovoga proizlazi da razliku u veli¢inama energije veze moramo pripisati Coulom-
bovoj sili, koja deluje izmedu dva protona.

RA7| a) Polazeéi od izraza za defekt mase jezgra (videti prethodni zadatak):
AM;(Z, AH=Z M, (\H)+(A—Z) mp—M, (Z, A)
i definicije dekrementa mase atoma A, tj.:

A=M, (Z, A)—A
lako se nalazi da je: ’

AM(Z, A)=Z [Ma(* H)—mn}+ A4 (ma—1)—4

§to predstavlja traZeni izraz.

b) Defekti mase jezgara (izraZeni u MeV) atoma 4He, 12C, 160, 23Na, 59Co, 1974u
i2387 iznose: 28,3; 92,16; 127,61; 186,55; 517,3; 1559,32 i 1801,62 MeV respektivno.

RASI Vezivna energija jezgra 160 jednaka je:

B (160)={[8 my+8 mn—M; (160)] c2
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Na osnovu uslova zadatka sledi da je:
M (160)=M; (12C)+ M (4He)—T,69 x 10-3 ajm.
Dalje, moZe se pokazati da je

12, 4 "
M, (C) + M, (He) =8 m, + 8m, — f..(—c)l}ﬂ-(fi‘-) .
[+

Prema tome B (160) iznosi:

B (160)=B (2C)--B (4He)+7,69 % 10-3 x 931,44=127,62 MeV.

RA9 l Za nuklearnu reakciju
SLi++2H — 4He+Q

I

Q vrednost iznosi:
Q=[M; (SLi)+M; CH)—2 M; (4He)] c2
Na osnovu izraza:
M(Z, A)=Zm,+(A—-Z)m, — —1—2 B(Z, 4)
c
moZe se napisati da je:

M (SLi)y=3m,+ 3m, ~ .I—ZB (°Li)
¢
2 1 2
M/(~H)=mp+m,,-———c;B('H)
M (“He)=2m,+ 2 m,~ —%B("He).
¢

Zamenom ovih izraza u izraz za Q vrednost dobija se
Q=2 B (*He)—B (SLi)~—B (2H).

Koriste¢i vezu izmedu vezivne energije B(Z, A) i vezivne energije po nukleonu

S(Z, 4), 4j.: :
B(Z, A)=Af(Z, A)

konaéno se dobija

Q=24 (*He) B (*He)—A (5Li) B (SLi)—d (H) B CH)=22,4 MeV.

@ Koriste¢i izraz za vezivnu energiju jezgra
B(Z, A)=A M(Z, A) *=[ZMy (\H)+(A—Z) ma—M 4 (Z, A)] 2
nalazi se da razlika vezivnih energija jezgara 29P i 295/ iznosi:
AB=[M (\H)—my—AM,] ¢2

gde je
AMy=M, (29P)—M, (295i).
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S druge strane vezivna energija jezgra moe se izradunati i pomocu semiempirijske
formule ‘

2 — 2
B(Z, A)=[a,,A—a,A2/3——ac—?———aa(—A._§_Z.)_+3(A, z)]cz_

A3

Treéi €lan u ovoj formuli odgovoran je za elektrostatitku interakciju medu proto-
nima. Pretpostavijajuéi da je jezgro sfernog oblika i da su protoni ravnomerno
rasporedeni po zapremini jezgra moZe se pokazati da ovaj ¢lan ima vrednost
ZZ 3 2
a, =2 L zz_1
AlB 5 R

gde su Z redni broj jezgra a2 R polupre¢nik jezgra.
Razlika vezivnih energija jezgara 2P i S, radunata pomoéu semiempirijske for-
mule, iznosi

2
AB= -3 Lozemsy
5 R
Prema tome, moZe se napisati da je:
2
M, CH)—m,—AM ] = — 1,2 % Z (81

odakle je
B 1,2 €2 Z (581)
A Ma+”1n_'Mn (1H)] c?
Pomoc¢u formule R=1,5% 101343 dobija se da polupreénik ovih jezgara iznosi
R=4,6 fm.

IRAHI Iz uslova za minimum funkcije

= 5,35 fm.

M(Z, A)=Zm,+(A—Z)m,~a, A +a, A2/3+ac%+aa(i4—:fz—)z+ 3(Z, 4)

tj.:

(3™

0Z [ 4econst
pod pretpostavkom da je 8 (4, Z) konstanta dobijamo:
m,,—-m,,+2aaﬁ— 4%%_'%2*)___ 0
odakle je:
Z,- (4a,+m,—m,) 4
8a,+2a,4%?
Zamenom brojnih vrednosti za @, ae, Mg i myp konaéno se dobija
A
" 1,9840,01547
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Pomodu gornjeg izraza nalazi se da je za:

A=23, Z,=11 (23Na)
A=89, Z,~39 (397)
A=114, Z, =49 (1141n).

‘ RA]2| Poito smo pretpostavili da je, do na energiju sparivanja, funkcija B (Z, N)
glatka, moZzmo da je razvijemo u Taylorove redove oko tadaka N i N—I na sledeéi
nadin:

0B
- 221 A
BOV+1)=BN)+

N

— = _9Bl A
B(N-1)=B(N) 5

N

kA

N-1

0B
=B(N-1+°2
B(N)=B( )+

o8B

BN-2)=B(V-1)-<2|  +A.

N-1

Ako prvu i drugu jednainu pomnoZimo sa —1 pa sumiramo sve &etiri jednagine,

posto se izvodi 5—5 medusobno potiru, dobijamo:

A=%— (B (N—2, Z)—3 B (N—1, Z)+3 B (N, Z)—B (N1, Z)].

IRA13| Neutron i proton su, osim po naelektrisanju (i magnetnom momentu),
veoma sliéne Cestice (masa, spin) i apstrahovanje elektromagnetnih osobina sugerira
njihovu identi€nost u pogledu jakih (nuklearnih) interakcija (Heisenberg, Ivanenko
1932). Ovaj zakljuéak i vodi do pojma izotopskog spina (izospina) +. Nepostojanje
vezanog dvoprotonskog sistema moglo bi se pripisati elektromagnetnim interakcijama
(odbojne kulonove sile) no za dvoneutronski sistem ovo ne vaZi i morali bismo naéi
drugi razlog. Nukleoni su fermioni sa s=1/2 i t=1/2 te se dvonukleonski sistem
moZe nadi u spinskom singletnom (S=0) i tripletnom (S=1) stanju i izospinskom
singletnom (7'==0) i tripletnom (7"=1) stanju. Vode¢i rauna o Paulijevom principu
u spinsko-izospinskom prostoru moguée kombinacije su, Sematski, dakle:

T=1
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od kojih, za sada moZemo reéi, u prirodi u vezanom stanju postoje samo prve dve,
Zato se ne javljaju druge dve moguénosti? U njima je sistem u singletnom spinskom
stanju i moZda je ba§ to razlog 3to ovakvi sistemi ne postoje; moda jake interakcije
zavise od uzajamne orijentacije spinova interagujuéih estica na takav nadin da
Je za antiparalelne spinove interakcija nedovoljno jaka da mo¥e da oformi vezani
sistem? Ako je to sludaj onda je i deuteron uvek samo u &istom tripletnom stanju.
Kako je magnetni moment deuterona vrlo pribliZno jednak prostom zbiru magnetnih
momenata protona i neutrona:

pup=0,8574 p, a tp+pa==0,8797 p, (£0,0015)

(razlika od 0,0223 py objadnjava se sa 2—8% primese 3D, stanja) to odmah sugerira
da je osnovno stanje deuterona zaista skoro &isto 3.5 stanje.

Nepostojanje dvoprotouskih i dvoneutronskih sistema je, dakle, zaista osnovni
dokaz da jake interakcije zavise od uzajamne orijentacije spinova interagujuéih
Sestica. Svi eksperimenti sa deuteronima daju informaciju iskljuivo o tripletnom
nuklearnom dvodestiénom potencijalu. Informacije o singletnom potencijalu moZemo
dobiti samo iz eksperimenata sa rasejanjem neutrona na protonima (videti zadatak
E.18) jer pri rasejanju, kada sistem nije u vezanom stanju, do izraZaja dolazi i inter-
akcija preko singletnog potencijala.

, RA14I Nadimo moguce smese stanja sa razli¢itim L pod dejstvom operatora Sia:

I. Za singletna stanja (S=0) bide J2=12 (.7 =L + 6—'3 pa je i Lkonstanta kretanja,

-
tj. necentralne sile ne utidu na singletna stanja. U njima je oy=—~o0, i
3 o - -,
Spp=—=A(o;r)+oi=~-3+3=0
r

§to potvrduje gornji zakljudak. Sledi da su moguéa stanja dvonukleonskog sistema
u ovom sludaju:
sa J==0; 1S

sa J=1; 1Py
sa J=2; 1D, itd.

2. Za tripletna stanja (S=1), po§to se stanja sa parnim i neparnim L ne meSaju
(parnost stanja je (—1)* i L je dobar kvantni broj), moguca su sledeé¢a stanja:

sa J=0, L=1 H 3Py

sa J=1, L=0, 2; 381+43Dy
sa J=1, L=1 ; P,

sa J=2, L=1, 3; 3Py4-3F,
sa J=2, L=2 ; 3D,  itd.

Podto je za deuteron J=1 i pojto smo veé utvrdili da 35, stanje dovoljno dobro
u najgrubljoj aproksimaciji opisuje osobine deuterona to vidimo da je stvarna
smesa stanja 35 i 3D;. Zaista, od 2 do 8%, primese 3D stanja daje dobre vrednosti
i magnetnog i kvadrupolnog momenta deuterona.
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RA15| Za nerelativistitke brzine (§to smo verifikovali u zadatku A.32) talasna

funkcija nukleona je
q" (x! ¥ 25 s3)=(’b (xa Vs Z) Xata e

— —
Ako je S vektorski operator spina tada je S2 konstanta kretanja intenziteta 1 1212+
4+1)=3/4 (u jedinicama %) sa mogucim vrednostima projekcije s;-+1/2 (spin »gore«)
i -—1/2 (spin »dole«). Tako s, ima samo dve svojstvene funkcije:

Kz 1)2=%, Xi2—-12=p
sa

1

1 3 . 3
=, S§Pp=-—F, sSoe="a i SPL=—40,
S0 B=-P 7 B=78

- —

PO

Uobidajeno je definisati novi operatoi,g preko S 5 o pa je sada:

“ c=a, oP=—=P, cla=3a i oP=3f.
Kako je pak:
62=6§+G§+0’3 i olaso | o‘fﬁ:ﬁ . .
to mora biti i
(ai-{—cf,) a==2q | (a§+c_2\-)ﬁ=2 8.

Ove su relacije, otigledno, zadovoljene ako je:
ore=0, of=0, o= i gf=—ia

U matri&noj reprezentaciji ove relacije zadovoljavaju Paulijeve matrice:
- - 01 5 (0 —i) - (l 0)
£ (1 0)’ pd I 0 » F 0 _] *
| 0
g = N = .
(o) *=(3)

Spinska talasna funkeija sistema od dve identiGne &estice mora biti korektno sime-
trizovana (u skladu sa simetrijom prostornog dela talasne funkcije). Postoje tri
simetriGne spinske funkcije:

Kur (L 2)=a 22

o koje odgovaraju tripletnom stanju
X (1 2) = Vz (o By, By) (paralelni spinovi)

K-t (1,2)=B B2
i jedna antisimetrina:

koja odgovara singletnom stanju

1
Yoo (1, 2) = ]75? (o, B =, B) (antiparalelni spinovi).
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. . . - = ind -

Nas interesuju svojstvene vrednosti operatora o - o, U svim gore navedenim sta-
4.. d . - g . . .

njima gde ¢ deluje na jednu a o, na drugu &esticu sistema. Najlak¥e éemo ih direkt-

. —r —

nom primenom Operatora oy 0p=0,,0,,+0,,6,,+0,0,, na gornje spinske
funkcije uz pomo¢ veé¢ definisanih delovanja pojedinih operatora. U singletnom
stanju bice:

1
Gx1 %2 %o =175—“(ﬁl @ — By o) = — Xgq
1. . . ]
Gyl"yzxoo"l/-z—[‘ﬂx(“‘“z)‘lﬁz(—lml)]-_— — Yoo
1
"zl“':zXoo='V‘2—“(_°‘xpz+azﬁx)= — Xoo
i konaéno

(a1 62) Xoo="-3 Xo0-
Sli¢no, u tripletnim stanjima bide:

(o1 02) Xy=Xu
(o1 62) X0=2o

(o1 6D Yoy =Xy—yv

Ovaj smo naéin ovde prosledili ve¥be radi a rezultat smo mogli dobiti i mnogo
brZe koristeéi vektorski model. Klasigno:

S =S|+Sz+2.5'1'52
odakle:

- = 852 (g5} +53

5= S=(si+sd)

Prelazedi na rezultat kvantne mehanike:

(_;_;‘)_(i‘;;)= S(S+l)—-s1(s12+ 1)—s,(s5,+1)

tj.:
Gy + 02=2 [S (S+1)—2s (s 1)]
U tripletnom stanju S=1 i ;1 -:2=1

U singletnom stanju S=0 i T;; ~§2=-—3.
Tako konatno za potencijale tripletne i singletne interakcije imamo:

VIR (1) V()
Viinsh‘ =V, (r) -3V, *)
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Otigledno je da opiti karakter ovih potencijala odgovara realnom tripletnom i
singletnom potencijalu sa slike A.15 i da se pogodnim izborom P,(y) i V(r) mogu
ovi tagno i dobiti. Singletna interakcija nije dakle dovoljno jaka (Jama nije dovoljno
duboka) da omogudi postojanje vezanog dvonukleonskog stanja.

lRAlGI Spinovi dveju &estica, od kojih svaka ima spin 12, mogu da budu S=0
(singletno stanje) i S-.——-} (tripletno stanje). Za singletno stanje J=L, a za tripletno
J=If——{, L, L-!-l. Vu.:llmo da za fiksirano J postoje &etiri razlidita (energetska)
stanja sistema (jedno singletno i tri tripletna). Izuzetak je slu¢aj kada je J=0. Tada
postoje samo dva stanja S=J=L==0 | L=] S=L.

Spektroskopske oznake stanja za tri najni¥e vrednosti J su:

J=0 189, 3Py
=1 381, 1Py, 3Py, 3D,
J=2 3Py 3F,, 3D, 1D,

' ,RA17| Ukupni operator spina dva nukleona je:

et N - 4 .
Kako je oi=03=3, mnoZenjem § sa § dobidemo:
—
gy 62=2 §2—-3,
Polazedi od izraza (_:S';?)Z vidimo:

- | N
(S"')Zzz—[("l"')2"‘(“;"')2“'2("1")(“2"’)]

(o '7)2-*(% X+oyy+6:2) (60 xFayyt 6z2)
=(02%) (02X)+(5%) (69) + (%) (5,2)
+(o4) (0)+(55) (o) +(ouyp) (622)
+(022)(02x)+(5.2) (50) +-(622) ( 75,2).
Kako o komutira sa x, y, z
imacemo (az x) (07 X)==(o 6x) (¥ =2 052 X202 jtd.,
dakle:
(-r; ‘-;)Z:rz +xylos oydoy an] bxz [oem, 0:0z) 4y 2 [oy 0+ a,0).

Medutim, kako su antikomutatori projekeija spinskih koordinata jednaki nuli:

>
(a:r) =r,
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Dakle:

(3-?)2=—;[r2+(?,-7><?,-?’)1

Prema tome operator S, dobija oblik:

g

s,,=z[3(s")2- sz]
r2

-Da bismo pokazali da operator §,, zavisi samo od uglova 9 i 9, posmatra¢emo samo

prvi &lan operatora posto drugi (5?) nije funkcija vektora r, Predimo na tzv. sferne
vektore definisane trojkom brojeva (4o, Ay, A_) gde je:

7

A_= 35 (A, +id,)

7z

Ay=4,

1 .
A=~ 75 (A.—id,)

Skalarni proizvod dva vektora A i B moZemo da opifemo preko sfernih komponent;
u obliku

A-B=AyBy—A_B,—d, B_.
Dakle:

S Z __S+(x+ iy) 5. (x—iy) )
r r Var VZr
Medutim, kako je

2
r

—2—=~cosa; -Jf—=sin3cosq;; =sinHsing
r r
vidimo da je:
I
(5——') ~f(sin, sing)
-

5to je trebalo i dokazati!

RAIS| Iz definicije operatora Pi? sledi da dvostruka primena operatora ne
menja funkciju pa da prema tome spada u klasu idempotentnih operatora. Svoj-
stvena vrednost operatora (P}2)? je, dakle, jednaka jedinici a samog operatora

P2 je 1. Kako ovaj operator zamenjuje ;; i r—; to znadi da prakti®no menja

znak komponenti radijus vektora ;:zz;;——;; koji spaja Sestice (vrdi refleksiju
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sistema). PoSto se parnost u jakim interakcijuma odrZava i, imajuéi u vidu da je
parnost talasne funkcije Cestice u centralno simetri¢nom polju definisana kao:

U (—r12, 81, $2)=(—1) U (Fr2, 51, 52)-

(ponafanje funkcije u odnosu na refleksiju prostornih koordinata), uporedenjem

sa definicijom operatora P}2 vidimo da je njegova svojstvena vrednost jednaka
(—1), tj. da je:

Pz‘wzkl’ (r12, 51, S2)={ (—r12, 51, $2)=(—1) ¢ (r12, 51, 52).

Schrodingerova jednadina sada glasi:
g — —
( v V2 E) P (ry s S)=(- DIV, s, s5)
n:

i vidimo da se, u stanjima u kojima je / parno (S, D, G itd) Majoranine sile svode
na Wignerove, tj. da u ovim stanjima nukleoni ne interaguju silama izmene veé¢
obiénim centralnim silama. Aliernativno nukleoni interaguju obinim potencijalom
V (r) koji u zavisnosti cd parnosti / moZe biti
pozitivan ili negativan, tj. privlatan ili odbojan

¥, > A -
1 @,Jf————oz -r (odnosno u zavisnosti od toga da li jo pros-
zo‘,’i«—%" torni deo talasne funkcije simetri¢an odnosno
-
RA1g antisimetri¢an u odnosu na zamenu »y i ra, tj.

refleksiju vektora rya (videti sliku).

Sada nam jc jasno da sc saturacija ne javija u jezgrima do 4He (koje je saturisano)
jer prostorni deo moZz biti simetrican za sve &etiri Eestice bez narusenja Paulijevog
principa na raéun antisimetrije spinsko-izospinskog dela (dva protona i dva neu-
trona sa antiparalelnim spinovima). Posto su tako sve Zestice u s stanju {/=0) to
su sile medu njima Wignerove, tj. privlaéne. Dodamo li, medutim, peti nukleon
(bilo neutron bilo proton; 5He ili 5Li respektivno) ovaj se mora smestiti u p stanje
(I=1) pa ée shodno gornjem rezultatu sa ma kojom drugom &esticom intcragovati
odbojnim Majoraninim silama. Sistem ¢e tako biti nestabilan §to potvrduje i veoma
kratak poluZivot ovih jezgara.

Pojto Paulijev princip garantuje da se u tcZim jezgrima nuklconi nalaze smesteni
po stanjima razli€itog ! to ¢e se izvestan broj nukleona uzajamno privladiti dok ¢ée
drugi interagovati odbojnim silama. Tako se postiZe ravnoteZno stanje koje i rezul-
tuje u stvarnim dimenzijama jezgara. Ovakve sile izmene, dakle, spre€avaju kola-
biranje jezgara (opet vidimo veliku ulogu Paulijevog principa koji se ovde moZe
uslovno shvatiti kao kvantno-mehani¢ka varijanta klasiénog stava da se »dva tela
ne mogu istovremeno nadi na istom mestu«).

'RA19[ U centralno-simetriénom potencijalu  talasna se funkcija separife na
radijalni i ugaoni deo
Y()=4 (9, 9=R () Y(9,9)

(radimo u prirodnim, sfernim koordinatama). Poito znamo da je osnovno stanje
deuterona S-stanje (/=0) koje je sferno simetri¢no to nas ugaoni deo talasne funk-
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cije (ovde konstantan) nece interesovati. Radijalna Schrédingerova jednadina,
bez centrifugalnog potencijala, ima oblik:

R 1 d[ ,dR
- e v (r)R=ER
2pr? dr[ dr} )

ili:

2
%(rR)—I—;n:—[E—V](rR)-—-O

§to nam sugerira smenu u (r)=rR (r).
Jednafina za u(r) je sada:

m _ . a_m o
dr2+F(E—V)u_O iuz R—hz(E V),

sa opstim refenjem oblika u (r)=ce*’r. No, potraZimo refenja po oblastima kon-
stantnog potencijala.

U oblasti I (r<rg) je V=-V, i E=—B pa imamo:
du m

——t— (¥ —B)ué‘—iif{Jrkzu—O
P T dre '

U oblasti II (r>r,) je V=0 i E=—B pa je:

d?u m du .,
e —— Bz — 0?4 = 0
drt R dr?

gde smo uveli oznake:
ka—}]i—l/_—m(Vo—B) i «=7‘V;§.

Uz graniéne uslove da re§enja moraju biti kona&na u nuli i beskonagénosti iz opiteg
refenja dobijamo refenja:

w (P)=Cysinkr i uy(r)=C,e7%.

Konstante normiranja Cy i C5 moZemo naéi iz uslova da reSenje mora biti glatka
funkcija (neprekidna i funkcija i prvi izvod), (tj. iz jednakosti logaritamskih izvoda
u tacki r=r):

C,sinkr,=C,en ™

Cl kcos kl'o= -—Czqe—an, (**)

i iz uslova normiranja:

4n [|R|?r2dr=4n [w2dr=1
o 0
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odakle je:
ci

(2 krg—sin2kry +-—C—ie~2m =_l_.
2k 0 o 2x”

k14

Odavde moZemo naéi €y i C;. Nas, medutim, interesuje veza izmedu ¥, i r,. Delje-
njem jednatine (*) sa jednainom (**) odmah dobijamo traZenu vezu:

o B B
ctgkry= -z —\/-’;;_:E__ - ,I}_o

jer je energija veze B znatno manja od dubine jame V. Vidimo da je ctg (kr,) jednak
malom negaiivnom broju tj. da je kr, malo vece od 7 /2 (ne od 37c/2 jer bi tada talasna
funkcija imala nulu (&vor) §to za osnovno stanje nije dozvoljeno!). Tako je:

kro=w[2 tj. r, Vm (Vo:£7)z7¥

i ako jo§ jednom zanemarimo B u odnosu na ¥ kona¢no imamo:

2 k2
2 fi
Voro= = const,

4m '

Vidimo da moguénost formiranja stabilnog p—n sistema ne zavisi odvojeno od
Vv, ifili r, ve¢ od proizvoda ¥, 3 koji je konstantan! Ako uzmemo ro 2 radijus
dejstva nuklearnih sila ~2 fm bice:

w2 h?

Vo=——y= 50 MeV.
dmry
ur)
Ug/dsin kr
Ug soe™"
o r
osnovno stanje
Vo R A9

Jama je, dakle, »uska i duboka«, osnovio stanje je veoma visoko (plitko) 1 jasno
je §to nema pobudenih stanja.
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Nacrtajmo tok nadene talasne funkcije u (»). Uz gornje vrednosti parametara r,
i ¥V, bice: '

ro vy 2 ki
kry=-2Ym((V,—B) =~ —mn>—
To P V (Vo ) 3777

Znaéi da 4, ima maksimum malo levo od tagke r=r, (deo sinusoide) i da se u u,
(eksponencijalni pad) nastavlja u tatki r=:r,. Tok funkcije je, dakle, kao na slici
napred.

RA20| Data aproksimativna radijalna ta-
asna funkcija deuterona u poredenju sa u
pro$lom zadatku nadenom izgleda kao na
slici. Prvo moramo da je normiramo:

R4 20

o n 2 aproksimativha

fw]zd'r:ful-lz—rzdr[sin&d%)f dp=
SO §

4nC? [ etordr=1
0

odakle je
u(r)=\/i°—:-ce*°"'.

Verovatnoéa da se Gestica nade na rastojanju izmedu r i r--dr je 4wu?dr pa je traZena
verovatnoda da se destice u deuteronu nadu na rastojanju ve¢em od dometa poten-
cijala r, (van dejstva nuklearnih sila) jednaka:

.- 2
41L‘f { -;—;—Ee““'} dr=e22r0240%. (Zad. A.19)

ro

’

Vidimo, dakle, da se u deuteronu nukleoni, u srednjem, oko 40% vremena nalaze
van dometa nuklearnih sila (rezultat jako male vezivne energije) tj. da nuklearna
interakcija nije u potpunosti iskori¥¢ena. U jezgru 4He, na primer, ima 6 parnih
veza medu nukleonima; potencijalna energija sistema ¥est puta je veca a broj nukle-
ona samo dva puta. Energija privlagenja postaje dovoljna da dovede nukleone na
takva rastojanja na kojima de se nuklearna interakcija u potpunosti iskoristiti.
U ovoj jednostavnoj slici, dakle, broj parnih veza od kojih svaka doprinosi energiji
veze oko 1,1 MeV po nukleonu, moZemo smatrati odgovornim za rezultujuéu
energiju veze po nukleonu (u te¥im jezgrima javljaju se efekti saturacije nuklearnib
sila i ovaj se rezon ne mo¥e primeniti, zadatak A.18). Imacemo dakle, u poredenji
sa vrednostima iz tabele:

(B/A)sgy=1,11 X broj parnih veza = 3,3 MeV (~2,8 iz tabele)
(B A)ge=1,11X6=6,7 (~1,1 iz tabele).

(Ovakva argumentacija potite od Wignera).
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IRAZ![ Poito deuteron ima samo dva nukleona operator magnetnog momenta
glasi:

Bz = &1 [p: + 8sp Spz T Bsn Snz-
Medutim, kako je u Semi LS sprezanja, koja vaZi za mali broj nukleona

- -

L=1 +1,,; S =5,+3,
gde operatori Lis oznadavaju orbitalni moment impulsa i spin (u uZem smislu)
deuterona, sleduje:

- N A A oA
= Ipz+ Inz; Sz=Spz+Snz.

Ako predemo u sistem centra masa (Jp=l):

-~

I ln= z

1
2 r
tako da operator magnetnog momenta postaje

~ 1 . o
M = 5 L + (gm 041') S +— (g'"' g‘”') (sp' - S"z) ’

Posleclnji ¢lan ovog operatora za mpletna btanja (u kojima se nalazi deuteron)
jednak je nuli, po3to za S=1 spinovi protona i neutrona moraju da budu paralelni,

Ako predemo na operdtor A (J;— Lo+ S,) dobidemo: q
(gsp + gsn) 'I +— (1 —8sp— g.m) Lz'

Ako sada iskoristimo operatorski identitet

A »..—»A A2___’\2__'~ZA
L;:“L"J' :’:“1"‘] f S ‘,z
2 J?

g

LAJUAD-LEAD-SEHD 5
2 J(J+1)

konaéan izraz za operator magnetnog momenta deuterona glasi:

~ 1 J(J-+ |) L(L+l) S(S+l)
Mg 2 J, {gsp - &sn“‘(l 8sp — 8su) —— 2.,(]'_1) }

Posto je deutcron u sturuu 38| sa malom primesom stanja 3D; njegovu talasnu
funkciju moZemo da pifemo u obliku:

L4f>=1381)-+al3D1)
gde je a amplituda primese.
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Magnetni moment deuterona p.p jednak je dakle:
XS TR
1x2-0x1—-1x2

1 s
=?{[gsp+g:n+(l Ep— gsn)_ 2% 1x2 ]<3S1|J:I3SI>

‘ I1x2-2x3—1x2 A
+ 0| 8yt Bt (1 —8p— gy ——— ™ <’D.MI’D.>}-
2x1x2

* U izvodenju ovog izraza meSovite Elanove tipa {35, Ifz |3Dy ) nismo uzeli u

obzir podto su oni jednaki nuli zbog ortogonalnosti orbitalnog dela talasnih funkcija
stanja 35 i 3D;.
Kako je

{35 lle 381 = (3D iJz |3Dy ) =
sledi da je:

1 3
®p =*2" {g.fp + 8+ a* [g:p + o+ (] —8sp g.m) "é‘]] .

Odnosno primesa stanja 3D;; | @2 |, jednaka je:

Iaz ‘ —= 2 tp "3(gsp+gan) = + 0,07
g:p+g.m + ‘5 (l - gxp i g:n)

tj. primesa stanja 3D; iznosi oko 7%,.

IRAZZI Energija hiperfine interakcije je, dakle:

' I.J
U = const y, ——
U5 My 17

Totalni moment impulsa atoma F mo¥e da ima vrednosti

tj. njih ukupno M, gde je
X . d[2 I+1
M broj manji o 2741
Poito je ?-T=~;—(F2—-Iz —J?%) bide:

FFE+D)-II+D)-J(J+1)
)T+ DI +1)

$to daje veli€inu cepanja odgovarajuéih termova.

(U =const ,
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U datom je sluéaju, dakle, M=8 a J=9 /2. Ako bi bilo J<I onda bj se term pocepao
na M=2J+1=10 komponenti pa zakljutujemo da to nije sludaj. Dakle T<J pa
je M=2I+1=8, tj. I=17/2.
|RA23| Energija hiperfine interakcije je (videti prethodni zadatak):
FE+D)=TI+1D)~J(J+ 1)

WA+ DI D
Sve hiperfine komponente jednog terma odgovaraju istim vrednostima /i J pa ova

energija zavisi samo od vrednosti F i za dve sukcesivnie vrednosti (F i F—1) razlika
ovih energija (interval medu hiperfinim komponentama) je:

A U, 1= const E@";}L‘_ﬂ —-COnst(F“ 1 [(F; D+ 1]-a

(U =consty,

F .
=const y, Wﬁ =KF. .

Sledi da se intervali medu susednim hiperfinim komponentama odnose kao:

FrF—1:F—2:. . =J}T:J+1—1 I I—=2 .
i, u nafem sludaju:

6:5:4=F:F—1 P =g T I—] T T2,
Kako je J=3/2 bice:

6 (12 tD=5C/2+1) i 50U—1[)=4(1/,+1])
1=9/2.

Term 281/, bite rascepan na M=2J-1=2 komponente (J<<I) sa F=10/2, 8/2=
=5, 4 a term 2D,, na M=2J+]=4 komponente (opet J<1) sa F=12/2, 10/2,
8/2, 6/2=6, 5, 4, 3. Izborno pravilo AF=0,41 dozvoljava prelaze:

5-~6, 5—5, 5—4, 4—5, 4—4, 43,
Linija 2S,,,—D,;, cepa se, dakle, na 6 komponenti.

Odakle je:

[RA24I Posto se cepa term 28,1, za koji je J=1/2 to F mo#e biti:
Fy=I41/2 i Fy=I—1/2,

No, kako se u magnetnom polju term cepa na 2 F1 komponentu i kako je inten-
zitet spektralne linije proporcionalan ovom broju komponenti (svaka komponenta
2, ima istu statistiku teZinu) to ¢e i odnos
2 intenzitet linija biti jednak:

25:41_I+1_10

2F,+1 7 6
25y,  Odatle sicdi da je:
Ro# 24 : I1=3/2,

HTY
-—N
y

s

bice:
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!RAZS‘ Potencijalna energija interakcije elementarne zapremine 4V i naelektri-
sanja e je:
edq epdV 2

-9 . :
dU d d A@$2) 1B(00,r)

Kako je (sa slike):

d2=r24-y2—2 rq cos a

ﬂ].v__ (r2+u2—2rucosa)1/2
d

R

Kako je r>u to je &lan u vitidastoj zagradi oblika (14-a) sa a<1 pa se moZemo
zadrZati (obi¢no) na samo nekoliko prvih ¢lanova razvoja:

1 3
it VLIS Ry, S Ry, . DU
(1+a 5 P

RA2S

Dalje ¢e, dakle, biti:
2 1
—-1—-=r‘1 1 +-icosoc+(—¥-—) (}wcoszm——-—)—f- .. -],
d r r 2 2
Odakle je:

dv
Ju=2849Y

Y y\2/3 ) l) J
14—cosa+{—) [-—cos?a——])+
r {+r (r)(z 2
i konaéno:

U=fdu=5’7:~’f+%fpucosadV+—2-e—3fpu2(3cos1a—1)¢1V+---
r r r

§to predstavlja traZenu energiju interakcije u obli.ku, u principu beskonaénog, au
praksi uvek konagnog, reda, koji brzo konvergira vrednosti totalne energije in-

terakcije. ‘ ' '
Potencijal polja u tagki B (0, 0, r) nalazimo odmah (ugao « postaje polarni ugao 9):

U Ze |1 1]‘22_1,.”
== — [orcos AV +— y?(3costa— 1) dV +
i e r +rlfprco 213 e
Ovde lako prepoznajemo Legendreove polinome:
Py (cos =1
V4
P, (cos §)==cos $=—

y
1,2
Pz(c058)=--;—~ (3cos 9 — ;)=._2,.,(3 = 1>

y=
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pa potencijal moZemo pisati u obliku:
] .
? =Q——"+—2fp “B sy s [, ostyar -
roor r
1 = y \"
-Ls3 f p(—) P, (cos 9) dV.

r poo r

Nalazimo, dakle, poznati multipolni razvoj u kome &lan koji sadrzi P, (cos 9) od-

govara multipolnom momentu sistema naelektrisanja reda 2" Shodno tome ovo
Zesto pifemo kao:

gde je:

Te= f p @V = naelektrisanje jezgra
=,,monopolni** moment

D~_——_-fp Z dV = dipolni moment
Qoafp (3 22— u?) d¥ = kvadrupolni moment, itd.

(Ko u izrazu za 1/d prepoznaje funkciju generatrisu Legendreovih polinoma ovo
dobija tako reéi trenutno).

!RA26| Po definiciji je (videti prethodni zadatak):

x

0= [o (3 22—r2) av.
Uz:
3 z Pr=x2+y24 22
0vVO postaje:

)
dm]

X

RA26 Q= f p (222 -y*—x%) dxdydz

4 a
=P{4([szdedydz“2jyzfdedZdy“zt)f{’ffdydzde

b a
=4p{fzszdx dy dz—fxszdydzdx,
0 \-.\l,__/ [y \.‘f-—-’

Integral oznaden sa 7 Jjednak je povr¥ini preseka elipsoida sa x—jy ravni (krug)

a integral oznaden sa J jednak je povr3ini preseka sa y—z ravni (elipsa). 1z jednadine
elipsoida:

:‘-.2_‘_},2 zl
a? +-1;2.

=1
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sledi: 5 . 22 ‘bg:j:‘*'l‘z‘::l

@=x gy = .A B
tj.: b

J=Pjipse = AB 70 = (6 — x7) 2T
i 2
x24y? =§; G -)=R*

tj.:

P
I=Pkmsa=R27r=“-I—;{(b2—zz)'

Tako je dalje:
b a

2 b _ 8 253 .
Qo=4p{5b“7fz2<bz-zz)dz--;f(az—xz)xzdx]~]—§pvc(a b~ bat)
0 1)

Posto jer
p=q/V=Ze[V
a

b
a 2_ 22 d, .—.—4—1ca2b
V=2‘R-‘-1—J;f(b %) dz 3
0
to je konalno: }
Qo.___.z_ Ze(B*—a*) (e-barn).
.

ij iti izduZeni (oblika cigare) elipsoid, nega-
Kvadrupolni je moment, dakle, pozitivan za izdu 0 gar
tiv;n za? spljdl§teni (obliica palaginke), i jednak nuli za sferno jezgro.

RA27| U jedinicama e=1 biée:
Q-5 Z (= ).
Zbog skoro sfernog oblika (po pretpostavci) moZemo pisati:

b==a(l+c) sa <l

pa zanemarujuéi &lanove sa €2 dobijamo:

g, z%—Za’ €.
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Uz
@ R}, =[1,2 x 413 x 10~13p
sledi: :
g== 3 Q"z ~ 0,27 )

4 ZRi,
t.:

L3 =1,27

a

§to spada u najveée nuklearne deformacije. Jezgro lutecijuma nalazi se u sredini
oblasti deformisanih jezgara sa 150<A<190. Postojanje nenultih kvadrupolnih
momenata glavna je indikacija njihovog nesfernog oblika.

|RA28 | Kako oblik kvadrupolnog operatora podseca na sferne harmonike inspek-
cijom tablica na kraju knjige nalazimo: ,

e
Q20=322""2=2\/“‘57‘E Y50 (8, ¢).

Jednodesti¢na talasna funkcija (data u zadatku) odgovara projekciji spina nukleona
my==I1+41/2, dakle i spinu j=I+1/2.
Ocekivana vrednost kvadrupolnog operatora jednaka je:

" 4 " 4
Q=<,,|z\/ S Yoo (9, rp)[jj>=2 \/-Sl‘fzzi, (r)r4drfY,,Y20 Y,dQ
o

217 2
-2 (R ey rar,
3143 ) Rm)ridr

Ako uvedemo za olekivanu vrednost kvadrata koordinate protona oznaku <r2>

i I zamenimo sa j—1/2 dobijamo:

2j—1

o--~
2j+2

Da bismo procenili kvadrupolni moment za proton u stanju ds;, uvedimo procenu

<r?>~R2,

GO

Dakle
4
Q(dy,) = —TRZ = — 14,3 fermi®’= — 0,143 barn.
IRA29I Redimo izraz za gustinu naelektrisanja po koordinati r:
r=aln {—EL— }+R.
p(n)
Koriste¢i definiciju povr¥inske debljine ¢ dobijamo:
t=rioy —rogy =2aln9=237 fermi.

Vidimo da je povriinska debljina nezavisna od radijusa jezgra.
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RA30| Sa slike se vidi da gustinu nukleona moZemo da predstavimo funkcijom
slededeg oblika:

o O0<r<R-S .
9(’)={_f&r+5‘-’§—(R+S) R-S<r<R+§

28

Parametar gustine p, mogude je odrediti iz uslova normiranja gustine na ukupan

broj nukleona
R+S

[e@)@r=4 . 4x[ p@)rrdr=4
0

odnosno:

0 1 A
(P R3S
4m r  R+S
ridr+ [ — =t r2dr

[ . [ 25 2S]

0 R-8
tj.:

34
Po

-
47:R3( 1 +§—)
RZ
Polto je u naSem shutaju R=1,1xXA"Y3fm=6,6 fm dobijamo da je:

po=0,18 fermi-3

Prema tome broj nukleona u oblasti R—S<r<R-+S jednak je:
R+S . R4S

N= fp(r)4mzdr=_f‘-2"—? f [(R+5)~rrdr
R-S R—S
3 —_ 3
_ Ty (R+3) R+S_(£_§)(R+7S) =109.
6S R+S

Na prvi pogled broj nukleona blizu nuklearne povrdine izgleda nam neofekivano
velik. Stvar je u tome §to na osnovu slike gradimo intuitivnu predstavu, ali sa funk-
cijom r! umesto da to ¢inimo sa funkcijom r3.

|RA31 [ Broj stanja sa impulsom manjim od p, (u zapremini impulsnog prostora
(—;— np?:) nukleona ogranidenog u zapremini Q jednak je:

. 4 7 prQ
"=t 3Ok
gde je (2 7h)3 zapremina elementarne <elije faznog prostora (zadatak G.8), a faktor 4

(spinsko-izospinski faktor) dolazi usled toga §to u svako dato stanje mogu da stanu
4 nukleona, dva protona i dva nzutrona sa antiparalelnim spinovima. Takvo jezgro
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ima, dakle, 4 /4 protona sa spinom 4, 4/4 sa spinom | , 4 /4 neutronasa spinom 4
i A/4 sa spinom | . Ukupan broj popunjenih stanja jednak je broju nukleona, tj.:

Ao J6TPEQ
3@2nhp3
Odavde nalazimo gustinu jezgra: o
o= 4 - 167w p;
Q 3@2xnha)l

Eksperimentalno su sve nuklearne gustine priblizno jednake (Sto verificira gornji
rezultat) pa je razumno pretpostaviti da je i p; jednako za sva jezgra (rezultat ne
zavisi od_A). Ova vrednost odreduje granicu izmedu popunjenih i nepopunjenih
stanja u jami, tj. definife takozvani Fermijev nivo (povriinu) kao gornju granicu
skupa popunjenih stanja koga zovemo »Fermijevim morem«. Ako je

R=r,A"® sa r,=1,2x10"Bcm - .
bice: :
o A A .3 167 P
- -
Q —;E-nrgA dmry 3@2mnh)
tj.:

pr= 7572~ 1,25x 10 cas.

2r,
Nadimo sada kineti¢ku energiju ovog nukleona na povrsini Fermijevog mora koja
¢e takode biti pribliZno jednaka za sva jezgra:

2
Ep=3T 34 M:V.

Taj je nukleon vezan u jezgru slabije od svih ostalih. Eksperimentalno, energija
veze po nukleonu iznosi oko 8 MeV za sva jezgra. Znadi da je jama duboka ukupno
oko 42 MeV. To je vrednost koja sasvim odgovara i modelu ljusaka (glava I).
Potencijalna jama, dakle,.ima oblik prikazan na slici (4). Na slici (b) prikazan je
raspored nukleona po stanjima (popunjenost stanja ) za T==0 i za T3>0, Sto je
veéa ekscitaciona energija, tj. vi¥a temperatura, verovatnoéa za evaporaciju nukleona
raste.

~ veravafnodi
2a emporaciic
E k\
ey o e Sy
1 ~ 8Mev :E% Mev
Eq T Er /
~ B4 MeV T=0 | Bvri=A | T,>0
: .
1 T=0 n 1
__’;“_ A3, (osnovmo :
N stanje) ’

RAZAA @ : %
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Ovde smo posmatrali samo nuklearni potencijal zanemarujuéi Coulombovu inter-
akciju medu protonima. Ova energija odbijanja, jasno, smanjuje energiju veze
protona (jama je za njih pliéa a stanja vi$a) i stvara Coulombovu barijeru pri poku-
Saju napuStanja jezgra. Rezultujuéi potencijal za protone i neutrone odvojeno,
u studaju, na primer, jezgra N, kao i popunjenost &esti¢nih stanja u osnovnom
stanju jezgra, izgledao bi otprilike ovako:

Odavde moZemo da zakljudimo da protoni /" U= (e £
mogu da postoje u jezgru samo zahvaljujuéi ““‘: Ry
Paulijevom principu; kada ovaj ne bi va¥io @~~~ AR Sy
(ili kada bi nukleoni bili bozoni) uvek bi I S
energetski bilo pogodnije da stabilno jezgro PN F
bude sastavljeno samo od &vriée vezanih neu- -+ Ena N,
trona. Qvako su protoni u stanju Ej,, ipak Epo [+ a1
&vri€e vezani od neutrona u stanju E,,. ‘ —1—“
~ | Leout
=
RA31.2 P N

IRA32| Srednja kineti¢ka cnergija bice jednaka (u osnovnom stanju):

P a 1
(E\=__f E(i'idE=——f j opaid ip—dE=——f EZ g,
A dE A dp dE 4 dp
(1] 0 o .

Iz prethodnog zadatka:

dn_16mp?Q
dp Quhp
pa je:
PF
(E\=—L P 167Q 24 Q 5

A4S 2m @t T S FT
; «

Iz prethodnog zadatka opet imamo:

Q 1 __31r2ii_3

4 o 2p}
i konaéno

3 p%2 3

EYy =t Epo 20 MeV
(E) 5 O =3 Ep~20Me
§to je prema M=1 GeV malo i opravdava u potpunosti nerelativisti¢ki tretman.

!RA33| Nadimo entropiju jezgra pomoéu uobidajene termodinamitke definicije:

T T
%
Sp= f ‘1_‘;- = const f (TdA +2 4dT) = const AT = const Y AE*.
]

[}
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Entropiju interpretiramo kao logaritam verovatnoée da se ekscitacija realizuje
u odredenom intervalu energija dE*, tj. kao logaritam broja stanja dozvoljenih
u intervalu dE*. Tako, iz statistitke definicije entropije imamo:

Sp=kln W(T), So=klnW (0)=0 tj.
gustina stanja na temperaturi T7__ W(T) _ Ll

= — Stk .
gustina stanja na temperaturi 0 W (0) e%lk

=€

Rezultat je, dakle, da gustina stanja zavisi od 4 i E po zakonu:

dn VAES
W(T) =L o ™ot/ EL
(D=2 0
Ovaj je zakon kvalitativno potvrden, jer gustina stanja raste u te¥im jezgrima (sa A4)
kao i sa energijom ekscitacije, tako da je opiti karakter Sema pobudenih stanja
jezgra otprilike kao na slici

“

Stobodlna sl‘myiz/ {

- Bontinuum -

} Avazibortinuacme

Vezana sl’avyh.

RA33

Statisti¢ki gledano, u teZim jezgrima, &ak su i niska slobodna stanja u izvesnom
smislu vezana (sa velikim srednjim Zivotom pa i dobro definisanom energijom)
jer nijedna od destica nema dovoljno energije da napusti jezgro osim ako se sva
energija ne koncentrife ba¥ na nju, §to je statisti¢ki vrlo malo verovatno! Ovo od-
govara »sporom isparavanju« i objadnjava pojavu »compound« jezgra. Na visokim
ekscitacionim energijama, isparavanje je brzo, jezgro »kljuta« (Sto stvara tipi€ne
wzvezde« u nuklearnim emulzijama).

Glava --B

Radioaktivnost



’ B1 I Verovatnotu da estica, jezgro, ili ma koje pobudeno stanje sistema, koje
sigurno postoji u trenutku vremena t=0 jo§ postoji neizmenjeno u trenutku vre-
~ mena ¢ oznadimo sa « (videti zadatak F15). Tada je verovatnoéa raspada stanja
A intervalu vremena ¢ i t-+d¢ jednaka:

—do =\ dt

gde je A konstanta raspada koja ne zavisi od vremena. Posle integracije (uz o (¢=0)=
=1) dobijamo:

w=o ()= .
(zakon radioaktivnog raspada dobijamo mnoZenjem obe strane sa Ng). Srednje
vreme Zivota stanja dobijamo po definiciji kao:

0

r-—/t(—a’m)z—)l\—.

0
Ako u uzorku imamo N sistema u pobudenom stanju (estica, jezgara) kolika je
verovatnoéa . (f) da u toku intervala vremena ¢ opserviramo ukupno n produkata
raspada (jedan opservabilni produkt po raspadu)? Neka su pri tom zadovoljeni
uslovi €N i A <1. Prodiskutovati rezultat. Kvalitativho objasniti da li i kako,
moZemo na osnovu merenog broja n i poznatih A i 7 naéi broj ekscitiranih sistema .
Objasniti kako se u ovom kontekstu utvrduje i- proverava zakon radioaktivnog
raspada.

B2 | Ako je wq(¢) verovatnoéa da se za vreme ¢ raspadne n &estica iz ansaibla
koji ih na podetku sadrZi N i ako je A konstanta raspada (Poissonova distribucija)
tada je srednja vrednost ma koje velidine 4 koja zavisi od broja &estica n u tom
intervalu vremena jednaka:

(A, = E’:OA ) @, ().

Nadi srednji broj cestica (n), koje ée se za vreme f raspasti u gore definisanim uslo-
vima kao i srednju aktivnost (broj raspada u jedini¢i vremena) koju daje ovakav
ansambl. ) :

Statistika odstupanja od srednjih vrednosti broja raspada u datom intervalu vre-
mena mere se disperzijom pripadajuée Poissonove distribucije definisanom kao:

D= {(n—(my)2y, = (n2p, = mt
kao i standardnim odstupanjem (devijacijom):

o=}D

Izraziti obe ove velifine preko parametara Poissonove distribucije. .
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i B3 I Pokazati da Poissonova distribucija verovatnoéa u slutaju velikih srednjih
odbroja prelazi u Gaussovu (normalnu) distribuciju gustine verovatnode i disku-
tovati osobine ove distribucije,

| B4 | Radioaktivni natrijum 24Na raspada se emitujuéi beta &estice. Period polu-

raspada 24Na iznosi 14,9 h. Izralunati broj raspadnutih atoma u preparatu datog
radioaktivnog izotopa mase 5 mg za: a) 0,01 s i b) 10 h.

l B5 l Period poluraspada 212B; jznosi 60,5 minuta. 212B; raspada se bilo emisijom

alfa bilo emisijom bsta minus destica. Produkt raspada ovog elementa sadr¥i 64%
212Po | 36% 20871, Izradunati parcijalne konstante raspada Ay i Ag.

Na slici je prikazana $ema raspada 36C/, sa
koje se vidi da se 36C/ raspada bilo-emisijom
beta minus destica (98,3%) bilo elektronskim
zahvatom (1,7%). Period poluraspada 36Cliznosi

Ty)2=3,08 X 105 godina

Izradunati parcijaine konstante raspada g i Agz.

B7 I Izotop 176Ly emitujé beta Eestice. Mere¢i uzorak LuyO3 mase 296 mg, na

brojackom uredaju Cija je efikasnost za beta Zestice 4,29, dobijen je odbroj
68 imp/min. Izotopski sastav Lu je: 97,4% 175Lu (stabilan izotop) i 2,6% 176Lu.
Izratunati srednji Zivot ovog izotopa u odnosu na beta raspad.

| BS l Odnos broja atoma 238U prema broju atoma 2098Pb u nekoj uranovoj rudi

iznosi 2,785. Odrediti starost rude pretpostavljaju¢i da su atomi olova radiogene
prirode. Period poluraspada 238U iznosi T'j;5=4,49 109 godina.

B9 l Period poluraspada 226Ra je Ty;5=1,602x 103 godina. Kolika je aktivnost
zvora koji sadrZi 1 g radijuma?

IBIOI Izotop fosfora 32pP jé beta minus radioaktivan sa periodom poluraspada

Ty2=14,3 dana. Pomocu uredaja za detekciju elektrona utvrdeno je da preparat
radioaktivnog fosfora 32P daje 104 beta raspada u sekundi. Izradunati: a) masu
32P u preparatu; b) kolika ée biti aktivnost preparata 30 dana posle ovog merenja?

IBlll Koliko je puta specifina aktivnost 2380 manja od specifiéne aktivnosti
226Ra? Periodi poluraspada 238U i 226Ra su: 4,49 x 109 godina i 1,602 x 103 godina
respektivno.

B12| Pacijentu je ubrizgan 24Na aktivnosti 4=2x 103 rasp/sec. Posle 5h izmerena
je aktivnost 1 cm3 krvi i nadeno da ona iznosi 15 rasp/min. Pod kojom pretpostavy-
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kom se na osnovu ovih podataka moZe naéi zapremina ukupne krvi? Proceniti
kolika je zapremina krvi datog pacijenta? (Period poluraspada 24Na iznosi 14,9 h).

|B13 I Za jednu primenu radioaktivnog 24Na potrebna je koli¢ina od 1 mCi. Koliku
koliginu ovog izotopa (u g) treba poruditi od proizvodaga, ako od trenutka isporuke
pa do trenutka primene prode 2 dana? (Period poluraspada 24Na dat je u zadatku
B12).

IBM' Ugljenik 14C proizvodi se u atmosferi usled bombardovanja kosmiskim
zra8enjem. Zivi organizmi asimili$u radioaktivni 14C zajedno sa neaktivnim i ugra-
duju ga u tkiva. U atmosferi postoji stalan odnos !4C i ostalih izotopa ugljenika
tako da na svaki gram ugljenika dolazi aktivnost 14C od 10 rasp/min. Smréu orga-
nizma asimilacija prestaje pa koli¢ina 14C opada sa periodom poluraspada od
5,568 % 103 godina. Iz uzorka dobijenog iz jednog egipatskog groba dobijena je
aktivnost 14C od 7,64 rasp/min po gramu ugljenika. Proceniti starost groba.

]BISI Morska voda sadrZi 0,55 g kalijuma po litru. U prircdnom kalijumu ima
0,012%; 40K, koji je radioaktivan sa periodom poluraspada Tj;,=1,2x 109 godina.
IzraCunati:

a) Kolika je specifina aktivnost morske vode?

b) Koliko dugo treba meriti preparat dobijen od jednog litra morske vode, ako
je ukupna efikasnost brojatkog uredaja 5% a rezultat se tra¥i sa standardnom
greSkom od 19,7

Bl6 Izotop 64Cu raspada se po Semi datoj

na slici. Koje sve &estice i kvante emi-
tuje 64Cu i koliki je njihov broj na 100
raspadnutih jezgara 64Cu?

'Bl7, Radioaktivni izvor I, sadrZi izotop koji se raspada po Semi prostog beta
raspada datoj na slici. Izvor je postavljen izmedu dva brojaga By i B, ukljudenih
u koincidentno kolo. Brojad B zajtiéen je od beta zraka ekranom E te zbog toga
registruje samo gama zrake.

J
_ =0 ¥ (Ca

°*U

Foine.

BAT7 JUCEEIEN ARSI,
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Izraziti apsolutnu aktivnost izvora (4 (rasp/s)) preko sledeéih eksperimentalno
odredljivih veliina: N, — broj koincidencija u jednoj sekundi, &, — broj impulsa
u sekundi, koje registruje brojaé B, izazvanih gama-zracima i Ny — broj impulsa
u sekundi, koje su izazvali beta zraci (Objasniti kako se odredujo veliGina Ng).

]Bl8l a) lzradunati starost rude koja sadrzi 509 torijuma, 30% urana i 8% olova,
pretpostavljaju¢i da je olovo radiogene prircde. Pericdi poluraspada 238U j 2327h
su: 4,49 x 109 godina i 1,39x 1010 godina respektivno.

b) Izralunati zapreminu He iz rastvora od 10 g ove rude prctpostavljajuéi da
u toku vremena gas ostaje »zatvoren« u rudi.

l Bl9| a) Na slici je prikazana Sema raspada 40K. Naéi njegov pericd poluraspada
znajuci da:
Prirodni kalijum sadiZi izotope 39, 40i 4l u
ng odnosu 0,933; 1,19x10-4 i 0,067*(izraZeno u
broju atoma). Izotopi 39 i 41 su stabilni.
Gram kalijuma emituje 3,4 gama zraka u se-
kundi. Ovi gama-zraci slede elektronski zahvat
[ (gama kvant po raspadu, tj. po zahvatu).
Gram kalijuma emituje 31 beta minus desticu
u prostorni ugao 4w u sekundi.
Q 40 b) Kolika je starost minerala u kome je aku-
20 mulirano (pod normalnim uslovima) 1,54 x 102
cm3 Ar po gramu minerala?
(Mase atoma 39K i 41K su: 38,97 ajm i 40,97
B19 ) h
ajm respektivno). .

&2

toAr

B20| Pri radioaktivhom raspadu jezgra izotopa A; konstante raspada A; trans-
formiSu se u jezgra radioizotopa A, konstante raspada A;. Ako je u poletnom
trenutku izvor sadr¥ao samo N jezgara izotopa A; naéi: )

a) Zakon po kome se menja broj radioaktivnih jezgara izotopa 4, u toku vremena.
b) Vreme posle koga se dobija maksimalni broj jezgara izotopa A,.

IBZI' 222Rn raspada se putem alfa emisije u 2!8Po, koji je takode radicaktivan.
Periodi poluraspada Rn i Po su: 3,825 dana i 3,05 minuta respektivno. Izradunati:
a) Vreme po isteku koga ée se sakupiti maksimalna koli¢ina Po, ako je u podetku
bio &ist Rn.

b) Maksimalnu kolidinu 218Po (u gramima), ako je podetna koli€ina 222Rn, pri
normalnim uslovima, zauzimala zapreminu 0,65 c¢cm3. ’

4B22| Odrediti zapreminu radona Rn (na normalnoj temperaturi i pritisku) koja
je uradioaktivnoj ravnoteZi sa 1 g radijuma Ra. Period poluraspada Ra je 1,602 x 103
godina a Rn 3,825 dana. (Radon je produkt raspada radijuma 226Rq u gasovitom
stanju).

|BZ3| Pri beta raspadu izotopa 112P¢ dobija se beta aktivni izotop 1124g. Periodi
poluraspada 12Pd i 1124g su: 21 h i 3,2 h respektivno. Ako je u po&etnom trenutku
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izvor sadr¥ao samo prvi izotop naéi odnos maksimalne aktivnosti drugog izotopa
prema prvobitnoj aktivnosti izvora.

I B24I ThC (212B{) raspada se putem emisije alfa &estica (36%) i emisije beta-Sestica
(64%). Raspad TAC i njegovih potomaka Sematski je prikazan na slici

ThC"
G2
% X
-~ L
k\ /
° The' B24

Periodi poluraspada ThC, ThC' i ThC" su: 60,5 min, 5x 10-9 min i 3,1 min respek-
tivno. Od 212Bi napravljen je radioaktivni izvor koji je sadr¥ao 1x10-7 g 212B;,
Izradunati kolika ¢e biti alfa aktivnost a kolika beta aktivnost datog preparata
posle 1 h od trenutka pripreme?

ThC ThD (stabitar)

|B25 I Izotop 118Cd se raspada izobarnim lancem:

WCd —— U3y s V8Sy (stabilan)
30min 4,5 min

gde su ispod strelica dati odgovarajuéi periodi poluraspada. Ako je preparat u

pocetnom trenutku sadrZao samo prvi radioizotop mase 0,1 g, odrediti masu stabil-
nog izotopa posle 1 h.

B26| Dat je sledeéi izobarni lanac:

- -
BSr —> RY — SoZn (stabilan)
28.4god 64.8h
Iz jednog uzorka 90Sr—90¥, u ravnotezi, hemijskim putem je odvojen sav 90Y.
IzraCunati kolika ée biti aktivnost odvojenog 90Y posle 5 dana i 8 &asova od trenutka
odvajanja ako je u prvobitnom uzorku bilo 0,01 mg 90Sr. Pericdi poluraspada
90Sr i 90Y su naznaleni na slici.

|B27 I Bolnica ima uredaj za proizvodnju radona u kome se nalazi 1,5 g radijuma.

Ako se sav stvoreni radon crpe na kraju svakog dana, kolika kolitina radona ée
se iskoristiti tokom jedne godine? (Periodi poluraspada radijuma i radona su:.
1,602 103 godina i 3,825 dana respektivno).

|B28] Da bi se pripremio radioaktivni izvor 140La, koji predstavlja medusteren
u izobarnom lancu:

o

@ [
0By —— 0Lg ——s 140Ce (stabilan)
300h Ww02h

koristi se »milking« postupak’u kome se svaki put kada aktivnost 140Lg dostigne
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maksimum, 140Lg izdvaja od svojih roditelja brzom hemijskom ekstrakcijom. Ovaj
postupak se produZava sve dok aktivnost uzoraka 140La tako dobivenih ne padne
ispod 1 mCi.

a) Koliki broj uzoraka 140La moZe da se uzme, ako prvobitna aktivnost radioaktiv-
nog izvora iznosi 5 mCi?

b) Koliku aktivnost ima poslednji uzorak '40Lg u trenutku njegovog izdvajanja
i kolika je neto aktivnost svih uzoraka u tom trenutku?

B29l Jezgra radioaktivnog elementa, &ija je konstanta raspada A, stvaraju se
konstantnom brzinom g. Izvesti zakon promene broja radioaktivnih jezgara sa
vremenom, ako u podetnom trenutku (+=0) nije bilo radioaktivnih jezgara (Ny=0).

@Radioizotop 1245h formira se konstantnom brzinom q=2><]0§ jezgara
usekundi. 1245 je beta minus radioaktivan i sa periodom poluraspada Tj;;=60 dana
on prelazi u stabilan 1247e.

‘ Naéi:
a) Posle kog. ée vremena od podetka stvaranja aktivnost 124Sh iznositi 10 mCi?
b) Koliko ée iznositi masa izotopa 1247e, koja se »sakupi« u jzvoru za 120 dana?

| B31| Izradunati vreme za koje Ce specifitna aktivnost 20477, &iji je period poluras-
pada Ty,3=3,56 godina, iznositi 5 mCi/g, ako se on formira brzinom 10!0 ato-
ma /em3s. (Gustina T/ iznosi 11,85 g/cm3).

[ B32| Tanka folija elementa £X, mase m, ozratuje se u toku vremena t snopom
termalnih neutrona fluksa ®. Jezgra elementa X apsorpcijom termalnog neutrona
prelaze u jezgra radioizotopa “*2Y konstante raspada A, Efikasni presek za apsorp-
ciju termalnog neutrona od strane jezgra elementa X je o. Izvesti izraz koji daje
zavisnost broja atoma elementa Y od vremena ozradivanja ¢ i isti proanalizirati
za sludaj kada je: a) c®>A i b) oD <A,

|B33| Meta od 1185Sn mase 38 mg ozracuje se u toku 20 dana fluksom termalnih
neutrona ®=6x 1013 n/cm?2s, radi dobijanja 119Sn koji je radioaktivan sa periodom
poluraspada T'y;5=250 dana. Efikasni presek 118Sn za apsorpciju termalnog neu-
trona iznosi 10—26 cm?. Kolika je aktivnost 119Sn nakon 50 dana po zavrietku
ozradivanja?

I B34 | Tanka folija od 115/n mase m=0,2g izloZena je izotropnom fluksu termalnih
nzutrona u toku 2 h. Posle vremena t=0,5 h od zavrSetka ozradivanja aktivnost
folije je bila A=0,1 pCi. Efikasni presek 115/n za apsorpciju termalnog neutrona
je 155 barna, Period poluraspada 16]n iznosi priblizno 60 minuta. Naéi koliko je
iznosio fluks termalnih neutrona?

B35 | Uzorak od zlata izloZen je snopu termalnih neutrona takvog intenziteta da
se svake sekunde 10'0 neutrona apsorbuje usled reakcije tipa 1974u (n,y) 1984w,
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Jezgro 1984u je beta minus radioaktivno i raspadom prelazi u 198Hg sa periodom
poluraspada T'y,=2,7 dana. Koliko ¢e atoma 1984u i 198 Hg biti prisutno u uzorku
nakon 10 dana, ako se pretpostavi da jezgra Hg ne stupaju u reakciju sa neutronima.

IB36| Debela meta od 55Mn bombarduje se (ozracuje se) u toku vremena ¢=5,2 h
deuteronskim snopom jadine i=4,8%x10~6 A4, radi dobijanja 56Mn, koji je beta
radioaktivan sa periodom poluraspada T7};,==2,6 h. Izratunati broj radioaktivnih
jezgara prisutnih na kraju ozradivanja, pretpostavljajuéi da je domet svih deuterona
R=110mg/cm?2i da je srednji presek interakcije duZdometa deuterona o=10-25cm2,



m Verovatnodéa da se jedna festica za vreme ¢ ne raspadne je, po definiciji:
- wh=e~M
a da se raspadne, tj. da opserviramo jedan produkt raspada:
@] =1—e~Ar,
Za dve &estice (N=2) imamo tri moguénosti:

— da ne opserviramo nijedan raspad: was=e~M e~

— da opserviramo jedan raspad: wr=2 emr (1 —em2)
— da opserviramo dva raspada: wi=(1—e"M) (1 -2,
Za, recimo, Cetiri &estice moguénosti su:
m3=e—4A: m‘;:e—hl(l —e~M)iIx 4
@r=e=M (1 —e~M) x 4 wi=(1—e"2n4,

wi=e~2M(1—e~M)2x 6
Vidimo da brojni faktor pored eksponencijalnog predstavlja broj kombinacija NV
elemenata po n, tj. da je jednak:

()

Opsti izraz za traZenu verovatnocu bio bi, dakle:

w""’ ) _________]_V_'______ e~ W= (] — g=Atyn,
‘ n! (N—-n)!
No, kako je n<€ N sledi da je:
n fuktora

N'=NN-D- (N=n+ ) (N-n)l=N"(N-n)!
=N

tj.:

n
wn (1) = A_f'_ e~NM (1 —e=2tyn
n!
Uz A1<€1 i e~Mx 1—2t sledi dalje:

YNAL n
ol (1) = A" s @ s
n! n!

sa a=NM.
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Ovde prepoznajemo &uvenu Poissonovu distribuciju. Za fiksno a=NXt ova nam
distribucija daje verovatnocu opserviranja »n produkata raspada u intervalu
t==a[N\. Za, recimo a==12, ona ima oblik:

N=const,
| @, (t=eomst)
B A7
04 |-
005 |-
I n
L ~a ~ 4/%!
004
! /(I/ | 1 . —
2 3 4 5 67 8 8 40 441243 444516 47 18 49 2024 222324 n
1
RBAa n=a

Distribucija je, jasno, diskretna i definisana samo za celobrojne vrednosti » pa
predstavljanje neprekidnom linijom nije dozvoljeno. Ova, medutim, bolje istice
asimetri¢nost distribucije. Za male » &lan koji preteZe u funkciji je a" (leva strana
distribucije) a za velike n to je n! (desna strana). Distribucija ima maksimum za
vrednost n==a=NAXt §to se lako vidi i analiti¢ki. Ako su, dakle, N, A i ¢ takvi da
je a=N A r==12 tada je to i najverovatniji broj registrovanih produkata raspada n
u intervalu vremena t. Odbroji 11, 13, 10, 14 itd. sukcesivno su manje verovatni
u skladu sa prikazanom distribucijom verovatno¢a. Po jednom jedinom merenju
broja n ne moZemo, znadi, nista decizivno zakljuéiti o vrednosti broja N!(jer ne znamo
kojoj distribuciji ovaj pripada). Uzrok ovome je inherentna statisti®nost procesa
raspada koja nam, konaéno, onemogudéava da broj N ikada »tatno« upoznamo.
Veliki broj identi¢nih merenja broja n dade nam distribuciju dogadaja u skladu
sa odredenom distribucijom verovatnodéa pa iz nje nalazimo najverovatniju vrednost
aktivnosti n==a=N X t odakle zatim i najverovatniju vrednost N. Statisti¢ka greSka
ovog brojabi¢e dobro reprezentovana §irinom ove distribucije; njenom disperzijom.
(videti sledeéi zadatak) ’

Sliéno, u sluéaju pradenja krive raspada sa vremenom, pri ¢emu se prati broj
produkata raspada u jednakim vremenskim intervalima, jasno je da ne moZemo
reprodukovati kontinuiranu kiivu zakona raspada jer u svakom intervalu vremena
neéemo registrovati najverovatniji broj produkata raspada koji odgovara srednjoj
vrednosti VA ¢ za dati interval veé da, u skladu sa odgovarajuéom distribucijom,
moZemo dobiti ma koji odbroj sa odgovaraju¢om verovatnoéom. Statisticka greska
svakog od ovih odbroja definisana je Sirinom pripadajue distribucije (uobicajeno
je, i uostalom jedino a priori moguée, datom odbroju pripisati grefku jednaku
kvadratnom korenu iz istog — &irini distribucije koja bi za srednju vrednost imala
ba¥ dati odbroj — $to je aproksimacija koja zadovoljava samo za velike brojeve
gde je irina distribucije relativno mala prema samom odbroju) i eksponencijalni
zakon raspada je upravo ona furnkeija koja najbolje »fituje« eksperiment, tj. prolazi
kroz marane taéke tako da p> metodu najmanjih kvadrata daje najmanji zbir svih
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kvadratnib -odstupanja vrednosti funkcije od merenih tadaka. Realna, »mikro-
skopskag, slika krive raspada izgleda, dakle, ovako:

n(t)

RBAG :
§to i predstavlja osnovnu manifestaciju inherentno yerovatnostnog (statistikog)
karaktera svih raspada, tj. svih promena stanja mikrosistema praéenih opservabilnim
procesima.

lRB2 | Po definiciji srednje vrednosti srednji broj Cestica koje se raspadnu u
intorvalu vremena ! bice:

= @ n(NA)" _ = (Na)™!
Y= 3 o, =3 —— 8 A WA S e e N = Nt
! ngl) " rZ'o n! ,,21 (n—])!

§to se poklapa sa najverovatnijom tatkom Poissonove distribucije. Srednja aktivnost
je odavde:

A=,
t

Da bismo nali vrednost disperzije D nadimo jos:

= i we—m::e—mr{ i n(n—1) (NA)"
n=0 n! =0 nl
o n o« n—1
3 n(NAt) }ge~N1f(N)\t) S (NAD) (- 1)+ NAt
n=0 nt =y (n— 1
= (N2
=g~ NM(NA)? WAD™" 4 Nt
A 3 =)l

= (VA + NAt =i+ (.
Tako je disperzija konatno jednaka:
D=, — iy = Kyt 4 b= b =

i standardna devijacija kao mera Sirine distribucije, tj. statisti¢ka greska najverovat-

nijeg odbroja je, dakle:
o=YD =)y, =V NM
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Ako, recimo, selimo da relativou gresku smanjimo 100 puta moramo ili &V ili ¢ po-
veéati 10 000 puta! Prednosti »dobre statistikex (velikih najverovatnijih odbroja)
su odigledne.

] RB3 ] Poissonova distribucija je:

(videti zadatak B1).
U slugaju velikih stednjih odbroja mo¥emo primeniti Stirlingov razvoj faktorijela

i u zadovoljavajuéoj aproksimaciji se zadrZati samo na prvom Slanu:

nexy2nn (—"—y
e

$to odigledno daje Kkontinuiranu distribuciju oblika!

n
w,= ! (1 +!—) e~
2nn n

sa y==a—n. Kako su zbog velikih vrednosti srednjih odbroja relativna odstupanja
mala, tj.:
y a-n

EAe |
n n
moZemo iskoristiti razvoj:
in (l +!—)" un(l’—-———“f—) .
. n n 2w
Tako, dalje, dobijamo: R
LAY 22
(1 +'}i>” - (v '-) ~e 2
n
tj.:
! 1 _fa—m?
0, e " 2n

y2nn

$to i predstavlja kontinuiranu Gaussovd distribuciju gustine verovatnoce (normalnu
distribuciju). Distribucija je oko srednje vrednosti a za koju je gustina verovatnode
jednaka 1/Y2a (maksimum distribucije) asimetri¢na, sli¥no Poissonovoj.

I Poissonova i, u ovom obliku data, Gaussova raspodela za velike srednje vrednosti @
otigledno prelaze u simetrine distribucije. Zamena 7 $a 4 je tako zadovoljavajuéa
aproksimacija koja.i formalno daje simetriénu distribuciju:

\ 1 _la—n?
w, = = € 2a
" V2xa
Znadi da veliina y#—,a——n, tj. odstupanje datog odbroja od srednjeg odbroja a ima
gustinu verovatnoce:

1
W, = === 24
by = 7
V2na
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Nadimo disperziju Gaussove distribucije Jjednakn stednjoj vrednosti kvadrata
odstupanja ((a—-n)z)z(yz). Po definiciji srednje vrednosti bice:

2wa

© 2
1 e I
D={a—-n)? = V3D = f 2e 4 =—
(@=m? =y Vs |7 Iy Ve
Uz poznatu vrednost integrala;
fe"‘*’dx=~2-\/—g . J= fe 2“dx=l/27m
0 —~00

i njegovim diferenciranjem po a:

I 2x 4 1 1
—a 224 =.~_In=—~—;/ .
2 a da 7 2a% 2a% 2ma-D N
nalazimo traseny vrednost disperzije:
D=q
§to je identigno vrednosti za Poissonovu distribuciju. Standardna devijacija distri.
bucije je: N
a=)D=ya
i standardni obljk Gaussove distribucije postaje, posle svih aproksimacija:
1 _fa—-m?
202
W, = ¢ ET.
a)2n @

RB4 | a) Posto Jje vremenski interval Ar=0,01 5 malj (tj. ispunjen je uslov
Aie<]) broj raspadnutih atoma za ovo vreme iznosi:

AN=Naar=Z y, 102, 1,62 x 101,
M T:/z

U gornjem izrazu m je masa 24Na, M — masa gram atoma 24Ngq, N,y Avogadrov

broj i 7y, — period poluraspada 244,

b) Broj raspadnutih atoma za vreme ¢=10 h jznosi:

tn2,
Ty2

AN=N0(l—e"“)=—;";N,',,,(I —e )=4,65>< 10,

'RBS l Na osnovu definicije parcijalnih  konstantj raspada mogu se napisati
relacije: ’

A Mol ha= g__a

Nat Ny 70T 0= Ng O
gde je N — broj jezgara 212 g; koji se raspao alfa emisijom, Np — broj Jjezgara 212p;
koji se raspao beta emisijom j Aror totalna (ukupna) konstanta raspada.

A=
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1z uslova zadatka sledi da se od 100 raspadautin Jjezgara 212 By g4 raspalo beta emj.

sijom a 36 alfa-emisijom, tj. za N‘,+Na=100; Ny=64 a Ne=36.. Kako je Apop=
=In 2/T/,=1,909% 10-45-1 dobija se:

22=0,687 x 104 7L M=1,222% 10-4s-1,
@ Parcijalne konstante'raspada Ag— i gz (videti prethodni zadatak) iznose :
As~=2,21 X 10~6 god-1; Aez=0,0382 % 10~6 god-1,
EIE Koristeci relacije: A= ¥ ; R=c 4 dobija se

I en
T:———:M
A R

gde je ¢ — ukupna efikasnost brojaékog uredaja, R — odbroj i N — broj radio-
aktivnih atoma y uzorku,

S druge strane:
Zmp N,
M (Lu, 0,)
gde su p — procentualna Zastuplienost 17674 1, prirodnom Lu, m — masa merenog

uzorka i A Ly 0,) — masa gram molekula datog Jedinjenja. Zamenom vrednosti
2a N u izraz za + dobija se

N=

T=2,74 1010 god.

IRBB I Polazeéi od izraza za radioaktjynj raspad dobija se da starost uranove
rude iznosi;
T=—7:"—21n N(2”U)+N(2°°Pb)
In2 N2y

gde je sa N (338y) oznagen broj atoma urana, a sa N (298Pb) broj atoma olova

U uranovoj rudj u sadadnjem trenutku,
Smatra se da Jje starost Zemlje priblizno 4,5x 109 godina,

22 x10° god

. . . In2 m
’RBQ l Aktivnost 1 & 226Ra jznosi: 4= N=—"TT2 N4p=3,65x 1010 rasp/s.
) va M

, RBlOi a) Masa 32p preparatu koji ima aktivnost Ay=104 rasp/s iznosj:
A, M 2Py T

m=—0_ ~ 712, 9,5x 10-13g,
Ny ln2

b) Aktivnost preparata posle vremena t=30 dana bice:

In2
——t
d=dye Tuz L1935, 109 rasp/s,
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[RB11| Polazeci od izraza za specifiénu aktivnost dobijamo da odnos specifiZne
aktivnosti 238U prema specifi¢noj aktivnosti ?*Ra iznosi:

A,(%U) T, (*25Ra) M (***Ra) —3,38 % 106
4,(%Ra) Ty, (PU) M (*U)

tj. specifiéna aktivnost 238U je manja 3,38 x 10-6 puta.

IRBIZ Ako se pretpostavi da tkiva organizma nisu adsorbovala radioaktivnu
supstancu (tj. da se ona »zadrZala« samo u krvi) moZe se naci da aktivnost ukupne
zapremine xrvi posle 5 h iznosi: 1,588 %103 rasp/s. Kako je izmereno da 1 cm3
krvi posle 5 h ima aktivnost 15 rasp/min sledi da zapremina ukupne krvi pacijenta
iznosi V=6,35 litara.

'RBI3| Radioaktivni izvor 24Na, koji posle t=2 dana treba da ima aktivnost
A=1 mCi, sadrZi:
Ny= ATy, et atoma ¥ Na
In2
§to odgovara masi:
m M (*Na) N,

=1,055% 10-°g
NAV

RB14| 1z uslova zadatka sledi:

— da se u trenutkn smrti organizma u njemu nalazi koliina 14C kojoj odgovara
specifi¢na aktivnost A%=10 rasp/min,
— specifi®na aktivnost »istog uzorka« posle vremena ¢ iznosi 4; (t)=7,64 rasp/min.

Veliine A7 i A4.(r) povezane su relacijom:
A, (1) = AS e M= 4321w
odakle se za starost groba dobija:
0
Ig_‘i’._
4,

=z

~ 2,23 x 103 god.

|RB151 a) Specifiéna aktivnost morske vode (raunata po 1 litru) iznosi:

_0,693pm N,
Ty, M

gde su upotrebljene oznake: p-procentualna zastupljenost 40K u prirodnom kali-

jumu, m-masa kalijuma, M-masa gram atoma K, N ,,~Avogadrov broj i T /,-period

poluraspada 40K,

b) Standardna gre$ka rezultata merenja, u kome je na brojatkom _}zredaju sa ukup-

nom efikasnoséu e za vreme f registrovano r impulsa iznosi—-)/r. Jasno je da za

A 18,22 raspfs.l = 4,92 x 10~*uCi/l

3
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relativou standardnu greSku od 19 treba registrovati 104 impulsa. Vreme merenja ¢
izradunava se pomocu relacije: r=c A1 tj.:

t=-L ~3,05h.
ed

IRB16| Na svakih 100 raspadnutih jezgara 64Cu emituje se u srednjem:
- 38 beta minus &estica (elektrona) maksimalne energije 656 keV

— 19 beta plus &estica (pozitrona) maksimalne energije 573 keV

— 43 kvanta karakteristiénog K zralenja 64Ni i OZe-ovih elektrona

— 43 gama kvanta energije 1340 keV

- 38 gama kvanta energije 511 keV (»anihilaciono« zradenje).

| RBl?l Posto izmedu pravca emisije beta minus destice i gama kvanta (koji
sladi beta raspad) ne postoji korelacija to se akti registracije ovih &estica brojagima
Bj i B; mogu smatrati nezavisnim slucajnim dogadajima. Ako oznadimo sa W, i Wy
verovatnode (tj. ukupne efikasnosti) registrovanja beta-Cestice i gama kvanta odgo-
varajuéim brojadima, tada je:

NB= WﬂA i NY= WyA-

Akt koincidancije je sloZen dogadaj te je njegova verovatnoca jednaka Wgx W,
i zbog toga je

NBY= W’)’ WB A.
Kombinujuéi dobijene relacije dobija se da aktivnost izvora iznosi:
ANty
Ngy

(Veliina Ny odreduje se na taj nacin 3to se izmedu brojaga B, i izvora I postavi
tanak ekran, koji apsorbuje beta zrake a ne »oslabljuje» snop gama zraka. Ny se
izraBunava kao razlika odbroja merenja bez ekrana i sa ekranom).

|RB18| a) Ako uvedemo oznake: m-masa rude, mj;-masa torijuma, m,-masa
urana i mjy-masa olova u rudi, tada je prema uslovu zadatka:

m;=0,50 m, my==0,30 m, m3=0,08 m.

Olovo, koje se nalazi u rudi, nastalo je delimino iz raspada 232Th a delimiéno iz
raspada 238U, pri tome u rezultatu raspada 2327h i njegovih potomaka nastaje izotop
olova 208Pp, a raspadom 238U i njegovih potomaka nastaje izotop 206Pp. Prema
tome masa olova u rudi (m3) je jednaka:

my=m; (208PE)-m; (206PE). )

Uzmimo trenutak formiranja rude za podetni trenutak (=0) i oznadimo: sa N{ -broj
atoma 2327/ u podetnom trenutku, sa N -broj atoma 232T% posle isteka vremena ¢
i sa A; konstantu raspada 232Th. Prema uvedenim oznakama (pod uslovom da su

criodi poluraspada torijumovih potomaka zanemarljivi u odnosu na T, torijuma)
broj atoma izotopa 208PH bice jednak:

N3 (208Pb)=N{—N, o))
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Koristeéi relaciju:
N,=Nj e~Mt

jednadina (RB18.2) moZe se napisati u obliku:
N, (¥8Pb) = N, (eM*! —1).

. m .. 5 . . .
Na osnovu relacije: N =EN 4 moZe se preCi sa broja atoma na odgovarajucu

- masu, tj.:
my (94P6) =, 202 (&t — 1) ®
232
Analogno se dobija
206
my (P6 Pb) = m, —— (eM* - 1 4

gde je A, konstanta raspada 2387,
Zamenom (RB18.3) i (RB18.4) u (RBI18.1) dobija se:

208 206 }
m3=ml§02(97ﬂ'- 1) +mzﬁ(elz'—- D. %)

U jednadini (RB18.5).sve veliine su poznate osim vremena ¢, koje predstavlja traZenu
starost rude. Medutim, jednaéina (RB18.5) ne moZe se refiti algebarskim metodama,
No, kako je Ty za oba elementa dovoljno veliko to znadi da je At mala veli€ina
te se exp (Af) moZe razviti u red i uzeti u obzir samo prva dva &lana (tj. exp A ~ 14
-+At). Kada se to uradi jednadina (RBI18.5) postaje:

208 206
my=m,——At+ m,— A, ¢
a3 2238 "
a odatle
t= i
208 206 °
A+, —— A
Y2327 72387
odnosno uz:
A =-—$—2~—— t=~ 1,28 x 10° godina.
T\ (*2Th)
In2

Ay == e
T

Gornji rezultat je dobijen u prvoj aproksimaciji. MoZe se pokazati da kada se iz

razvoja eM uzme i treéi &lan da se rezultat ne menja bitno, §to opravdava koriSéenu
: aproksimaciju.

b) Broj atoma He koji su nastali za vreme ¢ jednak je broju emitovanih alfa Zestica

za to vreme. Transformacija atoma 232Th u atom 208P) ostvaruje se uz emisiju

6 alfa-Sestica, a transformacija atoma 238U u atom 206Pp uz emisiju 8 alfa-Zestica.
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Prema tome broj formiranih atoma He iznosi:

N (He)=6 N3 (208Pb)+-8 N3 (206Pb),
odnosno
N (He)=6 Ny (eM*—1)+48 N3 (ers/—1).

Masa He iz 100 g rude je jednaka:
24 32
m(He)=m —(eM*— 1)+ m,——(eh¢-1)=1,39 g.
(He) 1232(8' ) m2238( 1t 1) 9g

Kona&no zapremina He (pod normalnim uslovima) iznosi:
V (He)~1,79 1.
IRB19' a) Period poluraspada 40X je jednak:

In2 In2
Tyy=—= —

Aror  Ag—+2Agy

Parcijalne konstante raspada Ag— i Az, su, po definiciji, date izrazima:

Na- Ny

Ag—=—>” | = .
TUNERY T NEK)

Iz uslova zadatka nalazi se da je:

Ng-=3lat/g-s
N (40K)=1,832at/g i .
Ngy=3,4at/g:s.
Prema tome:
_N(K)In2

=1,17 x 10° god.
Ng~+ Ngz &

12

b) Ako oznadimo sa ¢ starost minerala a sa Ng broj atoma 49K po gramu minerala
u trenutku stvaranja minerala, tada broj atoma 40K koji se sada nalaze u mineralu
iznosi N==Njexp (—2 £), gde je A totalna konstanta raspada 40K. Broj raspadnutih
atoma za vreme ! iznosi:

N,=N,(1—e-M) =N (er— 1).

Sa Seme raspada 40K vidi se da je jedan deo raspadnutih atoma 49K »otifao« na
stvaranje atoma Ar a drugi na stvaranje Ca.

Postoji, dakle, grananje. Faktor grananja za formiranje Ar iznosi

Fg(dr) =_.___]Y.EZ_____ .
Ng—+ Ngz
Prema tome, broj atoma Ar stvorenih za vreme ¢ iznosi
0 Nz A
N(*A4r)=FzN,= N (e —1).
’ Nog=+Ngz
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S druge strane iz podatka da je u 1 g minerala (pod normalnim uslovima) akumu-
lirano 1,54 102 cm3 Ar nalazi se
Ny

mol

N(®4r)= V=4,14 x 107 afoma.

Dakle

In2

Jn2,

4,14 x 1017“..31’_4~ 1,832 x 10!# (eTlrz _ l)
34,4

odakle se dobija da je:
t~2x109 god.

RBZOI a) Ovde se radi o takozvanom sloZenom sukcesivhom raspadu, koji se
Sematski moZe prikazati na slede¢i nacin: .

°

A, LR 4, 2, A, (stabilan).

Promene broja jezgara (N) izotopa A4 i broja jezgara (N;) izotopa A4; odredene su
sistemom jednacina:

dN, dN

SX e )N SZ2=A N, -0, N,

dl 1 (&4 dl 14701 2°72

Smisao ovih jednagina je: broj jezgara izotopa A; smanjuje se na ralun njihovog
raspada, a broj jezgara izotopa A4, opada na raun sopstvenog raspada a povecava
se na radun raspada jezgara izotopa A;.
Prema uslovima zadatka za gornji sistem jednagina mogu se napisati podetni uslovi:

Za t=0: N, (0)=N}, N,(0)=N3=0.
ReSenje sistema jednadina, sa datim po€etnim uslovima, ima oblik:

0
NI=N1€_)“.’

N, ()= M N?(e""l (—g=haty,
A=

Izraz za N, (t) predstavlja traZeni zakon promene broja radioaktivnih jezgara
izotopa Aj.

b) Vreme posle koga se dobija maksimalan broj jezgara izotopa 4, nalazi se iz
uslova za nalaZenje maksimuma funkcije N; (1), tj.:

aN, () o
dt
odnosno:
7\1
7‘2 - 7‘1

MY (=) et e =0
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odakle se dobija da je:
1 In—)\—2
tax = ﬁl—

(Tllz)l (Txlz)z In (Tllz)x . ,
[Ty~ (Tl In2  (Tyy),

RB21| a) Maksimaina koli¢ina Po sakupite se po isteku vremena 1., (videti

max

- prethodni zadatak) koje za ovaj sluaj iznosi:

- Ty 7 {Ty2) o In (Ty12) g =33,01 min.
In2 [(-Tllz)Reu ~(Tudpodl (T 5o

b) Maksimalna koli¢ina Po nalazi se (videti reenje prethodnog zadatka) pomoéu
izraza:

max

N g e
ma NAV ‘ll’a")‘ﬂn

Zameznjujuéi odgovarajuée brojne vrednosti dobija se:

m (e—i\Rn tmax __ g—APo 'max)

Mipa=3,49% 10-9 .
|RB22| 1z jednatine radioaktivne ravnote¥e
Ara Nra=Xan Nin

i podatka da I g Re sadrZi 2.66x 102! atoma nalazimo da je

A
Ng, —2naVpa 1,76 x 106 atoma.
Rn

Prema tome, zapremina radona koja je u radioaktivnoj ravnote?i sa 1 g Ra iznosi:

Ngn
Ven=—2 Vot = 0,66 mm?,
Ny

IRB23! Maksimalnu aktivnost drugi izotop (1124g) imade (videti zadatak B20)
posle vremena

=IO 6240,

max

-2
. 2 M
Ako izraz
NDex A N? (e—A, Imax _ g—}; fmax)
A=
pomnoZimo sa A, imacemo:
. N;nax =A12nax - A A‘l’ (e-}\, fmax _ g—2; lmax)

2)\1
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odakle se dobija da traZeni odnos maksimalne aktivnosti drugog izotopa prema
prvobitnoj aktivnosti iznosi:

In2 In 2 B
max tmax !
a7 (Ty)pa o Tudpg ™ _ T g '““"}

A Tudra— Tudag

IRB24 Alfa aktivnost preparata poti¢e delom cd raspada ThC putem «- raspada
a drugim delom od «-raspada ThC’, tj.:

ATPT = 4, (Th C) + A, (THC').

=0,713.

Uvedimo oznake: A; — konstanta raspada ThC, A, — konstanta raspada ThC’,
A3 — konstanta raspada ThC", p, — procenat ThC koji se raspada putem x-emisije
i ps — procenat ThC koji se raspada putem B-emisije.
Prema uvedenim oznakama moZe se napisati da je:
Ag(TAC) = pe\ NS e~ "

gde je N —— broj jezgara TAC u preparatu u polstnom trenutku. Za A, (ThC’)
(videti zadatak B20) moZe se napisati da iznosi:

Au (ThC') =g N 17\ 2y

2 1

- (emMt - e—hat),

Prema tome:

AT W8 ey e

27N
Zamenom brojnih vrednosti dobija se:
: AT =738 mCi.
Napomena:

Posto je (Tyy2)13 (Ty2)2 ti. A, €\ moZe se pri radunanju Kkoristiti aproksimacija:
S
A=

Beta aktivnost preparata potiée od beta aktivnosti ThC i beta aktivnosti ThC’, tj.:

AROT = Ag (ThC)+Ag(THC”).

Zbog simetriénosti (videti sliku) A,{"T se dobija iz izraza za AT kada se p, zameni

sa pa, Pa Sa Py i Az sa A3:

3 1

Zamenom brojnih vrednosti dobija se:

//
AT =752 mCi.
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| RB25| Radi jednostavnosti, veliine koje se odnose na 118Cd, 118]n i 1188y o-
zna&iéemo indeksima 1, 2 i 3 respektivno.
Zavisnost broja atoma 118Cd i 118In od vremena ¢ (videti zadatak B20) date su
relacijama: :

N,=NieMt

N,=NI—N

(8‘7“ te—M l).
27 7‘1
Brzina formiranja stabilnog izotopa 118Sn je jednaka brzini raspadanja atoma 1187,
tj.:
dN.
dt =N,
odakle se dobija da je:

T
Ny=[2, N, (t)dr.
(1]

Posle zamene vrednosti za N, (r) i integracije po vremenu ¢, dobijamo:

N,=N$ My {i(l—e—hv)—i(l—rw)}.
2")‘1 7‘1 7‘2

Masa stabilnog izotopa mj bite jednaka:

my = 22 {-L(l~—e"h')—-—l—(l—-e—7ﬂ")].
7‘2"7‘1 7‘1 )‘z

Zamenom brojnih vrednosti se dobija:

my=T7,06%10-2 g.

IRB26| U trenutku izdvajanja 90Y postojala je radioaktivna ravnoteZa, te je:

Ase=AY
S druge strane

In2 m
Ag, =Ag, Ng,=———— — N ,= 7,34 x 107 rasp/s.
i (Tllz)Sr 90 ’
Prema tome, aktivnost 90Y posle 128 h od trenutka izdvajanja iznosice:
a2

dy=AYe Ty ~0,5mCi.

IRB27 l Posto je (T'y2) Re> (T'12)Rs na osnovu refenja zadatka B20 sledi da je:

Nga= Pra NS (1 - e an'y
Rn
odnosno:

Apy= AR (1 — e ra"),
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Za vreme t=1 dan dobija se
Ara=0,2475 Ci.

Kako je (Ty2)ra>1 godine moZemo uzeti da je aktivnost Ra u toku jedne godine
pribliZno konstantna. Prema tome, u toku jedne godine iskoristi¢e se:

(Agn) { god= 90,6 Ci radona.

|RB28| Aktivnost 140La (videti zadatak B20) imade maksimalnu vrednost posle
vremena f,,, koje iznosi:

Tnax = (Ty;2)8 (Tllz)l;z In (Tllz)ga =134,6 h.
(Tidpa = (Tudeadn2 - (Typ)ra

Ako sa A}, oznatimo aktivnost Ba u podetnom trenutku (z=0) tada se njegova
aktivnost posle istcka vremena ¢, moZe izraSunati na osnovu jzraza:

%

[}
ABa (Imax) = AB., e~ Ba 'max

a aktivnost prvog uzorka La, u trenutku njegovog izdvajanja, moZe se naéi pomocéu
izraza:

: (Tyn)s 0
At ma ) PR L2 ABa(e“lBa 'max — ¢~ MLa fmax),
e (Tllz)aa)”‘ (Txlz)La

Koristeéi gornje izraze i podatke kao i uslove date u zadatku moZe se naéi:
a) Da je moguce uzeti pet uzoraka 140La.

b) Poslednji (peti) uzorak '40La u trenutku njegovog izdvajanja ima aktivnost od
1,06 mCi a neto aktivnost svih uzoraka u tom trenutku iznosi 1,21 mCi.

IRB29| Kako se u jedinici vremena formira ¢ jezgara datog radioaktivnog ele-
menta, d raspadne se A N (), to je ukupna promena data diferencijalnom jednadinom:

N (1)
i = g—AN(1).

Refenje ove diferencijalne jednadine za date podetne uslove je:
N(z)=-;l~(1 — e,

Iz oblika funkcije N (¢) zakljuSujemo da broj radioaktivnih atoma raste sa porastom

vremena f i teZi graniénoj vrednosti%.

lRB30| a) Zavisnost aktivnosti radioizotopa 124Sb od vremena ¢ (videti prethodni
zadatak) data je izrazom:

A=gq (I—e-21)

RADIOAKTIVNOST 63

odakle se dobija:

t=——1—1n 4
A qg—A

=~ 17,7 dana.

b) Broj stvorenih atoma 124Te za vreme =120 dana je jednak broju raspadnutih
atoma 1245h u tom vremenskom intervalu, tj.:

NT,=qt———“;T(I —~e““)=—>\q—(e‘7“+)\t— 1.

Prema tome, masa izotopa 124Te koja se sakupi u izvoru za 120 dana iznosi:

=L 9
Te Nﬂ)\(e +Af—1)~2pg.

IRB31| Specifiéna aktivnost 2047/, ako se on formira brzinom g=1010 atoma/
Jem3s, iznosi¢e 5 mCi/g posle vremena:

t=—7l'—21n——————q

=2,96 godina.
In2  g—4Adp

(sa p je oznalena gustina TY).

[RB32| Diferencijalna jednadina koja opisuje promenu broja atoma elementa
X je: .

7 Nay o

x

Redenje gornje diferencijalne jednaline, za poifetne uslove 7==0; N% =

mN 4y

Ny=

e~ ot
X

Diferencijalna jednadina koja defini¥e promenu broja atoma elementa ¥ je

an,

A ANyt Nyo® = —2ANy + "Nars?®,
dt My

—adrt

a njeno reenje sa poletnim uslovom: f=0; N9=0 je

_ mNyod
= — A

= e—a®t . o—Ary,
MX()\MG(D)( )

a) Kada je c®>A gornji izraz se moZe napisati u jednostavnijem obliku:

mp,

Ny= 2248 (] - g-otr),
X
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b) Kada je o® <\ izraz za Ny moZe se napisati u obliku:
Ny N s® (g
ANMy

"RB33I Izradunajmo najpre vrednosti za o® i A:
o®==10"26cm2x 6x 1013 ncm~2s-1=6x 10~13ns~1; A 3,21 x 10~8s-1,

Posto je zadovoljen uslov o® <A (videti prethodni zadatak) aktivnost 198k u
trenutku prestanka ozradivanja data je izrazom:

’=M (1 —e.
M(lla Sn)
Aktivnost mete nakon vremena v po zavrietku ozradivanja bice:
.
A=A e V= mN 4y o® (1 —e~M)e—?s,
M (M18Sn)

Zamenom brojnih vrednosti se dobija:

I RB34| Iz izraza:

A.=0,755 mCi.

_ mN, c®@ (1 _ e"’l')e_'“
M
sledi da je: AMe™

oD =
mNAVO‘il - e"bi

gde su 4 — aktivnost mete, m — masa 115In, M — masa gram atoma Usin, Ny —
— Avogadrov broj, o — efikasni presek 115/n za apsorpciju termalnog neutrona,
t — vreme ozradivanja mete i v — vreme od trenutka prestanka ozr.::.télvan_]a do
trenutka merenja aktivnosti mete. Zamenom brojnih vrednosti se dobija

®=4,3x 104 neutrona cm—2s"1,

]RB35| Zavisnost broja beta minus radioaktivnih atoma 1984u od vremena ozragi-
vanja t data je izrazom:

N (98A4y) = N (7 4u) o® (] — e~ Mung’),

A (% Au)

Iz uslova zadatka sledi da je:

N (¥ Au) o D=1010 atomals.

Prema tome, broj radioaktivnih atoma 1984u prisutnih u uzorku nakon r=10 dana
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iznosi;
N (19841)=3,47 x 1015 atoma.
Broj atoma 198Hg prisutnih u uzorku nakon =10 dana je jednak:
N (198Hg) =N, (198 4u)—N (19341)

gde su N;ot (1984u) — broj atoma 1984y formiranih u toku vremenskog intervala
t=10 dana, a N (1984u) — broj atoma 1984y koji su prisutni u uzorku na kraju
ovog vremenskog intervala. .

Ako sa g ozna¢imo brzinu formiranja atoma 1984 tada je:

Ny (1984u)=gq t=8,64 X 1015 atoma.
Prema tome:

N (198Hg)==5,17x 1015 atoma.
Im Ako sa S oznadimo ozrafivanu povriinu a sa ® fluks deuteronskog
snopa tada je struja deuterona i data izrazom:

' i=D Se
gde je e — naelektrisanje deuterona.

Potetni broj jezgara 55Mn sa kojim mogu deuteroni iz snopa interagovati, unutar
dometa R, iznosi:

RS
Ny (3*Mn) = "MNAV

gde je sa M oznalena masa gram atoma 5SMna N v j&¢ Avogadrov broj.
Broj radioaktivnih jezgara 56Mn prisutnih na kraju ozradivanja (videti zadatak B32)

. moZe se izradunati pomocu izraza:

RS®a N,
MQ\ - o®)

Izra%unajmo, najpre, brojne vrednosti:

N.(* Mn) = (e=otr — g2,

SO=-L=3x 10851
e

R
-—A—I-N,,y= 1,2x 10 cm~2

A=7,4x10"55-1

Napomena: .
Za razumne vrednosti ozradivane povriine mete (S>1 cm?) imamo da je A> o @
izat25hje o®r=0.
To znati da se za dato relativng kratko vreme ekspozicije u slabom fluksu moZe zane-
mariti smanjenje broja jezgara ~Mn u meti.
Na taj nadin konadno se dobija:
RSodD N, a

M2

N(SMn) = e M) =3,7x 1013 jezgara. .
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I Cl l TeSka Zestica mase M, naelektrisanja ze i brzine v kreée se kroz sredinu
atomske teZine 4, rednog broja Z i gustine p. Pretpostaviti da je trajektorija Cestice

pravolinijska i da je Sestica nerelativistidka pa zatim naéi koliki su gubici energije
" na jonizaciju atoma sredine po jedinici puta &estice ako je energija potrebna za
jonizaciju u srednjem jednaka I (srednji jonizacioni potencijal). Pri traZenju trans-
fera impulsa (i energije) elektronu sredine u funkciji parametra sudara pretpostaviti
da su elektroni slobodni.

C2 ! Naci koliku energiju « Zestica, podetne energije 10 MeV, izgubi prolazeéi
kroz sloj vazduha debljine 1 em, kao i koliki broj jonskih parova pri tom stvori.
Nacdi njen domet u vazduhu smatrajuéi da gubici na jonizaciju ne zavise od energije
Cestice, a rezultat uporediti sa empirijskom formulom R, ~9,8x 10-283 cm, Spe-
cifiéni gubitak energije ratunati po izrazu:

MeV/em

__d_f_47ce4zzN{I 2 my?

1
n sl B —
dx my? I(1-4%» y }l,éx 10—

gde je N broj elektrona po cm3 vazduha. Srednji jonizacioni potencijal za vazduh 7
je ~35 eV.

C3 | Domet teSke naelektrisane &estice mase M i naelektrisanja z mo¥e da se
zrazi na sledeéi nagin

M
R=—2'8(V)-
z

Funkcija g (v) zavisi samo od brzine &estice. Pretpostavljajuéi da je poznat domet
protona u funkciji energije naéi izraz za domet bilo koje &estice mase M i naelek-
trisanja z,.

l C4 l Poznato je da sve Zestice iste upadne energije (Ep) nemaju isti domet. Ova

pojava naziva se osipanje dometa a posledica je fluktuacije energetskog gubitka
Cestice na jedinici puta. Osipanje dometa &estice oko srednje vrednosti dometa Ry
moZe da se opife Gaussovom raspodelom:

W (R) dR = - &"ics =0 g
a

gde je o2 = —;—c— {(R—Rp)2). Simbol {(R—Ry)2) oznadava srednju kvadratnu devijaciju

dometa.
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IzraSunati parametar osipanja (o?) koriste¢i Bohrovu formulu (1915) za srednju
kvadratou devijaciju gubitka energije na jedinici puta

4
dx
(U kojoj je Z; naelektrisanje Sestice, Z, redni broj atoma sredine, kojih ima N po
jedinici zapremine).
Specifi¢ni gubitak energije Cestice predstaviti izrazom:

—ig=4n2fzze4g(E).
dx

SE?=4nZ}Z,Net

[cs { Eksperimentalno je utvrdeno da gubitak energije protona na jedinici puta
kroz vazduh za upadne energije protona u intervalu 10—200 MeV moZe priblizno
da se prikaZe formulom:

v

dE 45

dx E°%8

u kojoj se energija izra%ava u MeV, a put u metrima. Koriste¢i ovu formulu odrediti
domet u vazduhu protona od 10 i 100 MeV.

C6 ; Brza beta-estica upada u gas. Pretpostavljaju¢i da su sudari beta Zestice
i elektrona sredine kvazielastidni, da su uglovi rasejanja mali i da je minimalni
moguéi transfer energije po jednom sudaru jednak srednjoj jonizacionoj emergiji
atoma gasa ef, naéi za beta Zesticu izraz za jonizacioni gubitak energije po jedinici
puta.

Napomena: .
Pretpostaviti da je presek za rasejanje beta elektrona na atomskom elektronu oblika:
do _detm 1
a0 p 9

| C7 l Kolimisani snop elektrona talasne duZine A*, manje od poluprednika jezgra,
prolazi kroz sredinu debljine L (videti sliku) koja ima N atoma po jedinici

-~ zapremine. Usled viestrukog rasejanja po iz-
‘.."i:)____, lasku iz materijala snop je profiren za neki
ugao 2 &.
e Posto je za homogenu i izotropnu sredinu pod-
cr e L, > 25 . jednako verovatno da elektron skreme »gore«

ili »dole« srednji ugao skretanja snopa jednak
je nuli, ali je od nule razligit srednji kvadrat ugla skretanja {«2>, koji odreduje raspo-
delu elektrona po uglovima u izlaznom snopu, ako je ta raspodela gausovskog tipa:

a2

p (@) =conste” {55
Proceniti velidinu («2) pretpostavljajuéi da svaki pojedinadni sudar (sa atomima
ili jezgrima materijala) doprinosi podjednako kona¥noj veli¢ini {2, kao i da je
rasejanje Raderfordovskog tipa.
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Napomena:

Diferencijalni efikasni presek Raderfordovog tipa, za male uglove rasejanja elek-
trona glasi:

do =(2Zez) 1 @<).

do \m2 ) 8¢
ICS l Prolazeéi kroz materijalne sredine elektroni gube energiju uglavnom na
dva nadina: na jonizaciju i ekscitaciju atoma sredine i na zako&no zradenje ' ("brems-
stahlung” na elektromagnetnim poljima. Relativni doprinosi totalnom gubitku

- energije prikazani su na slici (za olovo):
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Na energijama veéim od ~10 MeV (kriti¢na energija) radijacioni gubici su domi-
nantni. Radijacionu debljinu, /z, definiSemo kao onu debljinu posle koje energija
snopa elektrona (u srednjem) padne na 1/e od svoje pocetne vrednosti (Eq). Nadi
zakon promene energije elektrona u funkciji predene debljine materijala kao i
verovatnoéu (presek) za emisiju kvanta zakoSnog zraCenja sa udestanof¢u izmedu
neke vrednosti v; i maksimalne vrednosti vo=FEg/h. Naéi konkretnu vrednost
preseka ako je Eg=100 MeV, E;=50 MeV a materijal je gvoZde za koje je

Ig=13,8 gcm—2,
C9 | Brzi elektron energije E prolazi kroz bakarnu plodu debljine 0,3 cm (radija-

ciona duZina bakra je 12,8 g/cm?). Kolika je verovatnoéa da ovaj elektron usled
zakodnog zralenja po izlasku iz ploe ima energiju u intervalu (0,5 do 0,75) E?

iClOl Elektron na zako&no zradenje po jedinici puta gubi energiju

—i€=4zzocNEr31n 180
dx Z

gde su: Z naelektrisanje, N broj jezgara sredine, o konstanta fine strukture, E ener-
gija elektrona a r. klasidan radijus elektrona =e2/mc2. Polaze¢i od ovog izraza
nadi debljinu materijala (xg) koja energiju elektrona smanjuje na 1/2.
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ICII ! Naelektrisana &estica (m, e, ;5 kreée se u homogenom magnetnom polju H.
Pod dejstvom Lorentzove sile F =—e~_1:><§ trajektorija je, u opitem sludaju, heliko-
c

idalna. Kako je kretanje ubrzano &estica ¢e zraiti elektromagnetno zraCenje koje

se naziva magnetozakoénim zradenjem ("magnetobremsstrahlung™) ili sinhrotron-

skim zradenjem jer predstavlja glavni proces kojim ¢estice u kruznim akceleratorima
5 gube energiju.

Opserviranje ovog zradenja daje dragocene podatke

o magnetnim poljima i distribucijama naelektrisanja

u udaljenim oblastima prostora. Koriste¢i opsti relati- -

visti¢ki izraz za intenzitet elektromagnetnog zradenja
emitovanog od strane naelektrisanja koje se krece u

[+ ]
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gde jey=1/)/1—P2, naéi gubitak energije naelektrisane Zestice u jedinici vremena

u gore opisanom sludaju. Uporediti intenzitet sinhrotronskog zraenja ultrarelati-
visti¢kog elektrona i protona u inafe istim uslovima.

[CIZ{ Primenom zakona odrZanja cnergije i impulsa po-
kazati da se Cerenkovljevo zradenje u datoj sredini

o, )
77¢,  emituje pod uglom &= arc cos(c{/v) u odnosu na
v i pravac upadne &:stice. Brzina Zestice je v>c/n=:cy,

E
2 "I’ gde je n indeks prelamanja sredine. Pretpostaviti
\ da je energija Cerenkovljevog fotona znatno manja
Ci2 E,p, od energije Zestice.

|C13 Tam-Frankova teorija Cerenkovljevog efekta daje spektralnu distribuciju

2
emitovanog zradenja oblika N(co)=;§; sin2® gde je 9==arccos (c1/¥) i cy=c/n
c

a n indeks prelamanja sredine (tj. broj Cerenkovljevih fotona u jediniénom intervalu
udastanosti koje Sestica emituje po jedinici puta ne zavisi od ufestanosti). Ako se
elektron energije | MeV kreée kroz vodu (n=1,33) naéi gubitak energije po jedinici
puta na emisiju vidljive svetlosti (4000 A <A< 7600 A).

‘C14| Pozitron kinetitke energije T=750 keV naleée na elektron u miru. Posle
anihilacije nastaju dva gama kvanta istih energija. Odrediti ugao izmedu pravaca
gama kvanata.

Napomena:

Zadatak regiti kori§¢enjem »algebre« kvadri vektora impulsa p{;, iE}; p2=—mg?
u sistemu jedinica u kojem je brzina svetlosti c=1.
C15| Ako energija fotona zadovoljava uslov Wr<hv<0,5 MeV gde je Wk
energija veze K-elektrona, presek za fotoefekat na K-ljusci je pribliZno:

13,6

3.5
o= 1,1 x 108 25| v barnjatom
hv(eV)

C{4{ kombinovanom elektriénom i magnetnom polju E, B:.,
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Nadi srednji slobodni put y-kvanata energije 14 keV na kome s¢ oslobadaju K-elek-

“troni u aluminijumu.

!C16| Presek za apsorpciju fotona fotoefektom brzo opada sa energijom. Sa po-
rastg)m'energije, medutim, znafajuo postaje uklanjanje fotona iz upadnog snopa
rasejanjem na slobodnim elektronima (Comptonovo rasejanje). Na niskim energijama
h vgmcz) rasejanje se dobro opisuje i klasiéno (Thomsonovo rasejanje). Pretpo-
staviti da ravan linearno polarisan talas pada na slobodan elektron koji pod dej-
stvom elektriGnog vektora osciluje i zradi energiju brzinom

gde je a ubrzanje elektrona. Nadi presek po elektronu za ovakav proces (Thomso-
nov presek).

Cl17] Totalni presek za Comptonovo rasejanje nepolarisanog snopa vy kvanata
opisuje se Klein-Nishinainom formulom:

z{l+q[ﬂl+al

op=2mr;
o? 14+2a

1
——In(1+2%) +~l—»ln(l-!~2¢x)—-ﬂ——~—~—---~1-{_3‘x } barn
a 2« (I +2a)?

gde je r klasiéni radijus elektrona a « odnos energije gama kvanta prema masi
mirovanja elektrona, a=/4 w/mc2.

_Na'éi aproksi{nativne izraze za presek Comptonovog rasejanja u graninim sluda-
jevima «<€1 i > 1. Naéi preseke za rasejanje gama kvanata od 5 keV i 5 MeV.

ICIS' Komptonski elektroni energije 0,23 MeV registruju se pod uglom od 30°
u odnosu na upadni snop y zradenja izotopa 181 Hf. Naéi energiju gama-zradenja.

lCl9l Kolimisan snop vy zraenja energije 0,15 MeV prolazeéi kroz srebrnu foliju

debgjine 2 mm slabi 4 puta. Naéi totalni presek za interakciju v kvanata sa atomima
srebra.

|C20| Kolimisan snop gama zraka, koji sadrZi jednak broj gama kvanata svih
energija u intervalu 800 do 1000 keV pada na Cu plo&u debljine 2 cm. Maseni ate-
nuacioni koeficijent Cu za energije 800 i 1000 keV je 0,0654 i 0,0585 cm2/g respek-
tivno. Gustina Cu je 8,93 g/cm2. Naéi smanjenje intenziteta snopa pri prolazu kroz
plodu pretpostavljajuéi da je u datom intervalu energija atenuacioni koeficijent
linearna funkcija energije zradenja.

[CZI [ Tadkasti izvor monohromatskih gama kvanata smesten je u centar sferi¢nog
sloja olova, &ija debljina iznosi 4 cm a spolja¥nji radijus 6 cm. Aktivnost izvora
iznosi 0,5 mCi (na jedan raspad emituje se jedan gama kvant). Energija gama kvanata
iznosi 1 MeV a debljina poluapsorpcije olova za ovu energiju gama kvanata iznosi
0,877 cm. Odrediti fluks (broj kvanata /cm?2s) nerasejanih gama kvanata na spoljas-
njoj povrSini olovnog ekrana.

IC22[ Iz jednog izvora emituje se zraenje dveju energija. Debljine poluapsorpcija
ovih zraZenja stoje u odnosu 1 : 2. Oba zradenja su pribliZzno istog intenziteta. Nadi
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demu su jednaki njihovi relativni intenziteti posle prolaska kroz apsorbere, Cija

je debljina jednaka 1, 2, 3, . .., n debljina poluapsorpcije manje prodornog zracenja.
lC23| Izvor 60Co, aktivnosti 4=1 Ci, oklopljen je olovom ¢ija
— debljina iznosi tri debljine poluapsorpcije za energiju gama
pado zratenja E,=1,25 MeV. Sema raspada 60Co prikazana je
- na slici. Pretpostavljajuél da je Ey ~FE,~125 MeV od-
g rediti koliinu toplote koja se u jednoj sekundi oslobodi u
— olovnom oklopu usled apsorpcije gama zradenja.
8, [AATMey
3, 1,33 Mev
Cc23 g: Ni -

IC24| Pri bombardovanju olovne mete, debljine 20 mg/em2, brzim neutronima

(talasne duZine mnogo manje od dimenzija jezgra) dolazi do eldstxcnog rasejanja.
Proceniti poluprednik jezgra atoma olova ako se od olovne mete rasejava 1,4 x 10-4
deo upadnog neutronskog snopa.

l C25 l Pri prolasku teske brze &estice naelektrisanja ze kroz fotoemulziju na jedinici

puta Zestice obrazuje se ukupno

27w nz? e"( 1 1
T, 2m,»

gde je v brzina upadne estice, m, masa elektrona, n koncentracija elektrona u

foteemulziji a T minimalna kineti¢ka energija elektrona potrebna za obrazovanje

vidljivog traga u foto-emulziji.

Odrediti: a) minimalnu energiju «-Zestice potrebnu za formiranje S-elektrona u

fotoemulziji u kojoj je Tx=12 keV,

b) Za foto-emulziju sa koncentracijom elektrona n==1024 cm~3 odrediti pri kojoj

energiji a-Sestice se formira najveéi broj d-elektrona. Izratunati zatim maksimalan
broj 8-elektrona na | mm trajektorije «-Cestice.

N= > 3 (sekundarnih) elektrona

m,v?

C26 Izvor polonijuma aktivnosti 5w Ci postavljen je iz-
medu obloga kondenzatora, kao §to je prikazano
na slici. Izvor emituje alfa-Sestice izotropno. Kolika
je jadina struje koja se meri instrumentom ako se pret-
postavi da se svi joni proizvedeni alfa gesticama polo-

~ b nijuma sakupljaju na kolektoru? Energija alfa-Cestica
polonijuma iznosi E,=5,3 MeV. Za stvaranje jednog
jonskog para potrebna je energija Ejp=35 eV.

ce L

| C27 ] Jonizaciona komora (koja radi u integralnom reZimu) ispunjena je vodonikom

do pritiska od 10 at. Efektivna zapremina komore iznosi 2 dm3. Komora je ozradena
monoenergetskim neutronima energije | MeV, a fluksa 108 n/cm2s. Pretpostaviti
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da neutroni u sudarima sa protonima predaju proseno po 1/2 upadne energije.
Kolika je vrednost struje koju daje komora ako je presek za rasejanje neutrona na
protonu 5 barna, energija za stvaranje jonskog para 20 eV a komora se nalazi na
temperaturi 300°K?

|C28 l Mezonski fluks na nivou mora iznosi 1 mezon/cm2min. Specifiéna jonizacija

vazduha za mezone pod normalnim uslovxma iznosi 100 jonskih parova/cm. Kolika
jo struja proxzvedena u cilindriénoj Jomzaclono_l komori orijentisanoj u pravcu
snopa mezona, ako je preénik komore 30 cm, visina 50 cm a pritisak u komori
15 at?

|C29 Nadi vreme za koje pozitivni jon stvoren u neposrednoj blizini anode stigne
do zida GM brojada. Preénik Zice je 2 @=0,013 cm a prednik katode 2 b=2,86 cm.
Primenjen je napon od 1000 V, pritisak gasa je p==100 mm Hg a pokretljivost jona
pri gradijentu potencijala od 1 V/cm na normalnom pritisku je pn=1,5 cm/s.

[ C30 [ Koaksijalni proporcionalni brojad ispunjen je argonom do pritiska od
10 mm Hg. Sredn_]l slobodni put elektrona na ovom pritisku iznosi 10-2 cm. Spoljas-
nja elektroda ima pre¢nik 3 cm a unutra$nja 3X 10~2 cm. Ako se na anodu (unutras-
nja elektroda) dovede napon od 600 V da li brojad radi u proporclonalnom reZimu?
Srednji jonizacioni potencijal argona je 16 eV.

l C31 l Na slici je prikazano elektronsko kolo impulsne jonizacione komore. Ko-
mora se nalazi na atmosferskom pritisku i u nju upadaju alfa-Zestice energije 6 MeV.
Za stvaranje jednog jonskog para potrebna je energija od 30 eV. Unutra3nji kapacitet

<
C31

T
4

komore iznosi 10 pF. Koliko minimalno poja¢anje mora da se ostvari linearnim
pojadavadem pa da impulsi na njegovom izlazu budu dovoljui za pobudenje skalera
koji radi sa naponskim impulsima amplitude 3,2 V? Izabrati vrednost spoljasnjeg
otpornika (R) tako da vreme trajanja impulsa bude 10-4s.

IC32| Dva identiéna cilindritna detektora nalaze se
na rastojanjima L=10 cm i D=8 cm od tagka-~
D2 +* stog B izvora apsolutne aktivnosti 8 u Ci. Prednik
Ceone povr§ine detektora je 32 mm. Efikasnost

D4 L= za B Zestice je 0,8. Detektori su vezani u koinci-
dentno kolo sa vremenom razlaganja od 200y s.
Koliko slu€ajnih koincidentnih dogadaja regi-
rj}"_""] struje ovakav sistem za jedan &as?
OLHC.
Shater

c32
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,C33! Proporcionalni brojag cilindri¢ne geometrije koristi se za detekciju termalnih
neutrona. Brojad je ispunjen gasom BFj (bortrifluorit). Prirodni bor na svaka
82 atoma izotopa !!B sadrZi 18 atoma izotopa 10B. Neutroni se detektuju posredno
preko reakcije (1, «) na 19B. ({tB i F ne daju reakcije ovog tipa sa termalnim neu-
tronima).

Znajuéi da efikasni presek za reakciju (n, @) na 198 opada kao 1/v, gde je v brzina
termalnih necutrona i da je njegova vrednost obradunata za prirodan bor i energije
neutrona 1 eV, 120 barna, izradunati cfikasni presek za reakciju (1, «) na 0B za
neutrone energije 9 eV.

Ako paralelan snop monoenergetskih neutrona energije 9 ¢V prolazi kroz brojac
paralelno njegovoj osi izradunati efikasnost detekcije neutrona u snopu. Osetljiva
duZina brojaga je L=10 cm. Gas BF, nalazi se na temperaturi od 0°C i pritisku
0,3 at. u
Napomena:

Efikasnost detekcije definisati kao verovatnocu za (u, «) reakciju po jednom upad-
nom neutronu.

I C34l Na slici je prikazana upro3¢ena aparatura za odredivanje energijc ncutronskog
snopa (metoda »time of flight«). Dva diska presvudena kadmijumom Gvrsto su ve-
zana za osu i mogu da se obréu konstaninom uglovnom brzinom. (Kadmijum ima
veliki presek za apsorpciju neutrona). Na diskovima D i D zasefene su pukotine
koje su pomerene jedna u odnosu na drugu za ugao 9.

D, ?\S'J D,

AT=40)s

N /
e

Na slici je dat i vremenski »odgovor« neutronskog brojata B. Znajuci da su diskovi
jedan od drugog na rastojanju L=1 m, da je $=6° odrediti: a) uglovnu brzinu
sistema; b) energiju neutrona; ¢) uglovnu Sirinu pukotinc.

C34

|C35| Cerenkovljevo zradenje proizvedeno je snopom naelektrisanih Gestica u
transparentnoj plan-paralelnoj plodici indeksa prelamanja n=1,6. Cestice pacaju
normalno na zatamnjenu povrfinu plodice kcja apsorbuje Cerenkovljevo zraéenje
koje do nje stigne. Druga strana plogice je opti¢ki polirana tako da se svctlost koja
do nje stigne posle prelamanja usmeruje u fotomultiplikator. Proceniti u kojem
intervalu brzina mogu ovakvim sistemom da sc analiziraju upadne Zestice.

C36l Kristal'scintilacione sonde postavljcn je paralelno Cerenkovljevem radijatoru,
&iji je indeks prelamanja 1,88. Zadnja strana radijatora premazana je tankim slojem

i
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aluminijuma koji reflektuje Cerenkovljevo zraenje. Paralelan snop visoko ener-
getskih protona upada na radijator. Eksperimentalno je utvrdeno da scintilaciona

Snop protonar

Seintilociona,
Sondas

C3c

sonda prima najveéi fluks Cerenkovljevog zradenja ako je radijator postavljen pod
uglom od 51,5° u odnosu na pravac upadnog snopa protona. Kolika je kinetitka
energija protona?

i C37 ! Naéi maksimalnu energiju B-spektra 80Br ako kraj spektra u semicirkularnom

magnetnom spektrometru odgovara polju od H=334,6 Qe. Radijus krivine trajek-
torije elektrona koji dospevaju do broja¥a spektrometra iznosi 25 cm. °

C38l Proceniti efikasnost detekcije gama kvanta energije 2 MeV scintilacionim

brojadem s kristalom NaJ debljine 2 cm u praveu puta gama kvanta, ako je linearni
koeficijent apsorpcije gama kvanata ove energije 0,18 cm~!l. Izradunati takode
maksimalan broj fotona koje emituje kristal pri komptonovskom rasejanju gama
kvanta u kristalu ako je konverziona efikasnost kristala za elektrone 10% a srednja
energija luminiscentnog fotona 3 eV. :

C39 Odrediti moé razlaganja (rezoluciju)
" magnetskog beta spektrometra sa kon-

stantnim magnetnim poljem normalnim

na ravan slike, ako ulazni procep (slit)

S dozvoljava samo elektronima, ¢iji su
uglovi «=:4-2° u odnosu na pravac nor-
malan na pravu 44’ da udu u spektrome-

tar. Koliko iznosi rezolucija za sludaj kada
izvor ima kona¥nu §irinu x=1 mm, a

A Ppolupregnik putanjeelektronaiznosi 30cm?

lC4O | Scintilacioni brojag sa kristalom antracena koristi se za detekciju protona.
energije 1 MeV. Odrediti amplitudu (naponskog) impulsa na anodi fotcmultiplika-
tora ako je kapacitet anode C=10 pF, RC konstanta anode velika, konverziona
efikasnost antracena (deo upadne energije zralenja koji se pretvara u svetlosnu
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energiju) K,==2%, faktor kolekcije svetlosti na fotokatodi Ks=50%, faktor konver-
zije fotokatode Kx==8%, (broj fotoelektrona prema broju upadnih fotona), faktor
multiplikacije fotomultiplikatora Fm= 106, a talasna duZina svetlosti kojom antracen
fluorescira oko 5000 A. )

| C41 ‘ Vrlo precizna merenja energije gama kvanta moguce je izvesti na kristalnom
spektrometru koji radi na principu Braggove interferencije rasejanog snopa gama
zradenja. Na slici je prikazana jedna verzija takvog spektrometra izvedenog sa kri-
stalom &ija je konstanta refetke d=4 A, a polupreénik krivine kristala jednak dvo-
strukom polupregniku »detekcionog kruga« (R=4. m).

Savient
Bristal

U tadki B, u kojoj se nalazi prvi interferencioni maksimum postavljen je detektor
gama zradenja, ili fotografska plota. Pokazati da je merenjem duZine luka AB
moguée odrediti energiju gama kvanta. Kolika je duZina luka za slabo kolimisan
snop gama zraka energije 100 keV?

I C42| Na slici je prikazan par (elektronsko-pozitronski) spektrometar koji se koristi
za merenje energija visoko-energetskih gama kvanata (do 500 MeV). Gama kvant
upada normalno na foliju F, kreira par, koji u homogenom magnetnom polju,
normalnom na ravan slike opisuje dve kruZnice polupretnika re+ i re—.

c4n.

Scintilacioni brojadi (sa plasti¢nim scintilatorom) sa leve i desne strane (D1, D3,
«+«s Dy, Dy . .) vezani su u koincidentna elektronska kola, koja registruju dogadaje
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jedino kada dve &estice padnu istovremeno i to jedna u neki od levih a druga u neki
od desnih broja¥a. Polje normalno na ravan slike iznosi B=2T, a poluprenik

-spektrometra 0,5 m. Pretpostaviti da su Cestice istovremeno pale u brojade Dy i D,

koji se nalaze pod uglovima 2=90° i 2«=60° u odnosu na upadni pravac gama
kvanta. Kolika je energija gama kvanta? (Pretpostaviti da su pozitron i elektron
ultrarelativistiGke Cestice).

|C43| Postavljanje maglene (Wilsonove) ili mehuraste (»bubble«)
e komore u magnetno polje omogucava da se prema radi-
jusu krivine trajektorije odredi impuls &estice. Kretanje u
¢ homogenom polju je kruZno (brzina normalna na polje)
3 sa radijusom krivine

c

o028,

. C43 eB
Radij.us kr!ving, pa_i impuls, najfe§ée se odreduju posredno, merenjem strele S
(»sagittaq) i pripadajuéeg luka I Naéi pribliZan izraz za impuls preko veli¢ina Si/

za sluéaj male zakrivljenosti trajektorije.



RC1 | Iz simetrije problema (u poloZaju —uv¢ i vt) vidi se da je x-komponenta
transfera impulsa jednaka nuli pa je:

=

p=p,=[F,di=[e8, (t)dr.

o

Rl 4 v E, 0
= e e
M % b : x \ j /
~vt vt RC4b

Vrednost ovog izraza nadimo primenom Gaussove teoreme. Izaberimo cil‘indriénu
Gaussovu povrSinu radijusa jednakog parametru sudara b. Bice:

f§.¢1§= f{-_SyZT:bde4nz¢

tj.:
2 ze
f@,dxr-:——b—-.

Promena polja &, (f) na mestu elektrona ista je kao da se elektron kredée brzinom v
po izvodnici cilindra prema &estici ze, tj.:

v r o dx 2rze

-

Tako je impuls elektrona jednak:

p=pyﬂf8y6dt=

2 ze?
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a transfer energije:
P2 et M 2226

2 — e

2m b Ty, m mby:

e

Ako po cm3 apsorbera ima N =—Z-£-]YAK elektrona, tada je broj elektrona sa pa-

rametrom sudara izmedu b i b4-db na putu &estice dx jednak:

d8
AN=Nav=Z28Nav 0 gy ax
A
z

pa je gubitak energije destice na putu dx ‘y

zbog jonizacije atoma u sloju b, b--db,

jednak: RCie e dt ]
ZoN,, 2224

—~dE(b)=T,dN=2nbdbdx .
mb? v?

Otud je ukupan gubitak energije na ovom putu na jonizaciju (zasad samo prosti
transfer energije elektronima) atoma sredine smestenih u cilindru sa nekim b,
i b, jednak:

bmax
_A4E_ 4nzZe'NyeZ @=4nzze‘n2mbma,
dx mv* 4 b m? b
bmin

gde je n=pN4v/A broj atoma po jedinici zapremine. Minimalnu vrednost para-
metra sudara nalazimo iz &injenice da je (klasi¢no) maksimalna brzina koju elek-
tron u sudaru moZe da dobije jednaka 2v (za najmanji moguéi parametar sidara)
te da je maksimalni moguéi transfer energije:

1 2 2 o4
T,<—m(2 V)2 = _.._22.__8_.
2 mbpin V2
odnosno:
ze?
bmin"‘" Py
my

Maksimalnu vrednost b nalazimo iz nevaZenja pretpostavke da je elektron za vreme
sudara slobodan. Elektroni su, defakto, vezani, i ako je transfer energije manji od
srednjeg jonizacionog potencijala I (za b>bmas) do gubitka energije neée ni doéi.
Mora biti, dakle:

2 54
T,>1= 222 [
mb'max v?
odakle je:
ze? [ 2\
By =— =) .
™y (mI)

6 Zbirka rclonih zadatakn iz oplte nuklearne fizike
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Tako je konaéno:
2 o4 2
_‘E= 2n22e*Zn n 2 my , QET
dx my? I

§to je samo za faktor 2 manje od egzaktnijeg izraza (Bohr, 1913).

RC2| Kako je p2=12/c2=5%10"3 to ga svuda u datom izrazu za specifi¢nu

jonizaciju moZemo zanemariti. Za vazduh koji je smeSa 22% O, i 78% N, nalazimo
da je {Zy=141i {A4)~29 pa je uz p=1,29x 103 g/fcm3

,_———N Zy=3,4%10%cm™3.
> awlZ)y= C

Tako je:

- ‘—1—1::= 0,6 MeVcm™!
dx

i a-Cestica po 1 cm puta jonizuje ~17000 atoma. Domet joj je:

Ry = dEE =16,7cm

dx

§to je znatno vede od emplruskog dometa Rg™ ~11 cm jer smo zanemarili &inje-

nicu da se gustina jonizacije na kraju puta povecava.

[rC3 Energija i masa Cestice povezani su izrazom E=M)(v) gde je f(v) neka
funkcija brzine. Dakle, izraz za domet u funkciji energije postaje

R(E)=%g(£—).

Odnos dometa naelektrisane Sestice (M,, Z,) i dometa protona jednak je, ako je
energija Cestice §, a energija protona E,:

Da ovaj koliénik ne bi zavisio od nepoznate funkcije g(;{g) mora da bude ispunjen

uslov:
M! MP 1
Dakle:
M, 1 M,
R®-Ylg 4“)
®=1 "(M.
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] RC4| Za fiksni put dx fluktuacija gubitka energije &estice neka bude SE2,

a za fiksni gubitak energue dE neka fluktuacija puta &estice bude 3 x2. Tada lzmedu
dve fluktuacije (puta i gubitka energije) postoji Jednostavna veza:

3 (dE\-2 B E?
dE (dx) dx

Ukupno osipanje dometa bice:

iy Eu&( W““f ()" iomas-
,_’;_ E;;(aEz)( )345.

Ako iskoristimo sada Bohr-ovu formulu dobiéemo:

Eq
-3
cz=£4nzfzzNe4f (fif) dE.
2 r dx

Medutim, kako je:

a'E)~3 1
A e (B
bice: (dx (4mziz, et
Eo
P N f dE
2 (drnziz,eh? 2(E)
)

| RCS ! Domet €estice i njen specifiéni gubitak energije dE/dx povezani su izrazom:

Rfiii‘dE
d
4]

gde je Ey podetna energija Zestice.
U naSem sludaju
E}®
T

Dakle, za energiju od 10 MeV domet je:

1,8
Ro=22_0,78m
81
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a domet za energiju od 100 MeV je:

10%6

R,y = =49m
100 81

IRC6[ Buduéi da se radi o brzoj beta &estici impulsi atomskih elektrona su
znatno manji od njenog impulsa, tako da u prvoj aproksimaciji moZemo da sma-
tramo da su u odnosu na beta-Zesticu atomski elektroni slobodni*i u miru. Otud
je i jasno za3to smo za presek za interakciju uzeli Raderfordov presek koji opisuje
elasti¢no rasejanje elektrona impulsa p na elektronu u miru.

Gubitak energije beta Cestice na jedinici puta iznosi:

e 45 (9)
d NZ‘[E(&) aQ

%
gde je NZ broj elektrona gasa po jedinici zapremine, a E(8) gubitak energije beta

a9

. . . 3 P . . -
Bestica u pojedinadnom sudaru. Veli¢ina E(9) je povezana sa transferom impulsa g
izrazom:

. -2
q - S - -
E@)=——; =|p —p|=2psin— =~ p-9; 1=|p].
& =5 lg|=p"—p|=2p i ? [p'|=lp|
Dakle:
_dE_4AmNZe‘m f&zd—-&: 4w NZe*m In B ax .
dx J & 94 P* Fnin
Maksimalni vugao skretanja (dmaz) odredujemo iz uslova da je najveéi transfer
impulsa u elastiénom rasejanju jednak ba§ impulsu upadne destice, tj.:
Inaz=p Smas=p
odavde zakljudujemo da je 9, > 1.
Minimalna predaja energije jednaka je srednjoj jonizacionoj energiji atoma el
Napigimo zakou odrZanja energije:

1 , 1 p+ ,
el=—(p-p)=—LTL (pp),
2m m 2

podto se radi o kvazielastiCnom rasejanju p’ = p, a za male uglove (p—p') =~ | 17—;;[.—:
=qg=pdmu;

To jest:
erxt P ias
m
odnosno:
el
'Smin Sl
oy

Koriséenjem vrednosti za kriti¥ne uglove rasejanja dobijamo slede¢i izraz za gubitak
energije befa estice na jediniénom putu:
' 4
——(I—E==4'rrNZmi meZ.
dx p* e
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RC7| Neka usvakom pojedinadnom sudaru elektrona sa atomom sredine srednji
kvadrat ugla skretanja elektrona budc mali i jednak

G2=[927(® ds. .

Funkeiju raspodele elektrona po uglovima za Raderfordovo rasejanje (f(9)) mo-
Femo da izrazimo preko diferencijainog efikasnog preseka na sledeéi nadin:

do (9) dQ

dQ ds 1 do(®) dQ

IO =raman ;"5 aa dv
' dQ d%

gde smo sa o oznaiili totalni efikasni presek, a sa dQ prostorni ugao (dQ=
=2 nsind dP).
Dakle:

1 da
=" | 2 ——dQ
3% cf dQ

_2}_(22::’)2 dd 21:(2ze2) 9,

e e In —max
_mv?

9 [} 3‘min

82t [ my?

Posto smo pretpostavili da je talasna du¥ina A* elektrona manja od polupregnika
jezgra nikakva klasiéna ocena grani&nih uglova (Pmaz i 9min) ne dolazi u obuzir.
Medutim, ako podemo od izraza za predati impuls u aktu sudara

- ) —+/ —

q=p —p,

i imajuéi u vidu da je za elastiSan sudar (kakvo je Raderfordovo rasejanje)

- . . B ki
lp'l=lpl 4. g=2psin_| =pd=s¥

. Dobiéemo:

g2,
A

Iskoristimo sada relaciju neodredenosti izmedu impulsa (g) i koordinate (r). U slu-
&aju »dalekog sudara« koji odgovara minimalnoj vrednosti 9, elektron se sudara
sa atomom kao celinom, koji ima linearne dimenzije pribliZno jednake Borovom
radijusu (ag), tj.:

1 A%

—  tj.  Ypp=—-

4 9o

U sludaju »bliskog sudarac, kada se elektron sudara sa jezgrom (i kada je ostvaren
maksimalni transfer energije) q/fi=~1/R. (gde je R radijus jezgra).
Prema tome:

B0

e,
max

e
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Sada, izraz za srednji kvadrat rasejanja elektrona u pojedina&nom sudaru postaje:

2
<92>=2—’—‘(-—22“ Jina.
a \ my? R

Ako sa n oznadimo broj sudara elektrona na duZini puta kroz materijal (L), tada
je ukupni srednji kvadrat skretanja elektrona zbog viSestrukog rasejanja:

a2y =n (97) =—€~ 9%

gde jt?‘ v=1/¢ N duZina slobodnog puta elektrona u materijalu. Krajnji izraz za
srednji kvadrat skretanja snopa glasi:
2 2ze*\2 a )
(o> = LN 6 (92) =zn1v(-~) Lin%
. my? R

| RC8 l Kao i uvek, gubitak energije dE zavisice od predenog puta dx i energije £
koju snop ima na ulazu: '

—dE=k E dx
E ESdE  QOdavde je integracijom:
E x E
RC8 g lnE{Eo= ——kxlo 4. In—=—kx

(]
Kako je za x==Ig, po definiciji, E=E/e, bice:

. k=1l
tj. konaéno:
E(xy=E eIt
Pofetnu relaciju sada moZemo pisati kao: _4E =—E-.
dx I

Ako je gubitak energije dE na putu dx uslovljen emisijom @ (v) d v==d & fotona
zakogenog zratenja sa udestanostima izmedu v i v-4-dv bide ocigledno:

Ymax Ymax

_d_EaNf hvm(v)dv=1vf hvde=2_ 1Y
dx J In I
o

gde je N broj atoma/cm3. Tako je:

zgﬂé:&l‘fhva'a
I

R
-odnusno:

T
i, f (IV)""LlnE"s L e

N kv NI, E NI, v,
R o v r E Nl v

1
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§to je i traZeni rezultat. Za konkretan sludaj bice:

. -2
=@ gem i N=PN,,—84x10%cm-?
p(g-cm—3 A4 7

pa je:
o122 _ 48 barn.
NI

R

[rRCo [ Kako je /r=1,435 cm > debljine d, to elcktron gubi energiju samo jednom
interakcijom i energija kvanta zakotnog zradenja treba da bude u intervalu 0,25 E<

‘ <hv<0,5 E. Uskladu sa rezultatom prethodnog zadatka presek za ovakav proces je:

. 0,5
1 j‘d(hv)=ln2

TN J Tk NI
0,25

i totalna verovatnoda:

W=0‘Nd=1£-ln 2=0,145~ 15%
: R

§to je relativno velika verovatnoéa. Preseci zakonog zralenja u naizmenidnoj
kombinaciji sa proizvodnjom parova odgovorni su za pojave »pljuskova« u kosmié-
kom zradenju upravo zbog ove velike verovatnofe za emisiju visokoenergetskih
kvanata zako&nog zradenja.

IRCIOI Polazeéi od izraza za specifiSni gubitak energije elektrona na zakoéno
zracenje dobijamo:

_dE_ds
E A
gde je
A=4zlocNErfln-lﬂ)-.
. 2103
Integracijom se dobija:
‘ E=E,e~4,
Ako je
E_1
E, 2
tada se za debljinu materijala (xo) dobija:
x,=4Aln 2=4zzacNEr3h12]n1—82.
213
|RC1]I Kori$¢enjem datog izraza bice:
‘A2 4 B2 gin2
m‘_I_I;':=1= 2ety @ x By =2e B sin sz 2
dt 3Im?cs Imics
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a kako je
velagon i y=Lt
YZ mcz
to je:

_dE_2e*B} ( EV
dt 3Im?c { mcz) ]
Za ultrarelativistitku Zesticu sa E>me2 biée konatno
_dE_2¢'B}

dt 3mtc?

Intenzitet sinhrot;onskog zraenja je, dakle, ubrnuto proporcionalan® detvrtom
stepenu mase &estice; proton zradi (mp/me)* ~ 1013 slabije od elektrona. Prakti®no
samo elektroni trpe znadajne gubitke na ovu vrstu zradenja!

| RClZl Zakoni odrZanja glase:
E=h (0+E1
=-h—ﬁcos3+plc05cp
G
L sin 8 = p, sin ¢.
¢

Kvadriranje treée i druge jednagine respektivno, daje:

2 42
cos?q=1~ hzmzsinz.‘}
. c1Py
i
2 02
Pr-pi=2pl o5yt Q)
[ ¢y

Koriicenjem veze E=\c2p2+m2c¢H)l2 i prve jednadine je:

E*—E} 2Fia—-hwo?
o2 = 2

p—pi=

pa peta jedna&ina(*) uz ;=§2~7i c=nc), posle malih transformacija daje:
¢ .

2
0083=—£‘—[1 +_}im_(n_l}-
v 2E

' Kako je ho<E to je konadno:

cos § = L QED
v
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iRClSI Integracija date spektralne distribucije u odredenom intervalu udestanosti

dade nam direktno specifitan gubitak energije elektrona na emisiju Cerenkovljevog
zratenja iz tog intervala:

Wy 2 ’ (273
9 fth(m)do)=—e—sin2&fo)dm.
dx c?

Kako je o '
cf 1
sin23=1-cosz1‘}=l——v—z-= .._n_z.éz_

biée dalje:

2 2 2
LD
dx ¢* n?p? 2 2 ‘ ) AV 1
to je i traZeni opsti izraz za specifiéni gubitak energije. Kako je u naSem slu&aju
E=1 MeV i B2=1-— 5=0,886 to je

E
Ty
( kmcz)

% _ 47 V/em.
dx

!RCM' Za proces:

moZemo da napiSemo zakone odrZanja energije i impulsa kvadrivektorskom jed-

nadinom:
: Pet +Pom =Py, +Pr,-

Kvadriranjem ovog izraza dobijamo:

ette™— v+,

PR+ Pim 4 2P Pem =Dh + DT+ 2 Dy, Py,
Kako je:
pir=pio= —m?

p%:piz:()
Det+ ‘pe-‘ =;‘¢+ . 1—;:—‘ —Ept Epme = —m, (T+me)

jer je elektron u miru.
Imademo:
=Py Pry=m, T+ 2 m,)

=Py, Pru= —DPv, Py, c08 ¥+ Ey E, = Ey, Ey, (1—cos 9),
(jer je E,=p,).
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Dakle:
1—cos = M (T+2me) (RC14.1)
E*n E‘fz

Zakon odrZanja energije i zahtev zadatka da energije dva gama kvanta budu jednake
daje uslov:
2E,=Ey+Ey,=T,+2m,.

(RC14.2)
(E'Yl = EYz =E)
Kombinovanjem jednadina (RCl4.1) i (RC14.2) dobija se:
sini_\/l-cos& .
2 2

U naSem sludaju 9~ 100°.

Maksimalni ugao izmedu dva kvanta dobija se u sluaju kada je energija pozitrona -

T=0i iznosi %=80°.
[RC15| Po datom izrazu nalazimo da je

oy~ 910 barn/atom.

Srednji slobodni put {I> definisan je kao debljina materijala posle koje potetni
intenzitet opadne e puta, tj.:

L’Q.—_.-Jog"l'-(')
p; ‘
odakle je (l>=-l~~. Kako je
"
(L=Na=~5—NAycrzS4,5 om-!

nalazimo da je
< ..-——0 0185 cm.

|RC16| Ako je a ubrzanje elektrona bice:
e -

binearno

polarisan t eledtran eg=m ;;
Foton S om

v a-28
RC16 m

pa je srednja izraZena snaga od strane elektrona jednaka:

< >—~5—;5m1 <&
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Ova je energija oduzeta od upadnog talasa &iji je intenzitet
Io= £ (&>  (ergem~2s5~1)
1: .

pa ponovo izrafena u 4 © i moZe se 1zrazm preko preseka po elektronu definisanom

kao:
oply={(— ).
=)

Ova je d=finicija ekvivalentna tvrdnji da sva energija koja padne na povriinu or
biva apsorbovana pa ponovo izradena u 4 ~ &ime je za upadni snop defakto izgub-
ljena.

Tako je:

(a)
it -
dt ki (__e___) 8= ri=o0, 66 barn/elektron
mc? ER

gde je ry=2,8x 10-13 cm klasiéni radijus elektrona. Vidimo da rezultat ne zavisi
od udlestanosti (energije) fotona §to je u protivure€nosti sa eksperimentom ali se
za male energije fotona dobro slaZe sa egzaktnom Klein-Nishina formulom.

!RCI7| Za a1 vafiée razvoji:

nos Ao @)

28D @up -2

(1+2a)"=1-2na+ 000 2)*+

Qer , @0’ o,

In(l+20)=20—
(1+20) 3 4

Sredujudi izraz i zadrZavajuéi se samo na ¢&lanovima linearnim po o dobijamo:

2
< o r,{————;“ 2 nd+2« )+————~—————————°‘+9°‘+8°‘+2}
O(.

o? (1+2x)?

3 2
=2nr3{(—;—a“l——a’z—a“3) (2a-2«2+~§—43~4m4)+2‘+_92‘£_t§1ﬁ}

o? (142 a)?
ﬁ—g’—nrz(l——Zoc):cT(l—2u)=0,66(1—2a) barn.

Za o> 1 bide:

I_'f.le, 20+ _Lm(“_za):lr_‘_z_ﬁ
o 1+2a @ @
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pa je:
224 3 2
Pl =ap,2 [ 20 2In(1420) 4 ZHI 4 Bax
243 a? (1+2a)

1

znrf-‘-(lnza+i)=~3—u,—~(ln2a+-1~)=o,2475i<ln2«+i) barn.
'3 2 8 2 @ 2

o«

Iz ovih izraza nalazimo da su preseci za date energije:

0,0

)

00" ~6,=0,67barn  j "2 0,09 barn.

[RCI8] Kako je:
”ijl-'.= ‘/zv -E

c c
iz
q2=q2
g bice:
hv= (, 2me
RCig {l T

,RC19] Kako je

J 1
—— e e ¥ S8 pos= g, - Heompton

Jo 4

nalazimo da je:
: ©®=6,9 cm-1,

a kako je apsorpcioni koeficijent posledica interakcija na & atoma/cm3 sa nekim

srednjim presekom (verovatnoéom) g, tj.:

y.==Nc=~:—NAyc

to je:

G = Ofoto -+ Ocompton =
AV

]RC20] Pocetni intenzitet Jy (videti sliku) jednak je:

Jo=No (E;—E))

-P2—2 gp cos [

me? )
ciE = 0,5 MeV.,
} cosp— 1

A = 120 barn/atom.
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odakle je:
: e 7,
E,~ Ex
Dalje je:
dJo=NydE
-t e (1)
Ez - Ex
Smanjenje diferencijalnog intenziteta dJy iznosi:
dJ=d]J, pe k¥
) e~rigE 2
E,—E,

Sa slike se vidi da je:

de__v-p_p-p,

€ E,~E,  E,-F

tj.:

dE= E;EL dp.
‘ Ll
Jednaéina za 47 sada se moZe napisati u obliku:
dr=—"% e~wxdy
' By =2y
Integracijom gornje jednadine dobija se:

£y Ha .
J= f dJ = f dr=— "% (e~ — gma) ®
x (g = pg)
E, My

gde je y; (i=1, 2) linearni atenuacionj koeficijent a x debljina apsorbera,
U zadatku su dati maseni atenuacionj koeficijenti. Veza izmedu linearnog (w)
i masenog (tn) atenuacionog koeficijenta data je relacijom:

B={m p

gde je sa p oznadena gustina apsorbera, Na taj nadin izraz za J moZe se, konaéno,
napisati u obliku: .

7 ~Jy
_— =k
xp (em—p2)

Zamenom brojnih vrednosti dobija se: J=0,33 J,.

1 2
(e-umpx - e—“:;:“) .
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IRCZI[ Fluks gama kvanata na spoljadnjoj povriini olovnog ekrana jednak je:
J .
4mr?

@=

gde jo J — broj nerasejanih gama kvanata koji u 1 s produ kroz spolja¥nju povrinu

ekrana a r spolja$nji radijus ekrana. Kako je:

o2 '
o J=Jye "
sledi da je:
2,
o-Joe M
4mr?

gde je Jo — broj gama kvanata koje izvor emituje u 1 s, dy;2 — debljina poluapsorp-
cije a x debljina olovnog apsorbera.
Zamenom brojnih vrednosti dobija se:

D=1,73%x 103 y/cm?-s.

l RC22] _Intenziteti zradenja Iy i I'; posle prolaska kroz apsorber debljine x iznosice:

n2 x
—ly X —dIIZX .—E
I, =I e ™m*=] e =12

X
L=l e %= ... =I 2%
gde su: py (i=1, 2) koeficijent slabljenja a d; (i=1, 2) debljina poluapsorpcije.
Uzimajuéi u obzir da je Iy, ~ Iy, odnos intenziteta [y i I, biée jednak:
11
L_,*Ga)
IZ
Iz uslova zadatka sledi da je:

dy=2d,. ‘
Prema tome, izraz za I /I, (relativni intenzitet) moZe se napisati u obliku:
X
L,
12
Za vrednosti debljina apsorbera x=d;, 2dy, ..., nd; relativni intenzitet Iy/I, iz-

nosi: 1/VZ, (1/V/2)2, ...,(1/V2)" respektivno.

_RCZS[ Sa ¥eme raspada 60Co vidi se da beta minus raspad jezgra 69Co sledi
‘kaskadna emisija dva gama fotona 60Ni. Ako se u olovnom oklopu svake sekunde
apsorbuje J,i,, fotona energije Ey, i J,f,, fotona energije E,, tada ¢e energija os-
lobodena u 1s u olovnom oklopu (tj. snaga) iznositi:

W=Ji E‘n""’sn E,,.
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Uzimajuéi u obzir pretpostavki da je E, = E;,=FE=1,25 MeV i da su pogeini
intenziteti fotona Jj i J& jednaki sledi da je: '
‘ Jop=Top=J,.
S druge strane imamo da je:

SELLEP)
Jap=Jo—J, e"“*=Jo(l —e i "’) =;;—Jo

. gde je Jo potetni intenzitet koji je (ako se zanemari interna konverzija) brojno jednak

aktivnosti izvora (4).
Prema tome, konadno se dobija:

W=%AE= 8,1 MeVs—1=3,1 mcals—1.

iRC24! Slabljenje intenziteta neutronskog snopa iznosi:

AJ
—=—p.Ad
7 o & @, ‘
gde su p, maseni atenuacioni koeficijent a Adp povrSinska gustina mete.
Presek za elastidno rasejanje (o) povezan je sa masenim atenuacionim koeficijentom
(um) izrazom: ) .
N,

l‘mM

gde je N,, Avogadrov broj a M masa gram atoma olova.
S druge strane izmedu preseka za elastiéno rasejanje i polupre¢nika jezgra (2a sluaj
kada je talasna duZina A neutrona mnogo manja od poluprenika jezgra R) postoji
veza: .

o R2m.,

Kombinujuéi gornja tri izraza dobija se:

L [M@BITY

— : ~13 ;
*\ =N, Ad, 8,8 x 10~13cm.

R

RC25| a) Da bi broj 8-elektrona bio razlitit od nule mora da bude ispunjen

uslov
T <2mgv2

gde je v brzina upadne alfa-Cestice.
Odavde, u nerelativistitkoj aproksimaciji, lako nalazimo minimalnu energiju alfa
Cestice: )

E.;"i"=%m¢"'2==" M

T, =22 MeV.

e
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b) Energiju alfa gestice pri kojoj se formira maksimalan broj 3-elektrona na jedinici
duZine dobijamo iz uslova

—‘?LV——O odnosno _¢_)_J_V_= 0
dE, ov?
i
Ey= LT 7 44 MeV.
mB

Na ovoj energiji broj 3-elektrona na 1 mm iznosi:

wnZ?et
7
Ti

Ny= ~ 185 mm~1.

E
| RC26] Alfa-gestica energije E obrazuje ukupno B jonskih parova. Ako ovu

L 4 . . . :
veliéinu pomnoZimo sa naelektrisanjem elektrona (¢) i sa brojem &estica koje upadaju
u kondenzator u jedinici vremena dobi¢emo jadinu elektri¢ne struje. Za sludaj koji
je prikazan na slici jadina struje iznosi:

i=—1—A—§—e=2,24 x 10-9A
P

gde je A aktivnost izvora a faktor 1/2 dolazi zbog (tzv. 2 = geometrije) toga §to
samo jedna polovina emitovanih alfa estica dospeva u kondenzator.

IRC27 Broj neutrona koji dospe u jedinici vremena u jonizacionu komoru iznosi
@ S, gde je @ fluks neutrona, a S detekciona povriina komore. Verovatnoéa da jedan
neutron interaguje sa atomima vodonika u komori iznosi:

W=an

gde je n broj atoma vodonika po jedinici povriine,

ne=— (P V) (k-Boltzmannova konstanta)
S \kT,

Dakle, ukupan broj interakcija neutron-atom vodonika u jedinici vremena iznosi:
N=®SW=0o® (’—’Y—).
kT,

Ukupna struja u komori jednaka je:

t—eN———s—e £ e I;-96«10 T4

E/p y/d

gde je E energija neutrona e faktor konverzije neutronske energije a Ej, energija
potrebna za stvaranje jednog jonskog para.

OSNOVI DETEKCIIE ZRACENIA 97

:RCZB Ako je specifi¢na jonizacija vazduha za mezone po jedinici duine 7,
jedan mezon ¢e na duZini komore (L) stvoriti ukupno:

n=nL Py jounskih parova
a
gde su: p, pritisak u komori, a p, atmosferski (normalni) pritisak. Kako u komoru
u jednoj sekundi dospeva @ S mezona (S je povr§ina komore) ukupna.struja bide
jednaka:

»izg—enLSZ¢ (Pulp) = 1,4 x 10-13 A,

RC29| PosluZzimo se Gaussovom teoremom da bismo nadli polje u brojatu u
funkciji rastojanja r. Za Gaussovu povr§inu izaberimo cilindar radijusa r i duZine /.
Bice:

q q const dV

R e R o S e £ e

S g2nrl r
pa je razlika potencijala

]
V ==const f]—': =const In —é—
r a
odakle je: ‘
|4 . 1 4
b b’

const = i E(r)=

In — rin — RC29
- a a

Brzina jona u ovom polju i na datom pritisku biée:

v(r)———~~—-——--————-————-—--—-
d p pln—b~ r
a odatle je:
b T
frdr= det
a .0
pa je traZeno vreme: )
1 : (bz—az)pln—g——
=P .
T 2K( ) ZaV 500 s

!RCBO[ Elektri¢no polje unutar koaksijalnog cilindra spolja¥njeg pre(’.‘m’ka_ 2b,
na rastojanju x od anode pre¢nika 2 a iznosi:
. v,

E=

xIn—
a

gde je ¥y napon izmedu elektroda.
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Na slobodnoj duZini puta A blizu anode elektri¢no polje saopiti elektronu energiju
od: .
a+A y
W=ef Edx=-* Z ln)\—tﬁz’j?ev
m— 4

Ova energija je veca od srednjeg jonizacionog potencijala argona (16 eV) tako da
e doéi do intenzivne lavinske jonizacije gasa. ZakljuCujemo da ovaj broja¢ ne radi
u proporcionalnoj oblasti.

I RC31| Pri prolasku kroz jonizacionu komoru jona vazduha napon na elektrodama

promeni s¢ za iznos
v,= & Lo3ax10Y
C E,

gde je C unutra¥nji kapacitet komore, E energija upadne Sestice a Ejp energija po-
trebna za stvaranje jonskog para.
Pojadanje linearnog pojatavaca jednako je:

A—_-I—;;f- i uz ¥,=32V bie A=1000.

o

Osipanje naponskog impulsa uslovljenog prolaskom alfa Zestice meo¥emo pribliZzno

da prikaZemo izrazom
!
vy=V,e .

Poito Felimo da ogranidimo trajanje impulsa na 10~4s mora biti zadovoljen uslov:
104~ RC
Dakle, odvodni otpornik treba da ima vrednost: R=~10 MQ.

!RC32’ Neka se u trenutku vremena ! odigra akt detekcije u brojatu 1. Skaler.

e registrovati slucajnu koincidenciju jedino ako se u vremenskom intervalu (t—,
t+7) (gde je T vrems cazlaganja koinc. kola) odigra i akt detekcije u brojadu 2.
Stvarn’ broj dogadaja koji moZe da registruje svaki brojag u jedinici vremena (bez
koincidentnog kola) jednak je

Q_ed &

N,=¢4d
 4n 16 L?
2
Moo G54
47 16 D?

gde su: A aktivnost izvora, € efikasnost za detekciju beta destica a d pregnik ulaznog
otvora brojaca.
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Verovdtnoéa da se desi n dogadaja u brojadu 2 u intervalu vremena 2 data je
Poissonovom raspodelom

)",
nl

P(n)=-

gde je M, srednji broj dogadaja u ovom vremenskom intervalu.
M, moZemo da izrazimo preko vremena razlaganja 2t i srednjeg broja stvarnih
dogadaja N, tj.:

My=2 % Nj.

_ Verovatnoda da se desi bar jedan akt detekcije u ovom vremenskom intervalu jed-

naka je:

P(n=l)=1—P (n=0)=1-—e"2*N2 =27 Nj.
Dakle, na svaki akt detekcije brojata 1 (a ima ih ukupno N;) moZe da se dogodi
2 ¢ N, koincidentnih dogadaja u brojagu 2. Zakljudujemo da je ukupan broj stuéajnih
koincidencija za vreme ¢ jednak:

Te2A2d%t

JEA 8 5,1 %106 dogadaja/h.
128 L2 D? gadaja/

N,,=2%N, Nt =

: RC33| Neka snop monoenergetskih neutrona fluksa ® pada na uzorak prirodnog
bora debljine dx. Ovaj snop proizveiée dV reakcija (1, ) u jedinici vremena po
jedinici povriine uzorka, tj.:

dN=® ng ag dx

gde je ny broj atoma bora po jedinici zapremine.
U stvarnosti samo 10B udestvuje u reakeiji (1, o). Dakle:

dN———'—(D Niog Ciop dx.
Uporedujuci gornje relacije, zakljuSujemo da je:

np 0‘5271103 [311):]
tj.:
o105 (1€V) =0 (1 €V) 2 = 667 barn.
Niop

Kako efikasni presek za reakciju (n, o) opada kao 1 /v, odnosno l/)/—f gde je T ki-
nstitka ensrgija neutrona, za dve kineti¢ke energije neutrona Ty i 75 moZemo da

napifemo: .
o (M) VTi= o (T)VT2
U zadatku bice:
105 (9 6V) =0105 (16V) \/%- ~222 barn.

Oznagimo sa I, intenzitet snopa neutrona na ulazu u proporcionalni brojad. Posle
dugine L, snop ée da oslabi na vrednost

I=1Ig e—wL

gde je @ koeficijent slabljenja (p.=n0p Giop)-
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Efikasnost detekcije jednaka je:
I,~1
0

Broj atoma 0B nalazimo preko molarne zapremine Vy,, Avogadrovog b.oja Nav,
i odnosa atmosferskog pritiska (p,) i pritiska u detektoru (p,)

=1—e Mogdupgl,

Ny pa (Mios
Top =—2K 24 (7108

)= 1,45 x 1018 jezgarafem?,
Vm Pa np
Dakle:
Riog Ciop L=3,21% 10-3.
Odnosno, efikasnost je:
e~ 3,4%x 1073,

{RCM[ a) Neutroni dospevaju u detektor B posle svakog punog obrta sistema
diskova. Sa slike se vidi da obrtaj traje v=10 ms. Dakle uglovna brzina sistema
iznosi: : .

@=2T_ 628 rads.
T

b) Vreme preleta neutrona (na konstantnoj uglovnoj brzini ) jednako je vremenu
potrebnom pukotini na disku D, da opife ugao 9. Iz ovog uslova nalazimo brzinu
I energiju neutrona: :

V=w—,

2
= -l—mv2 =—l—mc2 (E)——L—) =0,19eV.
2 2 de

c) Ako Sirinu pukotine iztazimo uglom A% imacemo:
Ag=2r25 2036
T
gde je At tiajanje neutronskog »impulsa«.

| RC35' Cerenkovljevo zradenje emitovano u pravcu & u odnosu na upadni pravac
destica zadovoljava uslov

prs L
fotomultiplibatore cos &= an
gde je 8=v/c brzina upadnih Zestica.

Za dati indeks prelamanja minimalna mo-
guca brzina Zestica koja ce jo§ da proiz-
vodi Cerenkovljevo zradenje je

RC35

Verin = € Boria = -n”— =0,625¢
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Maksimalnu brzinu Sestica odrediéemo iz uslova za totalnu refleksiju Cerenkovlje~

vog zradenja na optitki-poliranoj povrfini 2. Kritigki ugao 9 za totalnu ref) leksiju

odreden je uslovom ) '
. nsin 9p=1.

Znadéi, do scintilacionog brojada, dolaziée samo zralenje pod uglovima & koji za-

dovoljavaju uslov:

sin &gi
n

Kriti¢an ugao (9%) odreduje i kritiénu maksimalnu brzinu &estice

c ¢ c
v, = = = = = 0,8 C,
e = @ Bane ncos®, nYl—sin?d, Vn'-1
Dakle, Cerenkovljevo zradenje dolazi do brojada jedino ako su brzine &estica u
intervalu: :
‘ : 0,625<8<0,8.
‘ RC36| Maksimalan odgovor scintilacionog brojata odgovara uslovu da Ceren-

kovljevo zradenje upada normatno na reflektujuéu povrfinu i izlazi iz radijatora bez
prelamanja (videti sliku)

Jabasni
front RC36
C’:tmﬁovgaw,/
zm,‘.}-w —
xeﬂeefh?‘uz’a.
[ favtst'mu
ﬂﬂtant‘. & ol
pe
Iz uslova:
$=T0u
2
i
cosd=1[np
odredujemo brzinu protona:
[
Vp=0p=———'1;‘—"= 0,68 C.
ncos [——a
noos (5
Kineti¢ka energija protona jednaka je:
2
T= 1000, c*=341MeV.

= e
Fl(037l Impuls elektrona koji imaju datu trajektoriju nalazimo iz uslova:
.f-.yB:..’t'_v.z.
¢ P
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odakle je:
e
p=— B. p
c

Energiju preko parametara trajektorije i polja (magnetne »Svrstine« Bp) nalazimo

kao:

=
(Bp)?+1—11=2,05MeV.

m? c*

T= Vp’ c? 4 m? c4—~l7102=mc2[\/

IRC38I Efikasnost detekcije definiSemo kao relativni odnos atenuiranog i upad-
nog intenziteta gama kvanata koji dospevaju u kristal

I,—1I

R B 114

o

gde je x duZina puta gama kvanta kroz kristal, a  linearni apsorpcioni koeficijent.

U Komptonovom rasejanju maksimalna energija koju moZe da dobije elektron

iznosi:
y »»-EY’-HCZ- = 1,77 MeV.
2E,

Dakle, ovakav elektron moZe da kreira ukupno

N=% Tinax = 6x 10 luminescentnih fotona
¢

(e« je konverziona efikasnost kristala, a ¢ energija luminescentnog fotona).

|RC39I Za tatkasti radioaktivni izvor u beta spektrometru sa konstantnim mag-
netnim poljam moé (impulsnog) razlaganja (v) odredena je samo ulaznom aperturom
instrumenta, kao §to se vidi i iz geometrijske konstrukcije tri kriti¢ne elektronske
putanje, za elektrone sa istim ulaznim impulsima (apsolutnim vrednostima) a razli-
ditim pravcima u prostoru.
Po definiciji:

Ap

p=-L
p

gde je Ap neodredenost impulsa merena du? prave A4’. Medutim, kako je
p~H:p
gde je p poluprednik putanje elektrona, sledi da je:

_AHe) Ap

Hp e

(zbog konstantnosti magnetnog polja).
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Iz trougla AMM’ vidi se da je:
2
Ap=2p(l—cosa)~aPp (1 -—i“;) . (ako je a<1)
Dakle, moé razlaganja iznosi:
Ap «?
==fow(1-Z)=0,12%.
N ; ( 12) %

Ako radioaktivni izvor ima konadnu §irinu x, moé razlaganja je jednaka:

n=~éf——'-_——x—:u2+i=0,45%.
[ e

: RC40| Amplituda naponskog impulsa na anodi fotoﬁlultiplikatora moZe da se
zrazi preko kapaciteta anode i naelektrisanja koje se na njoj sakuplja, tj.:

Vo =e
c

max

Broj elektrona N proporcionalan je faktoru multiplikacije fotomultiplikatora Fp,
i]'gklt(?ru kolekcije svetlosti na fotokatodi K kao i faktoru konverzije fotokatode K.
akle :
N=0Fm Ka Kk.

Koeficijent proporcionalnosti (@) mora da zavisi od konverzione efikasnosti kristala
antracena K, kao i od broja karakteristi¢nih fotona antracena n==(Ep/hc) A.

Prema tome:
N=%)\Fm K. K, K;;

odnosno:

elE,

| 4 =”’;;“C‘?K¢K:Kka=:5’15V'

max

|RC41[ Braggov uslov za prvi interferencioni maksimum u rasejanom snopu

gama zraka glasi:
A=2dsind

gde je A talasnma duZina gama-zraka.
Energija gama zraka jednaka je, dakle:

he he
E =" . i, ako je $<£1:
YN T Zdsing Je 9<
- he
" 249
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S druge strane, ugao % i luk AB su direktno proporcionalni (&-—:ﬁ/Z R), tako da
energiju gama zraka moZemo da koreliramo sa poloZajem prvog interferencionog
maksimuma na sledeéi nadin:

~ Za slabo kolimisan snop gama zraka energije E, =100 keV luk AB=16 cm.

iRC42! Poluprenici putanja elektrona i pozitrona u magnetnom polju (kao
Sto se vidi iz geometrijske konstrukcije) iznose:

ro_=Rtgo i r,,=Rtgf

Izjednadavanjem Lorencove sa centrifugalnom silom dobijamo, da su sa druge
strane, poluprednici estica jednaki:

Vet ""pei;/EB'

Kako su elektron i pozitron ultrarelativistitke Cestice:

Per C= Ee:b .
Iz zakona odrZanja energije dobijamo traZenu energiju gama kvanta: GIOVO .,:

E,whiw=E,, +E._=(e, +1,) €cB

=R (tg x-4-tg ) ecB= 466 MeV.

Akceleratori

@ Sa slike je ;jéigledno:
. s=p (1-—cos 3)
< $to za p>I/2 uz
12

sind o~ ~-~8
s § 2
2 12

cosSzl—E-:1~A,..._
2 . 891

RC43 .
postaje

odakle je konacno:




D1 I U vedéini tipova akceleratora koristi se magnetno polje da bi se dobilo kretanje
Cestica po kruZnim orbitama. Ubrzavajuce elektrino
polje se primenjuje tangencijalno na orbitu estice,
i deluje kao moment sile oko ose aksijalne simetrije
(odredene komponentom B, magnetnog polja). Jed-
nadine kretanja Cestice koja se ubrzava u ovakvoj
kombinaciji polja najlakSe je dobiti u cilindri¢nom
koordinatnom sistemu. Oznagiti stoga sa r radijus
orbite &estice, sa z njeno pomeranje u odnosu na
»srednju ravang, sa & njen uglovni poloZaj (videti sliku) a zatim naéi diferencijalne
jednadine kretanja &estice. Uzeti u obzir da magnetno polje ima i Kkomponentu By,
da na &esticu deluje i deakceleratorski moment uslovljen gubitkom energije Cestice
na zakoéno zradenje, kao i da postoji vremenska varijacija magnetskog fluksa kroz
orbitu destice.

l D2 I Pretpostaviti da se proton kineti¢ke energije 1 GeV krece po idealnoj kruZnoj
orbiti u magnetnom polju jadine 1 T (tesla). Koliki je polupre&nik njegove orbite?
Kolika je frekvencija orbitalnog kretanja protona?

l D3| Ciklotron u Berkeleyu polupreénika 184 inda radi sa stalnim magnetnim
- poliem od 2,3 T. Izradunati:

a) NerelativistiCku orbitalnu ‘udestanost protona u
ovom polju. .

b) Maksimalnu kinetitku energiju do koje mogu da
se ubrzaju protoni.

| D4 Radiofrekventni napon izmedu duanata ciklotrona je »&etvrtast talas«
amplitude U==50 kV, a frekvence w.=eB/mp gde je mp masa mirovanja deuterona.
Koliku maksimalnu energiju moZe da dobije deuteron u ciklotronu pre nego 3to
njegova faza bude pomerena za ugao veéi od w-radijana u odnosu na radiofrekventni
napon? )

| D5| Relativistitka &estica ubrzava se u ciklotronu. Po kakvom vremenskom

zakonu treba menjati ubrzavajuée elektri¢no polje pa da orbitalna udestanost Zestice
i udestanost elektri¢nog polja budu u svakom trenutku vremena u rezonanci.

[ D6 I Efektivni ubrzavajuéi napon u ciklotronu iznosi U=10 kV, a menja se sa
udestanoséu fy=10 MHz. Poluprenik maksimalne orbite destice iznosi rg=70 cm,
Proceniti ukupan put koji u ciklotronu prevali nerelativistitka alfa Cestica za vreme
jednog ciklusa ubrzavanja.

v
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I D7 I Izradunati vreme potrebno da se deuteron u ciklotronu ubrza do energije
4 MeV. Homogeno magnetno polje je intenziteta 1 T, ubrzavajuéi napon 50 kV,
a izvor deuterona nalazi se u procepu izmedu duanata koji je Sirok 4 cm.

l D3 l Betatron ima sledece konstrukcione parametre:

— polupreénik stabilne orbite elektrona rg=96 cm

— maksimalni magnetni fluks ®,,=2 Wb

— struja u pobudnim kalemima se menja po sinusnom zakonu sa ulestanoitu
od 50 Hz.

B MAGNET
< 1
@ ( aooo \ oo oo
so0o0o0 yg\usnm o ooa
Aomora,
Rebsedni
D8 Kalemovi

Do koje maksimalne energije mogu da se ovim betatronom ubrzaju elektroni?
Koliko je vreme preleta elektrona?

I D9 l U trenutku vremena =0 fluks magnetnog polja u betatronu jednak je nuli.

Za ubrzanje elektrona na konstantnom polupreCniku _(ro) totalni fluks magnetnog
polja koji prode kioz orbitu mora da bude dvaput veci od fluksa homogenog mag-

netnog polja.
Dokazati!

|D10, Slika prikazuje sinhrotronski proton-
ski akcelerator. Odrediti kako treba da se
menja udestanost radiofrekventnog oscila-
tora u funkciji od energije protona.

e

D10

IDll] U svim akceleratorima zahteva se da magnetno polje obezbedi sile koje
&e vradati na centralnu (stabilnu) orbitu Zestice koje se iz I?ilo k'og razloga qd nje
udalje. Takva restituciona sila ostvaruje se u magnetnom polju koje opada po inten-
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zitetu sa porastom radijusa orbite Gestice. Najée¥¢e se izabira polje oblika:
n
Bt =Bx0 ('ﬁ]—)
r

gde je B,, intenzitet polja normalnog na srednju ravan, duZ centralne orbite rg.
Indeks polja n se kreée u granicama 0<<n< 1. Pretpostaviti da je magnetno polje
stacionarno (rot B=0) pa odrediti oblik restitucionih sila koje deluju na &esticu
du? radijusa i duZ z-ose.

|D12| Na slici je prikazan linearni akcelerator koji se sastoji od niza cevi koje su
naizmeni¢no povezane na dva izvora prosto promenljivog napona (Vgcos wt,
— ¥V cos o t). Cestice se ubrzavaju samo izmedu procepa koaksijalnih cilindara,
a duZine cilindara se izabiraju tako da &estice u svakom provedu polovinu perioda

\/ows wt

Jonshi

wt
Lavon -V, cos

Di2

(c/w). Odrediti duZinu n-tog cilindra ako &estica upada u linearni akcelerator sa
pocetnom energijom E,. Pratpostaviti da je &estica relativistitka. Cemu je jednaka
duZina n-tog cilindra ako je &estica ultrarelativistidka?

[DIBI IzraCunati snagu potrebnu za pogon linearnog elektronskog akceleratora.
Maksimalna energija elektrona iznosi 100 MeV. UZestanost naponskog izvora je
f=1000 MHz a faktor dobrote oscilatornog kola Q=105, Akcelerator se sastoji
od 100 koaksijalnih cilindara a kapacitet svakog procepa izmedu cilindara je 2 pF.

D14[ Moderni linearni akceleratori za formiranje ubrzavajuéeg elektridnog polja
koriste stojece elektromagnetne talase koji se formiraju u cevi c¢d provodnog ma-
terijala. Presek kroz akceleratorsku cev i oblik elektridnog polja prikazani su na
slici. Dijafragme (D) sluZe da ograni¢e faznu brzinu elektromagnetskih talasa na
vrednost ¢. Ako je brzina Cestice pribliZno jednaka faznoj brzini talasa ona ée se
ubrzavati pri prolasku kroz akceleratorsku cev sve dok »ostane« na talasnom bregu

( ”GO) D@ Z“".:::Ujf::';hli::#‘;::U‘“

/-—L-—/ :”‘

D
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elektrinog polja. Pretpostaviti da je u linearnom elektronskom akceleratoru rasto-
janje izmedu dijafragmi L=3 cm. Odrediti udestanost radiofrekventnog generatora
kojim treba napajati akcelerator. Ako je elektron ubafen u akcelerator pofetnom
kineti¢kom energijom 2 MeV i ako mu je energija na izlasku iz akceleratora 100 MeV
izradunati koliko centimetara je elektron zaostao za vrhom talasnog brega.

iDlSl Dve &estice istih masa mirovanja m=my=mkrecu se jedna drugoj u susret
relativisti€kim brzinama (u lab. sistemu) tako da su im i energije jednake: E}=E,=E.
(Princip rada akceleratora sa sudarajuéim snopovima, videti sliku). Naéi koliko je

Uobicajent A
abcelerators ,J)’Lat?az "'"'mfwﬁ
i wslenovi
oo energife E fphrstenove Rt
Pt obbast —
— energa &
D45

puta energija ovakvog sudara efektivno veéa od klasi¢nog slutaja kada se samo
Castica mase m krece (u laboratorijskom sistemu) istom energijom E prema nepo-
kretnoj Sestici-meti. Uporediti rezultat sa nerelativistickim slucajem.

D16| U uobitajenom eksperimentu nuklearne fizike ubrzana Cestica-projektil

bombarduje nepokretnu &esticu-metu. Na prvi pogled izgleda da kineti¢ka energija
projektila, u skladu sa Einsteinovom relacijom, cela moZe da se iskoristi za povecanje
mase produkata reakcije (recimo kreaciju novih estica). Za, recimo, kreaciju para
proton-antiproton dovoljno bi bilo da Cestica ima energiju od ~2 GeV koliko
iznosi zbir masa ovih dveju &estica. Ovo, medutim, nije taéno. Osim zakona odr-
Fanja energije simultano vaZi i zakon odrZanja impulsa pa i u najpogodnijem sluéaju
deonog sudara, kada se ne tro§i energija na transverzalno kretanje produkata reakcije,
interagujuée i novorodene &estice moraju da odnesu podetni impuls pa time i deo
pocetne energije krecuéi se u pravcu upadne Cestice. Shodno ovome, naci koliki
se deo kinetike energije projektila moZe pretvoriti u masu mirovanja novokreiranih
&estica u jednom ovakvom eksperimentu (neka su masa projektila i masa mete iste,

" my=my=m). Kao specijalan slugaj naéi koliki je prag kinetike energije protona
da bi se u sudaru sa drugim, mirujuc¢im protonom, mogao Kkreirati par proton-
-antiproton. Prodiskutovati kakve su prednosti eksperimenata tipa sudarajucih
snopova u ovom pogledu, kao i §ta su im opste, glavne, mane.

' IRDI | Vremenska promena z-komponente impulsa Cestice odredend je samo
radijalnom komponentom magnetnog polja (Br):

d
—;;pz =evy Br'

Kako je vg=r9 (gde ».« oznatuje diferenciranje po vremenu) »prva« jednatina
kretanja glasi:

-:—t (mz)=erdB,. '8))

Radijalno ubrzanje odreduje devijaciju &estice od idealne kru¥ne orbite. Jednagina
kretanja je:

d —m—"—§~ev B
d’p,~ r 35

odnosno, kako je p,=mi#, jednadina kretanja postaje:
d . . .
= (mi) =mr9*—er9B,. )
2 /

Uglovno kretanje Cestice opisano je vremenskom promenom momenta impulsa
Sestice (L). Medutim, kako je:

gde je £ M zbir svih momenata sila koji deluju na Cesticu, moramo biti narocito
obazrivi u nabrajanju ovih momenata. Moment sile elektriénog polja Mr moZemo
da izrazimo preko rada dW koji elektri¢no polje izvrSi pri pomeranju destice za
ugaoni pomeraj d¥, tj.:
M=
dy

Na sli®an nadin deakceleratorski moment sile, koji potie od zakoSnog zradenja
Cestice moZemo da napiSemo u obliku:

Mp=—u
R ds
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gde je dR energija koja se izradi na ugaonom pomeraju estice d49. Vremenska pro-
mena magnetnog fluksa saop3tava Sestici kolitinu energije : :

E= 9§;-d’;= eQ
dt

odnosno
E=2rnr-F=e e .
dt
Dakle, moment sile uslovljen indukovanom elektromotornom silom iznosi:
M, -2 02
2w dt

Kona&no, moZemo da napifemo:

d. d
”£=MF+MIn”MR=iPZ+ e d® dR .
dt dy 2n dt d%

Imajuéi u vidu da je Le==mr?$%, treéa« jednadina kretanja Cestice koja se ubrzava
glasi: i

A, o dw e d® dR
4 gy e 4@ &R 3
A T i T @

U sve tri jednadine kretanja koriS¢en je racionalizovani MXS sistem. Algebarski
znaci odgovaraju &estici sa negativnim naelektrisanjem. Jednacine su primenljive
i na relativistitke estice (masa nigde nije izdvojena kao stalan parametar!).

l RD2 I Poito se proton kreée po kruZnoj orbiti njegovo radijalno ubrzanje jed-
nako je nuli. Iz jednadine (RD1.2 prethodnog zadatka imacemo:

mb=eB; odnosno p=mv=eB;-r

Za ovako visoku emergiju protona moramo za impuls da koristimo relativisticki
izraz:

p= —E— (E?— nig chyti2 ==% [T(T+ 2m,cH}?

gde je T kinetiCka energija protona.
Polupre€nik orbite protona iznosi:

rn[T(T+ 2m, c})]? -

5,6m,
ceB,

Orbitalna frekvencija protona je:

f“—e—Bi~=———e£‘—~(1+ Té)~l=ﬁ,(1+ T )—l

2nm 2mm, m,
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gde smo sa f oznadili nerelativistitku frekvenciju protona koja iznosi: fo=15,2 MHz.
Proton kineticke energije 1 GeV imade frekvenciju f=7,5 MHz.

]le?, ! a) Nerelativisti¢ka orbitalna frekvencija ciklotrona iznosi:

eB,
2mm,

fy= =35 MHz.

b) Za relativistitke protone izraz za impuls glasi:

p=—l—[T(T+ 2 m, cH?
¢ .

a kako je p=eB;r:
Tz +2 mycT—(ecB,r)2=0.

Re¥avanjem jednadine dobijamo da je Tmasz=2,5 GeV.

| RD4 | Kriti¢na razlika faza mo¥e da se izrazi preko broja obrta deuterona i
srednje frekvencije deuterona (®):

27n
(p,‘,,,=1c=n(mc~&)'c¢= & (“’p"a)
gde je ‘
Tmax
= fwijj———m ' moczln(l+-T—“‘“—’z‘—)
Tmax 14 T Tmax - my ¢
0 myc*
a
s T
2eU

odatle dobijamo jednadinu za maksimalnu energiju deuterona:

T el el
max =TT T .
S ! moczln(l-l-—-————Tm")
my

mt‘ max
Ako pretpostavimo da je Trmaz<moc?:
elU

1_Z"Lc.2 ﬂg_}_(fmx_)’
Toax L% 2 \myc?

Tonax =V 2eUmyc? =2 15 MeV.

Trax &

odnosno:
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IRDS I Orbitalna ciklotronska udestanost za relativisti®ku &esticu iznosi:

Be 0, Be
W=——= —— sa Wy=—o.

mo My @

mg ¢?
Ako su elektri¢no polje i orbitalna udestanost festice u rezonanci onda u svakom
krugu Zestica prima isti iznos energije W. Tada je promena kineticke energije po
jedinici vremena: jednaka

T W

d =

gde je T vreme potrebno za jedan obrt estice 1=2 7/w, odnosno:
ar_ow
dt 27

Diferenciranjem jednadine (RDS5.1) po vremenu i kori§¢enjem jednadine (RD5.2)
dobijamo: -

@

——= e (lf == — adl.

Resavanjem ove diferencijalne jednadine sa odgovarajuéim pocetnim uslovima
dobijamo traZenu vremensku zavisnost udestanosti elektriénog polja:
(1) 1

—:—far/t @)= _._Q_°____
a0
2
RD6 | Ako se zanemari put alfa Cestice izmedu procepa ciklotronskih duanata,
predeni put iznosi:

Q 0

gde je k — redni broj prolaska  a-estice kroz ubrzavajuc¢i potencijal izmedu
duanata.
U nerelativistitkoj aproksimaciji brzina alfa-estice je

(2 ekU)‘/Z
V= .

m
Dakle:
uz a»
-1 (fy_) S VE.
fo\2m /[ £Zy

Maksimalni broj poluobrta » jednak je:

. . .
n=EL“—=~l— im (—f@i) L 27 fomrs.
eU eU 2 m elU
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Kako je #>1 sumu po k moZemo (pribliZzno) da zaménimo integralom

zV?E:fWEdk=in3{2.
k=1 ; 3
Dakle:
Amdry aom
=3 g

5,9 x 103m.

' I RD7 ‘ Ukupno vreme boravka deuterona u ciklotronu treba rastaviti na vreme

provedeno izmedu duanata (¢1) i vreme provedeno u duantima (t;). Ako sa n=FE/eU
oznadimo broj prolaska deuterona kroz procep izmedu duanata §irok L, tada je:

_L-n . 1 1

t =" i ty=—n—
1 ; 2= 7
gde je fo ciklotronska frekvencija za nerelativistiCku Cesticu
1 2E

E
eB N S 1 \/2 T 2
Jo= 5 2 srednja brzina deuterona ¥ w—E—f ';,TdT='j‘ —
0 .

Dakle, ukupno vreme boravka deuterona iznosi:

E (L m
t=t +t,=—|—+7m—)57T pus.
Ve ( v eB ) .
: RDS I Srednja energija koja se saopiti elektronu po jednom obrtaju u betatronu
Znosi:

= d®
AE=€——£—1—I‘

Kako se struja u pobudnim kalemima (a to znadi i magnetno polje) menja po sinu-
snom zakonu elektron moZe da se ubrzava samo jednu &etvrtinu ukupnog perioda
(T'=2 nt[w).

Dakle, srednja promena magnetnog fluksa iznosi:
TJ4

4o ~‘1—f¢,,,sinmrdt=——2-md>m
T b4
0

ra
a srednja energija elektrona

AE= —Z—em(I),,,.
T
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Za vreme T/4 elektron prede put (poSto mu je brzina bliska ¢)
L=c—2:
4

odnosno napravi
L

2xr, 8mr

n= obrtaja.

. Ukupna (maksimalna) energija elektrona je:

EenfE=%n
2mry,

=~ 100 MeV

a vreme preleta elektrona
t=T/4=>5 ms. )
RD9 l Ako zanemarimo gubitak energije elektrona na zakoéno zradenje, jedna-

dinu kretanja elektrona du? stabilne orbite ro moZemo da napifemo u obliku (videti
zadatak br. D1):

d 2 e do
dt 2 dt
Kako je S=w=eB,[m gde je B, intenzitet magnetnoy polja na orbiti r,, sledi da je:

do 2 dBz
———=2(mry) —.
dt (rro) dt

Integracijom ove jednadine po vremenu dobijamo:
@ =2 (1 r3) B..

Ako bi magnetno polje bilo konstantno unutar orbite
Dpo=Bz r3

tj.:
@ =2 By mogeno 5t0 je i trebalo dokazatil

.RDIOI U odsustvu &etiri ravna dela akceleratora, udestanost protonskih obilazaka
iznosila bi:

_ B,
2nm

A

Medutim, ravni delovi akceleratora ukupne duZine 4 L redukuju ovu frekvenciju na:

2m R,
2 f‘sz,,ML'

Ako sada f; izrazimo preko energije protona, dobi¢emo udestanost radiofrekventnog
izvora:

e [T(T+2m, ) 1

S b= T i e wR4 2L

AKCELERATORI 117

:RDllI Iz uslova stacionarnosti magnetnog polja rot B=0 dobijamo (ako rot
zrazimo u cilindriénim koordinatama) uslov:

9B, 9B
dz  or
Odavde nalazimo oblik radijalne komponente magnetnog polja:
z
B,= a5, dz = -2 B.oz.
dr ry

Radijalna komponenta magnetnog polja kreira Lorencovu silu duZ z-ose:
F,=evB, = —-enj—B,zE ~-k,z
o

koja, zaista, ima oblik restitucione sile (F== — kz). Koeficijent restitucije k.=en wgoB;
je proporcionalan indeksu polja.

Jednadina kretanja Cestice duZ radijusa, ako se sa x oznadli razlika r—rq glasi:
. v e
$e=————DBv

r m

Pretpostavimo da je x<&rg (uslov malih oscilacija), tada z-komponentu magnetnog
polja i radijus &estice moZemo da razvijemo u stepene redove:

B,zao,(l-—n-"—) i izi(l ——"—).
r ror
Jednadina kretanja postaje:
2
= —L(l—n)x (saggf—=l—=mo)
ry m r,
Vidimo da u radijalnom praveu na &esticu deluje restituciona sila Fr=—=Fk,x sa:
k=" (1 ) = rym ik (1 —1).
7o
IRD12| DuZina n-tog cilindra je:
L,,=v,,£—
o

gde je v, brzina Cestice na ulasku u »n-ti cilindar.

Izmedu svaka dva procepa &estici se saopiti energija eV, Kinetika energija koju
ima Sestica pre ulaska u »a-ti cilindar iznosi:

T=E,+(n—1) eVy—moc?

gde je E, poletna energija Cestice pre ulaska u akcelerator.
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Prema tome, duZina n-tog cilindra je:

2 2y172
L=t 1{1_ Mt } _
2 Ey+(n—1)eV,

U sludaju ultrarelativistike Cestice:

¢ ™
Ly=L,.= >
|RD13] Snaga koju mora da ostvari oscilatorno kolo na svakom procepu iznosi:

2
ng—

20
gde je ¥ napon izmedu procepa.
Ukupna snaga potrebna za akcelerator je

Py=nP
gde je n broj procepa.
Kako je E,, ==enV bice:

P =°’CEf‘“!i=6,3 MW.
o 2ne*Q

]RD14| Rastojanje izmedu dve dijafragme jednako je 1/2 talasne duZine elektrié-
nog talasa. Kako je fazna brzina talasa ogranifena na ¢, uestanost radiofrekventnog
generatora jednaka je:

[
5% 1095t
4 A 2L

Zbog toga §to je brzina elektrona stalno manja od c, elektron ¢e da zaostaje za
vrhom talasnog brega za duZinu:

<3hegp) breet)

gde je n-broj procepa izmedu dijafragmi koji prode elektron tokom ubrzavanja.
Brzinu elektrona By mo¥emo da izrazimo preko njegove kinetitke T:

1 .
=
My c?

—2
+ l) <1 moZemo uzeti da je:

P =

Medutim, kako je(
myc?

1 1
B | =y
2 ( T +l>
myc?
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Prema tome, izraz za X postaje:

An T, -2
X o= — k4 ])
4 z,(mocz

Kako je u akeeleratorima broj dijafragmi veliki, sa sume moZemo da predemo na
integral, tj.:
Ir

myc?

o 1 d( T, )
4 ( Ty _,-_I)z mgc?

2
my ¢

T
g et

gde smo sa Ty i T, oznadili pofetnu i krajnju brzinu elektrona. . Dakle:

Al 1 1
X | — e 1~ — 0,3cm.
he e 10 o
my c? my¢?

iRDlSi Koristimo &injenicu da je masa mirovanja &estice invarijanta, tj. da je;
m2c4=E2—p2 2=inv.

Posmatrajmo slu&aj sudarajuéih snopova u SCM (koji se ovde i podudara sa labo-
ratorijskim sistemom). Ovde je:

- e - - -
Pr= =D Pryy=p;+p,=0
pa:
M2c4=E2,, tj. Mc =E,, =FE +E;+mc? +-myc?=2 E42 mc?
gde je M totalna masa mirovanja sistema pre sudara.

Normalan sludaj sudara projektil-meta posmatrajmo u lab. sistemu. Ako je € ener-
gija projektila tada je totalna energija:

. =3
E,,=ec-+my? a totalni impuls: ;———pl.

Kako je:
e2==micd| P2c2
i
M2c4=E2,,—Pc?
uz
B =c242¢ mzcz—{—mgc"
to je:

2
M2cd=mjc4-+P2c242¢ rn202+rn§c4~—}’2c2

=2 mc? (e+mc?). (my=my=m)
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[zjzdnadavajuéi kvadrate mase mirovanja iz oba sludaja, koji moraju biti jednaki,

sledi:
[2 (E4+mc?))2=2 mc2 (e-i—mc-?).

Uz E>mc? i e>mce? (ultrarelativisticki sluéaj) sledi:

4E2=2eme? tj. e=2—I—T—«E
mc?

“Ovo znadi da energija Cestice-projektila & u normalnom eksperimentu mora biti

2 Ez puta veéa od energije £ koju obc &estice imaju u eksperimentu sudarajucih
mc

snopova da bi sudar bio isto tako efikasan. tj. da bi relativna energija bila ista.

Za nukleone, sa mc2 =~ 1 GeV, pri E=30 GeV bice ovaj sudar u sudarajué¢im snopo-

vima isto tako efikasan kao sudar projektil-meta u kome projektil ima energiju

€=1800 GeV! Ogroman je, dakle, efektivan dobitak energije koji je u sudaraju¢im

snopovima vezan sa Sinjenicom da se tu ne trodi energija na ubrzanje CM koji je

sve vreme, nepokretan. U nerelativistitkom sludaju energija relativnog kretanja .

bila bi samo 4 E(!), tj. u na§em primeru 120 GeV. Sto je masa sudarajuéih Zestica
manja to je efektivan dobitak energije veéi 5to se lepo vidi iz gornjeg izraza. Ako se
radi sa clektronima i ako je E, recimo, samo 100 MeV za e dobijamo 40 GeV!

-

RDI6| Necka se Zestica mase m, sa impulsom p, sudara sa nepokretnom &esticom

mase m,. U laboratorijskom sistemu je totalna ensrgija pre sudara jednaka:
Em=E;+Eg=(p§c3+m?c4)“'—'+n1203.

Ako j¢ M rezultujuéa ukupna masa sistema posle sudara a energija i impuls E’
i p' tada uz p=p'=p, sledi (p,=0):

(pfcz—}-mfc‘*)”l +mzc3=pfcl+M3c4
a odavde
(Mc?)2=(m )2+ (n12¢2)2+2 mac2 E;.
Sada moZemo da nademo M pa prema tome i mogucu kreiranu masu. Uz m;=
=my=m, bice:
Mec? == l/'Z_l'r'xc2 (hw-ﬁ:Eﬁ;)

ili, ako je kineti¢ka energija brojekti!a jednaka T, (Ey=mc?+T):

Deo kinstiéke energije € koji se moZe transformisati u masu mirovanja jednak je, .

dakle:

\/l"+ r o 1
s___aMcz——2mc2_. 2mc*

T T
2 me?

AKCELERATORI 121

Vidimo, dakle, da za male vrednosti T/2 mc? negde oko 50% kinetidke energije
moZ: da se transformife u mase mirovanja novih &estica. Sa porastom T taj deo
teZi nuli (!) pribliZzno kao T2 (mada po apsolutnom iznosu velidina kreiranih
masa‘raste). U slu€aju kreacije protonskog para u sudaru proton-proton (p+p—

FP+P+17+1;) bi¢e Me2=4mc? pa je (4 mc2)2=2 mc? (2 mc2+T) tj.:

T'=6 mc2=5,63 GeV.

Dakle, samo jedna treéina kinetitke energije moZe da se transformife u masu mi-
rovanja novih d&estica.

Kod sudarajuéih snopova, naprotiv, zakon odr¥anja impulsa ne namecée nikakva

- ogranifenja na mogucnost transformisanja kinetitke u energiju mirovanja jer je

po&etni impuls jednak nuli (iu SCM i-u LAB sistemu koji se ovde poklapaju) i na
kmeuék_(_)J energiji praga, kojoj doprinose obe Zestice, ova se sva moZe pretvoriti
u energiju mirovanja. Na pragu produkti reakcije prakti&no su nepokretni; u opstem
slu€aju razle¢u se pod velikim uglovima ali opet sa totalnim impulsom jednakim
pulj tako da CM ostaje nepokretan; na njegovo kretanje ne trosi se energija. Mana
je, jasno, mala gustina mete u poredenju sa normalnim gustinama meta (razlike do
15 redova velifine!) pa i shodno tome siroma¥ni prinosi. .
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] El ' Efikasni presek za reakciju 113Cd (n, y)114Cd iznosi 6=64000 barna. Meta
debljine Ax=10—4 cm napravljena je od prirodnog kadmijuma koji sadrZi n=
. =12% izotopa 113Cd. Upadni snop termalnih neutrona ima intenzitet /=108 neut /s,

Cd
neutroni . L Detebtor
e e —— e
AL
E4 4%

Pretpostavljajuéi da je raspodela emitovanih gama kvanata jzotropna izraCunati
brzinu brojanja gama detektora efektivne povriine S=35 cm? i efikasnosti e=257,
ako je detektor postavljen na rastojanju L=1 m od mete.

] E2 l U svim eksperimentalnim situacijama pri izufavanju nuklearnih reakcija
meta se nalazi u atomskom ili molekularnom stanju. Zbog toga naelektrisani pro-
jektili radije gube energiju na ekscitaciju i jonizaciju materijala mete nego na, za
nas ovde bitne, nuklearne interakcije. Ovo stvara veéi broj problema. Prvo, gubitak
energije projektila po dubini mete dovodi dotle da se na razli¢itim dubinama nukle-
arna reakcija koja nas interesuje odvija na razli¢itim energijama tako da i eventualna
potetna monohromatiénost snopa nije od pomoéi jer se gubi direktna informacija
o veligini preseka na datoj energiji. Drugo, zbog veée verovatnode za jonizaciju,
veliki broj upadnih &estica svu energiju izgubi u ovim procesima ni ne stupivsi
u nuklearnu interakeiju te su tako prinosi (¥), definisani kao broj &estica koji stupi
u nuklearnu reakciju prema ukupnom broju upadnih &estica, po pravilu mali (male
statistike). Osim toga, samo tanak &eoni sloj mete pribliZno jednak dometu Cestica
efektivno udestvuje u eksperimentu, Ako se na jedan akt jonizacije u srednjem po-
tro&i oko 30 eV i ako se za presek nuklearne reakcije uzme tipi¢nih 1 barn, naéi
koliki deo upadnog fluksa uopite preZivi nuklearnu interakciju do potpunog zau-
stavljanja projektila (na putu jednakom dometu). Pokazati kako se iz poznavanja
ekscitacione funkcije, tj. prinosa reakcije u funkciji od energijc (Y (E)), moZe naci
presek reakcije za datu energiju, o (E).

| E3 [ Za reakciju 2H+2H—>3H+p izmerena je uglovna distribucija protona i
dobijena funkcija oblika: )

n@®=n (

’2‘) [1+ 4 cos? 8]
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gde je n(9) broj protona po jediniénom prostornom uglu. Na kom uglu #° treba
postaviti protonski brojag tako da ukupan broj emitovanih protona moZemo da
izratunamo iz odbroja brojaa na tog uglu bez poznavanja veliSine A.

l E4 ! Cestica mase m, sudara se sa Sesticom mase m, u miru pri éemu dolazi do
reakcije posle koje oblast interakcije napustaju Cestice masa m, i m.. Pretpostavljajuci
da se radi o relativistitkim &esticama odrediti minimalnu energiju estice a (energiju
praga reakcije) da bi reakcija bila uop$te moguca.

I ES i Q — vrednost za endotermnu reakciju tipa: a-+b-> ¢c--d jednaka je jednostav-
no promeni mase mirovanja Zestica koje udestvuju u reakciji, tj | @ [=mc-+
+my—mg—my. . :

Pokazati da je energija praga reakcije (kinetitka energija Cestice a) uvek veéa od Q
vrednosti reakcije. Cemu je jednaka energija praga reakcije ako je | Q |<m,?

| E6 | Na slici je Sematski prikazana reakcija do koje dolazi prilikom bombardo-

vanja tricijumske mete snopom protona. Q vrednost za ovu reakciju iznosi -— 0,764 -

3 MeV. Koliki je prag za ovu reakciju? Ako je
> energija protona u laboratorijskom sistemu 2
P % MeV, a neutron se razlete pod uglom od 60°
u odnosu na upadni pravac protona, izradunati
kineti¢ku energiju neutrona.

Ee

l E7 | Tanka aluminijumska meta (*’4/) bombardovana je snopom monoenerget-

skih deuterona energije 2 MeV dobijenih iz Van de Grafovog akceleratora. Protoni
rasejani pod uglom od 90° u odnosu na

. . . . A045 keV

upadni pravac snopa analizirani su energet- oTh
ski pomocu magnetskog spektrometra. Na
slici su prikazane energije tri ekscitirana
nivoa 284/ Odrediti kinetitke energije koje
treba da imaju Cetiri grupe protona. PUSER— 7

E7 —ee O

2870

|‘ E8 I Odrediti energetsku raspodelu (spektar) neutrona u reakciji tipa 4 (n, 2n) B,

ako je Eg maksimalna kinetitka energija konaCnih estica u sistemu centra mase;
uzeti u obzir da je masa jezgra znatno vecéa od mase ncutrona.

E9 ] Kuvalitativno prodiskutovati op$te osobine rasejanja protona i neutrona na
jezgrima (sli€nosti i razlike, uloga Coulomb-ove i centrifugalne barijere, rasejanje
sa razligitim vrednostima relativnog momenta impulsa, op$ta zavisnost preseka od
energije, itd). Po emu se rasejanje elektrona na jezgrima razlikuje od rasejanja nukle-
ona i kakve se informacije odavde dobijaju?

| B10] Opisati kvalitativno opste osobine reakcija (p, o), (p,n), (p,p) i (7,Y) —
(razli¢itih izlaznih kanala reakcija u kojima je projektil proton) — u onoj meri
u kojoj je to mogude bez poznavanja ikakvih specifi¢nih detalja.
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Ell | Na slici je prikazana zavisnost preseka od energije upadnih protona za razne

izlazne kanale reakcije p+-7Li koja prolazi kroz intermedijarno sloZeno (»compound«)
jezgro 8Be. Posmatrani kanali su:

1) 'Li(p,y)%Be = p+'Li — 8Be*—> sBe;i-Y
2) "Li(p,«)*He = p+'Li — 8Be*—> ‘He-+t*He
3) 'Li(p, p)'Li* = p+47Li — 3Be*—> "Li*4-p
4) 'Li(p,n)'"Be = p+7Li — BBe*— "Be+tn

Gornje reakcije praene su emisijom gama kvanata energije E;=14,7 MeV, E;=
=17,6 MeV, E3==15,2 MeV, E,==18,1 MeV i tipa su M. Jezgro ®Be je i u osnovnom
stanju (0*) nestabilno (nema stabil- '

nog jezgra sa A==381)isa Q vrednoSéu ) 2)
od ~100 keV raspada se na dve alfa-
-Gestice sa relativno velikim poluZi- - S
votom od ~10-16sekundi $to rezul-
tira u energetski dobro definisanom
stanju. U o—« rasejanju rezonansa
na 100 keV koja bi odgovarala os-
novnom stanju 8Be nije opaZena
zbog eksperimentalnih poteskoda. EN - X

Prva rezonansa nadena je na Ak —4 22 ~
E~29 MeV (pobudeno stanje i ’
jezgra 8Be (2%)) i kako je kulonova barijera (barijerni faktor iz F.12) ovde uZa stanje
je kratkoZivuée sa §irinom od ~800 keV.

Na osnovu gornjih podataka naéi i objasniti poloZaj rezonantnih (pobudenih)
stanja jezgra 8Be njihove spinove i parnosti kao i njegovu Semu raspada. Kvalita-
tivno objasniti pona¥anje preseka navedenih reakcija i Sirine rezonansi. Koristiti
zakone odrZanja.energije, momenta impulsa i parnosti.

!
[
I
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i
I
|
|
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MeV

|
|
|
|
|
|
!
|
1
3

I El2 l Cestica se elastiéno rasejava na potencijalu kojiima
»odbojno jezgro« (videti sliku). Visina barijere
v, E<<V, oznadena je sa ¥y a §irina sa R. Neka je energija

destice (E) znatno manja od visine barijere. Ispi-
tati 'sferno simetri¢no (S) rasejanje na ovom po-
tencijalu. Pod kojim uslovima efikasni presek teZi
' nuli, a pod kojim je maksimalan? Razmotriti
E isluaj kR< 1. (Za r>R d&ostica se krede
! slobodno).
Ed2 R r

|E13‘ Amplituda elastiSnog rasejanja izra¥ena preko faznih pomaka glasi:

x=cosd i
‘f(&))=—l— S @I+Da () P(x) sa o218 1
(= A=



128 NUKLEARNE REAKCUE I RASEJANJA

Fazni pomak 8; predstavlja faznu razliku radijalnog dela talasne funkcije Cestice
relativnog momenta impulsa / (I-tog parcijalnog talasa odgovarajuée ugaone di-
stribucije, tj. diferencijalnog preseka) za slobodnu (nerasejanu) i rasejanu &esticu
daleko van dometa rasejavajuéeg potencijala

< Upadni (r — o).
(nerasedani) £y visokim energijama doprinose sumi po / daje

“~  tafas
v * veliki broj parcijalnih amplituda a;. Koliki broj
Talas momenata impulsa (parcijainih talasa) treba
Z___ rasefan ma yzeti u obzir unapred ne moZemo da znamo.
niviadnon. . A .. .
Totenciintu Medutim, ako se radi o Sesticama koje interaguju
(gloda. silama kratkog dometa mogude je definisati
w r=R) odredeni efektivni radijus interakcije R. Tada
E43 ée za rasejanje biti vaZni samo parcijalni talasi

sal <L=~kR gde je k talasni broj u sistemu

centra masa.
Razmotrimo, sada, sledeéi model: kada je energija estice vrlo velika

pretpostavimo da su sve parcijalne amplitude a; do nekog L (koji zavisi od energije

i vrste interakcije) podjednake, tj.:
ay=ag 0 (L—I) gde je 6 (x)z{l’ x>0
0, x<0.

Cemu je jednaka amplituda rasejanja, diferencijalni efikasni presek, totalni efikasni
presek i fazni pomak za rasejanje u ovom modelu?
Napomena: LeZandrovi polinomi zadovoljavaju sledece rekurzivne relacije:

D) QIH+D P ()=P,, ()—P_ (%)
2) (41 Pry g (O)—Q I+ X P (x)+1 Pr_y (x)=0
3) (x2—1) Py (x)—IX Py (x)+1P1_y (x)=0.

-EL4‘ Doprinos I-tog parcijalnog talasa efikasnom preseku za elastiéno rasejanje
Zestice na datom potencijalu (koji ima i apsorbujuéi imaginarni deo) jednak je:

2087 _ |
Ge=4m QDT s T=R
i

gde je 8; — fazni pomak, n; — apsopcioni parametar (0 <mi<1; =0 znaédi mak-
simalnu apsorpciju a ;=1 odsustvo apsorpcije) i A* talasna duZina upadne Cestice.
Doprinos /-tog parcijalnog talasa preseku za sva neelastitna rasejanja — reakcije
(ovi procesi su: a) stvarna apsorpcija Cestica, b) apsorpcija pracena sukcesivnom
emisijom drugih estica i ) apsorpcija pracena sukcesivnom emisijom iste &estice
ali promenjenih karakteristika (energije, spina, itd.)) jednak je:

ar (Iy=mn*2 (2 141) (1—n}).

‘a) Koriste¢i ove izraze napisati izraz za totalni efikasni presek.

b) Pokazati da je moguée postojanje samo elasti¢nog rasejanja bez neelastitnog
(reakcija) ali da obrnuto nije sludaj; svaka reakcija uvek je pracena elastiénim rase-
janjem! Prodiskutovati ovaj zakljutak na primeru rasejanja na »crnoj« (apsolutno
apsorbujuéoj) sferi radijusa R.
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EISI Fazni pomaci za elastitno rasejanje Zestice date energije iznose §7=30°
b‘_1=3°. Koliki je proc?.ntualni doprinos /=1 parcijalnog talasa vrednosti totalnog
eflkaslrcx‘c;g preseka? Koliku asimetriju u rasejanje napred — nazad unosi ovaj fazni
poma :

|E1§| U Bornovoj aproksimaciji (drugog reda) fazni pomak za elastiéno rasejanje
Gestice talasnog broja &k na potencijalu ¥V (r) jednak je:

2mk [
tg 8= u-}imz——fjf(kr)V(r)rzdr
[

gde je j; (kr) sferna Beselova funkcija.
Koristeéi formul_x{ za fazx'ﬁ pomak izralunati totalni efikasni presek za neutron
— neutron elasgcnq rasejanje, u slu¢aju S-rasejanja, u nisko energetskoj granici
(k - 0). Potencijal interakcije opisan je pravouglom jamom: c

.

- (r)zl—‘Vo, r<a; Vo=25 MeV
0, r>a; a=2,8 fermi. .
Napomena: '
R sin kr
Jo (kr) = ——.
o (kr) P

lE17i Na slici je prikazano rasejanje protona na protonu u sistemu centra masa.

EA7

‘Pretpostaviti da je relativna energija protona dovoljno niska tako da u procesu

rasejanja.yéestvuju samo Cpulombove sile odbijanja, a da je doprinos nuklearnih
zanemarljiv. U ovom sludaju amplitudu rasejanja moZemo da izrazimo na slede¢i

nadin:
oo [ 21 . = AT
f( )=W[sm —2—] exp{—mlog[sm—z-]]

: e ’
gde je an’ M masa protona a v relativna brzina protona. Polaze¢i od ovog

izraza izvesti formulu za Mott-ov diferencijalni efikasni presek.

iElsI Eksperimentalni totalni presek za rasejanje nepolarisanih neutrona energije

leVna protonu jgdpak je :\420 barn. U rasejanju, gde &estice nisu u vezanom stanju,
treba da se ispolji i uticaj singletne dvodlesti®ne interakcije. Da bi se nafao njen
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doprinos preseku naéi prvo presek rasejanja usled tripletne interakcije aproksimi-
rane pravouglom potencijalnom jamom dubine Vor=-—20 MeV i dometa ros=
=2x% 10~13 cm. Zatim pretpostaviti da su tripletno i singletno stanje nekoherentni
i da doprinose totalnom preseku proporcionalno njihovim statisti¢kim teZinama.
Odatle poredenjem sa eksperimentalnom vredno¥éu preseka naéi presek singletnog
rasejanja. Energiju upadne &estice zanemariti u odnosu na dubinu potencijala.

lEl9 I Za rasejanje neutrona na neutronu na niskim energijama ‘vrednosti totalnih
‘efikasnih preseka za singletno i tripletno rasejanje iznose:

2 ) =70 barn i ot =4 barn.

Ako su upadni neutroni i neutroni mete polarizovani jedni u odnosu na druge sa
proseénim uglom polarizacije B=60° izradunati totalni efikasni-presek za ovakvo
rasejanje. :

Eestice (a+b — c-+d)

fa,sw a A |l B c #or S,

P88 .8 ! d P Sy
E20

Diferencijalni presek za ovu reakciju moZe se napisati u obliku (po tzv »zlatnom
pravilu«):

gde je v,, relativna brzina Sestica ai b, Ta_., g matrica prelaza, a dn/dE broj konatnih
stanja sistema po jedinici energije. Po§to u kvantnoj mehanici svi izrazi moraju
da budu invarijantni u odnosu na inverziju vremena, to i matrica prelaza mora
da zadovoljava uslov:

: | Taspl=|Ta 4l

Polazeéi od ovog iskaza, koji predstavlja temelj principa »detaljne ravnoteZe« uspo-
staviti vezu izmedu nepolarisanih diferencijalnih preseka za dve inverzne reakcije

a-+b - c+d i
c+d - a+b.

- I E21 l Fotodezintegracija deuterona (y-+D —» n-}-p) i radijacioni zahvat neutrona

(n+p — y-+D) su dve inverzne reakcije. Koristedi princip detaljne ravnoteZe naéi
odnos totalnih preseka za ove dve reakcije. Energija gama kvanta u sistemu centra
mase iznosi 2,5 MeV a vezivna energija deuterona je 2,2 MeV.

. EZDl Razmotriti reakciju koja u pogetnom (4) i krajnjem (B) stanju ima po dve
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]EZZI SloZeno jezgro 64Zn moZe da se kreira u dve reakcije: b+63Cu i a4-60Ni,
a da se raspadne na tri nadina:
3Zn--n
647Zn — < 62Zn+2n
62Cu+-n-p.

Ako su kinetitke energije upadnog protona i alfa &estice tako izabrane da sloZeno
jezgro dobije istu energiju ekscitacije pokazati da izmedu efikasnih preseka za

- Sest moguéih reakcija postoji odnos:

a(p,n):e(p,2n) :c(p,pn)=c(x,n) :o(x,2n) : 6, pn).

IE23 :Efikasni presek za reakciju koja se odvija mehanizmom sloZenog jezgra
(a+A —(C)—> B+b) u blizini rezonanse E; glasi:

racrb

Cp=TA¥ g ———2 =
=T B Ey+ T4

(Breit-Wigner-ova formula)

gde je A* redukovana talasna duZina upadne estice, I',, i I, Sirine nivoa za formiranje

sloZenog jezgra i njegov raspad kanalom b, a I'==I",+TI,+X I'x gde se sumiranje
o

vr$i po svim moguéim kanalima raspada sloZenog jezgra. g je spinski statisticki

faktor.

Odrediti vrednost faktora g ako je moment impulsa upadne &estice Ia, spin mete 7,

a spin sloZenog jezgra I.. Koliki je spinski statisticki faktor u slufaju reakcije sa

nepolarisanim &esticama? i

iE24I Izradunati efikasni presek za (n,y) reakciju na jezgru 1094g sa termalnim
neutronima energije 2 eV. Prva rezonansa za neutrone nalazi se na energiji 5,1 eV.
Sirine nivoa za zahvat neutrona i emisiju gama kvanta su I',=0,14 eV i I,,=1,3 X
x10-2¢eV, a spinovi jezgara 1994g i 1104g iznose 1/2 i 1.

I_I_E___,__—Z—S—' Spin sloZenog (compound) jezgra iznosi Zi normalan je na pravac upadnog
snopa &estica. SloZeno jezgro raspada se na rezidualno jezgro spina 7i emituje Ee-
sticu (a) momenta impulsa_I’. Pravac kretanja ove éestic.e (-n’) nalazi se u ravni nor-
malnoj na njen moment impulsa 7 Pretpostavljajuéi da je 17!>I;"| nadéi uglovnu
raspodelu d&estica a. :
Napomena:

Kada merimo uglovnu distribuciju &estica a, ne selektujemo nikakav specijalni

pravac spina?sloienog jezgra, tako da moZemo da usrednji mo T oko praveca ﬁpadno g
snopa, tj. po azimutalnom uglu ¢ (tzv. direkciona distribucija).
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lE26] Na slici je prikazana uglovna raspodela odlazeéih protona za reakciju
6Li(p, p’) 6Li, koja je tipi¢an primer direktne reakcije. Poznato je da transfer mo-
menta impulsa u ovoj reakciji iznosi
4 Al=2. Ako je energija upadnih protona
dlew u SCM (u laboratorijskom sistemu Ep=40 MeV)
oceniti na kolikom uglu treba odekivati
maksimum raspodele. Pretpostaviti da se
40° reakcija odvija na nuklearnoj povriini i
da je Ep=~ E’p. (Uzeti za polupreénik

jezgra Li vrednost 3 fm).

E26 ' -

Q 45° a0®  Jem

|E27! Odrediti ugaonu raspodelu protona u »striping« reakeiji:
2D+§X—+ A+§X+p.

Proces posmatrati u Bornovoj aproksimaciji, zanemarujuéi spinske i kulonovske
efekte. Zatim pretpostaviti da su jezgra sferno-simetri¢na i beskonacno teska. U tom
sluéaju amplituda verovatnoée prelaza, koja opisuje striping reakciju, zavisi samo
od podetnog i »krajnjeg stanja deuterona«. Po&etno stanje deuterona moZe se opisati
talasnom funkcijom

— -

JE— | I—I: Tatip
$p(rn 1) =—€ Rpelin™2
r

gde je 7:’1;——:/::,,-(——/:'1, talasni vektor (upadnog) deuterona, Rp njegov polupre¢nik,
7,: i—r:, protonska i neutronska koordinata, a

P —
»Krajnje stanje deuterona« moZe se prikazati talasnom funkcijom oblika:

- - —
4§ b (rn, rp)=a (rn) X, (rp)
gde je @n (-r:;):U, (rn) Yim (%, @n) talasna funkcija vezanog neutrona u jezgru 4+l X,

—

a Y, (;)~—=exp (—i kp* rp) talasna funkcija protona koji se slobodno krece. Takosie
pretpostaviti da proton ne udestvuje u mehanizmu striping reakcije, da se reakcija
odigrava na samoj povr§ini jezgra, da je potencijal interakcije sferno-simetri¢an
i da se moZe predstaviti funkcijom oblika:

V (ra)=Vyg 3 (tu—R).

]E28| Godine 1939. S. Chandrasekhar pie: » . . . transmutacija elemenata je jedini
uzrok prisustva svih elemenata u zvezdama; svi su oni kontinuirano sintetizovani
- u zvezdama za koje pretpostavljamo da su svoje postojanje polele kao mase istog
vodonika; osim toga, transmutacije su jedini izvor energije zvezda ...« Termo-
nuklearne reakcije, dakle, predstavljaju jednu od najvaZnijih klasa pojava u prirodi;
laboratorijsko proudavanje nuklearnih fenomena, makar samo u ovom kontekstu,
&ini se potpuno opravdanim.
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Jednu od osnovnih sistematizacija astrofizike predstavlja Hertzsprung-Russelov

(HR) dijagram. Na njemu je apsolutna zvezdana .veliina (M) ili luminoznost (L)

(totalna énergija emitovana u jedinici vremena) predstavljena u funkciji efektivne
(povrSinske) temperature zvezde (T,) a radijus zvezde (R) pri tom se pojavljuje kao
paramostar. Ove su veliine medusobno povezane relacijama:

M==2,5 log L-+const
L=4nR2cT:

gde je prva definiciona a druga posledica Stefan-Boltzmannovog zakona §to ukazuje

. na primenjenu aproksimaciju apsolutno crnog emitera. Na HR dijagramu se

ogromna vedina zvezda opservabilnih karakteristika grupife u tri jasno definisane
oblasti: . ‘
1) zvezde glavnog niza (sekvence)
2) crveni dZinovi (giganti)
3) beli patuljci.
Ovo se taumadi pretpostavkom da zvezde vidimo u razliCitim fazama njihove evo-
Iucije pri &2mu svakoj fazi odgovara odreden poloZaj na AR dijagramu. U najgrub-
ljim se crtama evolucija zvezde (tj. materije u Univerzumu) moZe predstaviti na
slede¢i nadin: : : .
I faza: faza gravitacione kontrakcije: Radanje zvezde gravitacionom kontrak-
cijom razredenog i hladnog meduzvezdanog ‘gasa i prasine (u kome do
99% preovladuje vodonik) pri éemu se temperatura diZe do ~107 stepeni
kada podinju termonuklearne reakcije sagorevanja vodonika; zvezda
dolazi u stanje termodinamitke ravnoteZe, tj. »silazi na glavni niz«.

. 40“ -
L/LO
40

10

40_

161

16*

16°

E28
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11 faza: faza glavnog niza: Vremenski najduZa faza u kojoj je zvezda u stabilnom
reZimu termodinamidke i hidrodinamicke ravnoteZe. Ukupna energija
koju zvezda emituje u jedinici vremena sa povriine jednaka je energiji
generisanoj u termonuklearnim reakcijama u dubini zvezde. Gravitacioni
pritisak spoljnih slojeva uravnoteZen je pritiskom idealnog gasa (plazme,
bez unutrasnjih stepeni slobode) u unutradpjosti. Kada se sav vodonik
iz jezgra zvezde fuzioniSe u helijum, za vreme reda ~109 godina (»potrosi
gorivo«) gravitaciona kontrakcija se nastavlja, temperatura u centru
i dalje raste, vodonik poé&inje da »gori« u slojevima sve daljim i daljim od
centra. Usled diskontinuiteta u srednjoj molekulskoj teZini (u jezgru je
helijum a okolo uglavnom vodonik) dolazi od nagle ekspanzije spoljadnjeg
omotada zvezde; poé&inje

II[ faza: faza crvenog giganta: Temperatura i gustina u centru i dalje rastu (~108
grad i ~104 cgs respektivno) i u gustom jezgru zapodinju reakcije helijuma
sa elementima CNO grupe u teZe elemente (reakcija 3o — 12C-+vy je
zbog 3 o sudara malo verovatna ali je ubrzana duplom rezonansom:
2o u 8Bei 8Beta u 12C). Tako se utro$i sav He iz centra i ljuska gorudeg
_He podinje da se iri od centra prateé¢i H ljusku koja je na niZoj tempe-
raturi.

Ove tri faze obavezne su u Zivotu svake zvezde (§to je veca masa to je i evolucija

kroz sve faze brza. Jedino zvezde ekstremno malih masa (M <0,1 Mg), kojeé zbog

malih gravitacionih pritisaka ne mogu dovoljno da se zagreju da bi otpocele sago-
revanje vodonika, ne silaze na glavni niz). Dalja evolucija, u zavisnosti od pocetne
mase zvezde, moZe poéi jednim od slede¢ih puteva; i tako zapodinje:

IV faza: a) Ako je masa zvezde nedovoljna (manja od ~1,2 Mg tj. tzv. »Chan-
drasekharove granice«) tako da gravitaciona kontrakcija ne moZe da
obezbedi dovoljnu temperaturu, sinteza u teZe izotope ¢e se u izvesnoj
fazi zaustaviti (»potrofeno nuklearno gorivo«). Posti¢i ¢e se ravnoteZa
izmedu gravitacionog pritiska i pritiska ohladenog i potpuno degene-
risanog elektronskog fermi-gasa ogromne gustine. Zvezda zavriava
svoju evoluciju kao »beli patuljak« (Sunce olekuje ova sudbina).

b) Ako je masa zvezde od 1,2 do 1,6 M, tada gustine postignute gravi-
tacionom kontrakcijom postaju dovoljne za otpo&injanje neutronizacije
materije, tj. dotle sintctizovanih elemenata grupe Fe, u procesima
tipa p+e~— n-v. Pojto se pritisak degenerisanog neutronskog gasa
uravnotef¥ava sa znatno veéim gravitacionim pritiskom no, recimo
elektronski gas, to su i rezultujuée gustine ovakvih neutronskih zvezda
ogromne, reda 1014 g/cm3. Po§to je masa zvezde u ovakvom konaénom
stanju veca od mase u podetnom stanju (my>>my) znadi da je energiju
potrebnu za njeno formiranje obezbedila gravitacija.

c) Ako je M>1,6 M, tada u konadnoj fazi gravitaciona kontrakcija
nadvladava sve unutra¥nje pritiske i zvezda kolabira (gravitacioni
kolaps) a2 njen radijus asimptotski teZi gravitacionom radijusu r=
=:2 v M/c? konaéne Schwartzschildove sfere; zvezda prelazi u zavrinu
fazu »crne jame«. Ako se ispostavi da ovakvi objekti zaista postoje
onda je ukupnoj energiji Univerzuma gravitacija doprinela moZda
isto toliko koliko i nuklearni procesi!

~d) U nzkim sludajevima (nije tadno jasno kada) ako je masa zvezde do-
voljno velika, posle sagorevanja He i dalje kontrakcije uz dizanje

NUKLEARNE REAKCUE I RASEJANJA 135

temperature, pa egzoenergetske sinteze sve do elemenata grupe Fe
i dalje nastavljanje kontrakcije i izvanrednog zagrevanja (reda 1019 grad)
postaju mogude i endoenergetske reakcije (savladivanje praga). U njima
se oslobada veliki broj «, p i n koji daljim zahvatima mogu formirati
sve teZe elemente do kraja tablice. Kako ovi procesi sada tro$e energiju
a ne oslobadaju je, to unutradnji pritisak naglo pada (ovo su.brzi
procesi) i pod dejstvom gravitacionog pritiska dolazi do implozije,
zatim brzog .daljeg zagrevanja i potom eksplozije. Ogromna se
energija pritom oslobodi a dogadaj se zove eksplozijom supernove.
Izbadeni materijal, reda Mg, sadrZi izmedu ostalog i teSke elemente
koji tako dospevaju u meduzvezdani prostor. Zvezde koje su tek
u stadijumu formiranja (zvezde druge i vidih generacija, kao i nage
Sunce) mogu prihvatiti ovaj materijal i tako do¢i do teZih elemenata
potrebnih za svoju evoluciju. Znadi da teski izotopi nisu stvoreni
u trenutku stvaranja sveta (po »big-bangu«) niti u kontinuiranoj
produkciji materije (po »steady-state« teorijama) ve¢ u &isto nuklear-
nim procesima tokom evolucije zvezda. Time se u potpunosti moZe
objasniti obilnost izotopa u opservabilnom Univerzumu (izmedu
ostalog i na Zemlji). Ostatak supernove moZe biti, recimo, neutronska
zvezda (Suveni pulsar u maglini Raka kao ostatak supernove iz 1054
godine).
Na priloZenom HR dijagramu Sematski je prikazan evolucioni put zvezde tipa nafeg
Sunca. Iz abilnos.i izotopa2 38U i njegovih produkata raspada kao i iz paleontoloskih
podataka starost Zemlje utvrdena je na ~5 eona (1 eon=10° godina). Takode je
zakljudeno da je Sunce bar toliki vremenski period svetlelo pribliZno nepromenjenom
luminozno$éu. Ako su danas parametri Sunca:

Le==3,9x1033 ¢rgfs
Ro=7x1010 cm
Mg=2x10% g

pokazati grubim procenama da nijedna vrsta energije osim termonuklearne ne moZe
tokom boravka Sunca na glavnom nizu (~10 eona) da mu obezbedi konstantnu
luminoznost jednaku danaSnjoj.

Pri razmatranju veze izmedu gravitacione i toplotne energije koristiti teoremu
viriala (kinetika energija = toplotna, potencijalna = gravitaciona) i pokazati
da gravitaciona kontrakcija mase idealnog gasa obavezno dovodi od njegovog
zagrevanja.

]E29l Proceniti temperaturu i pritisak u centru Sunca ostvarene na kraju faze
gravitacione kontrakcije do danasnjih dimenzija. Pretpostaviti da je Sunce dostiglo
stanje stacionarne nerotirajuée homogene zvezde sfernog oblika (model) u stanju
hidro i termodinamidke ravnoteZe i da je sastavljeno od idealnog gasa (plazme)
sa 70% (mase) vodonika, 30% helijuma i 19 svih teZih elemenata. Prodiskutovati
rezultat sa gledista pogodnosti za ostvarivanje termonuklearnih reakcija i zavisnost
zagrejanosti od mase zvezde.

|E30\ U normalnim uslovima na Zemlji materija je nuklearno stabilna. Medu
protonima, recimo, postoji Kulonova barijera visine €2 [R= 0,7 MeV i 'sve dok je
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relativna energija protona manja od ove energije verovatnoda nuklearne interakcije
(kontakta sa r<CR) je penetracijom kroz ‘barijeru izvanredno smanjena. Ako je
temperatura normalnih uslova na Zemlji T=300°K nadi faktor usporenja fuzije
deuterijuma u 4He usled penetracije Kulonove barijere i tako proceniti verovatnocu
ovakve fuzije. (Koristiti rezultat zadatka F.12).

l E31 | Osnovni naéin kojim vodonik »sagoreva« u helijum u ranijim fazama zvezdane

evolucije je takozvani p—p ciklus koji preoviaduje do temperatura reda 107 stepeni
- (Bethe 1939). Reakcije koje ga &ine su:

1) p+p — dtet-ty
2) p+d — 3He+ty
3) 3He4-3He — ‘He-++p+p

Sve tri reakcije su egzotermne i oslobodena energija nadoknaduje energiju izralenu
sa povriine zvezde. Konadan efekt ciklusa jednak je fuziji 4 protona u «-Cesticu.

Prva reakcija tede preko slabe interakcije i stoga je veoma spora. Srednja energija.

neutrina -iz pozitronskog raspada jednaka je ~ 0,26 MeV. Ova je energija jedina
koja je za zvezdu izgubljena i ne doprinosi odrZavanju termodinamiéke ravnoteZe
(uloga neutrina u astrofiziékim procesima koji, izmedu ostalog, i na ovaj nadin
disipira energiju Univerzuma, jo§ nije sasvim jasna). Da bi sc treéa reakcija razvila
potrebno je da se prva i druga dese dva puta. Na¢i ukupnu energiju oslobodenu
u ovom ciklusu koja efektivno doprinosi energiji zvezde.

Na ovako visokim temperaturama gas je potpuno jonizovan i nalazi se u stanju
plazme. Diskutovati razlog zbog koga je plazma izrazito pogodna sredina za ostva-
rivanje ovih procesa kao i nagin na koji se plazmati¢nost gasa posle zavrienog ciklusa
odrZava.

|E32] U kasnijim fazama evolucije zvezde (na temperaturama vi§im od ~ 107 ste-
peni) dominantan nadin fuzije vodonika u helijum je kroz takozvani C—N ciklus
koji se sastoji od sledecih reakcija:

1) LCHp — N4y
2) BN —» BCHet+v
3) BCHp — VN+y
4)  VN4p - 1504y

5) 150 — ISN4et4-v
6) SN+p — 12C+4He
2C4p — itd.

Cist efekat Jc, kao i u p—p ciklusu, sinteza 4 protona u « Gesticu. Reakcije 2) i 5)
su &isti radioaktivni pozitronski raspadi i neutrino u njima, u srednjem, odnosi
cnergqe 0,72 MeV i 0,98 MeV respektivno. Ugljenik 12 se kroz ciklus regenerise
i na izvestan nadin sluZi kao katalizator ove sinteze.

Naéi efektivnu energiju oslobodenu u celom ciklusu.
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B33 ' Tempo (brzinu) termonuklearne reakcije sinteze jezgara tipa (1) i (2), TNR;3,
(5. [broj reagovanih parova 1——2/cm3/s] koji je proporcionalan oslobodenoj ener-
gijifcm3/s) koja se u odredenoj zapremini nalaze u gasnom (plazmatinom) stanju
na temperatuu T moZemo naéi preko sledeéeg modela koji daje vrlo dobre rezultate
(ovo je od interesa ne samo pri proceni brzine procesa u zvezdama veé i pri projek-
tovanju pokufaja ostvarivanja kontrolisane fuzije). Neka se jezgra mete (2) nalaze
u obliku gasa uniformne gustine nz. TNR;, ée biti jednak ny o®; gde je o=0o (¥)
presek za reakciju pri relativnoj brzini destica (1) i (2) jednakoj v a ®1=n,v, fluks
&sstica vrste (1). U sme$i gasova u stanju termodinami€ke ravnoteZe na temperatun T,

medatim, postoji definisan spektar brzina v, w(v), pofto i v{ i v, imaju definisane

Maxwell-Boltzmannove (MB) spektre oblika:
32 mvp

- m _
N, () dv, dv, dv, = (27: I:T) e 2T dy, dv,dv,

koji su individualno normirani na jedinicu (a ne na broj &estica po jedinici zapre-
mine n;):

[N@@v=1.
(]

Kako je {§ (v) dv jednako verovatnoéi da relativna brzina Zestica (1) i (2) bude u
intervalu od v do v4-dv to de biti:

TNR,, =mn,n, fv s () Y(V) dv=n, n, {cv)=nn,%,.

Polazeéi od ovog modela naéi aproksimativnu vrednost ovog izraza, tj. op§t1 oblik
zavisnosti brzine termonuklearne reakcije od temperature. Takode naédi srednje
vreme Zivota nuklearne vrste pod gore navedenim uslovima. Uzeti u obzir i mogué-
nost da su Cestice (1) i (2) identi€ne. Presek reakcije o (v) faktorisati na nuklearni
i Kulonov deo (prozra&nost barijere) (koristiti rezultate zadataka E14 i E30). Obja-
sniti koje je veliéine potrebno poznavati da bi se u konkretnoj sxtuacm eksplicitno
nasli i tempo reakcije i energija oslobodena/cm3/s.

!E34l Energija oslobodena po gramu materije zvezde u sekundi u jednom punom
p—p ciklusu u funkciji temperature je:

6.2/3 106 \1p3
Ep,—-25x10‘pX2<10 ) 22 ()" ergle. s

a u C—N ciklusu:

E 8 27 10° —152,3 (‘—M)'P
oy =8 x 10 pXXCN( T) e~ P&\ T erg/g. s.

(kao direktna primena izraza dobijenog u prethodnom zadatku). Koncentracija
vodonika u naoj epohi iznosi ~70% po masi (X=0,7) u centralnoj aktivnoj oblasti
koja se prostire grubo do 0,11 Rg. Gustina u ovoj oblasti iznosi ~100 g/cm3 a’
srednja temperatura oko 1,5 107 °K. Procenjena vrednost za X¢n je 0,005. Na-
laZenjem vrednosti gornjih izraza pokazati da je p—p ciklus dominantan nadin
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sagorevanja vodonika na Suncu. Zatim naéi luminoznost Sunca, efektivnu povr§insku
temperaturu i vrednost solarne konstante (emergiju/cm?s na povriini Zemlje).

‘ E35| Zvezda se nalazi u evolucionoj fazi crvenog dZina u kojoj je sav vodonik
z jezgra potroSen a helijum jo§ nije poeo da gori. Glavni izvor energije je sagore-
vanje vodonika u tankoj ljusci oko inertnog helijumovog jezgra. Radijusi ljuske su
R.=1,8X10° cmi R, =2X10° cm. Srednja temperatura u ovom sloju je ~5x 107 °K.
a srednja gustina ~50 g/cm3. Naéi luminoznost zvezde i njenu povriinsku tempera-
‘turu. -Za nalaZenje energije oslobodene/cm3s u p—p i C—N ciklusu koristiti izraze
date u tekstu prethodnog zadatka. Uzeti da je X=0,5 a Xoy=10"3 i R=100 Ry,

]RE] I Odnos intenziteta Cestica (gama kvanata) koje stiZu u prostorni ugao
odreden detektorom prema upadnom intenzitetu (neutrona) jednak je:

AT N(i‘i) AQ,
1 dQ

T " d. . g
gde je N broj atoma 113Cd po jedinici povriine mete, fd— diferencijalni presek
za (n,vy) reakciju.
Kako je raspodela emitovanih gama kvanata izotropna sledi da je:

do 4

dQ 4xn’

Broj atoma 113Cd po jedinici povrSine iznosi:
N=n;roAx=n%N,,VAX

gde je N4y-Avogadrov broj, p specifiéna gustina a 4 atomski broj kadmijuma.

Prostorni ugao AQp iznosi:

S
AQD:TL?
Dakle, odgovor brojaga (B) je:

BeeAT=enf N, AXx-2 2 ~35imp/s.
LR Gy P/

iREZ ‘ Presek jednostrukog procesa jonizacije najprostije moZemo proceniti

cenedi rastojanje na kome je energija elektrostatitke interakcije izmedu projektila
i elektrona atoma mete jednaka 30 eV, tj.:

2
€—=30eV odakle je r~0,5x10-%cm
r
pa je geometrijski presek ovog procesa jednak:
o=mr2~0,8x 1016 cm?
Ako je potetna energija projektila, recimo, 1 MeV broj jonizacionih sudara u kome
¢e se ona potpuno potroditi bi¢e p=106/30. Presek za ovaj proces bice, dakle: .

Cjon = %— ~ 2500 barn



140 NUKLEARNE REAKCIJE 1 RASEJANJA

§to je za faktor ~103 vede od tipiénih nuklearnih preseka reda barna. Dakle, od
svakih 1000 upadnih Zestica samo ¢e jedna stupiti u nuklearnu interakciju dok ¢e
ostale, kre¢uéi se sve vreme prakti¢no pravolinijski, izgubiti svu energiju na joniza-
ciju sredine.

Ako sa x oznalimo put preden u meti i ako poznajemo gubitke energije projektila
po jedinici puta (dE/dx) tada projektil na toj dubini ima energiju E (x). Na taj nacin
je presek za nuklearnu reakciju kao funkcija energije pretvoren u funkciju dubine
na kojoj se reakcija deSava, o (E) — o (x). Broj nuklearnih interakcija di u sloju
- debljine dx na dubini x je prema tome:

di=N(x)n o (x)dx=~Ngn o (x)dx

gde je N (x)= Ny fluks upadnih &estica koji se prakti¢no ne menja po dubini mete
(sve do dometa estica gde pada na nulu) usled zanemarljive malog broja nuklearnih
interakcija koje jedino uklanjaju projektile iz snopa, a n broj jezgara po jedinici
zapremine. Tako je totalan broj nuklearnih interakcija jednak:

R E

. o (E)dE

l=Nonfc(x)dx=Nonf —ET
¢ 0 dx

Odavde je prinos reakcije, po definiciji, jednak:

E

i " o(E)dE
Y(E)= —=1 —_
()mﬂ’@

0
dx

a brzina promene prinosa (ekscitacione funkecije) u funkciji energije:

Y o &
dE 3
dx |
pa je presek reakcije jednak:
oy L A |dE
n dE |dx

Poznavanje gubitaka energije po jedinici puta i ovde je, dakle, od velikog znataja.
[ RE3 i Ukupan broj emitovanih protona iznosi:

N={n@ac.

4r
Ako je n (%) broj protona koje registruje broja¢ po jediniénom prostornom uglu
tada je:
N=4 7 n ().
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1z uslova:
' [n®dQ=4mn @)
4r

~imajuéi u vidu da je dQ=2 rsind d9, dobijamo jednadinu:

n(-;‘—) (1 +—§-)=n(aﬂ)

iz koje zakljufujemo da je:
cos? & = —;— odnosno  $3=135°

| RE4! Zakon odrZanja impulsa i energije za ovu reakciju, u sistemu jedinica
u kome je c¢=1, glasi:

> e e =

Pa +pb =P +p
Ea+Eb=Ec+Ed.

Ako kvadriramo ove dve jednadine i oduzmemo jednu od druge dobiéemo:

EAE) ~ (A PP =EAEY~ (A D).

Leva i desna strana predstayljaju kvadrate &etvoroimpulsa

(PatPs) i (B+Pa)

a kvadrat Setvoroimpulsa je relativistitka invarijanta; nezavisan od koordinatnog
sistema. Dakle, i za levu i za desnu stranu jednadine moZemo da izaberemo sisteme
u kojima su izrazi najjednostavniji. Izabrademo za levu stranu laboratorijski sistem
a za desnu sistem centra masa. Tada je:

- LAB: p,=0
(Eutmy) ~pp = (E,+E ="
SCM : —Pe=Pa
Prag za reakciju odgovara uslovu da novostvorene &estice ¢ i 4 u sistemu centra
mase miruju, tj.:
Eo=my; Ey=my,.

Dakle, ako sa T oznadimo kinetitku energiju

(T35 + my, + m, ) —p2 = (m,+ m ).

Relacija izmedu energije i impulsa Cestice a je oblika:

pr= B = (T 4 m,) — mi
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tako da kineti¢ku energiju, koja odgovara pragu za reakciju, moZemo da izrazimo
samo preko masa mirovanja svih Zestica koje ulestvuju u reakeiji
(M +my+mg L mg) (m+my—mg—rmy) M

2m, 2m,

ra|
T -

gde je M=23 m (zbir svih masa) a Q je Q-vrednost reakcije.
i

| RES I Ako iskoristimo rezultat prethodnog zadatka

(m,+ my+m +mg)(m,+my—m, —my)
2m,

To = [QI{IQI +1 l-m]
s

my,

a|
Tzr8=

imaéemo:

Poito je izraz u zagradi uvek veéi od 1 zakljuCujemo:
T >|0].
U sluéaju da je Q<my:

Tﬂprug :l 0 I___”_'b +m, QEL
my

RE6 | Prag za nuklearnu reakciju

p+t—3He+n

iznosi:
o | | T2t 102 Mev.
m,

(]
Iz zakona odrZanja energije i impulsa dobijaju se jednacine:

.8) @Q=Tr+Tu—Tp

by V2m, T,=Y2m,T,cos $+)2m Trcose

c) 0=Y2m,T,sin®~V2m Trsing

gde smo indeksom T oznaéili veli¢ine koje se odnose na 3He. Iz jednatina a), b) i ¢
dobijamo kineti¢ku energiju neutrona:

T(1+m) z(mp T) l/—T:COS{}—-Tp( _.’_'IL)——Qs().
my my my

Ako se nuklearne mase aproksimiraju masenim brojevima, kineti¢ka energija neu-
trona iznosi:
' =0,79 MeV.
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I RE7 | Q-vrednost za reakciju 274l (d, p) 2841 zavisi od energije ekscitacije jezgra

2841, Najveéa Q-vrednost (Q,) odgovara osnovnom stanju 284l 0,=6,179 MeV.
Ostale Q-vrednostl dobuamo ako od @, oduzmemo energuu ekscxtacl_]e odgovara-
juceg nivoa. Na taj nadin se dobija:

01=6,148 MeV, 0,=5,205 MeV i Q3=5,164 MeV
Ako se produkti reakcije razleéu pod uglom od 90° tada je:

0= T, (1 I )—— T,,(l MM ) (iz prethodnog zadatka)
™M 41(2¢) M 41(29)

Kinetitke energije protona (u laboratorijskom sistemu) iznose:
T,=1,76 MeV, T1=1,713 MeV, T3=6,82 MeV, T,==6,78 MeV.

I RE8 l U sistemu centra masa impulsi &estica su povezani relacijom

Pytp,+py=0
(indeksi 11 2 se odnose na neutrone a indeks 3 na jezgro B), tako da su samo dva
impulsa nezavisna (na primer, impulsi dva neutrona).

Bl’O_] kona¢nih stanja sistema od tri Cestice u prostornim celijama jediniéne zapre-
mine iznosi:

d®Dn=Q2 = h)~Sd’p, d°p,.

Medutim, kako nas interesuje energetska raspodela samo jednog neutrona (na pri-
mer, neutrona (1)), po impulsu druge {estice moZemo da izvr§imo integraciju
4n py

dYn=@2nh)-Sdp, [ [a*p,
: 00
gde je

Po=[2 M (Ej—E—E)' .
Kako je jezgro (3) »telko«, E3<E), Eq, tj.:

po=[2M(E—~E)]\? a E,~E+E,,
sleduje:

At
dp — ﬁs_"- @mA)-3dp,[2 M (E,— E)]P.

Energetska raspodela neutrona (1) jednaka je:

(1)
N(E) dE, = ‘f{E" —const - pldp,VE, — E,.
Imajuéi u vidu relacije ’

pydp=MdE, i p=V2ME,

spektar emitovanih neutrona (1) moZemo da prikaZemo izrazom:

N (E)dE=const - JE(Eq—E) dE.
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lRE9 I Pri interakciji Gestica silamia dugog dometa (elektridne, gravitacione)
parametar sudara p moZe biti vrlo veliki. Pri interakciji silama kratkog dometa
(jake nuklearne interakcije; kvanti polja imaju masu mirovanja razli¢itu od nule)
parametar sudara moZe biti samo manji od dometa sila ro; za vede parametre suda}'a
interakcije (1asejanja) nema. Ako je ono §to nas zanima upravo nuklearna interakeija,
po kojoj su neutron i proton identi¢ne Cestice, tada jedinu razliku unosi Kuloenova
interakcija protona sa jezgrom koja kod neutrona ne postoji.

Ako je impuls upadne &estice p a relativai moment impulsa u odnosu na jezgro-
-metu / i ako parametar sudara ozna&imo sa g, tada je:

I=po=hYI{+]1)

pa je parametar sudara:

o= LV TAF D= W YTAF D A,
P

Za =0 (parcijalni s-talas), dakle, parametar sudara je p,=0 (analogan feonom
sudaru);za I=1(parcijalni p-talas) bice p,~A¥; za /=2 (d-talas) je p,~2 A¥ itd. Upadni
snop kao da se deli na cilindri¢ne zone
radijusa p, unutar kojih destice sa datim
impulsima p (pa i datom energijom)
P imaju moment impulsa /. (Jasno je da
e je ovo poluklasino kvalitativno raz-

matranje. Gornja relacija, naime, im-~
%ﬂ plicira simultano poznavanje impulsa

— i poloZaja Cestice Sto je relacijama
. neodredenosti zabranjeno. Postoji od-

) redena verovatnoéa za nalaZenje &es-
—_— tice /41 u zoni d&estice /I, -1, itd.,

§to je ekvivalentno penetraciji centri-

. fugalne barijere, o éemu se u egzaktni-

RE9A jem tretmanu vodi raéuna)_‘ Ako je
: domet interakcije ro, tada iz uslova

h
Pl max™ " Imax<r0
P

nalazimo da je talas sa najvecim / koji ¢e jo§ udestvovati u rasejanju onaj sa
~flol [Pl
Loy (5} = {2} G

gde vitidasta zaprada oznaSava funkciju »ceo broj od«.

Presek za rasejanje datog parcijalnog talasa na ovakvom centru rasejanja u ovakvoj
aproksimaciji moZemo smatrati jednakim povrSini prstena (zone) srednjeg radijusa p;
(za homogeni ‘upadni, fluks), tj.:

1 .
o= n(pfir—pi-1) =1+ D)ma*?,
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Uz lLpaz={ro/a*; totalni presek jednak je:

- Imax
c=Xo= 20(214, 1)1=w=:mx*2—‘-,1,_~1,,mx Toax + 1) + T2 7 (- A2,

Za )* Lrg (krg> 1), 5to je sludaj »geometrijske optike« u kome je klasiéno razmatranje
po trajektorijama dobra aproksimacija, bice:

%> 2l

tj. presek je proporcionalan geometrijskoj »senci« mete,
U sludaju niskoenergetskog rasejanja sa A*>rg (kro<€1) biée lnaz=0 (samo s-talas
udestvuje u rasejanju) i:

o* <  A¥2 > gk>

$to govori o opitoj tendenciji da verovatnoéa interakcije (presek) raste sa opadanjem
energije (ako u blizini nema rezonantnih stanja kada lokalno moZe da raste sa
energijom). Tvrdnja da su preseci za nuklearne interakcije tipiéno reda barna moZoe
da se veZe za ovu procenu. (Detaljnija diskusija u zadatku E14), Uslov za maksimalni
moment impulsa ekvivalentan je uslovu koji mora da zadovoljava kineti¢ka energija
projektila da bi, ako ima relativan moment impulsa /, interagovala sa centrom
rasejanja dimenzija rq. Iz gornjih relacija uslov za impuls-je:

)/ S —
p>—VI{d+1)
o
a za energiju:

2 2
T=p—> k 3
2|J. zp.l‘o

¢a+n

u demu prepoznajemo izraz za visinu centrifugalne barijere. Do efikasne interakcije
destice momenta impulsa / i jezgra, dakle, dolazi ako je energija veéa od' visine
centrifugalne barijere. Alternativno, ako je energija fiksirana, sa jezgrom ée intera-
govati samo one &estice sa /<lnaz=={ro/A*}. Po egzaktnom kvantnomehanitkom
rezonu interagovade, jasno, i Gestice sa veéim momentom impulsa ukoliko pret-
hodno penetriraju kroz odgovarajuéu barijeru koja je tim neprozirnija $to je moment
impulsa veéi. Ovaj faktor oligledno drasti®no smanjuje prescke za rasejanje viSih
parcijalnih talasa.

Uz rg=~1,4x 10713 413 cm visinu centrifugalne barijere cenimo na:

H? 10
Vcenlr='5;‘;il(l+ l)gﬁgl(1+ 1) MeV.
[}
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Osim centrifugalne protoni oseéaju i kulonovu barijeru visine:

2, z, € - 0B CZjorgra ~ Zjezgra MeV.
1,4 x 10-13 413 A3

Veow=
o

Pogledajmo kako se visine barijera menjaju u funkciji masenog i rednog broja
jezgra mete; za nekoliko izabranih jezgara bice:

S — neutroni p — neutroni d— neutroqi S Py d, “es
S — protoni p — protoni d — protoni protoni

meta 1=0 Veente (1=1) Veente I=2) Veoul

P 20 60 1

1w 9 5,5 17 1,6

150 c; 3,2 10 3,5

S Mn % 1,4 4,2 6,6

120 Sy 3 0,8 2,5 10

38 [y 0,4 1,2 15 MeV

Uticaj centrifugalne barijere na preseke rasejanja neutrona i protona oéigledno' je,
zbog prisustva kulonove barijere za protone, veoma razli¢it u rasejanjima na lakim,
odnosno teskim jezgrima. Razlikujemo, dakle, sledeée situacije:

L ikd, a) neutroni na Jakim jezgrima
201 na energiji £| najverovatnije je s-rasejanje
a p- i d-...su sukcesivno manje verovatna
10t (ugaona distribucija produkata rasejanja je
sfernosimetri¢na)
RES.2a
b) protoni na lakim jezgrima
0“‘ . . .o .
2 najverovatnije je opet s-rasejanje ali je i p-
(i ostala vi$a) manje verovatno no za neutrone
dar (§ira barijera usled dodatka Kulonove)
i[?;o]-wuu.::uut...
1 RE9.2b

d) protoni na teZim jezgrima
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¢) neutroni pa teZim jezgrima

najzastuplienija su s- i p-rasejanja a d-rasejanje 10
je uslovljeno penetracijom kroz barijeru pa je i foa> Yoy
presek mali. Ugaona distribucija vide nije sferno
simetri¢na.

s-, p- i d-rasejanje je podjednako verovatno jer su
relativne razlike u Sirinama barijera zanemarljive
u odnosu na dominirajuéu §irinu kulonove. Zbog
nje su preseci svih rasejanja drastitno smanjeni
u odnosu na neutronske. (=0 +wur muewn. 7

RE9.24

Interakcija elektrona sa jezgrom je, pak, za razliku od interakcije nukleona, &isto
elektromagnetna (rasejanje na privlaSnom kulonovom potencijalu jer elektron,
bududi leptonom, ne oseca jake interakcije). Podto ovu interakciju najbolje od svih
poznajemo to je moguce sve situacije izuzetno ta&no izradunati. Interakcija nae-
lektrisanja je osnovna ali laka jezgra sa nenultim magnetnim momentima mogu da
primetno interaguju sa magnetnim momentom elektrona (potrebno je da jezgra
budu laka, sa malim Z, da slaba magnetna interakcija ne bude maskirana jakom
elektritnom). Sledi da je elektron idealna &estica za sondiranje elektromagnetnih
osobina jezgara, pa i neutrona i protona posebno. Da-bi se u rasejanju poceli da
osecaju efekti konaénih dimenzija jezgra potrebno je da talasna duZina elektrona
postane reda veliine dimenzija jezgra, tj.:

h he 200

7\”‘ 28 2 e O e
p E  EMeV)

fermi = Ryepppn-

Znadi da tek na ~20 do 50 MeV poginju da se dobijaju informacije o dimenzijama
jezgra i detaljima distribucije naelektrisanja unutar jezgra a na ~100 MeV o dimen-
zijama i internoj elektromagnetnoj strukturi nukleona (elastiéno rasejanje). Visoko-
-energetski elektroni mogu da indukuju sve vrste reakcija: (e, v), (e, p), (e, 1), (e, d),
(e, @) itd. pa &ak i fisiju.

j REIOI Reakcija (p, «): Pri pokusaju napustanja jezgra o-Gestica osea Kulonovu
barijeru visine

z, Z 2z
Veour = ;2 2g2 v 2L MeV

AW
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pa je 78 Zjopyen = 10, Vegu =5 MeV a za Zj,er, 22 80, Voy 225 MeV. Presck za re-
akciju, daf(le, brzo opada sa porastom Z. U teZim jezgrima prozragnost barijere je
veoma mala i samo veoma energetske o-Zestice mogu da napuste jezgro. Ovo, me-
dutim, vodi na niska energetska stanja gde je gustina konacnih stanja mala (zada-
tak A33) pa je i verovatnota (presek) za ovakav proces mala (»zlatno pravilog,
zadatak E20). -

Reakcija (p, n): Ako reakciju piSemo u obliku

' p+3X>z Y 42
uz:
m,—m,=1,3 MeV
i kako mora biti
My—My>—0,5 MeV

da bi jezgro X bilo beta stabilno, tj. da ne bi spontano B-raspadom prelazilo u jez-
gro Y, to je i:

(My+-mp)—(M g+ mp)=—0Q>1,3—0,5=0,8 MeV.

Ovo su, dakle, uvek endotermne reakcije sa pragom veéim od 0,8 MeV.
Reakcija (p, p): Ako energija protona prelazi visinu Kulonove barijere

z;
Vcoul = :ZI]E MeV

presek za ovu reakciju poredljiv je sa (p, n) reakcijom. Ako je energija niza od ba-
rijere a veéa od praga za (p, n) reakciju (0,8 MeV) tada (p, n) preoviaduje. Na jo§
nizim energijama gde je (p, n) zabranjena pragom, ova reakcija dominira.
Reakcija (p,y): Karakteristiéni poluZivoti stanja koja se deekscitiraju emisijom
fotona su ~10-12 do 10-15 s, Pri deekscitaciji emisijom &estica (iz faze sloZenog
jezgra) vreme u kome jezgro promeni svoju organizaciju u energetski pogodniju
priblizno je jednako vremenu u kome nuklearna estica na koju je koncentrisana
energija ekscitacije prede put piblizno jednak dimenzijama jezgra. Ako je brzina
reda 109 cm/s ta vremena su, dakle, reda ~10-22 s pa je, shodno tome, verovatnoca
za estiénu emisiju znatno veéa od one za y-emisiju (osim u recimo (n, y) reakcijama).
Samo ako je estiéna emisija iz ma kojih razloga zabranjena (zakoni odrZanja ili
nedovoljna energija ekscitacije) ili usporena (kulonova barijera) postaje kanal
(p,Y) konkurentan Zesti¢nim.

Verovatnoéu odvijanja reakcije odredenih izlaznim kanalom (presek za odredenu
reakeiju) ne odreduje, dakle, samo energetska pogodnost (recimo energetska razlika
ili gustina kona&nih stanja) veé i nafin kojim se do krajnjeg stanja stife (izborna
pravila, tip (jatina) interakcije). Ovaj zakljutak eksplicitno je izraZen u »zlatnom
pravilu«. .

lRElll Nadimo prvo @ vrednosti reakcija:
0, ~17,25 MeV
0,=17,34 MeV

Q 4= -—'1,64 MeV
(p, n) reakcija je, dakle, endotermna (zadatak E10 i E5) sa pragom Tprag =1,88 MeV.
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Da bismo nasli energije ekscitiranih stanja u 8Be moramo proces formiranja sloZenog
jezgra sa gledi¥ta energetskog bilansa posmatrati detaljno. Reakciju oznagimo kao:

at+X - C'— b+Y.
Odrzanje impulsa i energije u prvom koraku daje:
Pa+kx=pc (p){::O)

(Mat+My) 2+ To= Mo c2+Te.

Kako je, u nerelativistikoj aproksimaciji:

to je:
M, ct(m, + My)c2+ T, — T,=(m, +My) 2+ T,,( ~;§‘;’~) .

<

Ako na desnoj strani stavimo u prvoj aproksimaciji:
M: = mg+ My
tada leva daje M . u drugoj aproksimaciji:
M, =(ma+Mx)c3~l———~]~‘-l—“-'——— T,
mg+ My
pa je energija pobudenog stanja u sloZenom jezgrn jednaka:

_ My

E=M.ct—M,c*=(m,+ My~ M, c*+
m,+ My

T,

a*

U reakeiji (p, ), dakle, jezgro 8Be formira se u pobudenom stanju energije:

M>Ll

mp+M>Ll

E=17,25+ x 0,44 ~ 17,6 MeV

Iz (p,«) E=~19,8 MeV
1z (p, p) E=~18,12 MeV
1z (p,n) E=~19,15 MeV.
Za Tp—> 0 energija ekscitacije
E-> (my-+ M ;- Msge) c2=17,25 MeV

iu realgcijama p+7Li jezgro 8Be se ne moZe formirati u niZem stanju. Sada moZemo
nacrtati emu pobudenih stanja 88e koja se ekscitiraju u ovim reakcijama.
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Pogledajmo sada §ta moZemo detaljnije da kaZemo o ovim stanjima.

19,8 oyt
2d/ """".".“”:::\""""""" p(‘)
* - <
18,45 (,2) &/ o
4 \N
“Be+n =
18,42 A7 &/ -
= H
76 I 3
o
T | <l 1725
TLivp = = ’ Mot My ~Mape
&
] 1
g F
§ =
< <
2,9 2
3
0 o
YR - RE#
2ot Be

Spinove i parnosti ovih pobudenih stanja (rezonansi) moZemo odrediti koris¢enjem
zakona odrfanja momenta impulsa i parnosti. Parnost sistema a-4X jednaka je
proizvodu inherentnih parnosti Sestica a i X puta (—1)' gde je / relativni moment
impulsa:

Pay y=Pa Py (C b

i ona mora biti jednaka parnosti rezonanse C s jedne, i parnosti krajnjeg sistema
b+Y s druge strane.
Po modelu ljusaka u jezgru Li u osnovnom stanju nukleoni se nalaze u stanjima:

protoni: 1s2, 1p!
neutroni: 1s2, 1p2

pa je £]1|=3 i parnost osnovnog stanja je (—I1y3=—1.

Inherentna parnost protona je +1 pa, ako jezgro "L/ u reakciji interaguje sa s-pro-
tonom parnost sistema p+’Li bi¢e negativna kao i parnost rezuitujuéeg stanja
u 8Be. Ako je 7Li interagovao sa p-protonom tada ¢e parnost stanja u 8Be biti pozi-
tivna. S druge strane, spin osnovnog stanja ’Li jednak je 3/2 a protona 1/2. Rela-
tivni moment impulsa pri reakciji (na euergijama do ~5 MeV dokle reakciju i po-
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smatramo) praktitno ne moZe biti veéi od 1 (zadatak E9) te je /=0, 1. Na osnovu
ovoga moguée su sledeée vrednosti spinova i parnosti pobudenih stanja u 8Be for-
miranih u ovim reakcijama: )

1 Spin stanja u "Be - Parnost stanja u %Be

7T

0 (s—proton) ““““’"{1 (=D (+D (=1 =—1
— -
2 2 :
- - 3
LI i 1

1 (p—proton) SH—+l=d ] (—D+D (D= +1
— —
2 2 0

Kako energije emitovanih y-kvanata od 14,7 i 17,6 MeV odgovaraju prelazima sa
stanja od 17,6 MeV (intermedijarno stanje (p,y) reakcije) na prvo pobudeno i os-
novno stanje &ije spinove i parnosti znamo, i kako znamo da su oni tipa M! to
zakljuujemo da je spin i parnost stanja od 17,6 MeV 1+ Iz tablice to znaci da je
u (p,v) reakciji "Li interagovao sa p-protonom. y-raspad je spor proces i otud je
ova rezonansa znatno uZa od ostalih koje se raspadaju emisijom &estica.
Parnost sistema 2« je pozitivna jer su a-Sestice bozoni (inherentni spin je nula)
i za njih je refleksija uvek ekvivalentna izmeni mesta koja, pak, zbog identi¢no-
sti Cestica, ne menja znak talasne funkcije sistema (simetriéna funkcija). Ova je
parnost sa druge strane jednaka:

Pra=Pa Po(= /= (+ D (+ D(= 1= +1

gde je / relativni moment impulsa razleéuéih o-Sestica, pa vidimo da / moZe biti
samo 0 i 2. To znadi da i stanja koja se raspadaju u 2 « moraju imati spin 0 ili 2
i pozitivnu parnost (to i jeste sludaj sa osnovnim i prvim pobudenim stanjem koja
i jesu upravo 0 i 2). Stanje od 19,8 MeV koje je intermedijarno u (p, &) reakciji je,
prema tome, (0ili 2)+. 7Li je, dakle, interagovao sa p-protonom 3to znaéi da je trebalo
savladati centrifugalnu barijeru visine ~5,5 MeV plus kulonovu od ~1,6 MeV
pa relativno visoka energija protona na kojoj se rezonansa javlja (~3 MeV) omogu-
éava da presek ne bude jako mali. Raspad na dve «-Zestice je, zbog njihove velike
relativne energije koja lako savladuje kulonovu barijeru, veoma brz i stanje (rezo-
nansa) je zbog toga veoma Siroko (Sire od stanja od 2,9 MeV). Spin stanja od 17,6
MeV (1) ne dozvoljava, dakle, raspad ovog stanja inale verovatnijim (briim)
nadinom na 2 « veé je prvo potrebno preéi y-raspadom u stanje spina 0 ili 2 (ovde je
to osnovno ili prvo pobudeno) koje ée se zatim raspasti u energetski pogodnije 2 &
stanje. Sli¢na je situacija sa stanjima negativne parnosti koja se zbog odrZanja
parnosti ne mogu raspasti na 2 « te je prvo potreban prelaz u stanje pozitivne par-
nosti koji se opet moZe ostvariti y-emisijom (emisijom »neparnih« fotona: El,
M2, ...). Gama emisiji, medutim, uvek konkuri¥u ostali brZi Gestiéni raspadi koji
ne moraju biti zabranjeni (ako su i energetski dozvoljeni, tj. egzotermni). Tako &inje-
nicu da se stanje od 19,15 MeV ne raspada ni u 2 « ni y-raspadom, veé baj emisijom
neutrona (koja je brZa ——verovatnija — od y) moZemo pripisati upravo njegovoj
negativnoj parnosti. Znaéi da je u ovoj reakciji 'Li interagovao sa s-protonom (nema
centrifugalne barijere) i da je presek zbcg toga relativbo veliki. Tablica nam dalje
kaZe da je spin ovog stanja 1 ili 2.
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Spin i parnost stanja od 18,12 MeV, konstatovanjem da y-zraci od 15,2 i 18,1 MeV
potidu od y-kanala njegovog raspada, direktno i jednozna€no utvrdujemo na 1+
(vy-kanal je u odnosu na konkurentni p-kanal ovde slabiji no za niZe stanje od
17,6 MeV kod koga je (p, p) kanal priguSen manjom energetskom razlikom izmedu
podetnog i krajnjeg stanja pa i viSom Kulonovom barijerom). Tako konaéno dobi-
jamo Semu prikazanu na slici.

IRE12| U oblasti r> R talasna funkcija ¢ je suma ravnog talasa e i odlazeceg

sfernog talasai er, gde je f amplituda rasejanja. Sferno-simetriéni deo talasne
r

funkcije (odgovoran za s-rasejanje) moZemo da nademo usrednjujudi talasnu funkeiju
po svim uglovima rasejanja

U(r),:.i.f‘p(_;)dgz_l_f[elkrf.os&_;f__f_elkr:ldﬂ
47 47 r

0

sinkr  f

L it

r r

®

=_f;elkr+_l_f ghrsindsin 3 4 9 =

, 2
[

Ako je E< V), na granici potencijalne barijere talasna funkcija u (r) treba da teZi
nuli, tj.:
: kR
w(®=0 iti AR e
kR R
odnosno:
sin kR
——
k

ikr

r=-
Totalni efikasni presek za elasti®no rasejanje je:
o= [1/12dQ =2Tsin* kR
[} g kl N
Ako je kr=nw g; —> 0 (nema s-rasejanja, ali to jo§ ne znali da nema i p, 4 itd.

rasejanja).

Ako je kr=(2 n+l)—72£- maksimalno s-rasejanje ima:

of™ =4 w/k2.

U sluaju malih brzina &estice & — 0; kR — 0; totalni presek za s-rasejanje je
. konstantan i iznosi:
ar=4 7 R2.

(Vidimo da se dobija faktor 4 u odnosu na klasifan — geometrijski — efikasni
presek za rasejanje male &estice na idealno tvrdoj kugli!).
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IREIBl Amplituda elasti¢nog rasejanja jednaka je

a

@)=

a|S

gj @1+ 1) P(x)
=0

Sumiranje po / moZemo da izvedémo koristeéi prvu rekurentnu relaciju LeZandrovih
polinoma citiranu u napomeni
P/ ()= Pia()=Q21=D Py ()
Pi_,—Pi4=(21-5)P,_,
Pr_4—Pi_s=(21-9) P,
Pio—Pr =2 ”’ ¥

Piy—Pra=@2I-3)P_,

Sumiranjem ovih izraza dobidemo:
, L
Pro(x)+ P/ (x) =,Z @1+ 1) P
<0
Da bismo se oslobodili izvoda LeZandrovih polinoma polazeé¢i od relacije 3 (date

u napomeni) dobijamo:

1

x2—1

P},+1+P,_=

[(L+DxP,,~(L+1)P +xLP —LP,_,].
Koristeéi rekurentnu relaciju 2 imaéemo:
' L+1
Pri +PL=‘x“T(PL“PL“)-

Na taj nadin izraz za amplitudu elastinog rasejanjapostaje:

f(x) ____‘_7_0, (L+ 1 PL (X)—PL“ (X) i
k I-x
Diferencijalni efikasni presek jednak je:

A9y 12 1% ® 2PLO) = Proy (P
70 (f1x) | I L+ (1= .
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Totalni efikasni presek dobijamo posle integracije po celom prostornom uglu:
do la,|? L 2
w= [l anl%l 204 1) P x} iQ
o a0 I {lzo( ) Py(x)

d Q=2 sin §d¥=—2 m dx.
Dakle:

' +1
a,,,,=3-"—|—"9|—2f [§(21+1)P,(x)]2dx.
k? o U=

Koriste¢i ortogonalnost sfernih harmonika

2
27+1

f Pi(x) Py(0)dx = —2—8,,

lako je pokazati da je:

4
clor=?ta0lz L+1)2

Fazni pomak (konstantan za sve /) nalazimo iz izraza:

€28 — 1 .
|@g|?=|~———|=5in*8
2i
tj.:
, k2
5in? § = ——6,,,
4
odnosno:

8 =arc sin \/ Stot .
4r

RE14} a) Totalni efikasni presek dobi¢emo sumiranjem /tih parcijalnih preseka
za rasejanje i za reakcije; tj.:

Gror ='§0 {2 0) +0,(D} =270 3, 21+ 1) (1 =y o5 25).

Kako je, medutim:
1—; cos 2 8;=2 Im {T1}

‘gornji izraz moZemo napisati u kondenzovanom obliku:

600 = 4 “W,go QI+ 1) Im {T3}.
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b) Ako apsorpcioni parametar v; ima maksimalnu vrednost w=1, I-ti parcijalni
presek za reakcije je jednak nuli; parcijalni presek za elastitno rasejanje je razliit
od nule, a za fazni pomak 8;=7/2 ima maksimalnu vrednost:

o () =4m 21+ 1) 2%
U sluCaju maksimalne apsorpcije (n;=0) presek za reakcije ima najveéu vrednost

oM (I) =7 (2 1+ 1)A%2

~ali je /-ti parcijalni presek za elasti¢no rasejanje razlitit od nule i iznosi:

o, (N=0cr"=n Q@I+ A2 (=0).

Moguée vrednosti parcijalnih preseka za razlidite situacije mogu se predstaviti
rafiranom povrSinom na slici:

Se(e) 4
aR*(2e+1)
sl
2
1 J S, (8)
1 2 (X
REH S TR LD
1

Posmatramo li rasejanje na »crnom« potencijalu dometa R u sluéaju malih talasnih
duZina tada rasejanju doprinose samo parcijalni talasi sa /</mez ~ kR. Talasi sa / koji
zadovoljavaju ovaj uslov biée potpuno apsorbovani sa presekom

6,= 2 of™()= 2 ™21+ 1) xnR?
i

”
s&lmax <'max

§to je, po gornjim izrazima jednako i preseku za elastiéno rasejanje o¢=~m R2, tj.:
prostom geometrijskom prescku! ElastiCno rasejanje »crnim« telom je neodekivano
ali se moZe shvatiti kao obi&na optic¢ka difrakcija (ovakvo se rasejanje &esto i naziva
difrakcijom).

U graniénom, klasiénom tretmanu, ovakav apsorbujué¢i centar rasejanja moZe
se shvatiti kao »crna« (neprozirna) sfera radijusa R koja baca senku u pravcu upad-
nog snopa. U talasnoj optici, pak, to znadi da se u pravcu »unapred« rasejava (di-
fraktuje) toliki intenzitet koliki je potreban za gaSenje upadnog snopa $to odmah
daje presek za ovakvo rasejanje jednak ~ w R2. Osim toga, da bi se upadni snop
ugasio potrebno je da ovo rasejano zralenje ima istu energiju, tj. da rasejanje bude
elastiéno! Iz talasne optike je poznato (Rayleighev kriterijum za moé razlaganja
opti&kih sistema) da je difrakciono rasejano zradenje koncentrisano u uglu 9 =~ X\*/R
od pravea unapred. U sludaju nuklearnog rasejanja gde je A*/R<1 oblast »senke«
je kratka i difrakciono rasejanje je teSko opaziti.
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‘ REISI Polazedi od opiteg izraza za efikasni presek za elastiéno rasejanje u forma-
fizmu parcijalnih talasa imaéemo:

Gpop = 4 A2 2:0 (214 1) sin2§,

pa dobijamo: ) ]
6o ==4 T A*2 (sin2 8943 sin2 §y).
" Procentualni doprinos /=1 parcijalnog talasa totalnom efikasnom preseku je:
in2
: 3 sin 81. ~3,3%.
sin? 8, + 3 sin? §,

Asimetriju za rasejanje napred— nazad definisacemo preko diferencijalnih efikasnih
preseka:

do do
(9-0)-2% (9=
a0 "0 q®-n
“do da :
29 5-0+2% (9=
ag O=0+5¢=m

Polazeéi od opSteg izraza

S (21+1) e¥tsin 8, Py (cos §) |
=0

do
Pt 3 =7\*2
dQ()

u sluéaju samo prva dva fazna pomaka dobicemo (/uar=1):

—g—g— (9) = A*2 | e!®osin §, P, (cos &) + 3 /% sin §, P, (cos §) |?

kako je
Py (cos 9) = } %(&)———A*Z[Sinz 8, + 9sin? 3, cos? &

P, (cos §) =cos & 4 6 sin 3, sin &, cos (3, — §;) cos 9],

Asimetrija je, dakle, jednaka:
6 sin 8, sin 8, cos (8, —8,) _ 6 sin 30° sin 3° cos (- 27°)

- =0,56.
sin? 3, + 9 sin? §, sin? 30° + 9 sin? 3°

|RE16| Totalni efikasni presek za s-rasejanje (893%0; 8 =0) glasi:

4
— in2
Cpor = W sin? &,

tg 3, =3’:2V0 kfjo (kr) rdr =—Z-’EK3 kfsinzkr dr =
0

2mV, [ka__ sinZka}

A 2K |2 4
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Dakle:
O _SIN23, 1 .
4n k? k24 Kk
tg? 3,
ako je veliina ka mala:

3
wn,afle_Lfy, ko
BRerl2 4 6
2mVy @, 1, 2mv,
—-——h__,———s;—ka—:)—b ak sa b= By Tk
odnosno:
4
Cror = 9’
k2 +
a’ b
U nisko energetskoj granici, & — 0:
4 52
[ =izt—-b—a—= 2,6 barn.
k—0 e

lRE17] U kvantnoj mehanici nema smisla govoriti o trajektorijama piotona.

Zbog identiCnosti estica su obe trajektorije oznaene na slici punom i tatkastom
linjjom nerazliCive. Stoga amplitude verovatnoéa za rasejanje pod uglom & i ©—9
treba sumirati. Ako vodimo raduna o spinu protoni mogu da budu u singletnom
(} 1) i tripletnom (11) stanju. Kako je spinska funkcija u singletnom stanju antisi-
metriéna, prostorna talasna funkcija mora da bude simetri¢na, tj.:

Ut SO+ (x-9)

U tripletnom stanju situacija je obrnuta, tj.:

@t B ~f(m~9).

Kako je statisti¢ka teZina za singletno stanje 1/4, a za tripletno 3/4, ukupni diferen-
cijalni efikasni presek za nepolarisan snop protona bice:

do 1 do 3 do

AQ |y 4 dQ 440

singlet ftriplet

RV CROT S ORI

@ P+ 1S (=9 P+ Re {7 @)f* (=)

-2 Re{f®)1* (x—9).
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Kako je: P R 012
=2 fsinScos 2] —i 22 2 211
f®f*m-9 D {sm 3 cos. 3 ] exp{ m[logsm 3 log cos 5 ]] ;
4 st =—[sin 2 cos 2|7 il
Re{f(®f* (-9} Gy sin 2 cos 2 cos [*q log tg? 5 ]

Konadan izraz za presek za Mottovo rasejanje, u sistemu centra mase, postaje:

cos (1; log tg? —g——)

do et 1

aQ

Mottt (my?)? sin? 2 cos? > sin* > cos* > sin’—‘—(}— cos? L
2 2 2 2 2 2

IREIS' Na ovako niskoj energiji samo s-talas ucestvuje u rasejanju (zad. E9)
(distribucija produkata rasejanja je izotropna) pa je jedini fazni pomak rasejanog
talasa 8g. Totalni presek je tako jednak:

Uam=% sin?8,. (prema zad. EI3)

Jednadina radijalnog dela, inade sferno-simetriénog, s-talasa u oblasti potencijala
(r<rg) je:

Ay, mV,
e ——hTu,-—O (uz ELVy)

sa reSenjem:
w=Cysinor

(zbog uslova konadnosti u nuli cos otpada) gde je a2=mVy/h2. Van dometa inter~
akcije (r>rg) talasna duZina je mnogo vefa («>k) i radijalna funkcija je spori
sinusni talas: -

uy=Cysin (kr+38y) sa k2=mE/[h2,

Promena faze, 8,5, ovde nije nifta drugo do fazni pomak rasejanog talasa koji je
napustio oblast interakcije (8 iz 6to). U tacki r==r¢ se, dakle, rasejani spori sinusni
talas u,, nastavlja na u, pribliZzno kao prava linija:
Uy (r=ro) = C (r—a)=un
gde je C nagib i a presek sa r osom. Tako je:
Cysin (kr+3g) = Cy (kr+8¢)=C (r—a)

odakle je:
. C=C2k i —a C=C2 80
pa je:
a
Sy= —ak= "
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Veligina a naziva se duZinom rasejanja (»scattering length«). U ovakvoj aproksi-
maciji, dakle, totalni presek postaje jednak:

oot 4 ™ al.

Uz pretpostavku da je n— p potencijal pravougaona jama sa parametrima (ro, V)

nadimo eksplicitno @ (pa tako i presek)

za ovaj sludaj. Sa slike vidimo da je rasto- wl
janje ro—a=d jednako: : | il
. | <
u(ry)  esinar,  tgar e wy
d= = = U | A
nagib ¢ acosar, o y
74
a samo a: o’
1 i D v
a=ry~d=ry[1 ———tgar,}. !
ar, \
N o Lo fee d. ]
Presek izraZen preko duZine rasejanja, tj. A RE18

parametra potencijala tako postaje:

2
Gy 24T = 47rr3( 1 -ﬂfﬂ)

or,y

Nadimo vrednost preseka pod pretpostavkom da je interakcija &isto tripletna sa
zadatim parametrima. Bice:

2
c:a,m47ra,==4-n:ro,(l --t—g—a'—r"i) .
T
Kako je

’";,IV“ —6,94 % 1012 ¢cm~!

=

to je

Glor = 4,22 x 10-2%cm? = 4 barn.
Sam presek za tripletno rasejanje je, dakle, znatno manji od eksperimentalnog §to
je i dokaz o postojanju i singletnog rasejanja. PoSto tripletna interakcija ima (za
nepolarisan snop) 2 7-+1==3 puta veéi broj ekviverovatnih stanja od singletne sa

27141=1 i kako su tripletno i singletno stanje nekoherentni, to je totalni presek
jednak zbiru statistiki ote¥anih pojedinanih prescka, tj.:

3 1
Cror = ‘:1 Gior +'Z~ & ror = 20 barn.

Uz 6o = 4 p,,, odavde nalazimo orr = 70 !

(iz gornje relacije oiee=/(rg, Vo), i ove vrednosti, sada moZemo nadi vezu izmedu
fog i Vs)-
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IREIQI Zavisnost preseka od polarizacije. festica mora da se izra¥ava &lanom

koji sadr?i skalarni proizvod srednjih vektora spi;xa ove éestic;,e (;; i .y_;). Dakle:
o=A+B{5) <}Z>EA+—f-cos@.

Konstante A i B odreditemo analizom &istog tripletnog rasejanja i rasejanja nepo-
- larisanog snopa na nepolarisanoj meti. )
U sluaju &istog tripletnog rasejanja imamo da je:

(s L8y =—

4
tj.:
B
A+—;=0H. (RE19.1)

Za potpuno nepolarisano rasejanje:
. {8)={5p=0
pa je
A=_:L.(cn+3aﬁ). (RE19.2)

Refavanjem jednadina (RE19.1) i (RE19.2) dobijamo:
1
o=—rllery +3011)+(ort —ot {)cosf].
Poto je u zadatku dat prosefan ugao polarizacije (f=60°) sledi da je:

=';“[°'1 y +7a411=12,25 barn.

|RE201 T matrica zavisi od impulsa i spina sve etiri Zestice. Inverzija vremena
_menja znake vektcra impulsa i spina Cestice. Invarijantnost T matrice u odnosu na
inverziju vremena moZemo, dakle, da predstavimo na sledeéi nadin:

— ey oy H P e I
| TA"B‘=I<pa.Pb.Sa,sbl T!pcppd.sc,stI)I

— - - - A — - — -
=:|<~pa.—Pb.—sa.—sb ‘ T‘—-ph'—-pd.-——sc,—-sd>l==| Tpsa I‘

Nepolarisani diferencijalni presek dobija se sumiranjem po svim projekcijama spina
i usrednjavanjem po poletnim spinskim stanjima. Dakle, u slu¢aju reakcije a+
+b — c+d: )

doyy 2m dnyy 1 1

a8 _ - 4B Tyspl®
a0k dE v, G D Gnr Dt
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Za inverznu reakciju ¢+d —» a+b imaéemo:

dag, 2w dngy 1 1
E0B4_ 5T TBA L S l Ton Iz.
dQ h dE Ved (2.5".-{- 1)(25‘d+1) SPIN

Koriséenjem osobina T matrice vidi se da su dve sume po spinskim promenljivima
jednake, tj.:

‘];.:w fi";m

dQ  (2sg+ 1) @2sc+1) vy dE

dopy (25,+1) (25, + 1) vy dng, '

dQ dE

Iz statisti¢ke mehanike poznato je:

dnap_dng dp_ 1o dp
dE  dp dE @mhp “dE

gde je p,, relativni impuls estica ¢ i d. Medutim, kako je:

dE d .
e e (B, Ep) =V, Vy=Vy
dp dp .
zakljudujemo da je:
dnp 1 P?g

TAE T 2RR) vy

»

dng, 1 ph .

dE " @R v,

Konatan izraz za odnos nepolarisanih diferencijalnih preseka za dve inverzne
reakcije jednak je:

T _@srn et ol

dop, (25,4 1) (25, +1D) pa
d€}

RE21| Odnos totalnih efikasnih preseka za dve inverzne reakcije jednak je (videti
prethodni zadatak):

o) _ s+ )Q@spt D) P
o(D)  (2s,+1) @5, +1) Pib

.

Spinovi neutrona i protona su sa=$p==1/2, a spinovi dueterona i gama kvanta
sp=8,==L.
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. . ho oo
Ako je impuls gama kvanta u sistemu centra masa —, relativni impuls deuteron-
¢
. . R 1 S
-gama kvanl u ovom sistemu iznosi 2-——, tj.
¢

ho
pYD‘:Z’*"

Relativni impuls neutron-proton u sistemu centra masa nalazimo iz zakona odrZanja
energije: y+D — n-tp:

. r
ho+Mpc=M, 2+ M, +——+——.

2M, 2M,
- Kako je (Mn-+Mp—>Mp)c? jednako vezivnoj energiji deuterona (Bp) imademo:
P M, + M,
- (W) =hw—Bp.
Relativan impuls neutron-proton Pnp=2p, 2
2 _M,+M,
M M, M,
gde smo sa M oznalili masu nukleona.
Dakle:
Pay=4 M (fiw—Bp)
odnosno:

s(p) 9 (hwp 5% 10-2
s(yD) 4 Mc*(hio—Bp)

] RE22l Presek za raspad sloZenog jezgra kanalom b moZe formalno da se izrazi
kao:

Oab ™= Ocq Pb

gde je 0co presek za formiranje sloZenog chgra (sa ekscitacionom energijom E)
apsorpcijom Cestica @, a P, verovatnoéa za emisiju cestice b ko;a je takode funkcija
ekscitacione energije (normirana je na 1).

Ako za bilo koja dva kanala reakcije p-+63Cu napifemo odnos efikasnih preseka
imaéemo:

S 1) _ 50y (E) Py (E) _ 0,0 (E) Py (E) _ o (o, 1)
5(2,21) 0y (E) Pyu(E)  0uu(E) Pyu(E) o (e 27)

§to je i trebalo dokazati!

|RE23 l Momenti impulsa Cestica a, 4 i C povezani su zakonom odrZanja momenta
mpulsa, tj.:

— ek e
I=I+1
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Vrednosti spina sloZenog jezgra kreéu se u intervalu
‘ I—1I l<lc<[+[n

dok je broj degenerisanih stanja sloZenog jezgra, po projekciji njegovog spina M,

jednak:
I+1a

N= 2 2L+1.

Ipm|i=la)

Ako su vektori T i A antiparalelni, degeneracija stanja sloZenog jezgra je:
Nyy=211-I,]+1

a verovatnoca da se sistem nade u ovakvom stanju (jednaka spinskom statistitkom
faktoru g, ,) iznosi:

Na primer ako je spin upadne &estice Jo=1/2 (Io=1—1/2):
21 T
2001 +1+2(+1/2)+1 2I+1

gy =

Ako su vektori T i —I; paralelni:
_2(I+1)+1
TwET Ty 0
u specijalnom slu€aju lo=1/2 (l,=7I+1/2):
I+1
2741
U slucaju reakeija sa nepolarisanim esticama a i 4
21.+1
TernneL+n’

844 =

IRE24] Presek za ovu reakciju iznosi (videti prethodni zadatak):

Gy = ng‘/\*n _.....4.__[._.'_'_1_}...1..__.
(E—E)?+—1T7?
4
gde je spinski statisticki faktor
_ 2I.+1 _3
20,+1) 27+1) 4

(Posto upadni neutron ima malu energiju pretpostavili smo da je njegov orbitalni
moment impulsa nula, tj. l=1/2).
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Kako je In<ly i I'=Ia+I =T
h - ke

p LA .
" py V2ulE

(gde je p redukovana masa neutrona, pribliZno jednaka njegovoj stvarnoj masi
poito je jezgro 1094g »tetko« u odnosu na njega). Dakle:

2 .
g = -9 Tuly o 51bam.

4 20¢E (p_Ey 4T
4

IREZSI Kako je »trajektorija« estice a u ravni normalnoj na njen moment im-

pulsa 7: raspodelu Zestica @ u odnosu na pravac / moZemo da prikaZemo 3-funkci-
jom: & (;; —13

Medutim kako je |T}> l?l i kako iz zakona odrZanja momenta impulsa imamo da

je spin sloZenog jezgra 7=7+;': zakljudujemo da je T Z odnosno:
- - >
S(r-D=d(@n-I).

Uglovnu distribuciju &estica a (W (71)) nalazimo ako distribuciju 8 (—n) 7) usrednjimo
po azimutalnim uglovima, tj.:

2n
W<r73=‘—f8<'r7-'13d<p.
21:o

Usrednjavanje je lako izvodljivo ako se koristi koordinatni sistem prikazan na
shici.

RE254

_ufadnt snop

- Ugao 9 je ugao izmedu ni snopa upadnih &estica.
Dakle:

T-n=Icos @ sind
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odnosno:

2r
W) = f § (I cos psin 9) dp
27
0 .

™

2
-—~~Lf8(lcos<psin3)§—§i?—dcp
21:0 sing

-1

_1 S(Uxsin®de 1 1

2w Yi—%  2nlsind
+1

Dobijena distribucija &estice a po uglovima & je oblika:

RE25.2

o

0 90° 180

IRE26 Maksimalni intenzitet, u snopu odlazeéih protona, pojavljuje se
uslovom:
A/;Q‘Jg.
h

gde je R radijus jezgra, a @ transfer impulsa u direktnoj reakciji.
Kako je:

e

Q=pr—p;

0=|0|= Vri+p}-2p.pc08®

ako je pi=~p; (Sto je zadovoljeno u sludju By~ Ef)

.9
Q_~_'2p,sm~5—

odnosno:

Impuls protona u sistemu centra mase iznosi

P:‘VMEP

165

pod
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gde j M masa protona a Ej energija upadnih protona.

Dakle:
9 ke Al

| P s N,
2 2RVMJE,

Prema tome, u rasejanom snopu protona maksimalni intenzitet pojavljuje se na
uglu & ~40°. Rezultat se dobro slaZe sa eksperimentalnim rezultatom (vidi sliku
datu u tekstu zadatka).

sil

IRE27I U Bornovoj aproksimaciji amplituda verovatnode striping reakcije jed-
naka je:

f= f‘bg (s rp) V(’n) ‘pn(’n’rp) dar{;dsr;r
Izvr§imo prvo integraciju po protonskoj koordinati. tj.:
r=[@rnaGaves| [ann e )

Integral u srednjoj zagradi ozna&imo slovom I i napi§imo eksplicitno:

it 1 g @it
I=]e ”"-—;—e Rp '3 g3y,

Da bismo resili ovaj integral zgodno je uvesti smenu promenljivih

— s -

r=rp—r,.
-
Kako je m konstantno
d3r==dirp.
Dakle: .
1E-igym f 1 75 ot (Bomy )7,
I=¢ Pl e RDe L d3r.
r

Medutim, kako je »k..D'—"I;:;"i"-Ep:

2n .
— T
I=21ce'k""'fre"‘ﬂ[ fe"“””ssin&d&]dr.

)
(uveh smo oznaku k=Fk,— 5 k,,) .
Dalje:
2meiknn F
2T | e Rp [eflr — e~k dr
iK

J——
4etknrn

~ 1 =
k,——k
» T P

1

2
+ R
R

Dakle:
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Amplituda verovatnoce, sada, izgleda:

4V, —
E R e S LA f () Vipg (90 0) 3(ry — Ry e¥arn i,
ky——kp| +—5 .
2 A

Ako razvijemo ravan talas po sfernim harmonicima imaemo:

ekre 3 ,-11/4,1;(214. Djikr) Yo (%) sa z=rcos®;
1==0

Jy= f 4 Y8 (ry = B) 2. 7 A @IF 1) jilkary) Yoo (9,) radr, dSQ,

Koristeéi ortogonalnost sfernih harmonika, lako je pokazati da je:

o0

Jy=const [ u,(r,) re jy(kyry) 8(r,— R) dr, = constu, (R) R}, (k,R).
(] .

Sada, uglovnu raspodelu protona iz striping reakcije moZemo da prikaZemo izrazom

{ 2
10)=|fp - iR .
B }

Ocigledno da je ova uglovna raspodela nenormirana.

U izrazu ne figuride eksplicitno ugao & pod kojim izleée proton u odnosu na upadni
pravac.

Medutim, zakon odrZanja impulsa i energije daje:

ki=K2+kp—2k,kycos §

-

kb _ Ky
4M 2M

(gde je e energija oslobodena u reakciji)

e

lRE28 Sunce, dakle, u sekundi izradi 4 x 1033 erg tj. gubi 4x 109 kg svoje mase
a specifian gubitak cnergije je ~2 erg/gfs. Ovoliki specifiéni gubitak veoma je
mali i svaki mehanizam mogao bi da obezbedi takav intenzitet zradenja (organizam
Zivih bi¢a oslobodi mnogo viSe energije u sekundi po gramu teZine!). Proces koji
ovo zradenje obezbeduje spada, dakle, u najsporije procese tinjanja a nikako u burne
procese sagorevanja! Ako je, medutim, luminoznost Sunca bila stalna tokom zadnjih
T~ 5% 109 godina tada je za to vreme izrafeno ukupno:

e=Lg v~ 6x105%erg
ili, po masi
m=cfc2 = 7x 1026 kg~ 3,5X 10~ M.

Ovo je ogroman iznos pa se problem javlja kod pokusaja objaSnjavanja porekla
ove integralno izradene energije; vecina energetskih izvora potrofila bi se za daleko
krae vreme.
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Pogledajmo prvo hemijsku energiju. S obzirom na to da je hemijski sastav
Sunca ~70% H, ~30% He i 1Y svih teZih elemenata to bi energija oslobodena
u hemijskim reakcijama mogla da bude maksimum reda elektronvolta po atomu
(protonu) §to pak &ini samo' 1eV/1GeV=10-9 deo mase mirovanja. Ovo je za pet
redova velidine manje no §to je potrebno i vek Sunca bio bi samo ~105 godina
§to je zanemarljivo malo u odnosu na potrebnu vrednost.
Prirodna radioaktivnost tekih elemenata, urana i torijuma, takode li¢i na potenci-
jalni izvor energije. Narogito su privlaéni dugi poluZivoti, reda 109 godina, koji
su u skladu sa procenjenim Zivotom zvezda. Protiv ovoga, medutim, govori njihova
neznatna obilnost u zvezdama. Osim toga, procesi radioaktivnog raspada neosetljivi
su na promene temperature i pritiska pa tako ne predstavljaju autoregulativni proces
koji moZe da odrZava zvezdu u ravnoteZnom stanju.
Zbog izotopskog sastava (tj. jako malog sadr?aja teZih elemenata i gotovo potpunog
odsustva fisionih elemenata) i fisiju odmah moZemo odbaciti kao moguéi izvor
energije (mada ~1 MeV po nukleonu, tj. 10-3 deo mase mirovanja, osloboden
u jednom aktu fisije moZe da bude dobar izvor energije).
Sledeéi moguéi izvor emergije je gravitaciona kontrakcija. Pri kontrakciji oblaka
gasa do danaS¥njih dimenzija Sunca gravitaciona potencijalna energija inenja se
od nule (neinteragujuée estice) do vrednosti potencijalne energije sfere radijusa
Sunca koja je reda:

ML

Usy—==4x10%erg.

Re
Ovo je, opet, za faktor reda 100 manje od potrebne vrednosti i obezbedilo bi Zivot
Sunca stalne luminoznosti Lg od svega

Tﬁ—U——-':‘. 3 x 107 god.
Lo
(no, ova vrednost moZe da posluZi kao piva procena vremena trajanja prve faze
evolucije, faze gravitacione kontrakcije).
Sledeéa moguénost je toplotna energija. Razumno je, naime, pretpostaviti da je
Sunce nekad bilo toplije no §to je danas i da je energiju zratilo (i jo§ uvek zradi)
pa radun hladenja svoje mase. Kako ovu energiju nije moguée direkino izraziti
preko parametara Sunca posluZimo se tecremom viriala. Podsetimo se da ona

glasi:
1 —
T:= '“—'(ZFI'rl)r‘
2
tj. da je srednja vrednost kinetitke energije sistema u vremenu v jednaka virialu
sistema gde je 7 ili period sistema ili beskonadno vreme. Dalje, ako je sistem kon-
zervativan, tj. kretanje vr¥i u potencijalnom polju energije U tako da je F= — gradU
bide:
1 —
Te= Y {Z(grad U); - 1}«

Ako je U homogena funkcija s-tog stepena, tj. ako je:
' U (x, Ay, A2)=% U (x, 3, 2)
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tada je po Eulerovoj teoremi o homogenim funkcijama:
% (grad U),-T,:-—SU
pa se teorema viriala svodi na:
2T, —sU.=0.
Kako je sa druge strane, zbog zakona odrZanja energije:

T+ U=E=const
to je konaéno:
2 DT s

i T.= E
s+2 542

T

Sto utvrduje u kakvom se odnosu poletna energija E »u srednjem deli« na kinetiCku
i potencijalnu energiju za vreme kretanja konzervativnih sistema. U sludaju idealnog
gasa u gravitacionom polju potencijalne energije U= - y M/r gde je, ofigledno,
s==—-71 a kineti¢ka energija je energija toplotnog kretanja, izmedu ove dve prosred-
stvom gornje teoreme postoji veza:

U=2FE i T=-E
tj.:
2T+ U=0.

QOdavde se vidi da se toplotna energija ovako zagrejanog oblika gasa samo za faktor 2
razlikuje od gravitacione energije te da ni ona ne moZe da bude traZeni izvor energije.
Iz gornjih relacija vidimo da je £= — T=u/2 tj. da je totalna energija jednaka ne-
gativnoj toplotnoj ili polovini gravitacione. Smanjenje totalne energije izazvano
zraenjem (ako nema drugih izvora), dakle, dovodi do smanjenja gravitacione
energije ali i do porasta toplotne! U procesu izradivanja energije zvezda se saZima
i zagreva! Gravitaciona kontrakcija na taj nadin dovodi, pored izradivanja energije,
i do zagrevanja mase gasa te tako obezbeduje temperature potrebne za podetak
termonuklearnih reakcija fuzije. Vidi se i da je zvezdu kojoj je gravitaciona kont-
rakcija dozvoljena nemogude ohladiti! Svaki poku$aj da se zvezdi oduzme energija
dovadi do njenog saZimanja i oslobadanja gravitacione energije takvom brzinom
koja ne samo da nadoknaduje gubitak energije sa povr§ine ve¢ i dalje zagreva ma-
teriju zvezde!

Kao jedini moguéi izvor energije ostaje nam, dakle, fuzija lakih nuklida
u teZe. Oslobadanje energije prestaje kada se sav vodonik fuzionife u
izotope grupe gvoZida (videti grafik energije veze po nukleonu). Kako
je energija veze po nukleonu u Fe~8 MeV a masa nukleona ~1000 MeV
to se u ovakvim procesima fuzije oslobodi oko 1% mase mirovanja nukle-
ona, pa i cele zvezde (fuzijom do helijuma oslobodi se oko 7 MeV po nukleonu
§to je skoro isto). Ovaj 19 mase Sunca iznosi ~ 1032 erg §to je i viSe no §to je po-
trebno za nasu procenu. O&ito nije ni potrebno da se sav vodonik fuzionife u helijum
§to stvarni izotopski sastav nafeg Sunca i potvrduje.

‘RE29| Pritisak u centru zvezde koja se nalazi u hidrodinamitkoj ravnoteZi a
koji potife od gravitacionog privlagenja, po redu velifine jednak je:

Po=pg Ry
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v M, M,
oy =g = LAGem® i an=T 75>
5 T R2@ ©

ovo postaje:

png.__B_‘YM—@— ~5x10"dinem~%
4 .R@

Ovaj je pritisak izjednalen sa pritiskom gasa u centru koji je jednak:

, L Ma
Po=NkTy= <e? kETy=v{e> =2
{up iy Re

jer je gas zvezde, upravo zbog visoke temperature, skoro potpuno jonizovan pa
samim tim i blizak idealnom. Srednju molekulsku teZinu {u> ovakvog gasa koji je
smesa X grama vodonika po gramu gasa, ¥ grama helijuma i Z=(l—X—1Y') grama
te¥ih elemenata, lako nalazimo. Pri totalnoj jonizaciji jedan atom H daje 2 &estice
i ua) = 1/2; atom He daje 3 Zestice i (paey ~ 4/3; teZi atom rednog broja Z i teZine
A=27 daje Z+1 Zesticu i za sve je {pz)=A/(z,1) =2 i kako je njihov procenat
mali to je ovo dobra aproksimacija. Za datu smesu X, ¥, Z bice, dakle:

(wy ! S
2X+%Y+—;(1~X—Y) 1+3X+05Y

iza X=0,71 ¥Y=0,3:
{uy=0,62.

U ovakvom jednostavnom modelu temperatura u centru zvezde je, dakle:

Tozw—xMG,z 1,5 x 107 grad.
. kRg

(Sli¢no se mo¥e dobiti kori§¢enjem teoreme viriala). Vidimo da je pri zadanim dimen-
zijama (R) temperatura do koje se zvezda zagrejala direkino proporcionalna masi
zvezde. To je razlog zbog koga masivnije zvezde brZe evoluiraju jer im sve termo-
nuklearne reakcije i pre poéinju i brie teku. Srednja energija koju ogoljena jezgra
(recimo protoni) u ovakvom gasu imaju direktno je proporcionalna temperaturi

(EY~k T=8,62% 10-8 T KeV

pa time i masi zvezde. Gore nadenoj temperaturi u centralnoj zoni Sunca odgovaraju
energije reda stotinu elektronvolti §to je malo u poredenju sa kulonovim barijerama
-medu protonima koji treba da preZive fuziju a koja je reda MeV. Barijere su, dakle,
jako 3iroke i verovatno¢a za nuklearnu interakciju veoma mala. U masivnijim,
pa otud i toplijim zvezdama, i energije su vise, tj. barijerc uZe a verovatnoca za
fuziju i tempo reakcija veéi. (Otud na Suncu i tako spor tempo sagorevanja vodonika
i mali specifi¢ni gubitak energije od svega ~2 egr/g/s). Zbog toga i zvezde malih
masa (M<0,1 Mg) ni ne mogu da se dovoljno zagreju pa se sinteza elemenata ni ne
vrii (ne prolaze fazu glavnog niza veé direktno prelaze u bele odnosno crne patuljke)
(Jupiter se, recimo, priblizava ovoj granicil).
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Iz &injenice da je gravitaciona kontrakcija Sunca zaustavljena ba¥ na ovoj postig-
nutoj temperaturi zakljuéujemo da ona mora biti dovoljna za iniciranje i odrZavanje
potrebne brzine termonuklearnih reakcija sinteze vodonika u helijum koje i kompen-
zuju gubitke na zradenje sa povrsine pa tako i odrzavaju ovakvo stacionarno stanje,

~ tj. spredavaju dalji gravitacioni kolaps i obezbeduju dug Zivot na glavnom nizu.

|RE30| Iz zadatka F.12 prozraénost barijere jednaka je:

P=e-Y

v 8mbz[_7i_\/.ﬁ}
TTNTERTL2 B

Kako je na datoj temperaturi srednja energija reda:

E~kT=8,62x10-8 T KeV ~0,03 eV

sa barijernim faktorom:

to je:
. 2
b Zo A7 _%hC 5 107 fermi.
E E E

Debljina barijere je, dakle, na ovoj temperaturi ogromna; kulonovo odbijanje
drzi (klasi¢no) protone daleko van dometa nuklearnih sila. Tako je:

—Ii:IO“7

b
pa se faktor J/R/b slobodno moZe zanemariti. Konadno je:

wz Z, e [2m 2wz z,ef

YETTy E v

$to u ovem sludaju iznosi ~ 4,5x 103 te je prozraénost barijere jednaka:

P o=t w g—h5%103 o | (=200 |

Uprkos toga 3to je nuklearni presek (zbog zakona o % 1 /) ovde relativno veliki nje-
gov je porast prema ovako ogromnoj Kulonovoj zabranjeitosti sigurno zanemarljiv
(prakti€¢no ni nema prilike da dode do izraZaja) i ukupni presek cstaje ovog reda
veli¢ine. Setimo se da je presek za intcrakciju neutrina od 1 MeV, §to je pojam za
minimalnu verovatnoc¢u interakcije, reda J0-20 barna! Dva deuterona, dakle, na
ovoj temperaturi penetriraju kroz barijeru, tj. uopste dobijaju Sansu da se fuzioni3u,
u srednjem, za vreme od ~102000 sekundi! Veli¢inu ovog broja moZemo oceniti
poredeéi ga sa procenjenim Zivotom Univerzuma od 10'8 sckundi. Ovo je, dakle,
uzrok visoke stabilnosti materije na relativno niskim temperaturama. Da bi do
fuzije doslo u razumnim intervalima vremena potrebne su ekstremno visoke tempe-
rature koje i postoje na zvezdama. Tempo fuzije je, znadi, veoma brza funkcija
temperature jer je vezan sa eksponencijalnom prozradnos$¢u barijere. »Bure baruta«
na kome sedimo se, na nasu sreéu, teiko pali! Tstovremeno, to je i jedan od glavnih
razloga 3to je teko ostvariti kontrolisanu fuziju.
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IRE31| Oslobodenu energiju moZemo naéi na viSe nadina: ,
1) Pofto je konaéni efekt jednak sintezi 4 protona u « Sesticu to ée QO vrednost
ovakve reakcije biti jednaka energiji oslobodenoj u celom ciklusu:

O=(4 my—my) ¢2=26,73 MeV

0d ovoga moramo oduzeti izgubljenih 2 (E,>=0,52 MeV pa je efektivni dobitak
energije jednak
Epp=26,2 MeV

po svakom formiranom 4He atomu.

2) Cinjenica da se u p—p ciklusu formira ne « lestica veé ceo atom “He (istina
u jonizovanom stanju) bolje se vidi ako posmatramo energetske bilanse u svakoj
od reakcija posebno. U prvoj reakciji formiranje deuterijuma praéeno je oslobada-
njem energije veze jednake 2,225 MeV i pozitronskim raspadom jednog od protona
p — n+e*+v tako da je ukupna oslobodena energija jednaka 0=2,225—(mnp+
+me—myp) €2==0,42 MeV. Neutrino od ovoga odnese 0,26 MeV tako da je ostatak
gistih 0,16 MeV. Medutim, pozitron iz raspada protona anihilira se sa elektronom
plazme i daje dodatnih 1,02 MeV. Ukupna oslobodena energija iz ove reakcije je,
dakle; ED=1,18 MeV. Znaéi da se, u srednjem, elektriéna neutralnost plazme,
kao i cele zvezde, u ovim procesima odrZava mada naelektrisanje zvezde opada (vrsi
se delimi®na neutronizacija). Ovo je obezbedeno zakonom odrZanja naelektrisanja
i potpuno eliminife uticaj elektriénih sila u makroskopskim oblastima prostora,
omoguéujuéi 40 redova slabijoj gravitacionoj interakeiji da vlada univerzumom.

Druga i treéa reakcija oslobadaju svoje &iste Q-vrednosti:
ED=(Q,=549 MeV i EV=03;=12,85 MeV

pa je ukupna oslobodena energija opet jednaka:

Epp=2 EV42 EDLEV=26,2 MeV.
Cipjenica da je vodonino-helijumski gas u stanju plazme, tj. potpuno jonizovanog
gasa, obezbeduje da prinos ovih reakcija ne bude drastino smanjen ogrommnim
presecima za jonizaciju i ekscitaciju (zad. E2) pa je stoga plazma izrazito pogodna
sredina za efikasno izvodenje ovih reakcija. Zato se i kontrolisane reakcije sinteze
na Zemlji upravo i poku$avaju da izvedu u plazmatitnoj sredini, tj. na »termonukle-

arnoj« bazi. U plazmi, medutim, postoje gubici na zakofno zrafenje (parotito
elektrona).

.‘RE32l Kao i u stuaju p—p ciklusa (videti prethodni zadatak) efektivna oslo-
bodena energija bice jednaka:

Eoy=(4 my—m,) c*—(ByD—(E)?
=26,73—0,72—0,98=25,03 MeV

ili:
6
Ecy=3 Q;=1,95+1,50+7,54+7,35+1,73 + 4,96 = 25,03 MeV.
{=1
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IRE33| Ako su (1) i (2) identi¢ne Cestice tada broj parova po jedinici zapremine
nede biti n} veé —;—nf pa je:

TNR,, = 1': ’;

12

M-

Prvo treba, dakle, eksplicitno naéi distribuciju relativnih brzina ¢ (¥). Proizvod

distribucija brzina vy i va:

e — 3/2 iy vi24my v,2
N (YN, d3v. d3v, = (my mp)*2 3, g3

L (1) Ny (v) dPv, dPv, QrkTy € 2 Ay dy,
predstavlja proizvod verovatnoda da &estica (1) ima brzinu u intervalu od vwf do
v1+d3v1.a (2) od v, 510 v;+fl3v? pr_i ¢emu im je relativna brzina ;:—-'VT—-—V—; pa je
ovo ekvivalentno trazenOJ.d,xgtnbuclji ¢ (v). Kako je totalna kinetitka energija
u eksponentu produktne distribucije jednaka zbiru kineti¢ke energije centra mase

. 5 . . wes . oy . -* . - -.-’
i energije relativnog kretanja &ije su brzine Vi v povezane sa brzinama v, i v, poznatim
relacijama:

to je ovaj proizvod distribucija jednak

™, . mtmg L,

e Y3

NGO N, 6 by, ddy, = T I B, d,

(2nkT)?

gde je p redukova}na masa p=mmy[(m+ms). Ako imamo dve funkeije, £ (x, )
ig(x, y),.tada se 1n§egral po dfcdy moZe zameniti integralom po dfdg sa tim §to je
odnos ovih dveju diferencijalnih povrfina jednak apsolutnoj vrednosti jakobijana

of of
ox 0Oy
o8 og
|9x Ody

Odnos'povr§ina v, dv,, prema dV;dvy je, dakle, jednak apsolutnoj vrednosti
determinante )

OV OV, 1 n,

oV, ov, my+m, .
OV OV 1 -

oV, v, my+m,
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Tako se proizvod distribucije brzina v i ¥ svodi na proizvod dvaju faktora:

352 nty+4-m. 3/2
()]

2wkT 2w kT

U integraciji po celom intervalu brzina integracija prvog &lana (distribucije brzina
centra masa) zbog normiranosti daje jedinicu pa je:

n — —
TNR,, = l_:_;z le(Vl) N, (v)ve () v, d*v,
12

‘ 2
=_r1_Lr}_L(_pL_) fva(v)e"i%?"zaﬂv
145, \ 2kl '
)

3/2 g
=—1’ﬂ-(—l‘—~) fvc(v)e-f'i—f"’wvzdv.
148, \ 20kl

Kako su srednje energije jezgara reda
(EY~kT=8,6X10"8 TkeV

tj. maksimalno reda keV, otito je da su preseci, prvenstveno zbog prisustva Sirokih
kulonovih barijera (a ponegde zbog toka reakcije preko slabih interakcija) veoma
mali i zato prakti¥no nemerljivi u laboratorijskim uslovima (statistike su, bukvalno,
nikakve!). Stoga se vrednosti preseka moraju ili ocenjivati ili ekstrapolisati sa vi$ih
energija. Iz zadatka E30 prozratnost kulonove barijere je

21t 2325 €2
Pxe W
pa je
2mzz e2
s(Wxa (e M

Maksimalni presek reakcije ¢’ je proporcionalan De Brogliejevom geometrijskom
presekunA*2 cc1/v2 (zadatak E14) pa jeopsti oblik zavisnostipreseka od brzine jednak:

O
2
v

o (V)=

gde je sada S (v) &isti nuklearni presek koji zavisi od detalja nuklearne strukture
(blizina rezonansi, itd) i koji se mora procenjivati svaki put a ostala su dva faktora
sasvim opSte prirode. Tako je:

o0

272y zp€2

372 SO LA
_TNR|2=—-1-%};:4W(-2——1—:}7{7—) fvS(v)e T T dy,
0
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Ako je S (v) relativno spora funkcija brzine (ili je interval brzina u kome je integral
razligit od nule mali, §to ve¢ moZemo videti po obliku podintegralne funkcije) tada
je S (v) = S=const i konatno:

P .

4wSnn 32 _va_znz,zz.ﬂ
TNR,, = ——-2 B ve 2kT wody
0

1438, \2nkT

oo

=cr-n f ye VT dv=CTR I (T)
S

gde smo uveli nove konstante a, b=>5 (T) i C. Ostaje jos, dakle, da se nade vrednost
integrala J(T). Ona se lako nalazi jer je podintegralna funkcija bitno razliCita od
nule samo u malom intervalu brzina. Podintegralnu funkciju f(v)=vg (¥} je u ovu
svrhu zgodnije posmatrati kao funkeiju energije

F(E)ol/E e~ #E~'*~BE=)E G (E).

Kako je srednja energija MB distribucije (E) =~ kT reda keV to pocev od tih vrednosti
podinje eksponencijalni (brzi) pad distribucije: e~PF. Prozraénost barijere, e~457"",
je, pak, ¥to se lako vidi, na tim energijama zanemarljiva i podinje primetno da raste
na energijama reda desetina keV. Na slici se vidi da je njihov proizvod G (E) bitno
razligit od nule u veoma uzanoj oblasti energija oko neke energije En na kojoj pro-
duktna funkcija G (E) ima maksimum. Shodno tome i funkcija g (v) bi¢e primetno
razlidita od nule samo u uzanom intervalu brzina oko brzine vm=)2 w Ep. Pri-
rodno je, dakle, da produktnu funkciju g (v) (koja se zove Gamow-ljevim vrhom)
aproksimiramo gausijanom

~ ¢ PE (silarni deo ~af
B distuibucije) ~e

G(E)2og(v) - Qa"x Gev

P —

E) <R T~ keV Ewm~40 keV E
W) (v)

|
|

RE33

standardnog oblika, Sirine 2 §, oko vrednosti vm; tj.:

g Ke—(y%’%’&)2
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gde je K visina gausijana, tj. maksimalna vrednost produktne funkcije g (v) jednaka:

Uz pretpostavku da u ovako uzanom intervalu brzina vaZi ve vy, traZeni integral
biée pribliZzno jednak:

2 2 T - ;n 2 e v2 —
J(T) =y, (e_én‘n-bv"') f e"("’s[_vz_) dv = Vi (e Vi b nl)_%_ V.n. X
0

(Alternativno, mogli smo produkinu funkeiju aproksimirati pravougaonikom $i-
tine 23 i visine jednake maksimalnoj vrednosti podintegralne funkcije. Tako bi
bilo:

""'n"“b"?n
J(T)y=238v, (e v )

$to se nebitno razlikuje od gornje vrednosti).

Sirinu gausijana 8 nalazimo po definiciji iz vrednosti brzine v=v,+3 na kojoj
produktna funkcija opadne od maksimalne vrednosti za v, na vrednost e puta
manju, tj. iz uslova:

o G

1
v, a 2 € ’
g( m) e‘(‘v‘m‘”’vm)
Logaritmovanjem dobijamo:
a a
et b (vm + ) —— - bvlzn =1,

Y m

O} 2 . . . .
MnoZenje sa vm (vm+8) = vy i zanemarivanje &lanova uz 83 daje:

T
3”\/’3‘5-

Brzinu vm na kojoj podintegralna funkcija ima maksimum lako nalazimo izjedna-
gavajuéi prvi izvod eksponenta produktne funkcije sa nulom:

—d—(~f~—bv2)= 0
dy y

y _i/Z.
m-\2b
Sada je interesantno pogledati kolika je odgovarajuéa energija En (koja se naziva

najefikasnijom energijom termonuklearne reakcije na datoj temperaturi) u odnosu
na srednju energiju k7. Uz vrednosti za a i b bice:

odakle je:

E, = -‘2*— V2= 1,245(2 2 A" THW keV
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gde smo sa A'=A14,((4,-+43) oznaiili redukovanu atomsku masu udestvujuéih
jezgara (u ajm) kao posledicu veze p=mpd’ a sa T temperaturu izraZenu u milio-
nima stepeni. Lako se vidi da je ova energija uvek veca od srednje energije kT §to
je i bilo razumno odekivati jer je prisustvom kulonove barijere optimalna vrednost
energije za reakciju »povudena« ka visim vrednostima (ka »repu« MB spektra).
Zamenjujuéi nadene vrednosti za 3 i vy u rezultat za J (T), dobijamo:

_ 3 a3
I B C PSR

J(T =L 3y e Vm = e b—5/6

(T) =57 9Vm 2/372 Vabte

51‘3,1.”2( @ )m V= 2wz ze ~E_~5/G

1+8, \2wk 2372 h ( )

pa je:

TNR,, =
2k
(nlzf z:e“mHA')l“
< T2 SIS g TN T IWET /"

Kako je ny=p X1/my i ny=p Xa/my gde su X; i X, procentni sadrZaji jedne od-
nosno druge vrste, ovo konagno postaje:

TNRyy = —— (_&_)”3 (_‘LTE_Z_.E:_)’
mym, (14+8,\ 2k h

1/3
’_3(1:22: z ; et '"HA')
xp? X, X, T e ThIRT

3(1:1 :: z: et mHA")”3
= 2 — - 2z
=C,e* X, X, T-e TT2IRkT

§to je i traZeni opiti izraz. Da bismo za konkretan stuéaj ovaj izraz mogli da nademo
moramo, dakle, znati:

1) od astrofizi€kih veli€ina:
a) gustinu p i temperaturu T' u oblasti zvezde gde se reakcija odvija;
b) hemijsku obilnost X, i X, reagujuéih jezgara u ovoj oblasti;
2) od nuklearnih podataka:
a) presek za reakciju S u oblasti energije Em koji se obidno procenjuje ili
ekstrapolira sa vidih energija;
b) ako Zelimo da nademo energiju oslobodenu u ovakvoj reakcijifem? /s
treba nam jo¥ i Q-vrednost reakcije kojom se TNR;y mnozi.
Ako je srednje vreme Zivota nuklearne vrste (1) u datoj sredini 74, ofigledno je da je:

on, n
—(TNR) =t = — 2
12) >t .
odakle je:
uht:zalm A 3
3( 2 H )
o= n_ p X, =‘:T213.«3 THEKT s
' TNRy, mllTNRn Cpe X, )

3to, znajuéi TNR),, lako nalazimo.
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RE34| Zamenom datih vrednosti u gornje izraze malazimo:
’ Epp=22,5 erglgs i Eon=0,5 ergfg-s

Na ovoj temperaturi je, znadi, p—p ciklus dominantan. Totalna energija oslobodena
u celoj centralnoj zoni datog radijusa bide, dakle:

Lg=p VE,,,=—§—1:(0,11 Re)p E,p=4x 10%ergs™!

%o se izvanredno dobro slaZe sa stvarnom vredno§éu. Fluks energije na povrsini
Sunca bice:

b= L? ~6,5% 10ergem~2s-1,
4R@7€ .
S druge strarie, po Stefan-Boltzmannovom zakonu, ovo je jednako:
D=0 Te“
pa je: :
; 4 AT )
T,=\/9—= -—’:%~zs 800 K.
c 4Ry ™
Solarna konstanta ¢ biée:
Lo
€=
47 (r)?

gde je ¢r> srednje rastojanje Sunce-Zemlja jednako jednoj astronomskoj jedinici
1 AJ=1,5x1013 cm
Tako je: .
e=1,4% 106 erg/cm2s=2 cal/cm?2 + min
Vidimo, dakle, da ceo model mehanizma oslobadanja energije u zvezdama radi
veoma dobro.

lREBSl Iz datih podataka direktno nalazimo da je u ovom sludaju:
Epp~240 erg/g-s a Econy=825x106 erg/g-s

Poredeéi ove dve vrednosti sa rezultatima za Sunce (prethodni zadatak) opaZamo
veoma brzu zavisnost tempa reakcija od temperature. Takode vidimo da je na
ovoj temperaturi C—N proces daleko intenzivniji od p—p, $to je za olekivanje
zbog znatno br¥e zavisnosti Ecy od temperature.

Luminoznost zvezde bi¢e jednaka:

L=ECNpV=%n(R3>—R3<)pEcN=4x 10%erg-s~1~1000 Ly !

Efektivna povrSinska temperatura zvezde bice, po Stefan-Boltzmannovom za-
konu:

L
§to opravdava atribut »crveni« za zvezde koje vidimo u ovoj fazi evolucije. Na ovaj
se nadin, dakle, svi astrofizi¢ki podaci i za zvezde u 0voj fazi evolucije mogu razumno
interpretirati (veoma je dobro pogodena tatka na HR dijagramu iz zadatka E28).

Glava --F
Alfa raspad




| F1 I Jezgro 232U transformise se alfa raspadom u jezgro 2287, emitujuéi Cetiri
grupe alfa estica sa energijama: 5318 keV, 5260 keV, 5130 keV i 4997 keV. Svi

- raspadi polaze iz osnovnog stanja podetnog jezgra. Nacrtajte Semu raspada 232U
i naznadite energetske nivoe jezgra 228Th, (Prelaz od 133 keV je zabranjen).

: F2 ] Odrediti masu atoma &ije se jezgro raspada iz mira emisijom alfa destice
kineticke energije 8,336 MeV i prelazi u jezgro 209Pb. Mase konatnog atoma i alfa-
~gestice su: 209,046471 i 4,003837 ajm.

F3 l Totalna energija oslobodena u alfa raspadu jezgra 232Pg iz osnovnog stanja
iznosi Q==4,47 MeV. Izradunajte koliku ée kineti€ku energiju imati alfa Zestica
koja se emituje iz pobudenog stanja jezgra 232Pa, koje je nastalo reakcijom jezgra
231pg sa termalnim neutronom . Mase relevantnih jezgra i neufrona iznose:
231,035936; 232,038509 i 1,008982 ajm.

F4 | Eksperimentalno odredena vezivna energija za alfa Besticu iznosi 28,3 MeV,
a vezivna energija jezgra atomskog broja A i rednog broja Z moZe da se izrazi,
poluempirijskom, Weizsackerovom formulom:
— — 2
s Z(Z D——a,(A 227) +a
A3 A

Kombinujuéi ova dva podatka odredite Q-vrednost za
alfa-raspad jezgra (Z, A).

B(Z, Ay=a,A—a,A*P —a

H

F5 | Poznato je da je radijum F(210Po) &isti alfa-emiter.
Pokutajte da odredite energiju alfa Sestica koje emituje radi-
jum F. Na raspolaganju vam stoji GM-brojag (efikasnosti za
alfa Cestice £=0,16) sa policom u koju moZete da stavite tat-
Kasti preparat radijuma F (vidi sliku), i osetljivi kalorimetar
toplotnog kapaciteta 0,49 cal®’K-1, u koji moZete da unesete
preparat posle merenja GM-brojacem. Pretpostavite da
ste u eksperimentu dobili sledece podatke: odbroj GM-bro-
jaga u sekundi R==2960, temperatura u kalorimetru se jedan
as po unofenju preparata popela za 1,1°K, udaljenje preparata od brojada L=1m
i preénik brojaa D=0,02 m.

! F6 | Jo& na samim podecima nuklearne fizike otkrivena je eksperimentalno tesna
veza izmedu konstante raspada i energije emitovane alfa Cestice. Ova zavisnost

je tipa log )\=a+—b;: i poznata ‘je kao Geiger-Nuttallov zakon. Za parno parna

75
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jezgra a=>55, a b=1,704 Z, ako je energija data u MeV. Koristeci Gelger-Nuttallov
zakon odredlte redni broj TAC" koji emituje alfa Zestice energije 7,7 MeV i ima
period poluraspada 1,6 1074s.

kom rastojanju od centra jezgra izleCe alfa Cestica
energije 4,5 MeV iz 210Po. Alfa &estica »nosic

lF? I Polazeéi od poluklasidne slike proceniti na “koli-
K3
;_ moment impulsa L=2.

2P, F7

I | Alfa &estica je pozitivno naelektrisana tako da pri izlasku iz jezgra mora

da savlada Kulonovu barijeru pozitivnog naelektmsama jezgra. Izradunati visinu
Kulonove barijere koju »vidi« alfa &estica u jezgru 238U. Izradunati i Sirinu Kulo-
nove barijere koju tunel efektom mora da savlada alfa Cestica energije 4,2 MeV.

F9 I Emisiji alfa estice iz jezgra protivi se Kulonova ali i centrifugalna barijera.

Za jezgro sa Z=90 i 4=230, koje emituje alfa Zesticu momenta 1mpulsa L=4
odrediti odnos Kulonove prema centrifugalnoj barijeri, na radijusu jezgra.

IF 10[ Polazeéi od relacija neodredenosti proceniti udestanost kojom alfa Cestica
»udara« o zidove Kulonove potencijalne barijere pa radijusu jezgra, ako se nalazi
ve¢ formirana u jezgru.

F11{ Alfa raspad je klasi¢an primer za kvantno mehani¢ki tunel efekat. Interakeija

zmedu, u jezgru formirane, alfa Cestice i ostatka jezgra prxkazana je potencualom
na slici, kaji se sastoji od &istog Kulonovog potencuala izvan jezgra i nuklearnog
potencijala (potencuala jake interakcije) unutar jezgra, aproksimiranog pravouglom
potencualnom jamom. Pretpostavite'da alfa

gestica ima moment impulsa nula (§ — W
talas) pa izradunajte prozracnost (P) poten-
cijalne barijere (koju klasi¢no gledano alfa
Sestica, ¢ija je energija prikazana na slici hori-
zontalnom linijom, nikad ne moZe da saviada).

S

JEZGRO

apomene: a) Prozracnost barijere moZe da
e dobije jedino reSavanjem Schrodingerove
jednatine, tj. nalaZenjem eksplicitnog oblika 5 ¢
radijalne talasne funkcije alfa Eestice ¢ (r) o
u oblasti R<<r<b, gde Je R radijus Jezgra FA4
ab rastOJanJe na kome je kineti¢ka energqa
alfa &estice jednaka nuli. Prozragnost je tada, sledeéi probabilistitku interpretaciju
talasne funkcije:

?
T~

P=] ¢ ) 121 ¢ (B2
b) Da bismo olak3ali re$avanje Schridingerove jednagdine napisite radijalnu talasnu
funkciju u obliku: ¢ (r)=exp (—U (r)/h)
¢) Procenite velidinu &lanova uz izvode u Schrédingerovoj jednafini, odbacite
najmanji i tek onda resite jednainu po U (r).
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‘FIZI Prozratnost Kulonove barijere za alfa gesticu data je aproksimativnim
zrazom (pogledajte prethodni zadatak)

P= e_.-mf\/ - E dr.

gde je B=2e2(Z—2), a b rastojanje na kome Cestica napusta barijeru (b=3/E).
Naéi eksplicitan izraz za prcziadnost barijere, pretpostavljajudi da je kineticka
energija alfa &estice (E) znatno manja od visine Kulonove barijere (E,=3/R).

" Napomena: Integral koji figurife u izrazu za prozracnost najlaksSe je resiti uvodenjem

smene promenljivih:

8

r="Lcos? 9.
E

:Fl3| Jednostavan model prolaska alfa &estice kroz barijeru daje nam slededi
zraz za konstantu raspada

A=10%¢g4 \/a(z hzc)mczb[arccos\/———u\/R ( )2}

gde jo A izraZeno u s. « je konstanta hiperfine strukture a b rastojanje n1 kome je
energija alfa-estice jednaka nuli. lIspitati valjanost ove formule na sludaju alfa
raspada 23074, 230Th emituje alfa Cestice energije 4,7 MeV sa periodom poluraspada
8x 104 godina.

|F14l Pokusajte da dobijete eksplicitni izraz i numericke koeficijente u Geiger-
-Nuttallovoj formuli (videti zadatak F6) koriste¢i teoriju prolaska alfa Cestice kroz

Kulcnovu barijeru. (Korisne ‘informacije moZete prona¢i u zadacima: FlI, F12
i F13).

!FISI Iz uobidajene diferencijalne jednacine koja opisuje promenu broja neraspad-
nutih jezgara sa vremenom dN/di=—(I"/k) N integracijom se dobija zakon opa-
danja alfa aktivnosti:

Ne=exp {—(I/h) t}

(Ovde je uzeto da je N (0)=1, a konstanta proporcionalnosti je zbog pogodnosti
izabrana u obliku I'//) . Jasno je da velitina I" ima dimenzije energije. Dakle, svako
jezgro dok se ne raspadne ima istu verovatnocu za raspad u jedinici vremena bez
obzira koliko je dugo pre toga postojalo. Ta _|e verovatnoc¢a jednaka ba§ I'/h i ne
zavisi od vremena. Na osnovu ovog zakona moZemo napisati eksphcltno vremensku
zavisnost talasne funkcije jezgra koje nije emitovalo alfa Cesticu:

i

41,3043"2—!! el (F15.1)
Drugi ¢lan je ovde uobiajeni evolucioni faktor talasne funkcije a prvi govori o
eksponencijalnom amortizovanju talasne funkcije koji izgleda ovako da bi kvadrat

talasne funkcije ¢* dao ba§ gornji zakon raspada. Sva neraspadnuta jezgra opisuju
se potpuno istom talasnom funkcijem (F15.1), tj. sva jezgra imaju potpuno jednaku
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verovatnoéu raspada u jedinici vremena i nemoguce je reéi koje ¢e se od njih raspasti
pre a koje kasnije. Zakon raspada isto je statisticki ! Alfa raspad se ne moZe shva-
titi kao zavi¥etak nekog procesa koji sa vremenom protie u jezgru; jezgro je uvek
na isti nadin spremno za raspad. Ako funkciju (F15.1) napifemo u obliku
~Alefy 1 :

Yio0e "( 2)=e w et tada je moZemo shvatiti kao vremenski zavisni deo
funkcije koja opisuje stanje sa kompleksnom vredno$éu energije E,=FE—il[2.
(Ovo se ne protivi hermitivnosti hamiltinijana). Razvijanjem funkcije (F15.1) u
Fourierov integral po funkcijama sa realnim vrednostima energije E &ja je vre-
menska zavisnost uobiCajena i jednaka {,’'co exp (—iE't/h) naéi koliki je po redu
velitine interval energije AE’ u kome je amplituda ove funkcije sa realnom energijom
razli¢ita od nule, tj. kolika je energetska Sirina stanja podloZnog alfa raspadu sa
konstantom raspada A==I"/h.

!F16 [ Iz prethodnog zadatka se vidi da amplituda a (£) ima dimenzije (energija)~!
pa ¢e i kvadrat amplitude integraljen po energiji imati iste dimenzije, Naéi vrednost
navedenog integrala (od — oo do --00) dobijenu vrednost oznadivii sa 1/AE. Zatim

integraljenjem zakona raspada (od 0 do o) nadi srednje vieme u kome se defava .

raspad i ozna&iti ga sa At. Nadi zatim proizvod AEAt i interpretirati dobijeni rezultat.

l RF1 l Sema raspada 232U data je na slici

232U
324
188
58 I oL
RFA

123""»

Energije gama kvanata su: 58, 130, 188, 236 i 312 keV.

l RF.2 I ] Poletni atom mase m, raspada se na alfa Sesticu i atom mase my,. Koristeéi
relativisti€ki zakon odrZanja impulsa i energije dobitemo (c=1):

iy = 1+ pl+ [ mik + pl
-b - -
O pa-tp,
Kinetika energija alfa Zestice iznosi: Tp= \/ prtmi— mf, . Kombinujuéi gornje izraze

i imajuéi u vidu da je Ty €m, dobijamo slededi izraz za masu polaznog atoma:

1y = 11, - g+ Ta( 1 +'_;.'1£) ~213,05932 ajm
b

l RF3 | Zahvatom termalnog neutrona jezgro 232Pg prelazi u ekscitirano stanje
energije:
W=Mj31+muw—Ma3,

Alfa raspadu koji polazi iz ovog energetskog stanja stoji na raspolaganju energija
g=0+W. Prema tome kinetitka energija alfa Zestice koja se emituje iz pobudenog
stanja 232Pg bice jednaka:

9 _@+Myt+m—M,,
My, ' m,
142
- My, M,

To=

=10,3 MeV.
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RF4 O — vrednost za alfa raspad izraZena preko vezivnih energija pocetnog
konacnog jezgra glasi: )
Q=B (*He)+B(Z—2, A—4) - B(Z, 4)

Ako jezgro ima veliki broj nukleona, §to je jedan od nuZnih uslova za spontan
alfa raspad, u dobroj aproksimaciji moZemo da pifemo:

0B(Z,4) ,9B(Z, 4)
o4 0z

Koristeé¢i vezivnu energiju alfa Sestice, za traenu Q — vrednost dobijamo:

B(Z~-2, A—4)—B(Z—A)~ —4

g ) z 22y
0-283-4a, 470,47 +30,Z4 1/3(1—~a)—4a4(1-7).

l RF5 | GM - brojaem odredi¢emo najpre totalnu aktivnost preparata radiju-
ma F

A___._._lﬂ__b_z_=7,4x 10% raspadafs.
€ X — X —
16 L?

Ukupna koligina toplote koja ée da se oslobodi u kalorimetru za 1 ¢as sa izvorom
ovakve aktivnosti iznosi:

O=A4AtE,
gde je E, kinetitka energija alfa Cestice.
Dakle:
Ey=SB 1508 Mev
At

RF6 | Brizljivim radunom po Geiger-Nuttallovoj formuli za redni broj ThC”

dobija se Z==88. Stvarni redni broj ThC” je 84. Ra’unski gledano greska formule
za na§ sludaj je manja od 5%.

IRF7| Impuls alfa-estice, koja ima kineti¢ku energiju E=4,5 MeV, iznosi:
p=V2mE
Klasian moment impulsa u odnosu na centar jezgra dat je izrazom:
M=p x=hVYL({L+1)

Iz ovog izraza moZemo da odredimo rastojanje x od centra jezgra na kome alfa
gestica napusta jezgro

X = %—2 ~ 2,7 fermi.
V2Zmc E

Dobijeno rastojanje je pribliZno dva puta manje od polupreénika jezgra 210Po.
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|RF8 ! Visina Kulonove barijere jezgra za Cesticu naelektrisanja +-2 e iznosi:
_2(Z-2)e*  20(Z~—2hc

o (A=81B  r (A-H
Sirina barijere (D) jednaka je rastojanju na kome je kinetitka energija alfa estice
jednaka nuli minus radijus jezgra, .

— 2
p2Z-2e

E¢ =30,5 MeV

~ryA¥3 =18 fermi.
o
|RF9I Vrednost centrifugalne potencijalne cncrgijye (centrifugalne barijere) na
polupredniku jezgra iznosi:
2
IGS)
2 mR?
Odnos Kulonove prema centrifugalnoj barijeri jednak je, dakle:
5_4a(Z—2)11102R~20
v, hel((+1)
| RFlO[ Utestanost kojom alfa-Cestica udara o zidove jezgra jednaka je recipro&noj
vrednosti vremena preleta jozgra. Kada bi se alfa-Cestica kretala samo duZ jednog

radijusa jezgra vreme preleta bi bilo 2 R/v, gde je v brzina alfa-estice unutar jezgra.
Brzinu alfa-Cestice mozemo, grubo, da ocenimo iz relacije neodredenosti:

v hifm R
Tako je udestanost pokulaja alfa-Cestice da napusti jezgro jednaka:
y 6
fot o B S pup,

I RFI11 l Vremenski nezavisna Schrddingerova jednadina u naSem slucaju glasi:
K d 3 ‘
RN
2m dr?
gde je m redukovana masa alfa-&ostice, koja se za masivno jezgro tek malo razlikuje
od stvarne mase mirovanja alfa-estice, a B oznadava 2 e2? (Z — 2). Koriste¢i se napo-

..,} Uy
menom (b)) (Y=¢ " ) dobiéemo:
h @t 1 (‘f.‘_/.){,_(.«?'.” )-_—.0

2m drr 2m\dr r

~ Ispitivanjem kocficijenata uz izvode po radijusu vidimo da je koeficijenat uz drugi

jzvod znatno manji od koeficijenta uz prvi, dakle aproksimativna jednacina postaje:

! (f.“{f . (2 )0

i '?:hr;t \ .dr r
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ReSenje ove jednadine je lako ngéi:‘ )
U@E)=Y2m [\/g-—Edr
tako da apsolutna vrednost kvadrata radijalne funkcije alfa Zestice iznosi:

B O F=eFO

Prozradnost barijere za alfa festicu data je izrazom:

b
T il =9
P

RF12| KoriSéenjem predloZene smene promenljivih integral u izrazu za prozraé-
nost transformisa¢emo na sledeéi nadin:

oG

b
S . o
f\/f’wE dr:zﬁfsinzsw:[i_m&cosa]
R r VE 2 2 .

8n

gde su move granice integracije:
RE \/‘E_ 3 ' \/1'52“"
3D—arccos\/§ = arc cos X %)G~arccos 3 =0
Imajuéi u vidu sledeéi identitet za inverzne trigonoinetrijske funkcije
(sin arc cos x) (cos arc cos x)=4x sin arc cos x=x}/ 1—x2
konadna vrednost integrala je:
B larcoos JR_\[R_(RY]
VE b b b

Uslov da je energija alfa estice znatno manja od Kulonove barijere, e}(viyalentan
je uslovu: R/b<1. Pod ovim uslovom vrednost integrala priblifno je jednaka:

_8_(_"__ [ 5)
VE\ 2 b
a prozratnost barijere tada iznosi:

P= e_\/s_,;fg (%’\/%)

|RF‘13[ Velidina b definisana-je izrazom

—_ 2
p2Z=2e
E

=2(Z—2)a(%)
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U nafem sluéaju b==54,5 fm, a odnos R/b=~0,16 tako da je

[R R [(R\?
arc cos -F—\/—b——(z—) ~0,8

Posle briZljivog raduna dobijamo

— 2
4,/i9%-%ﬁiﬁ=4,67x 106 YZ=2) b

Prema tome, izraz za konstantu raspada postaje
A==1021-0.434 G

gde je G=0,8x4,47x106 }/b (Z—2)~ 80,

Period poluraspada 230Th iznosi: T, ~2x 106 godina. Ako ovu vrednost za pe-
rloc} poluraspada uporedimo sa eksperimentalno odredenom vredno$éu videéemo
da je vrednost koja se dobija na osnovu modela prolaska alfa-gestice kroz barijeru
veca oko 30 puta od eksperimentalno izmerene vrednosti.

l RF l4| Konstanta raspada (u najniZoj aproksimaciji) moZe da se napife u obliku:

o, Zme2 b
ke

;\:1()213""\/ = 1021 g—47x106VZE

gde je b obrnuto proporcionalno energiji, tj. b=2Za (%)

Dakle:
A= 102 g HTx100VEGR: (7%)
Ako potraZimo dekadni logaritam ovog izraza imademo:
Z
VE
gde je A u sekundama ako je energija (F) izraZena u MeV.

]RFISI Napis§imo Fourierov transform:

loga=21-1,1

L LfeL)e 7 ~L g
F(f)=e " ‘e "< 7') = fa(E’)e " AR
Amplituda a (E) (naziva se Breit-Wignerova amp]itufia) pri tom je jednaka:

a -LE’A‘ " ———!- E——l£ t -’—E’t
a(E')——'—-—l-—fF(t)e" dtm-Lfe al 2) P
2%h 27h
0

0

® 1rr
=_2_l_;fe % [TH(E E')]'dt=--———-i,—————l—-~———
™ 5 21:[—5—+1(E—E')‘] .




190 ALFA-RASPAD

a njen kvadrat:
a () a* (E') = | a (E) = 1/4 w2 [(E- Ey+ 5;]

e (EN* RE15 Ispitivanjem ove funkcije lako utvrdujemo da ima
opéti oblik kao na slici; da joj je maksimum na
e vrednosti E’==E (na realnom delu kompleksne

energije Ec), tj da su u spektru funkcija ¢ one
sa ovom vredno$éu energije najzastupljenije, kao
i da vrednost |a(E)|* pada na polovinu svoje
a . maksimalne vrednosti ()2 za energije E'=E +
- 4-I'J2. TraZeni interval energija E' (AE") u kome je

amplituda funkeije ¢’¢ primetno razliita od nule

jednak je, dakle, ba§ I. Ova se velitina naziva

prirodnom Sirinom (poludirinom) stanja energije E
E' ili Sirinom spektralne linije zradenja koje se emituje
E iz ovog stanja.

5

RF16| Pomoéu smene E—E’=z nadimo vrednost integrala:

_._L_.= fla(E')lszr=_1_; .___ﬂg__j_‘_i=__l._z_%.arctg_._z== =..,l__
AE J 411:*[” (E—E')+— 4n2 T \/L 2nI’
4 2
tj. AE=2¢n T

Zatim nadimo srednje vreme Atf:

A:=f¢,¢,d:=fe =
0 o

i konadno proizvod ove dve veli€ine:
AEAI=27h

Dobili smo, dakle, rezultat analogan relacijama neodredenosti za energiju i vieme!
(koeficijent 2 = nije bitan). Znadi da je energija stanja koje postoji tokom ograni-
&enog vremenskog intervala At odredena sa tadno3tu reda 2 = /ifAt. Tacno je za-
dana samo energija stanja koje postoji neograni¢eno dugo, tj. koje se ne raspada.
Velidina ' AE naziva se energetskom $irinom stanja (nivoa) sistema (podjednako
se defini¥e za sva stanja koja traju odredeno vreme At a ne samo na ona koja su
podloZna alfa raspadu). Ako je, dakle, energija jezgra u intervalu AE tada je alfa
Zestica u izvesnom smislu vezana u jezgru u toku intervala vremena At. Sto je poten-
cijalna barijera vi$a (ili §ira) to je i njena prozra¢nost manja pa je samim tim manja
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i njoj proporcionalna verovatnoéa raspada I'/h. No, tada je manje AE pa je time
i dato stanje (koje u stvari pripada kontinuiranom spektru oblika | a (£")}2) bliZe
zaista vezanom stanju diskretnog spektra sa tanom energijom E koje Zivi beskonacno
dugo (At->o0). Veli¢ina I" upravo to i pokazuje: keliko je dato stanje, sposobno
za raspad, blisko &vrsto vezanom stanju definisane energije £ koje Zivi beskonatno
dugo. Alternativno, iz oblika | a (E')|2 vidi se da u sluaju I~ 0, tj. smanjenjem
prozradnosti, imaginarni deo energijé E. koji je jednak I'/2 teZi nuli a samo E. teZi
energiji vezanog stanja E. Amplituda a (E’) tada je prosto jednaka delta funkeiji
3 (E—E"), tj. sistem ima ta&no definisanu energiju i Zivi beskonatno dugo.
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Gl | Izvestan broj jezgara moZe istovremeno da se raspadne beta minus, beta
plus raspadom i K zahvatom. PokaZite da je ovakav, trostruki raspad energetski
mogué za jezgro SaCu (63,9298 ajm). Atomske mase za oblifnja Z-1 jezgra su:
SNi — 63,9280 ajm, %9Zn — 63,9291 ajm.

. Izotop argona 37Ar elektronskim zahvatom prelazi u stabilan 37C/. Odredite

energiju uzmaka atoma hlora i energiju neutrina koji prati elektronski zahvat.
Pretpostavite da jezgro atoma argona miruje. (Mase atoma argona i hlora su:
36,978416 ajm i 36,977540 ajm).

e

G3 | Naéi energiju neutrina iz K-zahvata u atomu !'¥Cs ako ukupna energija
koja se oslobodi ovim procesom iznosi 355 keV, a energija veze K-elektrona u rezi-
dualnom jezgru 35 keV. Pretpostavite da se pri ovom piocesu rezidualno jezgro
javlja u osnovnom stanju.

G4 | Jezgro "Be se K-zahvatom raspada u "Li u osnovnom stanju. Eksperimentalno
je utvrdeno da je srednja energija uzmaka jezgra 'Li 57,3 eV. Odredite masu miro-
vanja neutrina. Q-vrednost za ovu reakciju iznosi 0,866 MeV. (Pre raspada jezgro
"Be se nalazilo u miru. Masa atoma "Li je 7,016 ajm u skali 12C).

GS | Da li je iz beta minus raspada ugljenika

14C > 14N+ e=+

mogude jednoznatno odrediti spin antineutrina. Spinovi jezgara 14C'i 14N su 01i 1.

G6 I Presek za interakciju neutrina sa protonima izmeren je prouavanjem inver-

znog beta raspada: V+p*——>n-+e+ pomoéu aparature prikazane na slici. Fluks
antineutrina (dobijen iz reaktora), ®= Fetomutint
—=1,2 1013 antin. cm=2 s71, usmeren je 1 'l""l" ‘I"i I

na komoru i ispunjenu vodenim rast- 3
vorom CdCly koji sluZi istovremeno kao \' / ; “
4 ﬂ?‘pﬁ‘mg
et L ( S—

Tecn
|~ scintitator

protonska meta i kao materijal za apsorp-
ciju neutrona (Cd). Komore fl i [l is-
punjene svaka sa oko 5000 litara tecnog

scintilatora, sluZe (zajedno sa baterijom é H.0+CdCe
fotomultiplikatora) za detekciju gama = * 2
kvanata koji se emituju posle neutron- [TTIITTI ™. Tedni

skog zahvata kadmijumom, prosecne ener- scintilator

gije 9 MeV. Koristeéi se podacima dobi-
jenim u  eksperimentu: srednji odbroj

G6

%famu_lﬂfz.
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koincidentnih gama kvanata (anihilacioni+zahvatni) R=0,15 imp /h; efikasnost
za detekciju neutrona e5=0,17; efikasnost za detekciju pozitrona €g=0,15; broj
protona (izradunat) u komori BR 1028, izradunati presek za interakciju antineut-

rina sa protonima.

G7 | Proceniti koliki moment impulsa  odnosi elektron ili neutrino u beta raspadu

(posmatrati proizvod impuls X radijus). Prodiskutovati rezultat. Na osnovu ovoga
proceniti koje u ovom kontekstu zovemo dozvoljenim a koje zabranjenim pre-

‘lazima.

| G8 l Ako sa $fin: 0znadimo hamiltonijan interakcije odgovorne za beta minus

raspad, verovatnota P (E)dE emisije beta minus Sestice energije izmedu E i E+dE
u jedinici vremena data je kao:

a) Nadi izraz za statisti&ki faktor p (E) (koji daje gustinu kona¢nih stanja po je-
dinici ukupne energije i po jedinici energije elektrona) pod pretpostavkom da je
masa mirovanja neutrina o mala ali konadna. :

b) Ispitati uticaj vrednosti po na teorijski oblik spektra u blizini maksimalne energije
(da 1i je po jednako muli ili ne). ‘

] G9 [ Ako se eksplicitno napi¥u funkcije stanja za sve Cetiri Zestice koje udestvuju

u beta-raspadu n > p+e‘+; kao i hamiltonijan Q_Gmgng (konstanta slabe inter-
akcije), tada se matriéni element prelaza moZe napisati kao:

W= 47 T by dV =2 [V 43 93 U,y dV
v v
i uz oznaku M= f V;, U, dV verovatnoéa raspada postaje:
v
2w . 2
P(E)dE=—}—i~ M2 | g ®@ydV| p(E)dE
V N
Pod kojim se uslovima verovatnaéa moZe napisati u prostom obliku:
2% 1 dN
P(E)dE="—g*|M|?-——
@)= e M o,
ako se za elektronsku i neutrinsku talasnu funkciju uzmu ravni talasi:

—_— r
Yg=4 e (emisija elektrona)

r
@, =Be A (apsorpeija neutrina)
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Uz pretpostavku da je masa neutrina jednaka nuli naci izraz za radioaktivnu kon-
stantu beta minus raspada. Naéi odavde izraz za takozvanu jft vrednost i prodj-
skutovati rezultat. Prodiskutovati i dejstvo (ovde) zanemarene Coulombove inter-
akcije na oblik beta spektra.

|G10' Elektrostati¢ko polje jezgra naelektrisanja +Ze dovodi do »distorzije«
elektronskih (pozitronskih) talasnih funkcija u beta raspadu (koje se u jednostavnoj
teoriji beta raspada predstavljaju ravnim talasima). Efekt se opisuje tzv. Coulom-
bovim faktorom kojim se mnoZi energetska (impulsna) raspodela beta &estica. Cou-
lombov faktor je (u nerelativistickoj aproksimaciji) funkcija oblika:

27y

— 3—21‘71

F(z, E)~ ;

gde je n=4Ze2[hv; v je brzina elektrona.
Pozitivni znak se koristi za elektrone, negativni za pozitrone. Procenite vrednost

Coulombovog faktora za beta minus raspad jezgra 1 Re, koje emituje elektrone
maksimalne energije 2 keV.

: Glll Za neko jezgro poznata je ft vrednost (log fi=3). Konad&no stanje raspada
je 2+. Odredite spin i parnost pogetnog (beta nestabilnog) stanja u polaznom jezgru.

| G12] Tagan izraz za fr-vrednost kod beta raspada glasi:
2m3n 2 A7
S(Z, B tay = —5—
macg?| M|?
Znajuéi da je za superdozvoljene prelaze 3<Clog ft<4 procenite (grubo) red veli¢ine
konstante slabe interakcije.

w

G13| Pokafite da je srednja kineticka energija beta &estica pribliZno jednaka jednoj
treéini maksimalne kinetic¢ke energije ako je T, <€mgc?.

| Gl4l U tabeli je prikazano $est dozvoljenih elektronskih i pozitronskih raspada.
Koristeéi podatke iz tabele odredite koji prelazi su Fermijevog tipa, a koji Gamov
Telerovog tipa.

PRELAZ POCETNO STANJE  KRAJNJE STANJE

Lipg—>1H; ) 172 + 12 +
AH->¥He 1/2 + 172 +
SHe-»SLi 0 + 1 =+
140> 14N 0 + 0 -
150 15N 1/2 — 1/2 —
11TF 170 5/2 + 5/2 +

IG!S! Magnetskim beta spekirometrom dobijene su »dve taCke« elektronskog
spehtra nepoznatog beta minus emitera:

/o2 |"5’"uc ’ pa==2 ]/12An1oc (impulsi)
N(py=1152 N(py)=192 (odbroji)
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Koristeéi dobijene vrednosti impulsa i odbroja elektrona ocenite pomoc¢u Kurigjevog
dijagrama maksimalnu energiju beta spektra. (Pretpostavite da je Coulombov faktor
jednak jedinici).

616[ U procesu elektronskog zahvata atomski elektron prodire u zapreminu jezgra

i slabom interakcijom sa protonom .formira neutron i neutrino. Elektronski zahvat
je sli¥an (obi¢nom) beta raspadu. Razlike su sledece: emitovani neutrino ima strogo
_definisanu energiju (ako se zanemari mali uzmak jezgra); elektron je u vezanom
stanju (atomski K, L itd elektron). Koriste¢i elementarnu (Fermijevu) teoriju beta
raspada izratunati konstantu K zahvata (Ag).

Napomena: Talasnu funkciju K-elektrona aproksimirati njenom amplitudom u
centru jezgra
'z?

P (0) =
. V_
gde je a Bobrov radijus. (Treba imati u vidu da postoje dva K elektrona).

]Gl7l Eksperimentalno je odreden relativni odnos verovatnoéa za zahvat L i K
elektrona u jezgru HCI

W (L)/W (K)=0,112-£0,008

Proceniti teorijski odnos verovatnoda za K i L zahvat pretpostavljaju¢i da su elek-
tronske talasne funkcije atoma hlora sliéne vodonikovim. (Zanemariti skrining
efekt).

lGlSl U procesu beta raspada naelektrisanje jezgra se menja za +e. Ova promena
naclektrisanja, pradena (vremenskom) promenom elektrostatitke interakcije moZe
da dovede do ekscitacije ili jonizacije atoma konacnog jezgra. Naravno, posto
-je brzina beta elektrona znatno veéa od brzine atomskih elektrona moZemo da
smatramo da je hamiltonijan orbitalnih elektrona promenjen trenutno. Izradunati
verovatnodu za ekscitaciju K elektrona u L ljusku uslovljenu beta raspadom (u naj-
niZoj aproksimaciji). Radijalne talasne funkcije 15 i 25 elektrona u atomskom
sistemu jedinica (A=m=e=1) glase: -

Uy, (r)=22Z2e"2 .
Zr

u,, (r)= (_‘g) 3’2(2 —Zr)e

Pretpostavite da je redni broj jezgra Z> 1.
Napomena:

Zadatak treba reSiti metodom trenutne perturbacije. Neka je hamiltonijan sistema
oblika:

%:[ H., t<0 (atom Z pre $~ raspada)
H,, t>7 (atom Z+1 posle B~ raspada)
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v vreme trajanja perturbacije (V)

' V=%6—H.
Pretpostavimo da je pocetno stanje ¢ (0) jedno od svojstvenih stanja H.. Ako je
V' ©<&1, talasna funkcija sistema nije se izmenila u prvoj aproksimaciji, tj. ¢ (1) ~

= ¢ (0). Medutim ¢ (¢) nije svojstvena funkcija hamiltonijana H... Ako ¢ (f) razvi-
jemo po svojstvenim funkcijama ovog hamiltonijana (¢}, %) imacemo:

YOy @)= Cx b>2

Svaki koeficijent Cx daje amplitudu verovatnoée da sistem posle perturbacije bude

u nekom svojstvenom stanju hamiltonijana. H..



'RGII Energetski uslov za beta minus raspad izraZen preko ajm glasi:
Qﬂ“ =M;“Mz+1 - (B:u _Bz)

gde je B, totalna vezivna energija atomskih elektrona. Ako pretpostavimo da je
B,,,~B, tada je:

Qp— = Mz—M;, ;=650 keV
Za beta plus raspad imacemc:
Qp+ =Mer—Mz 1+ (Be- 1—B)—2 m=~ M—M, —2 m=750 keV
Za K — zahvat imafemo:
| Qi=M—M, —B!

Kako je Bf<2 m, Ok je sigurno pozitivno ako je Qy+ pozitivno. Dakle, sva tri
raspada su energetski moguca.

|RG2] Pretpostaviéemo da je brzina uzmadnog jezgra mala, a energija mirovanja
neutrina jednaka nuli. Tada zakon odrianja impulsa i energije daju

0=P,+P,
Mg c2=m,, c2-+Tp-+E,

gde je T, energija uzmaka jezgra hlora. Iz gornjih jednagina sledi

Refavanjem drugog po redu izraza po E, dobicemo

— 12
E‘,=m,,cz{{1+zi”°—'—"-‘!] - 1]::816 keV
my

_Energija uzmaka jezgra hlora jednaka je

EY
b—“m"—'loev

(U refavanju ovog zadatka zanemarili smo energiju veze elektrona koji udestvuju
u zahvatu)
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|RGS! Bilans energije za K-zahvat glasi (pogledati prethodni zadatak):

E2
m, c? == my, c? 'é‘;{v—c—z—'*‘ Ey+ Bk
b

gde je indeksom a oznafeno podetno, a indeksom & krajnje stanje jezgra. Ukupna
energija oslobodena u K-zahvatu iznosi:

W=(m,—ny) c?
Dakle:

2

Ev
=B =5 By

t].

EvumbCZ[ 1 +2-W’;Bk - 1]’= W— By =320 keV
b

IRG4| U K-zahvatu impuls jezgra "Li jednak je impulsu neut}ina, a uzmak jezgra
Li iznosi E,=p2/2m,.

Zakon odrZanja energije tvrdi:

T3
m, c*==my, 2+ E, = cz\/ mi+ %3+ B,
posto je u zadatku data Q-vrednost
Q=mq ¢2—m, c2— By

masa mirovanja ncutrina iznosi:

mycte\[Q*~2m, ¢ E,—2 QF,+ E;=3x 10~ MeV

Naravno, dobijeni rezultat je sumnjiv jer za precizno izradunavanje m, potrebno je
poznavanje @ vrednosti i mase mirovanja “Li sa daleko veéom tano§éu nego Sto
su one date u zadatku.

|RG5[ OdrZanje momenta impulsa (spina) u ovom beta raspadu nudi dve vrednosti
spina antineutrina 1/2 i 3/2

14C — 14N fe~+v
O=M+(1/2)
L/2)+(1/2) ili
N— —
(0_)
O)=(D)+(1/2)
(3/2)--(3/2)
N !
0)

Iz ovoga sledi da se spin antineutrina odavde ne moZe jednoznatno odrediti.
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IRG6 Presek za interakciju neutrina sa protonima jednak je
t:r‘,=———1i ~ 10~ cm? = 10" barn
3600 N, D¢, 5,

|RG7| Ako je Q oslobodena energija u beta raspadu a R radijus jezgra, onda je
Imp R=L x 1,25 A% 10-B22 % 10~ erg- s<hi '
c

(Q je tipi¢éno | MeV, p=0/c je gornja granica impulsa).

Najverovatnija je, dakle, vrednost /=0 i to su dozvoljeni prelazi. Vrednosti /=
=1, 2, ... su progresivno manje verovatne i to su jedanput, dvaput, itd. zabranjeni
prelazi. Posto svi leptoni imaju s=1/2 znagi da za dozvoljene prelaze totalni moment
impulsa koji leptoni odnose, J, moZe biti: 0 ili 1. Pre'azi sa J==0 su Fermijevi prelazi
a sa J=1 Gamow-Telerovi. Shodno tome, moguca razlika spinova poletnog i
krajnjeg stanja u dozvoljenim prelazima moZe biti A 7=0, 4-1.

RGS8| Neka se elektron nalazi u tacki x,y,z i po impulsu u ta&ki pz, py, p.

mpulsnog prostora. Iz relacije neodredenosti
AxAps~h, AyApy~h, A;Ap,~h

tj.
AxAyAzAps; ApyA p.~h3

sledi da je nemoguce tatno locirati desticu u jednoj taCki faznog prostora, veg,
u najboljem sluéaju, samo unutar »elementarne Celije« faznog prostora dimenzija
(zapremine) 43. Neka je zapremina »obicnog pros-
tora« u kome .se nalazi estica jednaka ¥ a zapre-
mina impulsnog prostora A pzApyAp,, tj. neka
ima impuls p i neodredenost A p koja je povezana
sa prostornom neodredeno§¢u V preko navedenih
relacija neodredenosti. Tada je totalna zapremina
fazne éelije jednaka 4 7 p2 A pV (za impulsni prostor
videti sliku RGS8.l) pa je -broj moguéih »elementar-
nih stanjax w ovoj zapremini jednak:

RG84

dN=4wnp*V dp
B

i, shodno tome, broj stanja u zapremini ¥ sa impulsom elektrona izmedu p i p-+-dp
i impulsom neutrina izmedu ¢ i g4-dg postaje:

_ AnVpdp 4nVg*dq 162 P?
L3 h3 (2wh)¢
g i dq iz ovog izraza eliminisa¢emo polaze¢i od izraza:

Ey~E,=E,=)q +p?

dN p*qtdpdg

‘koji nam ka¥e da se totalna raspoloZiva energija Ey deli na elektron i neut-ino -

(zanemarujuéi uzmak jezgra). Za konstantni impuls (energiju) elektrona imacemo

y —dp, 9% _ 4%
dEo—dL‘VWWM Eo"‘Ee
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dakle:
. 1622
N oot 2 dp g (E,— E.) dE
(21tl'1)6p Ipa(E, ) dE,
Kako je: o
P=E -m} i pdp=EJE -mldE,
t.
I A P rarren B T S
N = e \| (Bo— E)*— 3 \[E2— m? (E,~ E) E, dE, dE,

U izvodenju ovog izraza koristili smo jedinice u kojima je c=1. Ako, sada, uvedemo
za energiju elektrona oznaku E(E,—E) i predemo na jedinice u kojima je c#1,
statisti¢ki faktor dobija oblik:
d*N 16 m2y?

E)=. = . = CT (B, - E) - pa * 1P LE - m} ] (E, - E) E.
PEY= (275,“)6[(0 - us et o] (E, - E)

Matricni elementl ) 41} %i,,,'pidVlz ima tadno odredenu vrednost za dati raspad
I
pa je p (E) onaj &lan koji govori o opdtem ponaSanju beta spektra. Sam spektar je,
dakle, predstavljen funkcijom:
3 (E) = const [(Ey~ E)* — s *] P E =g ) P (B, - E)E

Funkciju y(E) treba ispitati u blizini (fizi€ki mogudéih) nula:

a) E=mpc? §to predstavlja poletak spektra i

b) E=FE¢—pgc? $to predstavlja maksimalnu mogucu energiju elektrona (kraj spek-
tra), E
Z1 yy=0 bice y=[EZ—m§ c4]')2 (Eg— E)? E sa maksimalnom energijom E==Eg==
=E,,.. Ponafanje spektra u blizini maksimalne energije dobijamo iz ispitivanja
vrednosti izvoda funkcije y (E) u tacki E=E ,=Ey:

max

y(E)=0, y(EQ)=0, y"(Eq)=2Eq(Es—mic*)"”

tj. u blizini E,, oblik je paraboli¢an i tangenta na spektralnu distribuciju u toj
tacki je horizontalna (videti sliku).
Za pg#0 bice: y (E=Ep— poc?)=0, i

E(E-E)(E-E)-pic]” E RGB.2

) (E) = +
y & (EZ ~ g c“)”2 o
a 1 Mo™
(i )™ By~ BY (B, ~ B2 - el ™~ o —\ N E
(B2~ myet) (B, ~ By ~pac] P E- — _;
(E(E* - m3 )" (E, - E)}}/ EsE;ec® ¢e® E.5Eo
{lE, - Er—ps ]} » - o

E-+ Fg—tgc?
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tj. tangenta je u ovoj tagki normalna (u tadki Enas=Eq—poc?). Iz ponafanja realnih
beta spektara u blizini maksimalne energije, uz sada3nju eksperimentalnu ta¢nost
postavljena je gornja granica za pg od ~60 eV. Koje su teSkoée u ovome? (Mala
statistika i malost o). .

|RG9| Matri¢ni element, dakle, postaje:
| Wyy=g ] Vs 4a ®U, dV
v

talasnu funkciju neutrina pifemo u obliku @, (3to odgovara apsorpciji neutrina)
* . . aes I'eTs . . . .
a ne kao @3 (Sto bi odgovaralo realnoj situaciji emisije antineutrina) §to je, uostalom,
ekvivalentno i radi se iz &isto formalnih razloga. Neutrino ima zanemarljivo mali
presek za intérakeiju sa drugim esticama i poljima i razumno je predstavljen ravnim
talasom. Ova funkcija normirana je kao: .
. 1 I Bched

[or@,av=1 . ®y=—pze '

v Vv
Talasna funkcija elektrona morala bi da vodi raduna o energiji Coulombove inter-
akcije, no, za male je Z-ove ova energija manja od kineti¢ke pa se u zadovoljavajucoj
aproksimaciji i ovde moZe koristiti ravan talas normiran na isti na¢in kao i neutrinski:
]

1 . per
%=l7'T-,eh

. i e s 2
f ViU,e H wra-r 4y, 1 dN
V2 dE,

Tako dobijamo:

P(E) dE=2—h’-‘g2

v
Kako je r< Ry, to jo Clan —;— (;4—:;) -Tpribli Zno reda veliéine%— Riergra ¥ 4 ~10-2
c

gde smo impuls procenili njegovom gornjom granicom uzimajuéi da je tipi€na
energija raspada reda velitine | MeV. Tako moZemo ravan talas razviti u stepeni

red:
. @ 1[i — = — 2
fV,,U,, 5|5 @var [a
, re0 T
) v M ‘

i zadrZati se samo na prvom &lanu reda; Sto nam daje traZeni izraz:
S Ly

V? dE,
U gustini kona&nih stanja dN/dE, nadenoj u prethodnom zadatku razmatrali smo

istu zapreminu ¥ na koju su ovde normirane talasne funkcije odlaze¢ih Eestica
tako da kona&no imamo (uz pretpostavku da je o=0):

1 16 7212
V? (2whe)®

2
P(E) JE_2™ & 4N
E V2 dE,

e an-2g| |
P(E)dE= 27" g | MP [E? — m2ci]' (E,~ E)? EdE

= M B = mic]™ (B~ Ey EdE
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Preko relacije: E==(m? c*-+p? c?)V? moZemo ovaj izraz napisati u impulsnoj repre-

zentaciji: ’

P(BydE=—E | MP (ot g =ty (Vo 4 ph Y P 7 )
273 AT 8

1 2pctdp

x (m? ¢t + p? U2 ——
pie) 2 (m? ¢+ pt A1

g ——___\2
=m[MF(\/mzc‘+poc2-—l/m2 c“+p2cz) prdp
Konstanta raspada A definife se kao verovatnoéa beta emisije u jedinici vremena
svih energija, od 0 do Ej, tj.:
_ gz l M IZ
273K 63

Po
A f [( m c4+p§c2)‘/2 — (m? e+ p? 02)112]2pz dp
J .
Uvedimo smenu mcn=p i meny=p;==p..., pa dobijamo:
7\2_‘,,,2 | MPEctms
23k

F (1)

sa;
o e R
Fap=[ (J1+m-VT+7)ndn
0
Nadimo ovaj faktor:

Mo
1 1 1
F(no)=—3—(l +78) 7)3+—q~113+—5—n¢5>—- 2(1 47 ”zf (1+ )V n2dy
g

2 53 8 23172
— ot —-qo— 2(1-1
3 i0 15’]0 ( 710)

1 1 1
% {‘4 n, (o + 1) ‘“‘é"’lo(")g"' "~ —ln [ + (o + 1)"2]}

1 5 1 5 1 1 20172
=%7zo—]—2'no—?'flo+7(1+‘fio In [y + (1 +95)"].
Konaéno je:
1 ctm’
A= —g?——— |MPF
T 23 A7 F# (0
tj.:
1 const
—-=const’ g2| M |* F (« ii Fr=
- & ! I (e (M
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3to je vrednost karakteristicna za svaki raspad a koja se i eksperimentalno moZe
odrediti. Sistematizacijom cksperlmentalmh vrednosti f¢ (ili radije logfi) opaZeno
Je da se ove grupi¥u: odvojena je grupa tzv. superdozvoljenih prelaza (ogledalska
jezgra) sa log ft==3—23,5, dozvoljenih pre-
NE) laza sa log ft=4—=6, itd. grupe zabranjenih
prelaza, ne tako jasno izraZene, sa suk-
P © cesivno rastuéim vrednostima log ft. Ter-
P\ minologija je jasna jer je prelaz dozvolje-
,’ \N\ niji, odnosno verovatniji u odnosu na
7 druge prelaze sa manjim vrednostima mat-
7 /e riénog elementa M, odnosno veéim log ft.
P[P Ovde obradena elementarna teorija beta
} raspada najbolje radi ba§ za dozvoljene
E prelaze gde oblik spektra dobijen u pret-
RG9 E ax hodnom zadatku verno opisuje realnu
situaciju (Kuriejev dijagram je prava lini-
ja). Odstupanja se javljaju u niskoenergetskom delu spektra usled sekundarnog
efekta: energija elektrona (pozitrona) influentirana je Coulombovom interakcijom
sa naelektrisanjem jezgra. Ovo je uzeto u obzir preko faktora F(Z, E) a spektri
+ , poprimaju oblik kao na slici.

L IRG]OI Coulombov faktor za elektrone je:

F(zZ, E):.._?_Ti'i__

1 —e=2m

. 2
gde je n=+—=-—-— a kako je Ty € =myc*+T
v 1-p?

dobija se

2 \-12
.= V4 (l e ) -88
137 T+m,c?

-posto je w>1 &an e~ u jzrazu za Coulombov faktor moZemo da zanemarimo.
Prema tome: F (75,2 keV)~2 mwy9=>55.

RGlll Vrednost log ft=3 odgovara superdozvoljenim prelazima za koje vaZe

'zbon)a pravila An=0; L=0,+1. Zakljuujemo da je polazno stanje: 2+ ili 1+
ili 3+,

! RGIZI Za superdozvoljene prelaze ft se krece u granicama 103—104, a | M, |2 je
reda veli¢ine 1. Ako za ft uzmemo vrednost 5% 103 imaéemo

2m 247 \'" \/ (hc) —43 3 —4 3
gN(m) ~ 0,03 CRCT ~ 1074 MeVcemd=10—4MeV fm

|RGl3l Srednja energija beta Cestica je

Tmax Tmax

(Tpy=[ TP(T)dT/Df P(T)dT
0
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gde je P (T) gustina raspodele beta &estica po kineti¢koj energiji. Polazeéi od izraza:
(videti zadatak G9):

P (E)=A [E*— mg2c4]12 (E,— E)2 E
i imajuéi u vidu da je T==E~myc2 i T<myc? lako se dobija da je
P(T)=BYT (Tax = T)?
gde je B numeriCka konstanta. Dakle,

Tmax Tmax
R B G B
(] (]
@ Izborna pravila za dozvoljene beta minus i beta plus prelaze glase:
AJ=0, An=0 prelazi Fermijevog tipa
AJ=0,1 (- 1), Ar=0 prelazi Gamow-Tellerovog tipa.

Dakle: prelaz @ je Gamow-Tellerovog tipa, prelai @ je Fermijevog tipa. Svi
ostali prelazi su dozvoljeni i jednim i drugim izbornim pravilima.

RG]S, Kuriejeov dijagram impulsne raspodele beta destica (N (p)) i njihovog
mpulsa (p) je funkcija koja je linearna po energiji beta Cestica, tj.

N(p)_
2

gde je K konstanta &ija nam numerlcka vrednost za reSavanje ovog zadatka nije ni
potrcbna, a E¢ maksimalna energija beta spcktra Izvr§imo transformaciju energije
i uvedimo za impuls jedinicu mec. Tada je

p=nmec; E=) plc2t+mict=mc? V1%

a gornji izraz dobija oblik:

\/ﬂ? = K (mc?) {E, ~ me* Y T+ 7}

Uvedimo smenu promenljivih: y=yYN(p)M2, x=) 1472
tada je

y=K mdc4 (Eg/mec? — x)=K’(Eg[mc? — x)

K'=[y2—y1)/[x2—x1]

dobija se da maksimalna energija beta spektra E, iznosi:

kako je

E, = me? [x‘ ) __.—} 7,76 mc? = 4 MeV.

Y2— N
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IRG16I Konstantu K-zahvata naci ¢emo polazeéi od izraza:
2n dN
A== P —
AT

d. . . . .
gde statisti¢ki faktor __IY_ odgovara gustini neutrinskih stanja
v

AN Vpidps

dE, (2wh)’dE,
Eg-energija oslobodena u K-zahvatu upravo je jednaka energiji neutrina, dakle,
E,=E,,. ‘
Ako zanemarimo masu mirovanja neutrina tada je

“EjJe i dp=-dE,
(4

Dakle: ‘

av v

dE, (2mhc)’
Ako konstantu slabe interakcije oznadimo sa g, a neutrinsku funkciju u najnizoj
moguéoj aproksimaciji prikaZemo konstantom: {,~1 V7V tada je

byt f iw b b b "”ng'T}"'* © f Piw b

- g——V%% © M,

gde su talasne funkcije jezgra sadrfane u matriénom elementu M, Kori¥éenjem
ovog izraza i izraza za statisti¢ki faktor dobijamo:

e T LU ACT P

izraz smo pomno#Zili sa 2 zato §to su u K-ljusci smeftena dva elektrona. Ako zame-
nimo vrednost amplitude elektronske funkcije dobi¢emo:

e

h (211'Iic)3

. RGl7[ Pretpostavimo da su‘ eﬁergije oslobodene u K'i L elektronskom zahvatu

jednake medusobno. Odnos verovatnoéa (konstanti) raspada (poSto su energetski
faktori a i matri¢ni elementi | M, |2 jednaki, pogledati prethodni zadatak) iznosi:

WD _ |40 !’_( ) /(_z_)’ _n

WE (b @F \m) [\m)
gde su n i ny glavni kvantni brojevi; ny=2 (L-elektron), n;=1 (K-elektron). Dakle,
teorijska procena daje:

3
" My £
a

W (L)/W (K)=1/8=0,125.
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IRGISI Verovatno¢a da sistem prede iz K u L ljusku (prelaz 15 u 25) jednaka Je
26 |2 (Videti napomenu uz zadatak)

Wimas=| Gy, [2=[<UsH () | UL, (r))

gde je Uis(r) radijalna talasna t‘unkcua elektrona u poletnom (beta nestabilnom)
jezgru

U” (I') =2 732 e

a U"“(r) radijalna talasna funkcija u konaénom jezgru

x+l() (z+l) {2—(z+])’}e_§i2‘£'

g 3 1
2fe"(~?”?)'r2dr
[1]

2

a3 1
-—(z+l)fe~(;”;)rr3dr .
[}

Dva integrala koja treba izradunati su tipa:

Dakle:

Wipops=2"12% (24 1)}

£

n!
e~*rridy =
. antl
0

(gde je n ceo brgj) tako da je mtegracua vrlo jednostavna. Posle integracije i sredi-
vanja dobijamo:

210 23/2 (z+ 1)3/2

Wggg = o 0
38 1\4

Z 4

( 3)

Ako uzmemo u obzirdaje z>»lidau kX lJuSCl ima dva 1 s elektrona konaZna vero-
vatnoéa za ekscitaciju atoma pri beta minus raspadu moze se napisati u obliku:

8]
Wl:—21=8("3"‘) ‘;;-
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H1 | Jezgro W emituje gama kvant od 1180 keV. Koliko je puta veca talasna

duZina ovog gama kvanta od radijusa jezgra 187W? Da li za ovaj prelaz vaZi dugo-
. talasna aproksimacija?

=

H2 ] PoluZivot nekog nuklearnog nivoa iznosi 0,06 ns. Ako je konverzioni koe-
ficijent za prelaz sa ovog nivoa u osnovno stanje znatno manji od 1, i ako je energija
prelaza manja od praga za formiranje elektronsko-pozitronskog para, proceniti
radijacionu §irinu pobudenog nivoa.

I H3 l Za neki prelaz sa energijom veéom od 2 mec? poznata je ukupna radijaciona
Sirina nivoa I, totalni konverzioni koeficijent « i parcijalna Sirina nivoa I, za emisiju
gama kvanta. Pomoéu ovih veliéina izraziti verovatnoéu za emisiju elektronsko-
-pozitronskog para.

| H4 Na slici je prikazan deo Seme raspada % dc. L 5/21'
Odrediti energije svih moguéih gama kvanata multi- 38— 3/2
polnosti E1 i E2 i prikazati ih na Semi raspada. 2T ——————— /2"
H4 enmemn— 32
2275

] H5 l Na slici je prikazan deo eme raspada 197 Au.

spt a) Koje su multipolnosti gama kvanata od 77 i

191 keV?
4191 ke
At b) Odrediti procenat primese viSeg multipola za
prelaz od 191 keV, znajuéi izmerenu vrednost X
5 77 bev . Kkonverzivnog kocficijenta za taj prelaz («g =0,9)
e 3/27  xao i teorijske vrednosti K konverzionih koefici-
Au jenata za sledeée multipole
multipol  El E2 . E3 Ml M2 M3
ag®™ 0,08 0,22 0,59 115 5,40 18

l Hé [ Koristeéi zakone odrZanja energije i impulsa pokacati da slobodan foton
ne moZe da kreira elektron i pozitron. Foton energije 2 MeV, u polju nekog jezgra
kreira elektronsko-pozitronski par. Ako je brzina pozitrona 0,4 ¢, kolika je kineti¢ka
energija elektrona, ako se zanemari energija uzmaka jezgra.
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H7 | Na slici je prikazan deo feme raspada nekog izotopa. Na osnovu datih
podataka i izbornih pravila za beta i gama raspad nadi spinove i parnosti stanja
A, Bi C.

.
" 12 logy fi =5
. 2 2: Loy ft =9
Y 3: fog ft=6
&
2
N,
4{E4
B
5| m
H7 C

l H8 | Foton energije fiw koji emituje jezgro u miru nema energiju ta¢no jednaku
energiji prelaza, posto odrZanje impulsa u aktu cmisije zahteva kona&nu veliéinu
uzmaka jezgra. Pretpostaviti da se ekscitirano jezgro X* (sa energijom ekscitacije
Ey u odnosu na osnovno stanje) koje se nalazi u izvoru gama kvanata, kreée brzi-
nom vy u odnosu na laboratorijski sistem, a relativnom brzinom v, u odnosu na
apsorber gama kvanata saginjen od jezgara X u osnovnom stanju. Ako je radijaciona
Sirina ekscitiranog nivoa I'y prodiskutovati moguénost za rezonantnu apsorpciju
gama kvanata iz izvora u apsorberu. '

I H9 I Na slici je prikazana aparatura koja je kori§¢ena za rezonantnu apsorpciju
gama kvanata. Jzvor 1984u bio je pridvri¢en na disk radijusa R==30 cm. Jezgra
izvora 1984u beta minus raspadom prelaze u ekscitirana jezgra 198Hg koja emi-
tuju gama kvante energije oko 411 keV. Odrediti ugaonu brzinu  kojom treba
obrtati disk pa da dode do rezonantne apsorpcije gama zraka u apsorberu koji
sadrZi jezgra 198Hg u osnovnom stanju.

H9

H10| U elektromagnetskim prelazima tipa 2+—>2+, koji se sreéu kod parno-parnih
jezgara osim M1 i E2 multipolnih gama kvanata primecéeni su i tzv. elektri¢ni mono-
polni prelazi EO. Posto se u prelazima EOQ tipa »odnosi« moment impulsa L=0
emisija fotona sa ovakvim momentom impulsa nije moguca ali je zato moguca
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emisija orbitalnih elektrona (X, L, M) kojima se energija prelaza predaje direktnim
procesima (bez uledéa realnih fotona). Pretpostaviti da je za neki 2+—2+ prelaz
precizno izmeren odnos ukupnog broja elektrona prema ukupnom broju gama kva-
nata koji se u prelazu emituju (o*). (Ovaj broj nije totalni koeficijent interne kon-
verzije zbog prisustva EO elektrona). Ako su poznaté veli¢ine: odnos verovatnoce
za emisiju E2 fotona prema verovatnoéi za emisiju M1 fotona (32), kao i konverzioni
koeficijenti oy, (M1) i &, (E2), izraziti preko njih odnos g? definisan kao broj
EQ clektrona prema broju M1 clektrona koji se emituju u jedinici vremena.

HIII Ako se jezgra iz ekscitiranog stanja deekscitiraju ne samo emisijom gama

kvanta veé i emisijom alfa-Cestice (videti na slici deo Seme raspada 214Po), tada

je iz faktora grananja (n) (relativnog odnosa inten-

ziteta alfa i gama linije) i procene poluZivota za

alfa &esticu moguée odrediti radijacioni period HAt 310,69Mev

poluraspada. Kako? W
o

oL IR TMeY

YETTITTIIYI YT,
240 p&

IH]Z[ Na osnovu poznatih klasiénih izraza za intenzitet zradenja emitovanog od
stranc oscilujuéeg elcktri¢nog (E£1) odnosno magnetnog (M1) dipola:

42 ‘ ) 12

o*@ly . &lo .
S 1y 8, 9) = P sin? = sin?
£ (90 9) 32nle, 372 V=D o "

2 a

w* 1g e la
. e et eIiN2 8 TAT Y oin2 8
Jap (ry B ) = 32n2a0c5r25m f )| L5y Sin i+

(tipi¢nc dipolne distribucije)

gde su §ly i M1y srednje vrednosti intenziteta vektora elektriénog odnosno mag-
netnog dipolnog momenta sistema naelektrisanja a 9 ugao sa osom momenta
(z-osom), proceniti red veli¢ine odnosa totalnog intenziteta [M1]/[E1]. Kvalitativiho
argumentisati &injenicu da je cmisija fotona sa totalnim momentom impulsa L=
=2, 3, ... (kvadrupolne, coktupclno, ... zraenje) sukcesivno manje verovatna’
od dipolne emisije (bez obzira na tip). Na osnovu ovoga objasniti zaSto su u atom-
skim prelazima najécgéc emitovani fotoni £1 tipa dok su u nuklearnim elektromag-
netnim deekscitacijama to fotoni M1 ifili E2 tipa.

I H I3[ Interakcija jezgra s poljem elektromagnetnog zradenja (odgovorna za gama

raspad) opisuje se pomocu teorije perturbacija. Koris¢enje teorije perturbacija

opravdano je, pre svega, zahvaljujuci »slabosti« elektromagnetne interakcije &ija je
. L e e

konstanta interakcijc jednaka konstanti fine strukture a=-=—h——=l/137) . Neper-
¢

turbovani sistem sastoji se od jozgra i clektromagnetnog polja, dok perturbacija

predstavlja interakciju jezgra i elektromagnetnog polja (V). Polazeéi od najniZeg
reda vremenski zavisne teorije perturbacija izradunati verovatnodu za cmisiju gama
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kvanta impulsa Bk i polarizacije Z u pravcu prostornog ugla d Qy oko vektora ~I;,
ako u procesu emisije jezgro prelazi iz stanja | 1) u stanje | §>. Pretpostaviti da
je elektromagnetno polje zatvoreno u zapreminu L3 i da je nejgov skalarni poten-

cijal @ (r, t)=0. Podto je gama-prelaz pracen promenom stanja polja, uobidajeno
je da se operator elektromagnetskog polja (elektromagnetski potencijal 4,,) pred-
stavlja u reprezentaciji druge kvantizacije, pomocéu operatora kreacije i anihilacije
fotona u razliditim stanjima. U ovom zadatku stanje fotona numerisali smo sa

(7;, e—f Operator elcktromagnetskég polja, tada, glasi:

T 2mhc? RT. .
o 30 e

gde smo sa cc oznalili &lan koji sadrZi anihilacione opcratore, koji nas u sludaju

emisije ne interesuje. Vektor ¢’, koji smo upotrebili kao indeks polarizacije fotona,

odnosi se na linearno nezavisnu polarizaciju polarizaciji e

Napomena:

O obliku nuklearne struje ne treba praviti nikakve pretpostavke. Oznaéiti je jedno-
stavno simbolom j, (n=1, 2, 3, 4).

IH14| Foton EL tipa je foton koji ima moment impulsa L i parnost (—I)-. Vero-

vatnoca za emisiju (jednog) EL fotona u judinici vremena, s talasnim vektorom %
u prostorni ugao dQy, uz prelaz jezgra iz stanja a u stanje b izraunata u prvoj
popravci vremenski zavisne teorije perturbacija (videti prethodni zadatak) glasi:
k 2dQ
Wa=— %

2n

hc? fjab(’)ULMlAAIO)dsr

gde je 3‘:,, matriéni element nuklearne struje, A operator elektromagnetskog polja
a | 1rary i | 0) stanje elektromagnetnog polja sa jednim fotonom EL tipa i bez njega.
(Indeks M se odnosi na projekciju momenta impulsa fotona duZ nekog fizi¢kog

pravea).Znajuéi vrednost matridnog elementa {1za | A | 0> u dugotalasnoj apro-
ksimaciji (kR<1): )

N ¥t JQL+1)(L+1) L
lim| 4]0y = -V 27 —— ml—)!-!]"z—v(kf) Y12(8, 9)

(¥ je ugao definisan u odnosu na osu}b koja se poklapa sa vektorom l?, 7; ?-—=kz).

Pokazati da verovatnoGa za emisiju EL fotona moZe da se predstavi izrazom:

_38 m(2L+ 1) (L+1) k2L+t
LI(2L+ DU i

gde je <b| 5fM | @) tzv. multipolni matriéni element EL tipa oblika

(b| O ay=[<b1§ ()| @) - Vipg (3, @) .

" |(b| Ofm|a)|2d 0y
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Napomena:
Treba imati u vidu dve moguée polarizacije fotona EL tipa!

]HISI Polazeéi od izraza za matriéni element koji figurife u verovatno¢ama EL
gama prelaza

B10fulay=[<Cb 1o ()| adrt Yy dir

A .
naéi oblik operatora OfM pretpostavljajuéi da se jezgro sastoji od A talkastih
naelektrisanja. Protone i neutrone posmatrati ravnopravno, imajudi jedino u vidu
da je naelektrisanje neutrona jednako nuli.

IH16| U preciznijoj teoriji elektri¢nih multipolnih prelaza uvodi se koncept efek-
tivnih naelektrisanja nukleona. Takva modifikacija je naroGito znafajna za El pre-
laze. Jednodestiéne talasne funkcije nukleona date su u odnosu na proizvoljni ko-

. - -
ordinatni sistem u kome su koordinate nukleona ry, rs, ..., ra. Ovaj nesavrieni
sistemn koordinata moZe donekle da se izbegne koriséenjem multipolnog operatora
definisanog u odnosu na centar mase jezgra. Odrediti efektivna naelektrisanja

— —_
nukleona koja odgovaraju prelazu sistema (ry, ra, ..., r4) na sistem centra mase
u sluaju E1 multipolnog operatora. -

|H17| Verovatnoéa spontane emisije jednog fotona EL tipa, u ceo prostor, u je-
dinici vremena data je izrazom: -

8 1 )
W (EL) or L+t 1
kL [QL+DUP )
gde je B(EL) tzv. redukovana verovatnota gama prelaza definisana na sledeéi
nadin

K2+ B(EL)

B(EL) =

M| ert Yy, (%, o) | I M, )%
2.I,+1M,g,u[<! /l u (S 9) [ M)
Sumiranje po indeksima My, M, i w ukaznje da se ne vodi raduna o polarizaciji
jezgra (koje pre emisije ima spin I i jednu od polarizacija Mj) niti o polarizaciji
gama kvanta nastalog u aktu emisije. Redukovanu verovatnofu prelaza moZemo
da izradunamo jedino u okviru nekog modela jezgra. Tako se Weisskopfova procena
redukovane verovatnoée zasniva na sledeéim pretpostavkama:
— za gama-prelaz odgovoran je samo jedan nukleon koji je pre emisije bio u stanju
sa momentom impulsa L a posle emisije u stanju s momentom impulsa 0; '
— radijalne talasne funkcije nukleona konstantne su u oblasti jezgra a jednake
nuli van njega.
Oznadivii radijus jezgra sa R pokazati da Weisskopfova procenadovodi do sledece
vrednosti verovatnoée prelaza:

__ 2@ty e\ o 3 Y
D = e L e m(e)(]'m (3+L)

gde su « konstanta fine strukture, o energija prelaza, a e, vrednost efektivnog
naelektrisanja nukleona.
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]Hlsl Koristedi definiciju redukovane verovatnoe prelaza naéi odnos redukovane
verovatnode za ekscitaciju jezgra sa nivoa (1) na nivo (2) prema redukovanoj vero-
vatnoéi za deekscitaciju nivoa (2) ma nivo (1). Koliko je puta manja redukovana
verovatnoda za emisiju E2 fotona od 412 keV izmedu stanja 2+—0* u 198 Hg od
verovatnoée za Kulonovu ekscitaciju istog nivoa?

H19| Tzotop 69Co ima jedan izomerni nivo od 59 keV sa periodom poluraspada
T1/2=10,5 minuta. Totalni konverzioni koeficijent, procenjen za prelaz u osnovno
stanje 60Co iznosi 40. Koliki poluZivot za nivo od
2% 59 keV predvida Weisskopfova procena?
Napomena:
Za ML prelaze redukovana verovatnoéa prelaza
u Weisskopfovom modelu iznesi: :

59 keV

HAQ  rrrrmmrrsrirrrrserzsmmm. 5 + B o\2
60Ca B(ML) = 10( ------ ) B(EL).
mcR

| HZOI Ako u procesu gama emisije izborna pravila dozvoljavaju cmisiju ML i
E (L+1) multipolne komponente gama zragenja i ako nema nekih specijalnih efckata

nuklearne strukture, tada je ML komponenta zrafenja znatno intenzivnija od £ (L+1)
komponente. Dokazati ovo tvrdenje!

[ H21| Jezgro koje ima sferno simetri¢nu gustinu naelektrisanja u osnovnom stanju
svim pobudenim stanjima ne moZe da emituje gama kvante EL tipa. Dokazati!
(Oblik £L multipolnog matri¢nog elementa dat je u zadatku br. H14).

|H22| Povrdina jezgra opisana je funkcijom R (%, @)==Ro (1+B Y20 (9, ¢)) gde je
Ry srednji kvadratni radijus jezgra, a beskonaéno mala velid¢ina prvog reda B, pa-
rametar kvadrupolne deformacije. Pretpostaviii da ' je naelektrisanje jezgra Ze
ravnomerno rasporedeno po zapremini i dokazati da elektri¢ni kvadrupolni operator
do na B2 ima oblik:

0% = const REPS,40-
|H23\ Neka se jezgro nalazi u pobudenom stanju sa spinom 7 i deekscitira sukce-
siviom kaskadnom emisijom dva gama kvanta M1 tipa (slika levo) energetske
razlike veée od moéi razlaganja raspoloZivih dctektora. Neka detektori Dy i D
osama zaklapaju ugao 9. U kolu D, nalazi se jednokanalni analizator kcji propusta
samo impulse koji su rezultat registracije fotcna y, a u kolu D, analizator koji
propusta samo liniju y,. Detektori su vezani u koincidentno kolo. Skaler, dakle,
registruje impuls samo kada D) registruje 1, 2 D, registruje y, unutar vremenskog
_intervala jednakog vremenu razlaganja koincidentnog kola. (Na slici desno §cmatski
je prikazan uredaj za merenje ugaonih distribucija gama zraka). Ovim smo, ‘znadi,
od svih jezgara koja se raspadaju u jzvoru odabrali samo ona koja cmituju fotonc
Y, i v, pod uglom & jedan u odnosu na drugi. Koincidentni odbroj N u funkciji
ugla 9, N (9), predstavlja takozvanu korelacionu funkeiju date ugaone (angularne)
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korelagije ovih dvaju y-kvanata. Ako je poznato da ugaona distribucija dipolnog
zraenja ima oblik:

F3(®)o 1~ P, (cos 9)
FE @)ool +%P_,_(cos§)

gde gornji ingleksi. oznadavaju vrednosti projekcije totalnog momenta impulsa
fotona na proizvoljnu z-osu u odnosu na koju je i definisan ugao 9 a P, (cos$)
je drugi Legendreov polinom, naéi konkretan oblik funkcije &V (8) za sluaj ugaone

_ y— korelacije merenc na kaskadi tipa 0+ (M1) 1+ (M1)0+ Odatle naéi kolika

— I‘
3| (1) '
" c(\,) ¥ » Koine. —-—g)
3,1 () ™ A
<+
13 DZ < p

H23 QMZ /\?z .

je relativna razlika u koincidentnom odbroju na =90 i 180°, takozvanu anizio-
tropiju. (Obratiti paZnju da foton koji se kreée u pravcu kvantizacione ose ne moZe
da ima projekciju momenta impulsa jednaku nuli). Prodiskutovati kakva se vrsta
mform_aci_ya moZe izvuéi iz ovakvih merenja za razliku od Cistih spektroskopskih
merenja.



]RHI | Talasna dufina gama kvanta iznosi:

aw=L=m 171071 em
© v
a polupre&nik volframovog jezgra R=6,9 fm, tako da je talasna duZina gama kvaqta
priblizno 25 puta veéa od radijusa jezgra. Uslov za dugotalasnu aproksimaciju
glasi: kR<1. Kako je

k=R _0,04
)\*

pa emisiju gama kvanta je primenljiva dugotalasna aproksimacija.

]RH2 l . Ukupna radijaciona ¥rina nivoa jezgra koje se raspada gama raspadom
(u Sirem smislu) (I") jednaka je sumi parcijalnih Sirina: za proces interne konver-
zije (I';), za proces kreacije elektronsko-pozitronskog para (1) i za proces emisijc
fotona (Iy), tj. .

I'sIy+4ToTp.
Kako je u zadatku pretpostavljeno da su I¢ i Ip==0 dobija se da I" iznosi:

rer,=""2.710ev.

12
RH3 Verovatnoéa raspada u jedinici vremena i Sirina nivoa povezani su rela-
cijom W=Ifh. Prema tome, verovatnoéa za emisiju para (Wp) iznosi:
r, r—-ry-r,
' h
odnosno, kako je konverzioni koeficijent a, izraZen preko firine nivoa, jednak
a=I¢/I'y za Wp se kona¥no dobija: :

w, L= Tell+9)
h

IRH4 I Za emisiju £1 fotona odrZanje parnosti zah-
44 sp*  teva (posto je parnost EL fotona .(——l)’-_) “ia
l se prelazi vrie samo izmedu stanja ‘razhélte
38 32" parnosti. Moguéi El prelazi energija 6, 27
ﬂ i 38 keV prikazani su na slici {, doksu E2?
27 - 42" fotoni (koji se emituju izmcdu nivoa iste
parnosti) energija 9 i 44 keV oznadeni na slici

U ant simbolom .
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I RHS5 l a) Za oba prelaza promena spina iznosi A I=1, 2. Posto u prelazima nema .
promene parnosti fotoni od 77 keV i 191 keV su meSanih multipolnosti M1-+E£2,
b) Ako sa 8 ozna&imo primesu E2 multipola imaéemo:

P = (1 — 8) a'or (M 1) + 8o (E 2)
odnosno
8=27%.

IRH6 | Zakoni odrZanja impulsa i energije, za slobodan foton, koji se raspada

. na clektronsko-pozitronski par daju nam sledeée jednakosti:

_2mye ..
ho= Vl—ﬁz (energija)
ho  2myv
—— impuls
c VIR (impuls)

Ove dve jednakosti su u saglasnosti jedino ako su brzine pozitrona i elektrona
jednake ¢, $to je nemoguce bududi da obe &estice imaju konadne mase mirovanja.
Kako je u sistemu jedinica u kome je c=1 impuls pozitrona

m,v

Pop= et
[T

zakon odrZanja energije (ako se zanemari energija uzmaka jezgra) daje:

e 2
ho= VP,— + )"‘l,2 + \/(lrn_e_?z + mf+ H

ako od ove jednadine oduzmemo m,-=m..=m dobifemo:

. mv)?
hm—m=79~+\/l_v2 +m?
Dakle, kineti¢ka energija elektrona iznosi:

T —heo—m (1 + v-‘_—l_m) ~ 0,031 MeV.

Y-

RH7 I Na osnovu izbornih pravila: za f raspad:

Tip prelaza AT An log ft
superdozvoljen 0 ne ~3
dozvoljen 0, &1 (ne 0—0) ne 3—6
jednom zabranjen 0, £1, £2 da 6—10
dvaput zabranjen 2, 43, (0-0) ne 10—14
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i za y raspad: .

lIJ“I/l<L<lI'}'If

T S T = [ (—DE  za elektriéni prelaz
1 Tarae 72 ) (= 1)L za magnetni prelaz’

posle malo spekulisanja lako nalazimo (navedenim redosledom):
Tpo==+, Tp=—, NWo==— i
In=5[2, Io=3(2, I.=T7/2.

|RH8 I Uslov za rezonantnu apsorpciju je da je promena energije y-kvanta u
odnosu na energiju prelaza (E}), uslovljena kinematikom izvor-apsorber, i uzmacima
jezgra emitéra i apsorbera, manja ili jednaka od prirodne Sirine ekscitiranog stanja

(', ti.
AE,<T.

Promena energije gama kvanta emitovanog iz izvora u odnosu na jezgro apsorbera

jednaka je
A Ey=E—E;=2 E~Ey,ppicr>

2 2

E .
——1—65, a E 4,1, POPravka frekvencije

Py _
2M, 2M,
gama kvanta usled Dopplerovog efekta.

Ako je (vi+w)fe<l:

gde je E, energija uzmaka jezgra, E, =

v, +v,
4

E:Inpplzr = E’Y

odnosno:

E v+
AE.{=EY[MYCZ -J—c—al
)

Uslov za rezonantnu apsorpciju izraZen preko relevantnih veliCina glasi:
r= (_E}’___Y_IF_"Z) E,;
Mc? 4

iz ove nejednakosti vidimo da je uslov to bolje zadovoljen, 5to je energija gama
prelaza manja. Uslov je sigurno zadovoljen ako je:

a) Ey L ke S Y By oo v, i n,<e.
M;c? c Mlcz

l RH9 ' Relativno pomeranje izvora u odnosu na apsorber dovodi do Dopplerovog
efekta koji povedava energiju gama kvanta (u sistemu izvor-apsorber) za iznos
E.v/c gde je v linijska brzina diska (v=R ). Poto uzmak jezgara dovodi do sma-
njenja a Dopplerov efekat do poveéanja udestanosti gama kvanata, maksimalnu
apsorpciju. dobi¢emo kada jednim efektom kompenzujemo drugi. Tj.

o R E.2
Eoppter =2 Ey; EYT =2 E“A‘;:;i
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Uslov za ugaonu brzinu je:

¢ E,

) == e

R M,c?

=0,2 % 10 rad/s

|RH10! Polazeéi od definicije veliine o*, ako rafGlanimo broj elektrona i broj
gama kvanata na njihove multipolne komponente imacemo:
_ N N(EQ+N,M1)+N,(E2)

Ny Ny (M 1)+ Ny (E2)

oF

ili uvodenjem oznaka:

N, (M 1)[q2+ 14 Ne(E2)
g1 N (E2) 2 NEO) N, (M 1)
Ny (M) NAUSIN Ny (M 1) (1489

Medutim odnos w

Ny (M 1
N, (E_%.)_ moZemo napisati na slede¢i nagin:

predstavlja M1 konverzioni  koeficijent «,,, (M1);

a odnos

N (E2) Ny(M1) Ny(E2) o % (E2)
N (M 1) Ny(M1) Ny(E2) oo (M 1)

tako da izraz za g2 postaje:
3
e yeny -t ED gy g
0‘wl (AJ l) %eo (M ])

Ispravnost dobijenog izraza lako je proveriti: ako Ne(E0) — 0 tada o* mora da
teZi totalnom konverzionom koeficijentu, a za ¢2 treba da se dobije nula.

|RHIII Ako su izmereni intenziteti o i vy linije I, i I, onda je faktor grananja

= jednak: )
__..]i Tyay

Iy Ty
Period poluraspada za o raspad moZemo da procenimo iz Geiger-Nuttalove formule

InT,=A—B 2.

VE
Dakle, radijacioni poluZivot ekscitiranog nivoa je:

lezv’ 7 A-BZIVE

Naravno, tainost ovog metoda zavisi od tatnosti Geiger-Nuttalove formule i naj-
Cesée moze da nam da samo grubu procenu poluZivota.
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‘RHIZI Ukupna energija emitovana u jedinici vremena (koja po usvojenoj kOl‘f!-
spondenciji u probabilisti¢koj interpretaciji odgovara emisiji odredenog broja
fotona datog totalnog momenta impulsa (ovde L=1) i energije u 4 7 u jedinici
vremena) bite dakle:

dE ) _8]% _l_'z 24 — Gy @ 12/c3
[E I]E(E)E‘=fJE‘(r,&,cp)dS-—’tic—!— rzsm Sr}sm&d&dqz D' B 13/,

i sliéno za M1:

[M1]=D' I 13/c5

ey 1w
[El] 815 v
(Isto smo mogli dobiti posmatranjem direktno datih izraza za diﬁgibuciju energije
J(r, 9, @) analogno kao gore shvaéenih, kao verovatnoce za emisiju fotoqa datog
tipa pod datim uglom, tj. za nalaZenje fotona datog tipa u infinitezimalnaj oblasti
prostora oko tatke (r, 9, @)). o
Elektri¢ni dipolni moment moZemo razumno aproksimirati kao

tako da je traZeni odnos:

8 1y~q Rststema
a magnetni sa:

1 q .
m lo"‘i - S=qvr Rzmemn = 7 qu Rglstema = 2_‘]’; L= '?2— VRgistema ;

Tako da konadno imamo:
LA!_‘JN(L)Z
[E1] c

Odnos v/c procenimo iz relacija neodredenosti za kpordix}?.tu i imp}lls Ap Ax~H tj.
ako je Sestica ogranitena na zapreminu linearnih dimenzija Rse: bice:

My Rutatoma = hi tj. v i/ MRgse. odnosno vfc=hi/McRast.

ili, izraZeno preko Comptonove talasne duZine naelektrisane &estice: v/~ N\*[Ratse.
tako da kona&no imamo:

M 1] v\ fAK N ( h )ZN{IO"S za atom

[E 1] ( ¢ ) (R,i,) M, R 1072 za jezgro
pod pretpostavkom da je i u jezgru samo jedan nukleon odgovoran za sve elek§r9~
magnetne pojave. Emisija elektri¢nog dlpql& i, dakl_e, mnogo verovatnija od emisije
magnetnog dipola no, ipak za tri reda veli¢ine manje u jezgru no u atomu. .
Kao i u beta-raspadu (zadatak G.7) analogna ocena za orbitni_moment x_mpulsa
koga odnosi foton daje vrednost koja je bliska nuli. No, sopstveni moment 1mpulsa
(spin) fotona jednak je jedinici te je i totalni moment xmpul§a koga e foton najvero-
vatnije odneti jednak upravo jedinici — (:llpo!no zrgéenjc Je.najvemvatm)t?. Svi
vi§i momenti impulsa bi¢e sukcesivno manje verovatnl. (Da bl~ se vrednost izraza

. pR pribliZila /i potrebni su jako veliki impulsi, tj. da talasna duZina fogo'na bude sto

bliza radijusu sistema koji zra&i. Tako vidimo da yerovatnoéa emisije visih multipola
raste sa -energijom).
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Na osnovu ovih kvalitativnih procena vidimo da je u atomima daleko najintenzivniji
(najverovatniji) tip zrafenja El. Po poznatim izbornim pravilima razlika spinova
podetnog i krajnjeg stanja jednaka je jedinici a parnost se ne menja. (Jasno je da
u jednom prelazn ne moZemo imati i £1 i M1 prelaz ako se parnost odrZava. Ovakve
procene odnose se na prelaze koji su po svemu sliéni osim po promeni parnosti)
U jezgru, pak, M1 prelazi za faktor ~100 su verovatniji no u atomima. Osim toga,
uslovi za realizaciju E1 prelaza u jezgru su retki jer su ovi zabranjeni uglavnom odr-
Zanjem parnosti; promena parnosti ne postoji ni u okviru jedne ljuske (shella)
u modelu ljusaka, ni u okviru jedne familije u kolektivnim modelima. Na taj na&in
FE?2 prelazi (simultano dozvoljeni sa M) koji su sa jedne strane zbog veéeg momenta
impulsa fotona manje verovatni od dipolnih prelaza a sa druge, zbog elektri¢ne
prirode verovatniji od magnetnih prelaza, postaju po intenzitetu (verovatnodéi)
poredljivi sa M1 prelazima. Ovome doprinose i veliki elektriéni kvadrupolni mo-
menti kod deformisanih jezgara. M2 prelazi, u kompeticiji sa £1, nemaju nikakve
fanse; oni su dvostruko malo verovatni, jednom zbog magnetne prirode i drugi
put zbog velikog momenta impulsa.

[RH13] Verovatnoéa prelaza u jedinici vremena data je »zlatnim« izrazom:

2w N dn
= VIiiYP—
PR
gde je 5—2“ gustina konaénih stanja po jedinici energije. Foton zatvoren u zapre-
minu L3 sadrZi ukupno

3.3 .,
o D)

stanja, d®(hk)=h?d Q, k2

@rhy
Kako je w=ke, a dE=Hhd w=hc dk, traZena gustina stanja jednaka je:
dn L} K
dE (2mPhe ©

U izrazu za W, | i) i | f) su vektori koji opisuju stanje sistema jezgro -+ elektromag-
netno polje pre i posle emisije

=110, 1f>=1 U, &);

| $> i | §,> oznalavaju podetno i krajnje stanje jezgra, a vektori | 0) i ]7;, :) stanje

elektromagnetnog polja: vakuum, i prisustvo fotona impulsa i polarizacije e

Najopstiji (relativisti€ki invarijantan) oblik interakcije elektromagnetnog polja
i sistema naelektrisanja je oblika: .

Ve [j,d,dr
gde je Zu &etvorovektor potencijal Zu @, /_{) a j, &etvorostruja

Ju (02 J)-




226 GAMA-RASPAD
Poito je u uslovima zadatka reSeno da je ®==0, operator energije interakcije postaje:
V- —if'f'("r)f(r')'d’r
c

gde je T(—;) operator nuklearne struje.
Matri¢ni element (f| V|i> mofemo sada napisati u obliku:

P ‘1 — — - 3
AP == [Tl & eld|0yar.
Uvedimo (u daljem tekstu) oznaku
rld [ =iy
i iskoristimo osobinu kreacionih operatora
>+
(&, €] 0) =51 877
tada je
. 2 h e
{fIV]iD =~ —D—o—)fe krejad3r.
Verovatnoéa za emisiju fotona I;: cu jedinici vremena postaje:

— — s 2
efj,,(r)e ""d’r! dQ".
2%

Zanimljivo je da izraz ispod znaka apsolutne vrednosti moZemo da posmatramo
kao Furijeov transform. Dakle, verovatnoéa za emisiju fotona proporcionalna je
kvadratu nuklearne struje (prelaza) u impulsnoj reprezentaciji.

W=-—Lk
hc?

RH14] Smenom matritnog elementa {1z | A | 0> u izraz za verovatnocu prelaza
u jedinici vremena dobi¢emo:

dQ, ;- ,2L+ D@L+
2 = hic? L L+ D

Da bismo uprostili matri¢ni element iskoristimo relaciju iz vektorske analize

W=

f T ()Y 0L Yipg (3, 00) & rr-

[e@diva@ydr= ~ [a(F)gradp (D d’r
koja va¥i ako na granicama integriranja ¢ (;) diva (_;) —0.
Zbog toga §to je nuklearna struja smetena u malu zapreminu prostora sigurni smo
da divz,,, - 0;
Dakle:
f—j:bV LY, ydir=— er Yine V}:bd3 re
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Medutim, jednadina kontinuiteta daje nam, odmah, vrednost divergencije nuklearne .
struje:

Via® = = bl60)] @)

Naravno, razumno je pretpostaviti da je vremenska zavisnost matriCnog elementa

operatora gustine naelektrisanja uobidajena, tj.:

Bl n]ay=<blp(r)|ayel@=Fatt;

_ Dakle

Vi (r’)=;’l—<E.,—Eb) e EE I )\ | @) =ike e b p|a).

Smenom ovog izraza i sumiranjem po dve mogude polarizacije EL fotona dobicemo:

w4 @D QL+ ke
“TT4 L [QL+DUPR A

2
f bat (P P Y 11y (3, 9) A 1

$to je i trebalo dokazati.
Zanimljivo je da ova formula vaZi samo u koordinatnom sistemu u kome je osa z

upravljena du? talasnog vektora .

IRHISI Gustina naelektrisanja u tacki prostora 7koje potice od tagkastih nuk-

leona s koordinatama ?,, Fay ..., T4 je:
T JEp—
p( =73 ed(r—r)
i=1
gde su e za i=Z+1, Z+2,... A jednaki nuli.
Sa gustine naelektrisanja na operator gustine naelektrisanja (u koordinatnoj repre-

. . . - — - . — -t —-—p
zentaciji) prelazimo direktno. Neka su g (r1,72...74) i Y (F1, 72 .. ra) talasna

. funkcija podetnog i krajnjeg stanja jezgra, tada je:

R - 4 — e
(b]OfM|a>=fd3rv.bb(r,, P ) S e ST T )
P
XL Y (9, @) dir d3r,. - d’r,
Ako izvr§imo prvo integraciju po7 (koristeéi osobinu 3-funkcije) dobiemo:

(b| Ofulay=[ d3r,drye - -d>ryd (- - or)| 2

A, e | [3ERGE =S ).
X yer YLM(S;‘PJ‘P.:(H' T

ie |



228 GAMA-RASPAD

Zaklju€ujemo da je elektriéni multipolni operator u sludaju tatkastog jezgra oblika:
4
Otr= zel"iLYLM(e s )
=1

> - —

‘RH16| Koordinata centra mase nukleona u koordinatnom sistemu ry, ra, ..., raje
- 14
rem™= » P s

koordinate nukleona u odnosu na sistem centra mase su

- 1v— 1 -
Ri=rj=repy={1——}ri—— S r.
=" =Tcm ( A)l AIZI’

Operator za E1 prelaz u sistemu (;;,;;, ces 7,4) glasi:

2 R 3

‘nz‘ er Y, CP)'“‘\/Z;,‘_Z‘ e.-(’:)M=\/I;‘DM
gde smo sa (;:)M oznadili sferne komponente vektora r_: :

o=Z, (F)a1="TF AV (x£0).

- -
U sistemu centra mase veli¢éina D (dipolni moment) prelazi u D'

Zer,»D Ze,R Ze,(r,—rCM)~e2r~

=1
Z o g7 A -
e z r,-e(l—~———) sn-2 5 n
=1 W
U izvodenju ovog izraza koristili smo &injenicu da je
1 za i=1,2,...,Z
eq= o
0 za i=Z+1,...,A.

— .
ZakljuEujemo da su operatori D i D' formalno isti izuzev 3to su se promenila efek-

tivna. naelektrisanja. Tako operator D’ uvodi za naelektrisanje protona efektivnu
velidinu
z
eff o 1— __)
K e( A

a za naelektrisanje neutrona veliinu

z
or_
e =—e .
Kako je kod teZih jezgara Z/d4 =~ 0,4 a kod lakih 0,5 vidimo da je

05e<e<06e i —05e<e<-0de.
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jRHH l Kako su radijalne talasne funkcije nukleona konstantne u jezgru, a jed-
nake nuli van njega, njihov eksplicitni oblik je lako naéi iz uslova normiranja
R
[P [redr=1.
0

Dakle, prostorni deo jednogestiénih funkcija nukleona (ne vodimo raduna o nji-
hovom spinskom delu) je:

159 =\ s Yo 3, 9)
11y = e[ E o 1Y)
V‘-‘ R 00 .

Redukovana verovatnoca za ovakav (jednodestiéni prelaz) iznosi:

eef/‘ % % .
B(EL)=~ 2 2 S Y |
M=—L == —L
Medutim, kako je:
1

(f[rLyLM[i)=—V4 fYLM 3,0 Y., (8, cp)dﬂfruzdr
(4m)
-3 e ls
L+3  V4rx M*
dobijamo:

. 3R‘) bl &g(““)
B(EL) = (L+3 M__,_,LZ__L My = L+3

Verovatnota prelaza data je izrazom:
Wy (ELy = —2 L+ D “‘R)“( ; ) e
LiQ2L+ )i L+3 h

ili ako uzmemo u obzir da je

2 k 2 ke 2
€efy '; = eff T = Cofy AW

he

dobiéemo izraz koji je i trebalo da dokaZemo.

IRHISI Redukovane verovatnode za ekscitaciju i deekscitaciju razlikuju se jedino
do na statisticki faktor 1/(2/i+1) gde je Ji spin podetnog stanja, posto je operator
prelaza hermitski opcrator.

Dakle:

Bl(z—n) _24+1
Bi(1—>12) 2L+1
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Primenjujuéi ovaj rezultat na drugi deo zadatka zakljudujemo da je redukovana
verovatnoéa za Kulonovu ekscitaciju 5 puta veéa od redukovane verovatnoce za
emisiju E2 fotona.

IRHIQI Foton od 59 keV je M3 tipa. Procena poluZivota nivoa 2+ iznosi:
_ In2

(1 + ) Wy (M3)

gde je Wy "Weisskopfova: verovatnoéa za emisiju M3 fotona.

Kako je:

Ty,

WwMB =1 Mc he

20 (L+ 1) ou:( hic )zRZL_z(EY\ZLH
L2 L+ DUpP
dobijamo:
Wy (M 3)=3,7% 10765}
$to odgovara poluZivotu od 77,2==4500 s.
Bez obzira §t0 Weisskopfova Procena daje oko 7 puta duZi poluZivot od izmerenog,
u sludaju ovog izomernog prelaza, moZemo da smatramo da je slaganje vrlo dobro,
imajuéi u vidu grubost Weisskopfove formule.

IRH20| QOdnos verovatnoée prelaza E (L+1) prema ML komponenti multipolnog
zraCenja oceni¢emo pomocéu Weisskopfovog . modela:

WEL+D] 1 1 . ROE}(mc?)? ot gy g2
I w.l_a( E )z(kR)—-mw—ljxlO ABE?

McR

gde je E, energija prelaza jzraZena u MeV.
Tako, na primer, ako je A=200 i E,=1 MeV:

WI{E(L+ 1)] ~0,15
W (ML)
Medutim, ako je 4==100 a energija prelaza 100 keV:
WIE(L+1)]
W (ML)

=6x 1074

IRHZII EL multipolni matri¢ni element dat je izrazom:

(6| Ofw|ay= [ <blp|ad rE Ypp (9 @) dor
ako jezgro u podetnom (q) i krajnjem (b) stanju ima sfernu simetriju, onda matriéni

element operatora gustine naelektrisanja (& | p | @) zavisi samo od r, a ne i od ug-
lova 9, . Dakle:

(b | Ofu| ay=[ri+2p () dr [ Y1g (3, 9)d Q2
o n
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Medutim, zbog ortogonalnosti sfernih harmonika moZemo da pisemo:
fYLM(a, CP)dQ=I/‘T7?fY00 Y, dQ=0;
Q Q

Tako da je
<b‘ OEMI a)EO

pa je i verovatnoca EL prelaza jednaka nuli, §to je i trebalo dokazati.

IRHZZI Kao i u prethodnom zadatku, podimo od izraza za matriéni element E2

. prelaza:

(b Onalay = [(b1p|a>r Vypr (3, 0 dr.
Ako je naelektrisanje ravnomerno rasporedeno po zapremini, priblizno sfernog
jezgra, gustina naelektrisanja takvog jezgra je:
3eZ
4R}

p(r)= 0(r)

gde je 8 (r) Hevisajdova funkcija:

0(r)={ 1 0<r<R(%, 9)
0 R g)<r<oo.

Izvr$imo u izrazu za matrini element prvo integraciju po 7: pretpostavljajuéi da
je g (r) operator naelektrisanja:
“)
R, @)
3

¢b] OEM|a>=<blfp(r)rz Y, pd?r
4 3eZ
O ”"—e'ﬁafe(f)rz Yim (@ ‘P)d3’=;"§§§fdQYzM(9s ?) f drrt.
0 ’ 0
. Q

Dakle:

47
0

Radijalni integral prirodno je rastaviti.na slede¢a dva integrala:
R(8, 9) Ry R(8, @) | |
,4d,zf ridr f rad,=,5.1e3(|+aym)sg~5—1¢3(1 F5B Y, (9, 9).
0 0 Ro

Izraz za operator O postaje:

2
0525280 [0 @ 11 +58 7509, 9140,

-

2
Iskoristivi ortogonalnost sfernih harmonika dobi¢emo:

3ezZ
0% =222 RE8y0 B
47

Sto je i trebalo dokazati!
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|RH23] Pogledajmo detaljno kaskadu o kojoj se radi (potrebne oznake uvedene

B e 4

su na slici). Zbog zakona odrZanja momenta impulsa bi¢e I;=1I,-+L; tj. za projek-

cije: my=my+M;. Izaberemo li kvantizacionu osu duZ ose detektora D (na taj

nadin je »materijalizujudi«) tada su jedini mogué¢i prelazi medu magnetnim pod-
stanjima prikazani na slici i svaki od njihima
svoju odredenu ugaonu distribuciju. U uobi-

Iz0,m=0 tajenim eksperimentima gama-spektroskopije,
M=-q M=4 L= medutim, nikad ne moZemo meriti pojedi-
4 4 L=4 P
my naéno komponente prelaza sa razlifitim M
+g =4 ve¢ se uvek meri njihov zbir, cela linija, tj.
e ne opaZamo pojedinadno distribucije 7 1 (%)
) veé zbirnu distribuciju .5 ; (). Ona ¢ée biti
jednaka zbiru distribucija komponenti oteZa-
L= M,=4 M=-1 nih relativnim verovatnoéama prelaza preko
. odgovarajuéih komponenti, tj.:
IF0my=0 F u®o 3 Wim—>m) T ¥ (9.
RH234 '

(uz my=m,+M)

Apsolutna verovatnoéa prelaza preko date komponente proporcionalna je kvadratu
matrinog elementa odgovarajuée komponente tenzorske eclektromagnetne intor-
akcije (ireducibilni tenzor) koje se po Wigner-Eckartovoj teoremi raspada na dva
&lana; Clebsch-Gordanov koeficijent i redukovani matriéni element koji vife ne
zavisi od magnetnih kvantnih brojeva:

Verovatnoda za emisiju fotona LM, :)o(lzmzlf_qulllml)z=
=Igmy LiMy | Iim Y <K || £y 11 1152

Relativna verovatnoca emisije fotona sa datom projekcijom momenta impulsa
proporcionalna je, dakle, sa: .

W (my— ma) co{lamy LiMy | Iymy 32,

No, poito smo z-osu izabrali tako da se poklapa sa pravcem emisije (detekcije) v,
to ¢e traZena korelaciona funkcija biti jednaka samoj distribuciji zralenja v,, tj.
funkciji & 12 (8). Nadimo ovu distribuciju. Analogno ranijem, ona ¢e biti jednaka
zbiru distribucija M, komponenti oteZanih relativnim verovatno¢ama prelaza preko
pojedinih komponenti i, dodatno, relativnim populacijama podstanja my, P (my),
tj.:

F @)= 2 Pn)W(me>m) F 17 )

Relativne populacije podstanja m,, pak, nalazimo tako §to saberemo verovatnoce
svih my— my prelaza realizovanih emisijom fotona v, u pravcu detektora D; (duZ
z-0se), pravca za koji jo 8=0, tj.:

P(m)= 2 W(m—>m)F 1 (3=0).

nymg
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Tako kona&no imamo da je verovatnocéa emisije fotona y, pod uglom & u odnosu
na pravac emisije fotona vy,, tj. traZena korelaciona funkcija & (%), jednaka:

N®=F @)= 2 Wm—m)Wm—~>m) T ;' (¢=0)F 129

niy mg oy

= 2 dmL £ 1| LmY Iy LM, | Lm,)? FEN(0) F 12 (9),

my nip nty

gde smo iskoristili éinjenicu da je M;s£0.
Za dati sludaj ova suma sadrZi samo dva &lana

N(®)=111—1]00>20011 | 1152 F 1~ 1(0) .F | (®
<L 111{002 0011 | 1132 F}(0) F 171 (9).

Uz vrednosti C—G koeficijenata i Legendreovog polinoma:

1

<Hl—l|00)2=~—3— .Pz(cosa):; (3cos§— 1)
{0011 | 11)23—;- F ! (&)=-—3—(l+cosz9)
(1= 111]00y2 =
3 NE)
00 1 2const
I—1[l=1)=—
< l > 5
ovo konaéno postaje:
N (8) =const (1 +cos? 9). const
TraZena anizotropija bice jednaka: 0 pys o &
N (180°) — N (90°
4= MAED = NOOY _ gy, RH23.2

N(90°%)

Jasno je da ¢e za druge vrednosti spinova konstanta imati drugu vrednost tj. i sama
korelacija izgledati drugadije. Na taj nadin merenje korelacione funkcije govori
o spinovima stanja izmedu kojih se prelazi u kaskadi vrie. Ovo je tacno i u sludaju
drugih tipova zradenja (kvadrupolnih itd.) kada i ugaoni deo korelacione funkcije,
jasno; izgleda drugadije. -

Tako je korelaciona funkcija u opitem slu€aju funkcija svih spinova stanja izmedu
kojih se prelazi vrie kao i multipolnosti izmedu njih emitovanih fotona. Ako su sve
ove veliGine, osim jedne, poznate tada merenje korelacije u principu daje jednoznatno
vrednost te nepoznate velidine.
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U obi¢nom spektroskopskom eksperimentu, medutim, fotoni sa razli¢itim vredno-
stimd totalnog.momenta impulsa, razlitite multipolnosti, ni po demu se ne razlikuju
jedan od drugoga! Kada napusti jezgro foton »zaboravlja« mesto sa koga je emito-
van! I samo u jednom ovakvom eksperimentu gde se statistitki posmatra njihova
distribucija u ansamblu identi¢nih sistema moguce je ovo opaziti.

Kada pojedinagni foton napusti matiéni sistem jedina informacija o momentima
koju sobom nosi jeste vrednost projekcije sopstvenog momenta impulsa (spina)
na pravac kretanja, tj. njegova polarizacija, spiralnost (helicitet). Obican detekcioni
eksperiment, kao ni gore opisani korelacioni, ne osecaju ovu veli€inu.

Glavd l
Modeli jezgra



! 11 ] Osnovna ideja modela ljusaka (shell-modela) sastoji se u zameni stvarnih
nuklearnih sila u jezgru koje deluju na nukleon, nekim srednjim (fenomenologkim)

. poljem ¥ (r). Ako je srednje, samousagladeno, polje predstavljeno potencijalom
prostornog izotropnog harmonijskog oscilatora .

Vi)y=-— V.,—i—%[—oozrz

gde su Vg i w fenomenolodki parametri, odrediti magiZne brojeve za ovaj potencijal.
@ U slugaju jezgra sa velikim masenim brojem 4 moguce je uspostaviti vezu
jzmedu parametra fw srednjeg nuklearnog potencijala (V(r) =%M w?r— V.,)
i broja 4 u opitem obliku. Odrediti ovu vezu imajuéi u vidu da su u oscilatornoj

jami srednja kinetitka i srednja potencijalna energija nukleona, raunate od dna
jame, jednake medusobom.

] 13 | Napisati, eksplicitno, spinsko-uglovni deo talasne funkcije nukleona koji
se nalazi u vezanom stanju 2d,, sa projekcijom spina m==3/2.

: 14 l Vezivna energija 160 u osnoynom stanju iznosi W=—130 MeV. U sludaju
akih jezgara dobrom aproksimacijom srednjeg nuklearnog polja u oblasti jezgra
smatra se potencijal:

V(r)=—V.,+--;Mm2r2

gde je ¥, dubina potencijala u centru jezgra, M masa nukleona, a k w=13,2 MeV.
Koristeéi ove podatke proceniti veli®inu parametra ¥, za jezgro !60.

Pokazati da su u beskona&noj pravougloj potencijalnoj jami magi&ni brojevi
za protone (i neutrone) jednaki: 2, 8, 20, 34, 40, 58.
Nule (prvi i drugi koreni) sfernih Beselovih funkcija j, (x) date su u tablici

Jrxy Jo A FA A Ju

PRVA NULA T 4,49 5,76 6,99 8,18

DRUGA NULA 2x 5,76 9,09 1042 | 11,71
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U okviru modela ljusaka odrediti spin osnovnog stanja jezgra 41Ca, ako je
poredak jednodestinih energetskih nivoa:

1s—1p—1d-2s—-1f-2p
l 17 ] Pored centralnog polja ¥V (¥) na nukleone dejstvuje i spinorbitalni potencijal

V,,=~f(r)7~;: gde je ?spin a [ orbitalni moment impulsa nukleona. Za potencijal
Va odgpvpma Je, najverovatnije, nukleon-nukleon interakcija. O funkciji f(r)
Zna se yr.d;ma Sa je preteZno locirana na povrdini jezgra. Pretpostaviti da je f(r)
T~5~(—2, pa u sludaju srednjeg polja tipa izotropnog harmonijskog

oscilatora odrediti energetske nivoe nukleona.

| 18 [ Slika prikazuje deo empirijske Seme jednodesti¢nih energetskih nivoa za
neutrone i protone.

I8

Koriste¢i podatke sa slike odrediti (u okviru modela ljusaka) spinove i parnosti
osnovnih stanja sledeéih jezgara: 1Li, gBe, 'éC, A4, 2Mni SaVi.

I 19 | Pretpostavljajuéi da su spir i magnetni moment jezgra jednaki totainom
momentu‘impulsa i magnetnom momentu nesparenog nukleona na¢i magnetne
Tomentc jezgara 7Li, 13C i 170. Pri nalaZenju magnetnog momenta p.=gj, odnosno
Ziromagnetnog odnosa g, Cestice u (nlj) stanju-ljusci- koristiti vektorski model.
Ziromagnetni odnosi protona i neutrona su: g:p=>5,585 i gip=1; gen=—3,827
i gn=0.

Ill ] Koristeéi sledeéu osobinu Kleb3-Gordanovih koeficijenata
‘ Criad | myma My = (= D=3 G jy T | ma my M)
pokazati, sa aspekta' modela ljusaka, da parno jezgro sa dve nesparene Cestice u

ljusci (n/j) ne moZe da ima neparan ukupan spin J, ako izmedu &estica postoji j—j
veza.
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| 111 l Odrediti mogudée spinove jezgra za sledeée konfiguracije nesparenih nukleona
ste vrste

(mljy j=3/2,5/2, 7/2 a k-broj nesparenih nukleona = 1,2, 3.

Pretpostaviti j—j spregu izmedu nukleona.

112 | Prostija varijanta ujedinjenog modela jezgra je takozvani rotacioni model
u kome se pretpostavlja da je oblik jezgra fiksiran. U ovom modelu osim rotacije
jezgra kao celine uzimaju se u obzir i ekscitacije povezane s unutraSnjim stepenima
slobode jezgra (jednodestiéne ekscitacije). Hamiltonijan jezgra moZemo da napiSemo
u obliku: :

H=Ho-+Hu+H'

gde H, opisuje unutrainje stepene slobode jezgra, H, rotaciju jezgra a H' vezu
izmedu rotacionog i unutradnjeg kretanja. U takozvanoj adijabatskoj aproksimaciji
pretpostavlja se da je veli¢inu H' mogude zanemariti u odnosu na Hg i Hr. Oznagimo

sa Tmoment impulsa povezan sa unutra¥njim stepenima slobode a sa R moment
impulsa rotacije jezgra kao celine. Ukupni spin jezgra je tada

—

T=R+j

Pretpostavljajuéi da jezgro ima osnu simetriju (rotacioni elipsoid) koristeci adija-
batsku aproksimaciju napisati hamiltonijan jezgra u ovom modelu.

I 13 | Hamiltonijan aksijalno simetri¢nog jezgra u ujedinjenom rotacionom mo-

delu, ako se zanemari ¢lan proporcionalan 77 glasi:
W
H—Hy+-- I
2y

Napisati energetski spektar rotacionog niza (»banda«) izgradenog nad fiksiranim
unutra$njim energetskim stanjem ey (¢ je svojstvena vrednost hamiltonijana Hy
koji opisuje unutrainje ekscitacije). Od kog karakteristi¢nog kvantnog broja mora
da zavisi veliina ¢(? .

l 114 | Na slici je prikazana Sema niskoleZeéih 8 4085 keV

energetskih nivoa jezgra "73ng. Pokazati da ro- +
tacioni model dobro opisuje sekvencu energetskih

642

nivoa. Oceniti veli¢inu momenta inercije ovog * 309
jezgra. ,_: a3
I% O

480Hf

l 115 l Pretpostaviti da se jezgro moZe shvatiti kao &vrsto telo oblika bliskog sfernom
pa nadi energije sekvence rotacionih pobudenih stanja u jezgru 180Hf. Eksperimen-
talne vrednosti energija, u funkeiji spina stanja, su: (u keV)

E(2)~93, * E(4)=309, [ (6)—=642, E (8)==1085
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(pogledati prethodni zadatak). Prodiskutovati dobijeni rezultat. Eksperimentalne

vrednosti energije prvog rotacionog stanja spina 2 u parno-parnim jezgrima (iza-

E(2")[keV]
L ?1430
i i
' 1
11
- 4000 I
]
X P
)
1
I15 i
I’ 1
A [
! \
! [\
1
/ \
7 \
.500 /I \\
4 \
. 368 \
' /ld \\\
i e \ 240
i 187 R
/ﬁ \\
87 84 93 .- “
[o ST PR W——— Seo 53 43
O o

450; Dy 47&Y& 1aloH g_ 49‘00 s zo|o Hy 24‘opo 12:’Rn, 23‘01'& 24t;p“_

branim jezgrima sa A=nx 10) prikazane su na slici. Uporediti ove vrednosti sa
vrednostima nadenim prema gornjem modelu i prodiskutovati valjanost modela.

116 U deformisanim jezgrima sa neparnim 4 takode
: I,—p—— 303 keV se srefu rotacioni energetski spektri. Na slici je prika-
zana Yema rotacionih nivoa jezgra '§iTa. Pokazati da
je samo iz odnosa energija Ey i E, moguée odrediti spin

I 36,2 g . :
osnovnog stanja jezgra 1817a, kao i spinove I i I,.
Ite

181 T,

117 Objasniti deo ¥eme nivoa jezgra 237TNp prikazan
9/ ——————— 459 kev Na slici. Poznato je da se jezgro 237Np nalazi u
e 103 oblasti jako deformisanih jezgara i da je osno si-

ot - metri¢no.

57— €0

Yot e 3
+
I47 52 137N1J
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| 118 | U WasiZnoj mehanici energija i moment impulsa tela koje rotira odredeni
su poznatim izrazima:

E=—;~Jm2 i L=Jo

gde su: o ugaona brzina, a J moment inercije. U kvantnoj mehanici L je kvantovano

i jednako AYI(I+1). Ako se iz izraza za E i L eliminife brzina dobija se dobro
poznata formula za spektar rotatora:

E K I(J+1
=—I(I+1).
27 d+1
MoZemo, medutim, da pretpostavimo da iz bilo kog razloga E i L sadrZe i vi8e ste-
pene w. Na primer:

E‘:—:;—-sz-{-am“, L=Jo+fw?

gde su « i § fenomenoloski parametri.
Pretpostaviti da su o, B <€ J. 1z uslova % = uspostaviti vezu izmedu « i 8. Zadrza-

vajuéi se na Glanovima reda o? napisati energetski spektar jezgra predstavljenog
ovakvim rotatorom.

'_Il—ﬂ U dvostruko magi¢nom jezgruzgng zadnja E |[Mevl

popunjena neutronska ljuska je (3py2) a prva 4

prazna (2 g,,). Dopustajuéi moguénost interak- 3 e §7
2
4
[¢]

—————

3

cije &estica-rupa objasniti Semu energetskih nivoa
jezgra F ) prikazanu na slici.

19 0

208 Pb

[120 I Elementarne ekscitacije povriinskih oscilacija jezgra moZemo da posmatramo

kao kvazitestice — fonone. Ako su oscilacije kvadrupo!qog_tipa onda svaki fonon
ima moment impulsa L=2 i pet projekcija na zadati fizi¢ki pravac.

U reprezentaciji druge kvantizacije definiSimo sa a;, operator kreacije povriinskih
fonona, a sa

H= ((xfua2 ut ;) ho,

hamiltonijan povr¥inskih oscilacija jezgra. (Posto su fononi Boze Cestice a,, ar, —
_a;—uazvsuv)‘ L .
Napisati talasne funkcije jezgra, kao i energetski spektar i spinska stanja ako su
dozvoljene jednofononske i dvofononskeé ekscitacije povriine jezgra kvadrupolnog
tipa. .




: I RI1 ] Energetski spektar za potencijal izotropnog oscilatora glasi:
Ey= —Vo+(N+—;—-)hm N=0,1,2,3,...

tj. energetski nivoi zavise samo od glavnog kvantnog broja N. Za dato & kvantni
brojevi momenta impulsa / zadovoljavaju uslov I N, a pritom / imaju i istu parnost
kao i V. (Na primer za N=4; I=4, 2, 0)

Za fiksirano N degeneracija energetskog nivoa Ey je (uzimajuéi u obzir i spin e~ -

stice):
D(N)=2’2 @I+ =@W+1) (N+2).

Magi¢ni brojevi odreduju maksimalan broj identinih nukleona koji shodno Paulj-
jevom principu mogu da se smeste u stanja sa glavnim kvantnim brojevima: N=0,
041, 0+1-+42, itd.

Dakle, prvi magini broj je D(0)=2

drugi D (0)+D (1)=8

tiedi D (0)+D (1)+-D (2)=20
etviti D (0)-+D (1)+D (2)+D (3)=40
itd.

I RI2 ! Ako sé jezgro nalazi u osnovnom stanju svi niskoleZe¢i energetski nivoi
oscilatora su zauzeti. Energija jezgra radunata od dna jame iznosi:

E-3.(T47) =300 (k +—2~)hm

gde je D (K)=(K-+1) (K+2) degeneracija K-tog energetskog nivoa u oscilatornom
potencijalu (pogledati prethodni zadatak). Faktor 2 u drugoj sumi poti¢e od &inje-
nice da jamu treba »puniti« i protonima i neutronima. Medutim, kako je:

T = y=tMa(r),

E<M&S0=25 (et 1) (k+2) (k +—3-)hm.
i . k=0 2
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Sumu Z(rf} moZemo da izrazimo preko srednjeg kvadratnog radijusa jezgra

. i
{R2) koji je u sludaju homogenih raspodela masa jednak 3/5 kvadrata stvarnog
radijusa. Dakle:

2D = AR = —2 ARF AP (Ry=1,2 fermi).
i

U rezultatu, se dobija:

PO L %2(k+1)(k+2)(k+—3—>
3 MR: 458,55, 2/’

Sa taénog izraza moZemo da predemo na priblizan zamenjujuéi sumu integralom:
N
N 3 3 I
S 2(k+1) (k+2)<k +- ~v—)c2f(k+ 1) +2)(k+——>dkc_f-—N".
k=0 2 2 2
o

Medutim, kako je:

N
A=22(k+I)(k+2):2f(k+l)(k+2)dk:—2—N3
k 3
0

dobijamo vezu izmedu N i 4

odnosno:

5 3 13 2
ho =2 (_) 2 4= 2 41 4-18 MevV.
4\2) MR

l RI3 [ Spinsko-uglovni deo talasne funkcije nukleona ne zavisi od glavnog
(radijalnog) kvantnog broja n. U opstem sluéaju, za nukleon u stanju ‘(” 1jm) do-
bi¢emo, uz pomo¢ Klebs- Gordanovih koeficijenata (videti dodatak), izraz:

imy= 3 <I2/3]memsm) Yim(®, ) 1,
m_, m
(n;"+ Iil,"‘v my
gde su sa mq i my oznadeni »magnetni« kvantni brojevi unutrasnjeg spi_na i orbitalngg
momenta impulsa nukleona a X, oznatuje dvokompohentnu spinsku funkciju
[ my= 12
Fons {[5 my— —1/2.
U, konkretnom, sludaju: '
|d3/2>=13/2,3/25=(21/23/21 1 1/23/2) Y1, (%, p) a-t

<2 1/23/212 = 1/23/2) Y223, 9) B
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1 ¥y 2
= "‘V‘=5 u.(‘(}' ‘P)“"‘V"'Eyzz(&v P8
3 1 [3
s i 1 |3 sin9cosde?p.
40ﬂsm%e?a+ i \/S'n: B

‘ Ri4 ‘ Vezivna energija jezgra iznosi:

W= 2 Ey Dy
1
gde su E¢ svojstvene vrednosti energije hamiltonijana H

2
=£-+_LM°)2’.2_VD
M 2
a D, degeneracije energetskih nivoa (sumiranje ide po svim nukleonima).
Medutim, kako je:

E,=h’m(N,+—z«)—- Vo

~W+ﬁm;(1v,+3/2)-1),
[
Vo= Y
U stanju s Ni=0 nalazi se 4 nukleona (2 protona i 2 neutrona), 8 U stanju s Ni=1
nalaze se pteostalih 12 nukleona (6 protona 4+ 6 neutrona).

Dakle:
130+ 13,22 (N, +3/2)D,
i

Vo=_w_—“-f6‘—"‘“——_’=37,5 MeV.

RIS l Poznato je da je radijalni deo talasne funkcije Cestice koja se krece u
Deskonadnoj potencijalnoj jami opisan sfernom Beselovom funkcijom: )

) . u (r)==j (kr)
gde je k talasni broj Cestice.
Na zidovima jame talasna funkcija mora da bude jednaka nuli:

Jji (k R)=0
(ede je R »irina« jame).
1z ovog uslova jednoznatno se odreduju svojstvene vrednosti energije gestica. Pri
tom, prvom korenu jednadine odgovara glavni kvantni broj n=1, 2 drugom glavni
kvantni broj n=2.
Koristeti tablicu korena funkcije j, (x), datu u zadatku, svojstvene vrednosti energije,
opisane brojevima (1, 1) moZemo da poredamo U rastuéem nizu na slede¢i nadin:

E(n,l):15,1p,1d,2s,1f,2p,1g, 2 d itd.
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Medutim, kako je svako energetsko stanje degenerisano 2 (2 14-1) puta, u svaku
energetsku »ljusku« staje 2 (2 1+1) Gestica, a ukupan broj &estica koji popunjava
sve ljuske (energetska stanja) do neke nepopunjene ljuske jednak je:

Z‘2 @i+1 (magitan broj).
n,

Dakle, lako je pokazati da su magiéni brojevi za beskonatnu pravouglu jamu jed-
naki:
2, 8, 18, 20, 34, 40, 58, 68 ... itd.

I R16 | lezgro 41Ca ima magiéni broj protona (20) i jedan neutron jzvan zadnje

popunjene ljuske koja odgovara magi¢nom broju 20. Ovaj neutron, sledeéi sekvencu
energetskih nivoa, mora da se nalazi u stanju 1 f, it

(s apsdeE i)

Ovaj zadnji, nespareni, nukleon odreduje spin celog jezgra. Sigurno je da je njegoVv
orbitalni moment impulsa [=4. Medutim, kako je unutradnji spin neutrona 1/2
ukupan moment nesparenog nukleona (tj. i jezgra a1Cq) je il 7/2 il 9 /2.

‘ RI7 \ U sludaju potencijala izotropnog harmonijskog oscilatora, ne uzimajuéi

4 obzir potencijal Vis energetski nivoi koje zaposedaju nukleoni su:
N 3
Ey= ~Vo+(N + i)hw'

Potencijal Vis dovodi do cepanja nivoa s datim I (koji vide nije dobar kvantni broj)
na dva nivoa sa ukupnim momentom impulsa Jj=1£1/2. Velitinu cepanja nivoa
odreduje &lan (u prvoj popravei teorije perturbacije)

ey= (NI | () T+ 5| Nipy=—AM w2 (N | T-5 | NIy

gde je | NI jednodesti¢na talasna funkcija nukleona u kojoj su N iJj dobri kvantni
brojevi.

SR
Operator I+ s mojemo da napifemo na slede¢i nacin:

> jR— 2 ¢2
1. S=‘I_._-I__.S__
2

Fa

Dakle:
LT .
(NG s VY ==-—2~[(Nl/§_12\m;>

— (NIj| BN = (NG LS L NDD
1

- ako je j=I+1/2
5 J /

—i2(1+1) ako jo j=1—1/2.
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Energetski nivoi nukleona postaju dakle:

ENUJ)==~V0+(N+—3—)hm—~'—l—AMm2x{ Lo mj=lelf2
2 2 —(+1) zaj=1-1]2.
Potencijal Vi ima, dakle, dvojaku ulogu:

__ sni¥ava energetsku degeneraciju nivoa

— pivoe sa j=I+41/2 sputa niZe nego nivoe sa j=I—1/2.

RIS l Saglasno modelu ljusaka paran broj nukleona obrazuje »kor« (»sree«)

jezgra sa spinom nula, tako gla je spin i parnost jezgra odredena stanjem poslednjeg
neparnog nul:deona (u sludaju jezgra sa neparnim brojem nukleona). Inade »rupa«

u popunjenoj podljusci ponafa se isto kao jedan nukleon u. istoj podljusci.
Dakle:

Spin Parnost
1Li - 3 protoa: (12 (1py)t — 3/2 —
98¢ - 5 neutrona: (15)2(1 T 32 —
1tB  —» 5 protona: (1)2(Ipy)™t —> 3/2 —
13C - 7 neutrona:(15)2(p)*( = 12 . —_—

2741 - 13 protona: 8+(1d g7t - 5[2 +
53pMn — 25 protona: 20-+(1f 5)® - 112 —
6INi — 33 neutrona: 20-+8-4(2 py)’ — 5/2 -

@ Medusobni odnosi momenata impulsa i magnetnih momenata Cestice
u stanju sa definisanim /i j, po shvatanju vektorskog modela, prikazani su na slici.

Zbog toga §to g{:;ége; i Tnisu paralelni.
Interakcija orbitnog i spinskog momenta

dovodi do precesije ;oko 7 i efektivna
(srednja) vrednost rezultujuéeg magnetnog

- —-—
momenta . kolinearna je sa j. Tako je,

RIS dakle:
w=uy=g/
i dalje:

. ) =tz €08 ¥ (tg COS (p:gzlcos8+gsscos'tp.
Otigledno je:

) 22122 j+ T=j2412—2 j I cos &
i

DR=j24-52—2j scos @
a odavde: .
24 J2 g2 2 §2—12
I+ —-—S—— i cosq>=j+s .
2jl 2js

cos &=
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Tako je: P el
g et g S
r=8& 2 8s 2
—_ 2 12 N
- {ngr.gg Rt it ,,,] = gj
2 2 Jj?
odnosno:

2 2 jg+n
Kako je s=1/2 1 j=1£1/2 kona¢no nalazimo:

881
SRR Y

Koriste¢i se Semom jednogesti¢nih stanja modela ljusaka iz zadatka 18 lako nala-

zimo da: )

— u jezgru TLi jedan nespareni proton u 1 py2 stanju sa j=I[+1/2=3/2 daje mag-

netni moment:

gi+8 88l sErD-10+D

za j=1+1/2.

. Zp— 8Bin| ;
1Li) = 480 .'5} =3,
w oL = a5 = 3
— u jezgru VC jedan nesparcni ncutron u 1 pyj stanju sa j=l—~l/2=l/2 daje
magnetni moment:

8sn— 8B\ ;
L () —lgm—0 -}110.63;1.
() {gln 2l 1 N
— u jezgru {70 jedan nespareni neutron u 1 ds)z stanju sa j=141/2=5]2 daje
magnetni moment:
&n— 8in) ; Gsn
170) = ,,—1-—’3--—-—]_/»- 1o, = — L9 ey
p‘( ) [gl 21+ 1 2 n
Ovo su duvene Schmidtove vrednosti koje se za ova jezgra veoma dobro s}aiq sa
eksperimentalnim vrednostima. Sva odstupanja u odnosu na ove _]ed.noccstléne
vrednosti ispravijaju se kori§¢enjem takozvanih efektivnih #iromagnetnih odnosa.

USRS

| RllOl Dve nesparene &estice u ljusci (1 1) odreduju, sa aspekta modela ljusaka,
ukupan spin J jezgra. Ako sa @, (D 1 @pr-m (2) oznatimo talasne funkcije nespa-

renih nukleona u ovoj ljusei, Gestice moraju da se kombinuju na sledeéi natin da
bi dale moment impulsa jezgra (JM):

| IM Y= 2, (G | m M—ni M) @ (Deppt-m (2)-

Ukupna funkcija dve Zestice mora da bude antisimetridna u odnosu na jizmenu
Zestica kako bi bio zadovoljen Paulijev princip. Ako sc zamene mesta &estice (1)
i (2) funkcija | JM) postaje:

{JM>' = z <JjM \ m M—m M> Pjm (2) Pire—m (l)'
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Ako promenimo indeks sumiranja uvodeéi p=M—m imafemo:
[JMY = g(ﬁ-’l M—p p M) (1) p-u (2)-
Iskoristimo osobinu Kleb§-Gordanovih koeficijenata citiranu u zadatku:
[IMY = (~ 1)“"’%: BT | M= p M g (1) @i (2) = (— D7 |IM).

" Kako je j poluceo broj: (—1)-I=(—1)*1,
Dakle, dvodesti¢na funkcija zadovoljava Paulijev princip ako i samo ako je J paran
broj, 8to je i trebalo pokazati.

] RIll I Ako se samo jedan nukleon nalazi u ljuskama (n/ 3/2), (nl 5/2), (nl 7/2)
spinovi jezgara su J==3/2, 5/2, 7/2.
Ako se dva nukleona nalaze u ljusci (#/j) spin jezgra leZi u granicama 0<J<2j
iskljuéujuéi neparne brojeve (pogledati prethodni zadatak).
Dakle: )

ljuska: (n13/2)2 : J=0,2

(n15/2)2 : J=0,2,4
(n17/2) : J=0,2,4, 6.

U ljusku (n/3/2) ne mogu da »stanu« tri nesparena nukleona, dok ljuska (n/5/2)3
mozZe da da sledece spinove jezgra: 1/2, 3/2, 5/2, 7/2, 9/2,

a ljuska (n17/2)3: 1/2, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2.

Ocekujemo da neki od ovih polucelih spinova, koji odgovaraju konfiguracijama
od tri nesparene destice, nije mogué zbog Paulijevog principa.

: RIlZ' U adijabatskoj aproksimaciji je: H=Hy+ Hg.
Hamiltonijan koji opisuje rotaciju jezgra je oblika:

gde su Zy, F, i 3 momenti inercije jezgra u odnosu na glavne ose inercije jezgra.
Neka je osa aksijalne simetrije osa 3. Tada je:

Fo=Fy=21.
Dakle:

B, B, B 11y
Hp=— (Ri+R)+-—R s-——R2+h2(—~———~)R.
n =g R+ E) 27, 27 27, 27/

Medutim, kako je
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(u sludaju aksijalno simetriénog jezgra) bide:
# -
HR=-23[12+j2—-21-j].
Dakle, ukupni hamiltonijan je oblika:
2 -

H~H+ﬁz~j2+-’£—12»—~—v-1 j
ozt Tzt Tzt

Prvi i drugi élan opisuju unutrasnje stepene slobode jezgra.

lRIlBi Ako energiju raunamo u odnosu na energiju unutradnje ekscitacije €
energetski spektar glasi:

E( =t 2141
2 vk .

Ako jezgro ima aksijalnu simetriju onda takvu simetriju mora da ima i unutrasnje

polje, tj. projekcija unutrainjeg momenta impulsa jT;la tu osu, opisana operatorom f3,
mora da bude konstanta kretanja, a njen kvantni broj Q dobar kvantni broj.
Dakle =, mora 'da bude neka funkcija Q. Prema tome: :

hz
E(L Q) =5 (Q) +—=1(+1).
(4. Q) o()+22(+)

Kako su kod aksijalnih jezgara projekcije j3 i /3 jednake medu sobom

K=Q
gde je K kvantni broj projekcije 3.
I RIl4l U sludaju parno-parnih jezgara najniZa je rotaciona serija K=0% kojoj

odgovara sekvencija spinova I=0, 2,4, 6,8, koju sreéemo kod 180Hf. Oznadimo
sa E(I) energiju radunatu u odnosu na osnovno stanje. Rotacioni model zahteva

ﬁz
E(D)=5=1U+1)

odnosno sledece pravilo energetskih intervala
EQ2):EM®) :E(6):E(@8)=1:333:7:12
U sludaju 180Hf pravilo intervala se dobro slaZe sa predvidanjem rotacionog modela

(1:3,28:6,85:11,5).
Moment inercije jezgra iznosi:
3 B2

F=—u=2.3 x 105 kg m?.
E(2)
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['ris [ Moment inercije &vrstog sferoidalnog tela oko glavne ose bide svakako
blizak vrednosti za sferu (eventualne deformacije su male), tj.:

Fo2mrr =2 i AR?=9,6 x 10-31 4513 g cm?.
5 5 °

Rotacione ekscitacije ovakvog jezgra imade energije:

2 I(I+1)
E(I)=-—1(I+1)236 "L MeV.
6)] 2:;( ) o

Za jezgro sa A=180 bice, dakle:
E([)=6,3%10-3 I (I+1) MeV
pa je: (u keV):
” E(2)=38, E(4)=125, E (6)=263, E(8)=451.

Sva su stanja, dakle, za faktor ~2,5 niZa od eksperimentalnih vrednosti dok je’

njihov relativni poloZaj, jasno (prema rezultatu prethodnog zadatka), dobar. Razlog
ovom neslaganju ogito je prirodno traZiti u lofoj proceni momenta inercije sistema
(nadena vrednost za F se, uostalom, ~2,5 puta i razlikuje od vrednosti nadene
u prethodnom zadatku). Jezgro se, znadi, ne moZe shvatiti kao &vrsto telo u kome
se nukleoni nalaze u ravnoteZnim poloZajima na fiksnim relativnim rastojanjima.
Manji moment inercije koji nam je potreban da bismo rotacioni model, koji nam
1zg|eda plauzibilan jer dobro opisuje relativne poloZaje stama, uspe$no primenili,
moZemo dobiti pretpostavljaju¢i da nuklearna materua pre ima osobine gasa ili
tednosti no Svrstog tela.

U skladu sa gore dobijenim izrazom vidimo da bi energije ‘rotacionih stanja istih
spinova u funkciji 4, trebalo da se ponaZaju pribliZno kao 4-53, Specijalno,
za stanje spina 2 je:

E (2)=216/453 MeV.

-Vrednosti ovog izraza za zadate 4-ove prikazane su na slici.

E(@Y) [keV] RIS
10 iG 44 37 34 34. 29 27 25 23

SR R - O e e e D e e s O o o e D e e Ot et
I . L

AS;JD% 476\{5 oHg 13905 200{y 2op,  20Ry, zwlTk z4o.pw

Vidimo da je opsti tok funkcije zadovoljavajuéi i da je svuda niZa za priblizno isti
iznos od eksperlmentalne (jednako loa prctpostavka o dvrstodi jezgra). Izuzetak
Gini Siroka oblast Jezgara bliskih dvestruko magi¢nom olovu 208. Sto smo bliZi
zatvorenim ljuskama to Je nas Jednostavm model sve losiji. Moment inercije, dakle,
ovde na komphkovan nadin zavisi od detalja konkretne nuklearne strukture i pri
razmatranju ovakvih kolektivnih ekscxtacua prosta aproksimacija jezgra telom bez
unutradnjih stepeni slobode nije dobra za jezgra kod kojih ne postoji veliki broj
nukleona van zatvorenih ljusaka.
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| RIl6I Rotacioni energetski spektar za neparno jezgro je oblika:

ﬁz
E(1)=5‘£Z[1(1+ D-KE+1); K=I,.

Dakle:
E_ E(h+2) s 1

E, E(L+1) I+1

odnosno:

fom e = 1 = 345 2 7/2.
£,
222
El
Ostali spinovi su:
=9/2, I=11/2.

| RI]7! Energetski nivoi razli¢ite parnosti mordju da pripadaju razliditim unu-
tradnjim ekscitacijama jezgra Np.

. Interval energija stanja pozitivnih parnosti:

L+ 241

Bt 503 [2 + -5_'--— - 2,28]
2

upuéuje nas (pogledati prethodni zadatak) da nivoi 5/2*, 7/2% 9/2* &ine jednu
rotacionu seriju.
Sliéno je i sa nivoima negativne parnosti:

Eop 159260 2,30(2 + ~5-1--_ 2,28
Ep- 103-60 S )

Dakle, nivoi sa spinovima 5/2-, 7/2-, 9/2~ &ine drugu rotacionu seriju.

' RI118 | Uslov dE/dp=w daje sledec¢u vezu izmedu parametara o i B:

Dakle:
E= -%« F o+ aw?

Le=Jo-- %-ocw’.

1z druge jednaline dobijamo:
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Smenom u prvu jednalinu imaéemo do na od:

2 4
E=—LL2(I _2 16 ZL).

e —
27 3 F* 9 7S
Uvedemo 1i oznaku:
2 L* 2 RIU+D)

X == T ==

3 F 3 »

Izraz za energetski spektar postaje:
E " I+ 1n{1 4 x%
=—TII+ —x+4x%.
25 ( {

Ako je a=0 ili ako je «5£0 a x vrlo malo dobija se poznzita formula za rotacioni
spektar osno-simetriénih jezgara.

] RI19 | U modelu ljusaka osnovno stanje jezgra odgovara sistemu neinteragujuéih
nukleona koji popunjavaju diskretna energeiska stanja srednjeg polja od njegovog
dna do Fermijeve granice. Osnovno stanje jezgra 2 pb, koje ima i magidan broj
protona i magitan broj neutrona (sve &estice sparene) je 0+ kao $to je to i eksperi-
mentalno utvrdeno.

Najprostija jednodesti¢na ekscitacija magi&nog jezgra dobija se prebacivanjem jed-
nog nukleona iz pune u slobodnu ljusku. (Neutron iz (3p,;,) u (2gy,)). Iznad
Fermijeve granice obrazuje se, dakle, gestica; ispod : rupa. Zbog razlidite parnosti
ove dve ljuske parnost ekscitiranih stanja takvog tipa je negativna.

Moment impulsa ekscitiranog stanja dobijamo sumiranjem momenta impulsa
Zestice i rupe (dopustajudi interakciju izmedu njih). U sludaju j—j interakcije moguéa
su dva momenta impulsa

— — S
1/2+9/2={4.

Dakle, ekscitacije 5~ i 4~ su ekscitacije tipa &estica-rupa. Stanje 3~ nije ovakvog
tipa. MoZemo da kaZemo da ono predstavlja neku kolektivnu ekscitaciju.

lRIZOI Prvo ekscitirano stanje jezgra dobija se jednofononskom ekscitacijom.
Talasna funkecija ( u reprezentaciji druge kvantizacije) glasi:

[1>=af,|0).

Spin jezgra je 2, a energiju dobijamo refavanjem »svojstvenog problemax:
: 1 1
H|1y=ha, (afuazu+-2-—)| )= hey| 1) +ho, ot ay, a8, 0).

Medutim, kako je:

+ + ;
Gup=l+a,a, 1 a,]0)=0.
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imaéemo:
a2+u-azu a;ulo>=a;u| 0>+a§ua;‘uazulo>=a’t’+u|0>=’ )
odnosno:
3 .
HI 1=~ hoy| ).

Dakle, energija jednofononskog stanja iznosi: %ﬁ .

.~ Drugo ekscitirano stanje jezgra prikazano je funkcijom

|2)=afua§v |0}
.. O
i ima energiju ——Q'—h w3,

Ova funkcija nema definisan moment impulsa (spin jezgra). Medutim linearnom
kombinacijom lako je napraviti takve funkcije:

[AM) =2 22 A|pp’ M) afy adi: | 0)
!
koje imaju istu svojstvenu vrednost energije ali definisane momente impulsa A u
granicama od 0 do 4 (0<KA<2+2). Medutim, funkcije AM moraju da budu sime-
tri¢ne na izmenu fonona. Tj.: | AM)' =| AM);

[AM)Y =222 Ajpp’ M a3y, af|0).
!
Ovo je ispunjeno (zbog osobine Kleb§-Gordanovih koeficijenata)
Q2 A | ! My=(—1y=A (2 A | W' M)
jedino kada je A parno.

Dakle, ekscitirani spektar jezgra je:

0,2,4 B R,

fe,

2 3pho,

RI20
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| 31 I Pretpostaviti da se jezgro 235U raspada na dva jednaka dela (simetri¢na

fisija). Koriste¢i Weizsickerovu formulu za nuklearne mase proceniti energiju koja
_se oslobodi po jednom ovakvom raspadu.

: J2 I Odrediti masu urana koja doZivi fisiju pri eksploziji atomske bombe, &iji
e trotilni ekvivalent 5x 104 tona. Toplotni ekvivalent trotila iznosi 800 cal/g.

[ 13 | Nuklearna centrala &iji se kotao nalazi na temperaturi od 100 °C, a hladnjak
na temperaturi od 25 °C, razvija snagu od | MW. Kao gorivni element koristi se
2350, koji po jednom aktu fisije razvija pribliZno energiju od 200 MeV. Na¢i dnevnu
potroinju goriva ( u gramima) pretpostavljaju¢i da je centrala idealna toplotna
maSina.

J4 I Jedan od nudina da se grubo oceni eneigija oslobodena u fisionom procesu
je da se izraduna Coulombova energija fisionih fragmenata u trenutku razdvajanja.
Pretpostaviti da su jezgra zapreminski ravnomerno naelekirisane lopte pa izracunati
fisionu energiju urana koji se raspada na ksenon i stroncijum.

‘ J5 | Na slici je prikazano jezgro koje za- R(¥)
podinje fisiju. Jezgro je rotaciono simetri¢no FW

u odnosu na osu X. Naéi analiti¢ki izraz za -

povr§inu jezgra imajuéi u vidu da se radi o w =
kvadrupolnoj deformaciji, a zatim izraunati

vrednost parametra kvadrupolne deforma- 75

cije (B)-

| 16 l U okvirima modela nuklearne kapljice fisija se obja$njava razliitim tenden-
cijama Coulombove i povriinske energije u sludaju_deformisanja jezgra od sferne
simetrije. Kada se jezgro deformiSe njegova povriina se uveéava, povetava se i
povriinski napon, koji teZi da jezgru vrati sfernu simetriju, dok Coulombove sile
odbijanja teZe da se deformacija nastavi. Kada se porastom broja protona u jezgru
dostigne kritiéna vrednost Coulombovih sila (Z2/4 = 50) one postaju gospodari
situacije i jednom zapoteta deformacija se nastavlja sve do »cepanja« jezgra. Ako
je Z2)A4<50 jezgro je stabilno u odnosu na male deformacije. Medutim, ovu stabil-
nost treba shvatiti uslovno, kao konaénu potencijalnu barijeru (prag za fisiju),
buduéi da separacija jezgra u dva fragmenta vodi do stanja sa niZom energijom.
Polazeéi od Bohr-Wheelerovog izraza za povriinsku i Coulombovu energiju jezgra
sa permanentnom kvadrupolnom deformacijom (B): ‘

E,,==E,,o(l+§i); EFE‘-,,( __@i)

Eis 47
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gde su Ep, i E;, povrinska i Coulombova energija sferno simetritnog jezgra,
pokazati da je kritiéni parametar deljivosti jezgra jednak:

(Z2] d)er=50.

I J7 l Stepen kvadrupolne deformacije jezgra u kriti€nom trenutku zapotinjanja
fisije moguce je proceniti izjednalujuéi energiju praga za fisiju sa energijom defor-
macije jezgra. Oceniti parametar (3 za fotofisiju 238U ako je poznat prag za fotofisiju
Epy=5,8 MeV kao i parametri: Ep,= 520 MeV i Eg =800 MeV (videti prethodni
zadatak).

] J8 ( Slika prikazuje potencijalnu energiju jezgia, koje doZivljava spontanu sime-
tri¢nu fisiju, u funkciji rastojanja dva fragmenta. Za rastojanja veéa od zbira radijusa
simetriénih fragmenata r>2 Rr potencijalna energija opada kao 1/r (Coulombov
potencijal) i asimptotski teZi vrednosti 2 Mp, gde je Mr masa mirovanja fragmenta.

Za r=0 potencijalna energija treba da ima

vrednost M jednaku energiji polaznog jez- .

V() —_— gra. Oblast potencijala od r=0 do r=2 Rp
ne poznaje se precizno. Medutim, poznato

o

Mg feemmn
giju praga (£,r) da bi fragmenti dosli na ras-
tojanje 2 Rp i da bi fisija mogla da otpoéne.
Stoga se u posmatranoj oblasti potencijal
Sesto prikazuje kvadratnom funkcijom oblika:

.- (R

R T r V(r)=-Mo+E‘,-—-:l£~k(r-—RF)2.

Polazedi od ovakvog oblika fisionog potencijala proceniti verovatnocu za simetrinu
spontanu fisiju 238U pretpostavljajuci da se jezgro tunel efektom raspada na dva
fragmenta i da je visina fisione barijere Ep~6 MeV. :

[ 19 I U malenom uzorku 235U doZivi fisiju N jezgara. Po svakom aktu fisije oslo-

bodi se proseéno 2,5 neutrona (v). Koliki broj neutrona mora da napusti uzorak
pa da se uspostavi stacionarno stanje (spredi lan¢ana reakcija kao i opadanje broja
neutrona). Odnos preseka za zahvat termalnih neutrona (o;), prema fisionom pre-

seku (a,) iznosi:
(os+0,)/0,=1,185.

J10| U jednom aktu fisije 241Pu oslobodi se proseéno 2,45 neufrona. Znajudi
da je odnos neutronskih preseka za fisiju i radijacionu apsorpciju 5: 4 izradunati
koliko neutrona ¢e dati polazno jezgro u petoj generaciji, ako je okruZeno besko-
naénim brojem atoma plutonijuma?

I I U fisionoj lantanoj reakciji za stvaranje jedne generacije neutrona potrebno
je vreme 7. Oznadimo sa k faktor umnoZavanja neutrona po jednoj generaciji koji
se moZe napisati u obliku k=1-a gde je a beskonatno mala veli¢ina. Ako je u po-
getnom trenutku bilo prisutno ny neutrona, koliko neutrona ¢e biti u trenutku
T (T> ). Razmotriti i numeri¢ki primer: a=0,01; T=10"4s, np=103 i 7==10-8s,

..... je da jezgrn My moramo da saopstimo ener- .
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i J12 I Od ukupnog broja neutrona emitovanih u fisiji X-ti deo se emituje sa znatnim
zakasnjenjem T. Ovi, zakasneli neutroni smanjuju brzinu odvijanja lanZane reakcije.

. Ako je T> gde je v vreme potrebno za stvaranje jedne generacije neutrona, i ako

sa k oznadimo faktor multiplikacije neutrona u fisionom materijalu izradunati broj
trenutnih i broj zakasnelih neutrona u trenutku 17, 275, ako je u trenutku =0
zapoteta landana reakcija sa N neutrona.

] J13 [ Neutroni dobijeni u fisionom procesu imaju kinetike energije reda velidine
1 MeV. U &istom fisionom materijalu lan¢ana reakcija moZe da se izvodi i sa ovakvim
brzim neutronima. Medutim, kako efektivni presek za fisiju raste sa smanjenjem
energije neutrona u najvecem broju reaktora, da bi se uStedelo na dimenzijama
i fisionom materijalu, originalni fisioni neutroni se usporavaju do termalnih brzina
(1/40 eV). To moZe da se postigne meSanjem fisionog materijala sa drugim materija-
lima koji su u stanju da u relativno malom broju elasti¢nih sudara sa neutronima
redukuju njihovu kineti¢ku energiju na termalou vrednost (moderatori).

Polazeéi od klasi¢ne teorije sudara pokazati da vaZi relacija:

—1\2
(-~—A 1) <E<i
A+ E,
gde je A maseni broj moderatora, Eq energija neutrona pre, a E posle elastiCnog

sudara sa jezgrom moderatora u laboratorijskom sistemu. Zadto se za moderatore
koriste laki elementi?

| J14 | Srednji gubitak energije neutrona po jednom elasticnom sudaru sa jezgrom
moderatora opisuje se, obi¢no, veli¢inom:

E
b= (g

gde znak srednje vrednosti oznadava usrednjavanje po svim moguéim uglovima rase-
janja neutrona; E i Ey su energije neutrona posle i pre sudara. Ako se zna da je

. . . - , . A—1\?
rasejanje neutronaizotropno i dase veliina E/E, krece u granicama [(m) s ,1],
gde je A maseni broj moderatora, pokazati da je veli¢ina £ funkcija samo masenog
broja 4 (§=¥ (4)). Koliko puta mora da se sudari neutron energije 1 MeV sa jez-
grima a) vodonika, b) ugljenika, pa da postane »termalan« (1/40 ¢V)?

Ji5 ‘ Da bi odredili minimalne kriti¢ne dimenzije reaktorskog materijala sa datim
faktorom umnoZavanja neutrona k (k>>1) koristimo difuzionu jednaginu koja daje
prostornu raspodelu neutrona u stacionarnom stanju (n (x, y, 2)):

V’n-i—-k~;!-n=0
LZ
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gde je L difuziona duZina za neutrone. Ako oznadimo sa L, srednji put koji predu
termalni neutroni u reaktorskom materijalu pre apsorpcije, a sa L, srednji slobodni
put neutrona izmedu dva sudara sa jezgrima koji ga usporavaju moZe se pokazati
da je difuziona duZina L jednaka

Pretpostavimo da su uran i grafit homogeno izme$ani i smesteni u kocku stranice D.
Ako se zna da je srednji slobodni put neutrona za rasejanje 3 cm, a za apsorpciju
300 cm, naéi kriti¢nu stranicu kocke, za koju po¢inje lancana reakcija sa faktorom
umnoZavanja k=1,05.

l RJ1 I Energija oslobodena u jednom aktu fisije iznosi:

2
_ E,=M(Z,A)—-2M(—Z—; i)= z (1 ~»-L—)+asA2’3(l——2"3)z185MeV

20 2) " %qn\ "

(a;=0,71 MeV, a;=17,8 MeV).

| RJ2 ] Energija oslobodena pri eksploziji atomske bombe iznosi:

13
W=5x107x 8 x 105 x 4,18 xll.(%z 1,04 % 1027 MeV.

Poito se u jednom aktu fisije oslobodi priblizno 200 MeV, broj atoma urana, koji
doZive fisiju, iznosi:

w
N=-——, a masa m=DNA (ajm)=~2kg.
Py (ajm) g

| RJ3 ! Snaga idealne toplotne maSine iznosi:

403

gde su: Q uloZena koli€ina toplote, a T i T- su apsolutne temperature hladnjaka
i toplotnog rezervoara.

Koligina toplote oslobodena tokom jednog dana moZe da se izrazi preko energije
fisije (E;~200 MeV) i broja atoma 235U koji su doZiveli fisiju, tj.:

Q=E,N
Masa potrofenog urana iznosi:
mu=--£—'—t-i—— x (ajm) = 68 g.
E,(l - _<>
T,

! RJ4 ] Energija Coulombovog odbijanja jezgara lg‘;Xe i 398r jednaka je:

Z,Z,é Z,2Z,e

- ~ 250 MeV.
rr, r (Al + 455

£,
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I RJ5 I Povriina jezgra obi¢no se opisuje zadavanjem duZine promenljivog polu-

precnika jezgra u sfernim koordinatama. Posto se radi o kvadrupolnoj deformacul
izraz mora da sadrZi sferne harmonike ranga 2, tj.:

R (9, 9)=R,[l +§a,. Yu (3, 0)].

Medutim, kako jezgro ima rotacionu simetriju izraz ne sme da zavisi eksplicitno od
koordinate @; tj. od svih sfernih harmonika dozvolien je samo Y,((9). TraZeni
analiti¢ki izraz za povriinu jezgra je, dakle:

R®)=Ry [1+B Y20()].

Ako napifemo definicioni izraz za Y,q (videti dodatak):

R(-‘))a-Ra[l +%\/—-75E—(2coszq‘)—sin2{)) [3].

Vrednost deformacionog parametra (B) nalazimo iz odnosa dva polupreénika jezgra

(naznaCena na slici):

_R@=0)
R®= 'n:/2)
sleduje _
o-2y/%
odnosno:

R(&):Ra[l +cosz9——;-sin2&].

IRJ6| Za jezgro sa permanentnom kvadrupolnom deformacijom B energija
deformacije iznosi: .

A"‘(E +Ec) ( +Ec)" —E ( tO)_
’ £ o 2E‘,0

Posto je Epg i Eco>0 znak energije deformacije odreduje samo velidina:

Ec(l —
2E,

X =

Ocngledno je da je »kapljnca« nestabilna za x> 1. Parametar x u okvirima Weiz-
sickerovog modela iznosi:
22 ZZ
a,—— —
A3 A zZ?
A T3 “504
i3

a.
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Vidimo da kritinoj vrednosti parametra x (x=1) odgovara

2
B,
. 4 kr
$to je i trebalo dokazati!
RJ71 Polazeéi od Bohr-Wheelerovog izraza za energiju deformisane nuklearne

Kapljice
AP (1 _,’fam..) E
2n 2E,/ "
nalazimo kriti¢nu kvadrupolnu deformaciju iz uslova A=Ej tj.:
= ,Eigl?'._» o e == (0,55,
(] — Eco_) Epo
2 EPD
RJSI Problem je identi¢an alfa-raspadu. Prozracnost barijere iznosi:
2Rp
-2 [vimwo=Eiar
P=e 0

gde je m redukovana masa fragmenta m=A/4, a V (r)—E je negativna kineticka
energija fragmenta

1 .
V(r).-E=M0+E,,-—7k r—Rp?—
konstantu & nalazimo iz uslova:

V (0)=M,+ Ep—%/cRi=Mo

k=2 Ep|RE.

Dakle:
2Rp 2Rp

— 2
=Vsz,,f\/1 —(’—I,z—f) dr.
0 Rp

—R’T; dx::;}«dr dobija se

F F

1
J=V2mEpRFfVl—xzdx
~1

Uvodenjem smene bromenljivih x="

+1

=R;V2ZmE, {—;— 1- x2+—%—arc sin x}
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odnosno

J=-’—2‘-RF ImE,.

Verovatnoda spontane fisije iznosi:
-~ RpVYZmE,
W=fP=fe
gde je f frekvencija udara fragmenta o »zidove« jezgra:

f=10205-1 -
Dakle:
W= 1020 ¢-100 237 1024 51

§to odgové.ra srednjem Zivotu jezgra 238U u odnosu na spontanu fisiju
¢~%=2,7 x 10235=8,7 x 10¥ god .

Dobijeni rezultat je uporedljiv sa vredno$éu koja se dobija eksperimentalnim putem
(vers = 1016 godina),

l RJ9' Broj neutrona koji napufta uzorak (X) dobi¢emo kada od ukupnog broja

neutrona stvorenih u jednoj generaciji odbijemo broj neutrona koji udestvuje u
fisionom procesu (V) i broj neutrona koji udestvuju u nefisionom zahvatu (N;)

X=¥N- N,(l +]-VL)=VN—N,"_fﬂ’L.
Nf . a,
Kiriti¢no X odgovara uslovu Ny=N.
Dakle, uzorak mora da napusti
XC=N(7—

‘-’fii')=1,315N
O" E

neutrona da bi se uspostavilo stacionarno stanje.

IRJIO l Broj neutrona stvoren u n-toj generaciji u beskona&nom uzorku, u kome
nema odlaska neutrona u spoljadnju sredinu, iznosi:

oy n—1
ar (0',)

n-1
=y
=i
c,+c,) (1 _l_"l)"

G,

N='\7(V

gde je v prosedan broj neutrona po jednoj fisiji 241Pu. Posle pete generacije bice

u uzorku ukupno
514
()
= 8,4 neutrona.

N5y —21
(1 +—5—>
4
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! RIJ11 I Posle n-te generacije bi¢e stvoreno ukupno
N=n¢k" neutrona
Kako je n= T—> 1
T
N=ny(1 + )7 21y e4T1% = py k=N 715,

Brojni primer:
N=103 £'%0 = 2,7 x 1046,

RJ l2| Ako je langana reakcija otpodela sa N neutrona broj trenutnih neutrona
u drugoj, treéoj i n-toj generaciji iznosi:

N (1--x);  k[RN (1--x)} (1-—x); . . . 5 NE" (1—X)".

Ukupan broj trenutnih neutrona proizveden za vreme 1 T iznosice:
n
NAT)=N3 [k (1-x)
i=1

Medutim, kako je n=T/v — o0

NOAT)=N S [k(1-x}

i=x1

Ako je k (1—x)<! suma je konvergentna i jednaka sumi geometrijske progresije
sa podetnim &anom 1 i koliénikom g=Fk (1—x).
Dakle:

N T)m e cmin s o,
an 1—k(l—x)

Zakasneli neutroni, kojih u vremenu 0<¢<<1 T nije bilo u fisionom materijalu

pojavijuju se u vremenu 1 I'<t<2 T i proizvode ukupno

Nx .
— trenutnih neutrona.

2T) =
NED [1-k(1-x]

n J(CI_——; odreduje promenu broja trenutnih neutrona u drugom vre-
- — X

Faktor

menskom intervalu. Kako je k>>1, moZemo da piSemo k=1-a. Ako su x i a male
veliGine tada je

o x 1
1-k(l-x) 1—a
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Dakle, broj neutrona raste u fisionom materijalu, ali sporo u vremenu reda 1 s,
posto su tolika karakteristiéna vremena zakasmelih neutrona, dok bi isti porast
broja neutrona u landanoj reakciji bez zakasnelih neutrona imali za vremena reda
veliéine 10-8 s.

RJ l3| U sistemu CM ako atom moderatora miruje brzina upadnog neutrona
Znosi:

45
1+4 "

—
u =

gde je va brzina neutrona u LAB sistemu,

Posle sudara apsolutna brzina neutrona u sistemu CM ostaje ista. Ako se ponovo
vratimo u LAB sistem

-
gde je vepe brzina centra masa:

dakle
2 2 o
Ve =u2 4 vopm+ 2voptt
A I. P A

2
= (» -—-—»-) v+ Y - Vicos 9.
1+ 4 (1+4)? (1+4)?

Odnos energija neutrona pre (£g) i posle sudara (E) u LAB sistemu jednak je

E v;." 1

e = e (A2 L 2 9
B T UTAR (A%24-1+2 Acos 9)

gde je 9 upao rasejanja u sistemu CM.
Posmatranjem dva grapina sluéaja $;=m/2 i 9,=n dobija se

Ad—-1\2 F
(é_‘_) <f<
A+1 E,
§to je i trebalo dokazati.
Za moderatore se koriste laki elementi da bi donja granica ove nejednacine bila
$to bliza nuli. (Ako je E/Ey=0 imamo totalnu predaju energije!).

|RJ14| Ako je rasejanje neutrona izotropno, energetska raspodela neutro-

na posle sudara (%g{) je konstantna u pomenutim energetskim pranicama
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A-1\? . . - E N

<; \ x(—-——A " ) Ey; e2=E0). Tako, usrednjavanje veliGine In — moZemo da izvr§imo
-+

po energijama umesto po uglovima: °

€2

f LAANE);
0
- <ln——~ ““5'-—-,2—*_“ -
0 [ Y e
J dE
&
kako je w_ const:
dE
L
. Eo 1
=_1:P .-fln xdx‘="-*€n “lenx -xlfe, el
€, €, €, — € (T—H)
Ra]
Ly

Dakle

g (=17 At
2A A-1

- 1
§to je i trebalo dokazati!
Koriste¢i definiciju veliéine § moZemo da odredimo vrednost logaritma energije
neutrona posle n-tog sudara:
In Ep=:ln Ey-+-n%.

odavde odredujemo broj sudara sa atomom moderatora:

n ! In 2
e Zo
Az AR,

24 A-1

Za vodonik (A=1); poito je Eg=1 MeV, a £=1/40 eV nalazimo da broj sudara
iznosi 17,5, a za ugljenik (4==12) 116.

[RJI5 | Difuzionu jednaginu

k-1
Vin+oan=0 54w e - 2
LZ
. D
moZemo da re$imo sa graniénim uslovima #=0 na grani- y
cama reaktorskog materijala. Postavimo kocku stranice D
kao 3to je prikazano naslici. Graniéni uslovi tada glase: D
x
n (D, y, z)=n (x, D, 2)=n (x, y, D)=0 b .
RJ15

n (0, y, z)=n(x, 0, 2)=n(x, y, 0)=0
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a difuziona jednadina se moZe napisati u obliku:
P On Fn

ax* 0y* 07°

Ako pretpostavimo da je refenje ove jednadine oblika:
n=c¢f (x) f(» f (),

difuziona jednadina se raspada pa tii identiéne jednacine tipa:

afx) , « _
o + 3f(x)-—O.

Refenje ove jednadine je oblika

f(x)=Asin \/——‘;t: x.

1z graniénog uslova f(D)=0 débijamo kriti¢nu dimenziju reaktorskog materijala: '

3 n}/EL ]
= —— S L L=4200m.
NG T

Glava -K

Elementarne Cestice 1
kosmicki zraci




K1 ‘ U jednadinama kvantne mehanike stalno se pojavljuju konstante h=h[2r
brzina svetlosti ¢. Zato je korisno upotrebljavati sistem jedinica koji dozvoljava
eliminaciju ovih simbola. To je takozvani prirodni sistem (PS) koji se koristi i u
nuklearnoj fizici ali ipak najvise u fizici elementarnih &estica. On sve velidine u CGS
- sistemu redukuje na odredene stepene /i i ¢ i jednu jedinu prirodnu dimenziju — duZi-
nu. Ako veligéina 4’ u CGS sistemu ima dimenzije:

[A]= M= LPTY

uvedite novu velig¢inu A sa dimenzijama duZine L koristeéi poznatu dimenzionalnost
konstanti /i i ¢ u CGS sistemu. Iz ovog opiteg izraza naéi dimenzije mase, energije,
naelektrisanja i samih konstanti /i i ¢ u PS.

K2 | Neutralni K-mezon mase mirovanja 494 MeV ima poluZivot od 1,2 x 10~-8s,
Najées¢i raspadi K+ mezona su (p*-+v; -7:° itd. Proceniti neodredenost mase
ove destice koja nastaje zbog njenog konadnog Zivota. Da li se moZe proceniti polu-
pre¢nik K-mezona?

K3 I U mi-mezonskom atomu fosfora nadena je gama linija energije 88 keV
koja odgovara »atomskom« prelazu izmedu energetskih nivoa 3Dy, 1 2Py,
Koristeéi samo ovaj podatak odrediti masu mi-mezona. (U rafunu zanemariti
relativistitke popravke u energetskim termovima).

|K4 | Veliginu mase mi-mezona moguée je odrediti pomalo neobitnim putem;
poznavanjem slede¢ih odnosa magnetskih momenata:

U /tp=3,183 i pe— [up==658,2
Eksperimentalno su takodc odredeni i g-faktori za elektron i mi-mezon:

» ) Bu=ge~2.
Izraziti masu mi-mezona u GeV. .

| KS] Visokoenergetski gama kvant interaguje sa protonom u miru i proizvodi

neutralni © mezon (pion). Odrediti minimalnu energiju gama kvanta pri kojoj
je moguda ovakva reakcija. 2

|

| K6| Snop negativnih 7-mezona sudara se sa vo-

doni¢nom metom.
Zahvatom mezona obrazuje se mezoatom vodo- ———=——=

nika, koji se raspada emisijom gama kvanta i a
neutrona. Pomo¢u neutronskog detektora nadeno .
je da kineti¢ka energija neutrona iznosi 8,9 MeV. Neutronski
Proceniti masu mirovanja w~ Cestice. Ke detektor
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| K7 l Otprilike pre jedne decenije Gell-Mann i Georg Zweig su predloZili da sve
jakointeragujuce &estice, hadrone, moZemo da smatramo sastavljenim od »osnov-
nih« (fundamentalnih) hipoteti€kih &estica kvarkova i njihovih antigestica (antikvar-
kova). Kvarkovi imaju neuobilajene karakteristike: barijonski broj 1/3 a naelek-
trisanje —1/3 ¢, 2/3 e i —2/3 e. Koliko i kakvih kvarkova mora u sebi da sadrZi:
a) proton i b) n-mezon? Pretpostavljajuéi da je proton sadinjen od slabo vezanih
kvarkova naéi masu kvarka. Ako je pion sastavljen od jako vezanih kvarkova
kolika je njegova energija veze? (Na Zalost, do dana dana3njeg i pored znadajnijih

- eksperimentalnih napora kvarkovi nisu otkriveni. Ako je masa mirovanja kvarkova
veda od energija koje se postiZzu dana¥njim akceleratorima, onda su vezivne energije
kvarkova upravo fantastiéne).

] K8 I Koriste¢i model kvarkova (videti prethodni zadatak) odrediti odnos totalnih
efikasnih preseka za elastiéno rasejanje:

p-p i wt-p

Pretpostaviti da su verovatnode za rasejanje kvarka na kvarku i kvarka na antikvarku -

jednake medusobom.

K9 l Pojam izotopskog spind uveden za proton i neutron moZemo da proSirimo
na n-mezone. Iz eksperimenta je poznato da postoje neutralni, pozitivni i negativni
w-mezoni pribliZzno istih masa mirovanja. Pretpostavimo da tri stanja naelektrisanja
m-mezona odgovaraju trima projekcijama izospina. Tada je razumno da usvojimo
za izospin piona T=1. Uvedimo oznake:

!7': 7—}>=] 1, IH=| W+>a 1, 0>=‘ “°>’ |1, —1p==| =)

Ukupna talasna funkcija w-mezona jednaka je proizvodu talasne funkcije koja
zavisi samo od prostornih koordinata i izospinske talasne funkcije (posto je spin
m-mezona jednak nuli).

Koliki je izotopski spin sistema od dva m-mezona? Kakvu simetriju mora da ima
u izospinskom prostoru talasna funkcija koja opisuje dva piona? Napisati dve
najprostije izospinske talasne funkcije sistema od dva piona za &iju konstrukciju
vam nisu potrebni Kleb$-Gordanovi koeficijenti.

K 10| Napisati koristeéi tabelu Kleb3-Gordanovih koeficijenata sve moguce talasne
funkcije sistema nukleon-pion u apstrakinom izospinskom prostoru koje odgova-
raju stanjima izospina 1/2 i 3/2. Da li konstrukcija ovakvih talasnih funkcija ima
ikakvog fiziCkog smisla?

lKll[ Razmotriti procese elastinog rasejanja pozitivnog i negativnog piona na
protonu koristeéi formalizam izospina. (Videti prethodne zadatke). Zanemarujuéi
potpuno rasejanje u stanjima sa ukupnim izospinom 1/2 naéi relativan odnos to-
talnih efikasnih preseka za elastino rasejanje pozitivnog i negativnog piona na
protonu.

|K12l U elektromagnetnim i jakim interakcijama pored drugih velidina odrZava
se'i tzv. hipernaelektrisanje (¥) definisano kao Y==B--8, gde je B barionski broj
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a S stranost estice. Koja (ili koje) od navedenih reakcija su zabranjene sa aspekta
odrZanja hipernaelektrisanja

1, m+p - K°+A (Y(K)=-+1)
2, w+p — w°+A°

o
3, p +n — ptA°
|K13 Dugo godina u fizici elementarnih &estica postojale su dve Zestice & i =,
priblizno istih masa od kojih se prva raspada na dva piona a druga na tri. Danas
se smatra da su & i v Gestica dva razliita raspada jedne te iste — K-mezona. Imajuéi
u vidu da je spin piona 0, odrediti spin i parnost K-mezona, koji udestvuje u oba
raspada, pretpostavljaju¢i da se parnost odriava.

K14l Opisati kako ¢e izgledati energetski spektar estice 1 posmatrane pod ug-

Jom 9 u odnosu na upadni pravac estice 4 u produkcionom eksperimentu u kome
se opserviraju tri &estice u finalnom stanju (4+B — 1+42--3) ako je: a) proces

K4

tipa prikazanog na slici levo i b) tipa prikazanog na slici desno u kome postoji
intermedijarna kratkoZiveéa (t~10-23s) rezonansa R, tj. opisati kako se eksperi-
mentalno mogu razlikovati ove dve situacije.

KlSl Negativni w-mezon kinetiCke energije 50 MeV raspada se u letu na mion
neutrino. Odrediti energiju neutrina koji izleée pod pravim uglom u odnosu na
pravac kretanja w-mezona.

Pod kojim uglom se razleéu &estice b i ¢ jedna u odnosu na drugu u laboratorijskom
referentnom sistemu ako je kineti8ka energija destice a, koja se raspada na bi ¢
(a — b-+c), jednaka T., a kineticke energije &estica b i ¢ su medusobno jednake.
Mase mirovanja &estica su poznate. Koristiti se formalizmom &etvorovektora.

: K16I Uspostaviti vezu izmedu kvantnih brojeva naelektrisanja estice (Q), tree
komponente izospina (7's) i barijonskog broja (B), posmatrajuci osobine izospinskog
dubleta (p, n), izospinskog tripleta (n° =~, ©*) i izospinskog singleta (A°).

I K17 Kosmiéko zradenje otkriveno je u pokuajima da s¢ objasni pojava spontanog
razelektrisavanja usamljenog i ina&e izolovanog elektroskopa (Hess, 1913). Kapacitet .
vlakna i drzada datog elektroskopa je 1 pF a zapremina komore 50 cm?. Elektroskop
je naelektrisan do desetog podeoka a njegova osetljivost je poznata i iznosi 0,1 V
po podeoku. Tako naelektrisan on se na nivou mora potpuno razelektrife u toku
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12,7 gasova. Ako je gas u komori elektroskopa vazduh pod normalnim uslovima
nadi koliki je broj jonskih parova koji se stvara pod dejstvom kosmi&kih zraka na
nivou mora u jedinici zapremine i u jedinici vremena.

K18| Primarni kosmicki zraci, uglavnom protoni i alfa Gestice veoma visokih
energija, izotropno dolaze iz celog svemirskog prostora do gornjih slojeva atmosfere
i u njima, u sudarima sa jezgrima atmosferskih gasova, proizvode lavine relativi-
sti¢kih gestica, uglavnom m-mezona. Mali broj primarnog zralenja dostize do
nivoa mora. Ovde opaZamo dve izrazite komponente, tvrdu i meku. Meka se jako
apsorbuje u materiji, apsorpciona mo¢ jako zavisi od rednog broja materijala. Nju

ﬂ\'mamcl Cestica

g""fﬁ stoje raverda w interabeyl sa feagrome

D‘tﬂ"’sfl'ﬁ ® atmosjers,&ogz 9053‘ 78
7

o OrT~2

raboino mradetje

Kig

uglavnom sadinjavaju elektroni koji poti¢u iz raspada = — 2+ sukcesivnom kreaci-
jom elektronsko-pozitronskih parova od strane ovih gama kvanata. Tvrda kompo-
nenta ima veliku prodornu mo¢ priblizno nezavisnu od nuelektrisanja atoma apsor-
bera. Nju saginjavaju p mezoni koji potiu iz raspada =& —~ ¥y, (9,). Jonizacioni
gubici, medutim, ne zavise od mase estice i. kako je jedina razlika izmedu elektrona
i miona u njihovoj masi, to se navedena razlika u karakteru apsorpcije mora objasniti
na drugi nacgin. Razlika se pojavljuje kada posmatramo gubitke energije na zakoéno
zradenje U polju jezgara apsorbera. Ovi su gubici obrnuto proporcionalni masi

ELEMENTARNE CESTICE 1 KOSMICKI ZRACT 275

Zestice a upravo proporcionalni Z2. Otud lake &estice (me=1/207 m,) imaju znatne
gubitke na zako&no zradenje koji jako zavise od Z, dok telke, mioni, nemaju. Po-
stoji, medutim, jo¥ jedan neobican efekat koji donekle dovodi do smanjenja razlike
u apsorpciji ovih dvaju zradenja i to poveéanjem apsorpcije miona. Mion je, naime,
nestabilna estica sa raspadom. pE—> e+ v--¥ i srednjim Zivotom 7¢=2,15X 10~6s.

"No, relativisti¢ki mezon koji se kreée brzinom Bc imaée, u LAR sistemu, srednji

#ivot T=1¢/(1—B)12, Pokazati da apsorpcija miona (nestajanje iz snopa) zbog
raspada zavisi od gustine apsorbera i, shodno dobijenom rezultatu, objasniti naizgled
paradoksalnu &njenicu da je apsorpcija miona usled raspada u vazduhu (dakle,
retkoj sredini) znagajnija no u gustim sredinama (tetnim i &vrstim telima)! Poznato

_je da jonizacioni gubici ultrarelativistitkih mezona po jedinici puta u materijalima

sa malim Z praktitno ne zavise ni od energije ni od Z j da iznose priblizno 2 MeV/
/gem—2,

IK19| Raspad y mezona iz tvrde komponente kosmitkog zralenja ispitivan je
aparaturom prikazanom na slici. Desetak santimetara olova u filteru F; dovoljni

At - JL

Aoinc. SKi

—
— e i\&‘”—] L@ ~
. N 75
v

[ | e |2
wo LT[ [af——r

su da apsorbuju clektrone meke komponente. Impuls u skaleru SK javlja se, dakle,
samo ako mion prode kroz Fj i zaustavi se u filteru F, (ako prode i kroz njega
impulsa opet nema zbog antikoincidentne veze detektora Dy). Detektor D; oseca
samo elektrone iz raspada miona p — e+v4-¥ (impuls u SKj). Impuls u SK3
(pravi dogadaj, reprezentovan na slici) dobija se samo ako se mion zaustavi u Fy,

LS

]{oinc,z

1L

‘u njemu raspadne posle vremena jednakog vremenskom kainjenju 8, emitujuéi

elektron kroz bateriju detektora D; (neutrino ne interaguje ni sa jednom detektor-
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skom sredinom). Ovo mogu da urade samo mezoni koji dolaze iz pravaca ogranienih
teleskopskim uglom sistema. U intervalu ka$njenja od 0 do 2 ps registrovano je
200 dogadaja (impulsa u SK3), a u intervalu 0 do 6 ps 310 dogadaja. Pretpostavlja-
juéi da se raspad miona odvija po eksponencijalnom zakonu (kao i svi raspadi,
uostalom) nadi srednji Zivot miona.

]KZ()I Mnoge lokalne pojave na Zemlji u vezi sa kosmickim zradenjem mogu se
objasniti studijom kretanja naelektrisanih Cestica u Zemljinom magnetnom polju.

K20.2

—

- . - i
e xey=e,; k=sinle +coshe,

Magnetno polje Zemlje moZe se aproksimirati poljem magnetnog dipola lociranog
nekoliko stotina kilometara od njenog centra i'&ija je osa pomerena u odnosu na
osu rotacije za oko 11° tako da se severni pol ovog momenta nalazi negde u kanad-
skom polarnom krugu. Moment ovog magnetnog dipola od priblizno p=28x 1023 erg/
/gaus dovoljno dobro reprodukuje izmerene vrednosti magnetnog polja na veéim
visinama gde se lokalne varijacije viSe ne oseaju. Polje se izufava u, za fizifare
neuobiajenom, geomagnetnom sfernom koordinatnom sistemu &iji su jedini&ni
vektori prikazani i definisani na slici. Osa z poklapa se sa osom magnetnog momenta.
Tadka na povriini Zemlje opisana je koordinatama (r, A, ¢) gde je r=rp==6,4x

e —
X108 ¢cm a A i @ su geomagnetska Sirina i duzina. Vektori e, ey i e, usmereni su
u zenit, sever i zapad respektivno. Vektor-potencijal polja ovog magnetnog momenta
jednak je: ’

- 1

-
A= —pxV—
r
Nadi 1zraz za p(_)lje i prodiskutovati ga. Nadi intenzitet, pravac i smer polja na ekva-
toru i na polovima. Po3to statit¢ko polje ne vr¥i rad (Lorentzova sila) to ée se nae-

lektrisana &estica pod njegovim dejstvom kretati tako da su joj E, vi ;konstanmi.
LagranZijan takve Cestice jednak je:

G -MAYT-F+2545
c

Naéi odavde izraz za odnos komponente impulsa p, prema totalnom impulsu p

izraZen preko ugla (v) izmedu vektora brzine Vi vektoraze, tj. ugla koji trajektorija

ELEMENTARNE CESTICE 1 KOSMICKI ZRACI 277

gestice &ini sa pravcem zapada. Ovaj integral kretanja naziva se StOrmerovom
teoremom (Stormer tokom produktivne prve tretine ovog veka). Prodiskutovati
znalenje Stormerove teoreme.

l K21[ Defleksiju naelektrisane &estice u magnetnom polju odreduje njen impuls
a ne energija i stoga se kao karakteristika kosmicke Zestice ¥esto uzima impuls
izra¥en u eV /c. Ako je estica ultrarelativistitka (E> mc2) on je tada brojno jednak
energiji u eV a ako je nerelativistitka jednak je 2 ¢/v puta njenoj energiji. Velitina
koja adekvatno karakterife kretanje date Gestice u magnetnom polju je takozvana

_ Y6p vrednost ili magnetna &vrstota (magnetic rigidity) 9. Jednaina kretanja je:

-2
c
ili, za sludaj brzine normalne na homogeno polije:
p=(Zefc) v F6=(1]p) mv2
gde je p polupreénik putanje. Odavde imamo odmah da je:
M=6 p=pc/Ze

Vidimo opravdanost naziva magnetna &vrstoca jer velitina IR zaista na izvestan
nadin govori koliko »&vrsto« (na kom radijusu p) polje date jadine drZi Cesticu im-
pulsa p. Izraziti velidinu b (Stérmerov integral) u jedinicama (p/I)1/2. Ova jedinica
duZine naziva se Stormer (1 St) i odigledno je,za svaku situaciju Zestica — polje
razlicita!

IKZZI Jedinica od jednog Stormer-a definisana u proilom zadatku jednaka je

dakle:
- Ez\/ﬂffé= 5 \/”I—ZT“
1.8t \/Iﬂﬁl e 4,9 x 10 pc(GeV)cm

Radijus Zemlje r=6,378 X 108 cm izraZen u S¢ bi¢e tako jednak:

pc (GeV}
pa l Z[ = St,

Rg=0,13

tj. svaka gestica »vidi« Zemlju odredenog radijusa ako je ovaj izraZen u St.(R@ o ]/E) .
Ravan koja prolazi kroz &esticu u pokretu i z-osu zove se meridijanska ravan (vidi
sliku u zadatku br. K20). Ako iz Stérmerove teoreme izrazimo cos y oéigledno je
da ¢e u ovoj ravni, za datu vrednost B, one oblasti u kojima je | cos y |>1 (defini-
sane odredenim vrednostima R i A) biti zabranjene (nepristupatne) za tu Zesticu.
Trasirajte granice ovih oblasti u meridijanskoj ravni za vrednosti B=—20,5; 0;
1,95 i 2,05 (pojava je odigledno g-simetri¢na). Raditi u stérmerima i diskutovati
dobijene rezultate (posmatrati samo pozitivne Cestice). Imati u vidu da je zabranjena
oblast zaista zabranjena; estica u nju ne moZe prodreti ni kroz drugu zabranjenu
oblast, ni kroz Zemlju! Detaljno prodiskutovati slufaj kretanja pozitivne Zestice
u ekvatorijalnoj ravoi sa B=0 i B=2,05.
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I K23 ‘ Rezultati dobuem u prethodnom zadatku a prikazani na slici RK22.1 oti:
gledno vaZe za celu trajektoriju Zestice no posmatrajmo sada samo krajnu tadku
trajektorije plta)uél se da li Cestica date energijé E (znadi i datog Rg) moZe da do-
stigne odredenu Sirinu A na povr3ini Zemlje ako se krece iz pravea koji sa praveem
zapada & &ini ugao v. Za to prvo trebaiz date energije E da nademo Rg (u -St) pa uz
Ay nademo odgovaraju¢e B. Time dobijamo sliku analognu onima na sl. RK22.1
i na njoj oznadimo tacku (R, )\), tj. krajnu tacku ttajcktorue Ta €e tadka, oSigledno,
le¥ati u dozvoljenoj oblasti jer je sigurno |cosy [<1 (v Je biran kao stvarni ugao).
‘Mote se desiti, medutim, da to bude dozvoljena oblast tlpa II ako je istovremeno
i B>2 i Re < 15to se vidi nasl. RK22.1d za, na primer R@ (sve u sludaju pozitivne
Sestice). Ako je, pak, R >1, na primer, R@ ovo se nikad ne moZe desiti; trajektorua
ée se uvek zavriiti u oblasti I; bez obzira iz kog pravea dolazila Cestica ¢e na datoj
Sirini biti opservabilna.

Na osnove gornjih razmatranja izvesti opste zakljucke o opservabilnosti Cestica
na povriini Zemlje a u funkciji upadnog ugla y. Odatle zatim detaljno prodiskutovati
za koje ¢e upadne uglove y proton impulsa p==3,25 GeV/c biti opservabilan na
povriini Zemlje ra geomagnetnoj Sirini A=45° (pribliZno Sirina SFRJ).

]K24] Nejednadina za cosy iz prethodnog zadatka (uslov observabilnosti estice
date energije na datoj Sirini. A u funkciji ugla trajektorije sa pravcem zapada) moZe
se refiti po. Ro, tj.:

»s0_ 1 —)/T—cosycos®A <o 1 =) 1—cos (m—7)cos’A
Ro™> COSY COSA R@ > cos (1 — ) cosA

Odavde naéi uslov za opservabilne impulse estice na datoj geomagnetnoj Sirini za
gesticu koja dolazi iz pravca definisanog uglom y. Na osnovu dobijenog rezultata
objasniti »efekt Sirine«; ¢injenicu da je intenzitet kosmigkog zratenja veci na polovima
no na ckvatoru. Objasniti takode kako pojava »zapadno-istofne asimetrije«, tj.
ginjenice da je na vecim visinama (gde se radi o primarnom zradenju) intenzitet
zralenja sa zapada veéi od intenziteta zradenja sa istoka, govori da je primarno
kosmic¢ko zrafenje sastavljeno preteZno od pozitivno naelektrisanih Cestica.

K25} Uzmimo ! mol molekularnog vodonika u nepromenljivoj zapremini i spolja
dovodimo energiju. Pratimo porast temperature i vrednosti temperature na kojima
" se defavaju znaajne promene kao i ponafanje specifi¢ne toplote C). Slika koju
pri tom dobijamo priblizno je sledeca:

TEMPERATURA (K) . OPIS

300—600 ‘ Cy=~const=(5/2) R(R je umverzalnd gasna konstanta),
1000 Pocinje disocijacija molekula, C, raste.

5000 Disocijacija gotovo potpuna. Sistem se sastoji od dva
] mola atomskog vodonika; Cp,~3 R.

10 000 Primetna jonizacija atoma; €, raste.

105 Jonizacija gotovo potpuna. Sistem se sastoji od dva mola

protona i dva mola elektrona; C, dostigla ~ 6 R.
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TEMPERATURA (K) OPIS
105—108 C) = const.
109 U sudarima &estica kreiraju se elektronsko-pozitronski
: parovi; C, raste.
ol U proton-proton sudarima kreiraju se n-mezoni; Cpraste.
1012 Broj w-mezona je veliki. U visokoenergetskim p—p su-
darima Kkreiraju se proton-antiproton parovi; C, dalje
raste.
~ 1,2 1012 Maksimalna moguda temperatura, Ty,,,! Dalje dovodenje

energijo samo povecava broj novih Sestica; Cy, stalno raste.

Objasniti kvalitativno gornju sliku a narogito poslednji stav o postojanju maksi-
malne mogude temperature (objasniti red velidine T,,,,) koji predstavlja zanimljiva
vezu izmedu termodinamike i fizike elementarnih Eestica i koji se ponekad naziva
»&etvrtim principom termodinamike«.



]RKl [ Dimenzije A i ¢ u.CGS sistemu su:
[Al=ML2T-! i [c]=LT-1

Da bismo od veliine A’ napravili veliinu sa dimenzijama duZine moramo kombi-
novati f i ¢ tako da dimenzije M i T budu jednake nuli, tj.

[Al=[A")f (h, )=[A']} [A]° [c]"
= M= L8 T (ML2 T-1)o (LT-1)*
Da bi M i T imali dimenzije nula mora biti:
[M]: a+o0=0, o=—0
[11: . oa—o—1=0, Ty

tj. kona&no:
[A]=[A] B2 ¥ = [B-a*¥
Odavde odmah nalazimo da masa u prirodnom sistemu ima dimenziju L-1,
Za energiju nalazimo:
[E'l=ML*T-*=M=LP TV tj.
[E]=L-!, kao i masa, tj. E=E’[fic tako da je
E'rg=1,05X 10727 X 3X 1010 Eppuim jedintcara
Naelektrisanje u elektrostati¢kim jedinicama ima dimenzije:
[el=M12 132 T-1 pa je u PS[e]=L° tj.
€ el. sas. jed. = Eprir. jea. (AQ)M? Bto j2, pribliZno,

Cprir. jea. =V T[137 = Y/a
tj. e2=a $to opravdava ime sistemal
Lako nalazimo da je u PS

hi=c=1! §to zadovoljava uslov zadatka.

I RK2 I Ako je poluZivot neke &estice 7 tada je neodredenost njene mase mirovanja
reda velitine: Amc2~Ff~. U nafem slufaju A mc2=5x10-14 MeV. Moguénost
lokalizacije destice impulsa p odredena je talasnom duZinom de Broljevog talasa,
Ako uzmemo da impuls K-mezona (gruba procena) iznosi p~mc, tada se za polu-
preénik K-mezona dobija:

red® = ifp =1~ 0,4 fm
mc?
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I RKSl Mi-mezonski atom je sistem koji se sastoji od jednog jezgra i jednog

(negativnog) mi-mezona koji predstavlja »teski« elektron. Ovakav atom je sli¢an
vodoniku, tako da za n-to energetsko stanje atoma moZemo da piSemo, ako zane-
marimo spin i relativisticke popravke:

—Ep=Rn"2
gde je R Ridbergova konstanta:

R ='1? (®Z)*myc

(« je konstanta hiperfine strukture, a Z redni broj fosfora; Z=15).
Masa mi-mezona iznosi:

my, ct= 2E L = 106 MeV
(x2Z)? 1 i
317 3
RK4 I Podimo od identiteta:
B b Mo
He Hp e

S druge strane sopstveni magnetni momenat Zestice u sistemu u kome ona miruje
jednak je:

gde je s maksimalna projekcija spina.
Buduéi da govorimo o &esticama sa spinom 1/2

Pu _ 8 M,

e ge mu
odnosno:

my =5 m, e ¥ 2 0,106 Gev
8e e “"P

| RKS | Prag za kreaciju &estica jednak je zbiru njihovih masa mirovanja u sistemu

centra masa
Epr=mp-+mpe

Uzimajuéi u obzir da je masa mirovanja relativistika invarijanta, moZemo da pi-
§emo

Eje = Eby=E* = p? = (i + mec )’
gde se velidine p i E odnose na laboratorijski sistem pre reakcije. Kako je

p=0, E=w-tmp (h=c=1)
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Zakljutujemo da je minimalna energija.fotona jednaka:

m=m,‘(l +;"'i°

): 145 MeV.

my,

I RK6 l Ako zanemarimo vezivnu energiju mezona u mezoatomu, kao i njegovu
upadnu kineti¢ku energiju, onda koristedi se relativistitkom kinematikom za reakciju
tipa:

. SO 1:_+p g n+Y
pifemo, u jedinicama fi=c=1:

My 1 = + sz_-{- m,z,

(Prespostavili smo da je impuls neutrona jednak impulsu fotona).
Ako reSimo jednadinu po  dobija se:

L (- ____"13._)
N\ e,
Kineticka energija neutrona jednaka je:

7= Mp My —Mg—
Dakle: :
2 Ty (Mn—+mp)=(mp—mp-+my—)2

Kori§¢enjem vrednosti masa protona i neutrona dobijamo sledeéu kvadratnu jedna-
¢inu po masi ©~ mezona:

M2 — 20,4 m,,— 16700 =0
dije je pozitivno i realno refenje
My— = 140 MeV

! RK7 l Proton bismo mogli da dobijamo kombinacijom triju kvarkova, dva sa
naelektrisanjem 2/3 e i jedan sa naelektrisanjem —1/3 e. Ako su kvarkovi slabo
vezani u protonu masa mirovanja kvarka je priblizno 0,3 GeV (da bi ukupno dali
masu mirovanja protona — 1 GeV). Pion (x) je sastavljen od kvarka i antikvarka
(barionski broj nula), a naelektrisanje

antikvark! <« —-2-e +—-l—e=e
| 3 3

Energija veze kvarkova u pionu jednaka je dakle:

Bp=2 Mgy spx— My, ~ 0,46 GeV

Pocetna pretpostavka o protonu kao sistemu slabo vezanih kvarkova ogigledno je
daleko od istine jer ni u eksperimentima na energijama ~200 GeV kvarkovi nisu
opaZeni. No, &ak i pod ovom pretpostavkom dobijamo enormnu energiju veze za
kvarkove u 7 mezonu. Prvi put sre¢emo mikrosistem u kome je energija veze sistema
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veéa od mase mirovanja sistemal Osecate li potrebu za novim tipom sile kojom kvar-
kovi interaguju sposobnom da ostvari ovako &vrsto vezane sisteme, tolike defekte
mase?!

RKS8 ’ Kako proton ima tria pion dva kvarka u elasti¢nom w*p rasejanju udestvu-

je Sest kvarkova, pa mo¥e da se desi Sest nezavisnih sudara svaki sa verovatnoéom A.
Dakle:

o(rntp)m 6 A

S druge strane u sludaju proton — proton sudara udestvuje devet kvarkova te je:
. c(pp)o9 4

Odnos preseka za ova dva elasti¢na rasejanja iznosi:

slem) 3

c(n*p) 2
(5to nije daleko od eksperimentalnog rezultata).
|RK9 I Sistem od dva piona moZe da ima izotopski spin 0, 1i 2. Po§to pion ima
obiéni spin 0, potéinjava se Bozeovoj statistici, tako da ukupna talasna funkcijgl
dva piona mora da bude simetri¢na. To zna€i da simetrinoj izospinskoj funkeiji
odgovara simetri¢na prostorna i obratno.

Dve najprostije talasne funkcije u izospinskom prostoru sistema od dva piona su
one koje odgovaraju maksimalnoj i minimalnoj projekciji izospina 2, tj.

12, 2)=}wx"D|m*)
12, =D=[n"D =)

‘RK]O[ Procedura pravljenja izospinskih funkcija identi¢na je kao i za obican
spin. Oznagimo kvantni broj izospina slovom T, a projekcije izospina na »fizicku
osu« T3, Tada je:

[T T3y = 2 ATuTaTI1Tan Tan T2 I T Tand | Tn Tawd

InTsn

gde se indeksi 7 i 7 odnose na kvantne brojeve izospina piona i nukleona. Vektore
| T T3r03 | Tn T3a) moZemo da zamenimo nazivima Zestica. Na primer:

[ D=, |12 —1[2)=n
Dakle:

142 1)2=V2[3ntn ~Vij3="p
112 12>=VI/3n°n— V2[3rp
13/2 3/2)=mtp
[3/2—3/2) == m~ n
13)2 12 =Vij3mim4V2/37"p
13/2 =1/2>=V23 =" n+V13 = p

Rt ¢
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Konstrukcija ovakvih funkeija ima dubokog fizi€kog smisla buduéi da pion i nukleon
interaguju jakim interakcijama koje su nezavisne od naelektrisanja, pa se izospin
odrZava.

IRKI]I Sistem m*p odgovara stanju izospina 3/2 i projekcije 3/2, dok sistem

n—p moZemo da posmatramo kao stanje sa smeSama izospina 3/2 i 1/2. Posle kori§-
éenja tabele Klebi-Gordanovih koeficijenata, ili rezultata prethodnog zadatka,
ntp=|3/2 3/2)

imademo:
Y Y P ]z

Efikasni presek za bilo koji proces (pa i elastiéno rasejanje) proporcionalan je matric-
nom elementu izmedu podetnog i konafnog stanja, tj.

goa [ gy | H| g)l?

gde je H operator jake interakcije koji ne razlikuje n* od =~ mezona usled neza-
visnosti jakih interakcija od naelektrisanja, tj. ne razlikuje projekcije ukupnog
izospina.
Dakle:

1/2~1/2>

G23/2| H|3/23/2=3[2 1/2| H|3[2—1/2)
tj.
! o(rtp —wtp)oo K3/23/2| H | 3/23/2)]2

6 (n=p—>mp)w %(3/23/2]1113/2 3/2>+—§~<1/2« 12| H|1/2 1/2) ?

Zanemarujuéi rasejanje u stanju sa izospinom 1/2 imaéemo:

s(mtprmtp) g

g(r~p->np) )
lRKlZ] Proton, neutron i A° Eestica pripadaju barionskom oktetu te imaju ba-
tionski broj B=1, dok pioni imaju barionski broj 0. Pobrojane Zestice osim A°

nisu strane pa je njihova stranost S=0. Stranost &estice A° je — 1. Dakle, moZemo
da napravimo sledefu tabelu:

Zestica p " n ° T K° A°
hipernaelek-
trisanje +1 -+1 0 0 -1 0

Kori§¢enjem tabele lako je videti da odrZanje hipernaelektrisanja zabranjuje reak-
cije 21 3:
T+ p - n°+A°; n+p—>p4A°

©)+@=0)-+(0) (D+M= O+
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lRK13[ K — nn: Kako je spin piona 0 konzervacija momenta impulsa zahteva

da spin K-mezona bude jednak relativnom momentu impulsa dva piona (L). S druge
strane parnost dva piona je (— 1)~ Dakle spin i parnost K~-mezona mogu da budu:

JP=0% 17,2+, 37, 4%, .,

Medutim, kako su pioni bozoni, stanja 1~ i 3~ nisu dozvoljena. ZakljuSujemo da
raspad K-mezona na dva piona dozvoljava sledeéa stanja:

JP=0%,2%, 4+, .,

‘Analiza raspada K — 3 = je neSto sloZenija. Tropionski sistem moZemo da shva-

timo kao dvopionski sistem sa relativnim momentom impulsa L plus treéi pion
sa momentom impulsa / u odnosu na dvopionski sistem. Parnost ovakvog sistema je:

(13 (DF (1) = (1

posto smo u dvopionskom sistemu videli da je L parno. Ukupni spin J tropionskog
sistema leZi u granicama:

| Ll | I VL1
Konstrui§imo sledeéu tabelu:

L I JP
0 0 0-
0 1 1+
0 2 2~
2 0 2-
2 1 1+,2+ 3+

Vidimo da je najniZe moguce stanje zajedni¢ko za dvo i tropionski sistem stanje 2+
(8to je u kontradikeiji sa eksperimentalnim spinom 0!) Sta se odavde moZe zaklju-
&iti?

[RK14] Sluzaj a)

Usled konzervacije energije i impulsa &estice 1,
2 i 3 dele energiju na komplikovan nadin i pod
datim uglom & destica 1 imaée kontinuiran
spektar analogan, recimo, spektru elektrona u
sludaju P-raspada, tj. ne§to kao na slici.

‘fna\?f)‘a, destice 4 na ugbu b Emax
RK44o,

Slugaj b)

Iako postoje tri &estice u finalnom stanju u prvom intermedijarnom procesu imamo
obigan dvodesti&ni raspad u kome konzervacija energije i impulsa daje za Cesticu
1 pod datim uglom 9 uvek ta&no odredenu energiju E|. Rezonansa R, medutim,
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Zivi veoma kratko; za vreme reda velidine njenog srednjeg ¥ivota Cestica 1 i rezo-
nansa R nefe se udaljiti van dometa jakih interakcija i energija estice 1 e se usled
ove interakcije »razmazatic oko srednje vrednosti
n energj)e E,. Spektar &estice 1 izgledade, dakle, kao
na shf:i. Sirina ove energetske distribucije indirektno
govori o vremenu Zivota rezonanse R. Oblik spektra
Cestice 1 nam, dakle, direktno govori o postojanju
(odnosno nepostojanju) i osobinama rezonantnog sta-

nja destica 2 i 3.

E,
RK14 8
IRKISI Sa p oznatimo Cetvorovektor impulsa &ije su tri komponente dekartove
-
komponente vektora impulsa (p) a Cetvrta komponenta’ predstavlja »imaginarnu«

energiju (i E) u jedinicama u kojima je ¢=1: ;7,-——.(;1: i{E). Kvadrat &etvorovektora

impulsa Cestice predstavlja relativistitku invarijantu, negativni kvadrat mase miro- -

vanja Cestice:

pr=(pep) = —m2,

Za raspad w— bice:
Pr= pu. +Py.
Kvadrirajmo jednom ovu jednadinu a drugi put je .skalamo pomnoZimo sa ,:
=P AP H2,
‘pnr'vmpu Pv+¥33- ’

Oduzimanjem izraza dobijamo:
1
Prby=—-(pr= i+ pd).
Posto se Cestice razleéu pod pravim uglom to je:
— — — >
pnbv"lpn“Pvlcos(Pnj ) —E E,=—~E E,.
Kako je, dalje:
Pa=—mz pi=—mpy pi=0

traZena energija bice:

1 2 2 mi—m?
E, = — - il [
v=g En(mn my) = r Togmsy =~ 22 MeV.

Koriste¢i ovaj formalizam za raspad a — b+-c, bide:
1
Pa=Potbei Po-be= - (pI-pi-p0);

Py Po=pyp.cosby,—E, E,

ELEMENTARNE CESTICE I KOSMICKI ZRACI 287

sa
pe=|ps| i p.=|p.]

Tako je ugao izmedu pravaca kretanja Zestica b i ¢ jednak:

1 .
B == ATCCOS == (me+-m2—mie2E,E)~

Py le )
my+me —my+ 2(T+m) (T+m,)
—arccos N
2TY(T+2m) (T +2m,)
T, +m,—my—m, . . T "
wz T'=T,=T,=-24—-2%——2 % (iz urlova zadatka i odrZanja energije).

2

-RK16I Posto su @, T3 i B aditivni kvantni brojevi najprostija veza izmedu njih
je linearna:

O=c1T3+c2B.

Izospinski dublet (p,#) sa osobinama datim u tablici moZe da posluZi za odredi-
vanje konstanti ¢y i ¢;. Smenom datih kvantnih brojeva dobija se sledeci sistem
linearnih jednadina:

1
Q T, B l=~:2-6'1+02

P 1 +1/2 1

1
= ——— - ¢
. 2 1 2
n 0 —1/2 1

sa refenjima c¢y=1 i ¢3=1/2, odnosno:
1
Q~Tyk-,- B.

Ako se ovaj izraz primeni na izospinski triplet w-mezona sa B=0 dobijaju se njihovi
tadni kvantni brojevi. Medutim, u sludaju izosingleta (A°) sa B=1 i T3=0 bice
Q, =1/25:0! Dakle, da bi se za sve ¢lanove izospinskog multipleta dobila korektnfl
veza izmedu ovih kvantnih brojeva potrebno je uvesti i jedan novi kvantni broj,
nazovimo ga S, i uslovimo da ima celobrojne vrednosti. Tada je, za A°:

QmT,-{—»—; (B+5)

sa vrednodéu S==—1. Ostali ¢lanovi multipleta, ogigledno, moraju da imaju S=O:
Vidimo da S predstavlja kvantni broj stranosti. Zbir B---S=1Y predstavlja kvantni
broj koji nazivamo hipernabojem.

|RK17] Koligina elektriciteta je
Q=CV=10"12C
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Ako je N=broj jona/cm3 s onda se ova koli¢ina elektriciteta neutralife jonima styo
renim za vreme !:

Q=NeZt, gde je Z-zapremina komore, tj. N=Q/eZt
N==2,75 jonskih parova/cm3s
I RK1 8[ Neka mion prelazi put L. Krecuéi se brzinom v=0¢ za to mu je potrebno
vreme (=L /fc i verovatnoéa da se na tom putu ne raspadne iznosi:
W(L) = e—ll‘r - e-—LIBcT - e—L/Lrasp
gde je put na kome je najverovatnije da e se mion raspasti (vdecay length«) jednak
Bero _Pevy By (uz Ey= m, c? )

Vi—-g2 m,c? y1-—p?
Dakle, da raspad ne bi uticao na apsorpciju miona polrebno je da bude ispunjen
uslov:

Lmsp=pcr=

Liasp. > L

Put L odreduje se jonizacionim gubicima: L=Ry/p gde je Ry domet miona u sredini
jedini¢ne gustine a p gustina date sredine. Tako dobijamo uslove:

2
R/ <1 ti. o> Rymy ¢
Ber Ey/my E,fer,

Ako je Pesxe, t. E,>m, 2, tada je E,/Ry=gubitak energije po jed. puta =2 MeV/
[gfem2, ©u=2,15x10~%s a m,c2==105,6 MeV. Kona&no za traZeni uslov dobijamo:

p>10-3 gfem3

5to je uslov da raspad miona ne utide bitno na apsorpciju pri prolaskn kroz sre-
dinu gustine p. Sva teéna i dvrsta tela zadovoljavaju ovaj uslov ali gasovi pod nor-
malnim uslovima, konkretno vazduh, ne!

iRKl9I Broj miona koji se raspadnu u intervalu vremena od 0 do 7 jednak je:

N;zNo—N=No (l———e”’/‘)
Imamo dakle:
— 2T
Ny, 1—e7®t 200 0,645
N, l—e-S< 310
odakle smenom e~?/*=x dobijamo

v=2,15 us
RK20] Sa slike se nalazi veza:

x=rcos Asin ¢
y==rcos A cos @

z==r gin A
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a odavde dx, dy i dz i, uz malo raduna, kvadrat elementarnog pomeranja
(dI)2=(dx)2+(dy)*+(dz)>=
=(dr)2+r2 (dN)2-+r2 cos2 A (d p)2=

=dl - dl odakle konagno dobijamo:

;17=dr ;;-}-r dl:,\—}-r cosado ;;

"PotraZimo, zatim, oblik operatora nabla u geomagnetskim koordinatama (V).

Uradimo ovo preko gradijenta skalarne funkcije. Totatini diferencijal funkcije

U je
dU=9—r~jdr+a—L-fd)\+aU
or oA 9

——dtp=VgU-z}-l,=A,dr+A,‘rdl+Aq,rcos Ado
¢
gde smo gradijent oznalili kao V U=4, :’: + A,\Z’;\ + AQ,ZP
Uporedivanjem odavde nalazimo:
o~ 1 90—~ 1 0
+ — e
r oA rcos ¢

Sada moZemo naéi konkretan oblik vektor-potencijala:

A- ";XV'L= ”‘Fj;XV,,-}-= —p.(sin A &, +cos Aey) x (_.L—e:): pcosA o
r r 2 2

Zatim nalazimo vektor magnetnog polja (u vakuumu); Zamenom u izraz za rot
u sfernim koordinatama A==m/2—:

- - - 1
H=V,xAd=rotd=
rCcosi

/] - 1 0 -
— (cos A Ay) e, ———(rd,) en=
07\( w) r r 0r( cp) A

® — N —
= (cos A ey —2sinAe,).
»

Vidimo da polje opada sa kubom rastojanja, dakle, veoma brzo. Na ekvatoru (A=0)

ovo polje ima vrednost H,2<0,3 gauss, leZi u meridijanskoj ravni tangencijalno na
meridijanski krug (magnetni) a usmereno je prema severu. Isto tako lako nalazimo
da na polovima (A= 4m/2) ono iznosi Hp=<0,6 gaussa (duplo jae no na ekvatoru)
i da je normalno na povriinu Zemlje.

Vektor brzine destice u geomagnetnim koordinatama nalazimo odmah iz izraza

za 47?

- .

—di=re,+rh eytreosipe,
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Sada lako nalazimo lagranZijan u ovim koordinatama:

P = - MY _[32+£_e_pl59i_>icosé
r

c

Vidimo da je ovo nezavisno od ¢ pa iz Lagrange-ove jednadine kretanja

A7 07
dt 0 09
- . 0.7 .. . .
zakljudujemo da je p, = Y zaista konstanta kretanja. Nadimo vrednost kompo-
S P ‘
nente p,:
— 2
pw=2°_‘?in—Mc£.ch—v2.9_Y_+Z_e <£s__)\
2 av do ¢ r

v ov Ze cos*A

=ML 2y
Vi op c' »
uz v=(r2-r2 A2-+r2cos? A g2z ovo je dalje

po=M v r’cos’)\té+z_'e cos® A
¢ y1-p2 v c r

My

a kako je p=-
=

to je konacno:

r2cos?\ - Ze cos?A
Pe=p [~——— Pt—p——
v pe r

b___&=rzcosz)\ - +_Z_e cos? A

P v pe

= const.

. . —>
3to je traZeni izraz za ovu konstantu kretanja. Ako sada uvedemo ugao y= <X (v, eg)tj.

v-€, Frcosi
COS'Y=-—1= “’—_—__.._-(p
v v v
imac¢emo konacno:
Ze cos?)
b=22 = rcos cos Y+ — p —— =const [cm].
D pc r

§to i predstavlja Stormerovu teoremu. Veli¢ina b odigledno ima dimenzije duZine.
Ova teorema, malo modifikovana (videti sledeci zadatak) glavno je orude u ispi-
tivanju ponaanja kosmigkih zraenja u okolini Zemlje. Prvi &lan u ovom izrazu
naziva se kinematiCkim a drugi magnetnim.
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Znalenje veliine b vidi se jasno ako posmatramo kretanje Sestice u ekvatorijalnoj
ravni (A==0) dok je na tako velikom rastojanju r da je magnetni &lan u Stérmerovoj
teoremi zanemarljiv. Iz teoreme je tada

bxorcosy

tj. b je »parametar sudara« Cestice sa Zemljom Eto se vidi i na slici

e%% Y

RK20

IRKZII Velidina 9% ima dimenzije energija/naelektrisanje ili gauss X cm a mag-
netni moment @, erg/gauss, tako da izraz (u/M)!/2 ima dimenzije duZine. Sva
rastojanja, i r i b, biée, dakle, u ovim jedinicama bez dimenzija. Konkretno, Stor-
merova teorema sada glasi:

2 2
b=rcosAcosy +5;;c_cosr A /: _p‘? => B=Rcos)\cosy+c°;)‘=const

gde je

rastojanje u St (velikim slovima oznadavamo velidine izraZene u St). Znak - ili —
odgovara pozitivnim odnosno negativnim &esticama.

lRK22| Izrazimo cos y iz Stérmerove teoreme:

B:FcosZA
cosv e R B cos7\_:lzl
Y= "Rcosn  Rcosh = R

3to daje traZeni uslov za granicu izmedu dozvoljenih i zabranjenih oblasti. ReSimo
ovu jednadinu po R:
e ako je z2>0, 8= F1, a ako je z<0 8= &1,
RE BB +48cos’ ) gde gornji znaci odgovaraju cos y = + 1 a donji
4 2cosA cosy=—1.

Poito posmatramo samo pozitivne Sestice (primarni zraci su uglavnom protoni,
alfa ili laka jezgra) konacno:

R3'°“=B + VB F dcos’A
12 4 2cos i
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Prostim tra¥enjem vrednosti R8™* menjajuci A u koracima po, recimo, 10°, dobijamo *

u polarnom R, A dijagramu, za dato B, granice izmedu zabranjenih i dozvoljenih
oblasti. Sa potrebnim definicijama i oznakama ove su prikazane na slici RK22.1.

RK224

Zbog viSeznalnosti funkeije treba paziti da se ne propusti neko od refenja. Analizi-
rajmo sada slufajeve kretanja pozitivnih Cestica u ekvatorijalnoj ravni (A=0) za
vrednosti B=0 i B=2,05. Za A=0 i Z>0 Stérmerov integral poprima prost oblik:

1
Rcosy+—=28
i R

U §h£éaju da je B=0, »sudar« je centralni, i magnetno polje Zemlje skreée Cesticu
na istok jer u perihelu (najbliZoj tadki centru Zemlje, na slici RK22.2 to je tadka 4)
ona dodiruje zabranjenu oblast na granici u kojoj je cos y=-—1. Gornja jedna&ina
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nam potvrduje da je za ovu tadku R=1 §to se slaZe sa sl. RK22.1b. Ako je energija
&estice tolika da je za nju R@r——Ré; (videti i sl. RK22.1b) tada destica ni ne moZe
da dostigne povriinu Zemlie; .

(Isto je i za negativne &estice ako B promeni znak i rafirane oblasti zamene mesta)
Vidimo, dakle, dve vrste dozvoljenih oblasti; I'i II,’i to samo za vrednosti B2
Kosmidka estica ne moZe da prodre u oblast II; u nju moZe da dospe samo &estica
koja je na neki nagin tamo ubagena sa Zemlje (recimo visinska nuklearna eksplozija);
Zestica Ge opisati celu trajektoriju prikazanu na sl. RK22.2. Ako destica pak »vidi«
Zemlju radijusa RZB (ima znadi veéu energiju jer je Rg :ol/;) tada ée trajektorija
preseéi povisinu Zemlje u tadki C; u drugoj tacki preseka Cestica nije observabilna.
Ovaj se efekat naziva »efektom senke«. (Upadni ugao Zestice na povriinu Zemlje
oigledno je funkcija njene energije i on se lako nalazi).

RI22.2

Sa slike RK22.1 vidimo da za sludaj B=2,05 postoje dve zabranjene (i dve dozvo-
ljene) oblasti §rafirane i na sl. RK22.3 u ekvatorijalnoj ravni. Cestica koja iz besko-
naénosti dolazi sa ovolikim parametrom sudara mora da ostane u spoljadnjoj doz-

RK22.3

voljenoj oblasti. Na granici ove oblasti je, medutim, cosy=1 pa écsti(_:a squée
na zapad dodirujuéi zabranjenu oblast u tadki D (perihel). Ako je energija Cestice




294 ELEMENTARNE CESTICE I KOSMICKI ZRACI

tolika da je za nju 112®=R€B tada ¢e ona udariti u povriinu Zemlje u- tacki E. Ako
joj je, vak, Rg=Rg _('lgoji tande leZi u dozvoljenoj oblasti, ali ovaj put unutrag-
njoj) destica nece dosti¢i povr§inu Zemlje veé Ce opisati celu prikazanu trajektoriju.

IRK23[ Ako je, dakle, Rgy <1 tada prvo moramo da nademo B da bismo doneli
definitivan zakljuak o opservabilnosti &estice. Ako je na§ izbor za y dao B<2
»ieljusti« zabranjene oblasti neée se zatvoriti (kao na sl. RK22.1c gde postoji samo
jedna dozyoljena oblast) i Cestica Ce ipak biti opservabilna. Ako je, pak, ¥ suvife
-malo. dobiéemo, ispod neke graniéne vrednosti za v, da je B>2 i, kako je Rg <1,
gestica nece biti opservabilna. Potreban uslov opservabilnosti je dakle da bude:
B<2 za pozitivne i B>—2 za negativne destice, tj., da je:

-2 cos A
CoOs Y > ————+—
Rgcosh "Ry

2 _cosA
Rgcosh Ry

c0s y< @Z>0) (z<0)

Posto je, za 0<y<{m, cosy opadajuca funkcija vidimo da je minimalni ugao koji

brzina sme da zaklapa sa pravcem zapada da bi pozitivna Cestica bila opservabilna

(maksimalni za negativne Cestice) jednak:

gran 2 cos A

€OS Yz>0 = e pop =2, 08}
Rycosh  Ryp

cos Y25 =
<0 = Rg cos A R%

Ovaj uslqv definife za &esticu date energije (impulsa) i dato mesto na Zemlji (dato A)
tgquvam konus opservabilnih trajektorija. Nadimo kako izgleda ovaj snop opserva-
bilnih trajektorija za dati sludaj.

Iz K22 imamo da je:

Rgy=0,13 \/Ec—l(—(;—v):o,zss St (<1

pa zamenom u gornju jednadinu dobijamo v%°§ ~ 145°. Ova je situacija prikazana

na sl. RK23 gde je prikazan konus opservabilnih trajektorija kao i dve trajektorije
za primer. Trajektorija v}, Cestica koja dolazi sa zapada, biCe opservabilna, a trajek-

torija vy, éevs.tif:a koja dqlazi sa istoka, neée dovesti proton ovog impulsa na datu
geoggafsku girinu. Jako je, dakle, distribucija protona i ovog impulsa (kao i svih
“ostahh) izotropna u prostoru, na Zemlji ée se opaziti izvesna asimetrija; intenzitet

A, neobservebifna

vy
grar observabitne

RK23

: p,->o>6OZ{———
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zratenja sa zapada prevazilazi intenzitet zralenja sa istoka. To je tzv. pojava zapad-
-no-istodne asimetrije, jedne od najizrazitijih pojava u vezi sa kosmi¢kim zracima u
blizini Zemlje, koju smo, evo, uspe¥no objasnili primenom Stérmerove teoreme.

iRK24I Iz relacije Rgy=0,13 V pc(GeV)/1 Z | nalazimo da je:
pe (GeV)=<60 Z Ry
pa uslove date u zadatku odmah moZemo pisati kao:

1 —V1cos vy cos’ )\}2 (Gé ) 1 — Y 1—cos (m—) co—sv")“\}2

€OS Y COS A 4 cos (7t — ) cos A

Pr<o> —-602{

Ovo su dakle uslovi koje impuls &estice mora da zadovolji da bi Zestica dostigla
povriinu Zemlje na Sirini A ako u odnosu na pravac zapada trajektorija &ini ugao v.
U specijalnom sludaju kretanja u meridijanskoj ravni (cos y=0) ovo se pojednostav-
ljuje:
Za male vrednosti cosy bice

{1 - (1 —cos¥y cos* )P —i cos? y cosé A
tj.

p>151Z | cost A (GeV/c)

Nadimo sada graniéne vrednosti impulsa po ovim izrazima za Eestice koje dolaze sa

zapada (cos y=—1), iz zenita (cos y=0) i sa istoka (cos y=1) za tatke na geo-
magnetnim Sirinama A==0° (ekvator), 30°, 45, 607 i 90" (na magnetnim polovima).

Cestica dolazi iz pravea Graniéni impuls (GeV/c)

"TZAPADA 10 6.4 3,1 0o ] o T
ZENITA 15 8,5 3,7 0,93 0
ISTOKA " 60 13,4 4,6 10 0

Geomagnetna §irina % | 0% 30° 45° 60° 90"

Ovim veé¢ u potpunosti moZemo da objasnimo »efekt §irine«; na polovima je gra-
nidni impuls jednak nuli, svaka estica dostife povrsinu Zemlje. Na ekvatoru, pak,
ova je granica znatno vifa i, makakav bio spektar primarnog zralenja, u delu sa
cnergijama do ~60 GeV primetice se razlika u intenzitetu zrafenja na polovima
i na ekvatoru. Posmatrajuéi totalne intenzitete cfekat je na nivou mora relativno
mali, reda procenta.

Posmatramo li sada uslove opservabilnosti Sestice za cos v iz preslog zadatka vidimo
da ovi poprimaju identiénu formu ako sc u uslovu za negativne Cestice y zameni
sa w—r (cos (7—7)==-~cos ¥). Znati da konus opservabilnih trajektorija za negativne
&estice izgleda potpuno isto kao onaj za pozitivne (sl. RK23) samo §to je zapad
zamenjen istokom. Ako, dakle, merimo vedi intenzitet primarnog zralenja iz pravca
zapada tada je ono sastavlieno preteZno od pozitivnih €estica a ako je obratno onda
su glavna komponenta negativne Eestice. Ovo prvo je, kao 3to je ve¢ refeno, realna
situaciju,
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Tako smo, kona&no, prostom primenom StSrmerove teoreme uspeli da objasnimo
dva najizrazitija efekta u vezi sa kosmickim zratenjem u blizini povriine Zemlje
— efekt ¥irine i pojavu zapadno-istoéne asimetrije; dve pojave koje lokalno narufa-
vaju verovatnu izotropiju kosmickog zraéenja u velikim oblastima svemira. Poka-
zalo se da i u veéim razmerama, recimo galaktikim, magnetna polja imaju bitnu
ulogu u formiranju prostornog rasporeda materije i da su odgovorna za mnoge
astrofiziGke pojave, od kojih je moZda najvaZnija ba§ akceleracija naelektrisanih
Jestica kosmidkog zradenja do ovako visokih energija koje opserviramo.

]RK25 ' U ovakvoj situaciji energija dodata sistemu ide samo na povecanje unu-

tra¥nje energije sistema, U(p dV=0) pa konstantnost

oU

Cym
v oT V=sconst.

znaéi da se sa porastom temperature povecava kinetiCka energija Cestica sistema.
Porast C,, sa temperaturom, pak, znadi da se dodata energija koristi i u druge svrhe
— za povetanje broja &estica (disocijacija, jonizacija i kona&no kreacija novih -
estica kao najefikasniji nadin za gubitak, odnosno transformaciju, energije u masu).
Promena C, sa (5/2) R na 3 R uzrokovana je disocijacijom 1 mola molekula sa
po S stepeni slobode u dva mola atomskog gasa sa po 3 stepena slobode po atomu
(poSto na stepen slobode po molu dolazi (1/2) R). Jonizacija dalje udvostrudava
broj destica i Cp, postaje jednako 6 R. Procesi koji na ovaj nain povecavaju broj
destica, dakle, sluZe kao termostati koji sprecavaju poveéanje temperature. Ako.
grubo uzmemo da se svaki od ovih procesa pocinje da odvija kada temperatura po-
stane jednaka

r-Z
k

gde je E energija praga karakteristina za dati proces koji povecava broj Zestica,
odnosno ako zanemarimé “Maxwell-Boltzmannovsku distribuciju po energijama
i gledamo samo srednje vrednosti (videti zadatak E33), tada u procesima tipa

p+p—>ptntwt i

p+p —> ptp+=°
kreacija piona pofinje na temperaturi reda

m.

7 C°
T:———k——: 1,5 x 1012 K.

Tako zakljudujemo da se srednja kineti¢ka energija ne moZe diéi iznad m.c2 =
=~ 135 MeV, tj. temperatura iznad gornje vrednosti, i da dalje dodavana energija
biva transformisana u masu novih &estica. To je konalni termostat u kome se na
ovoj maksimalnoj temperaturi u skladu sa boltzmanovskom ekviparticijom energije
(i mase) nalaze zastupljene sve moguce elementarne &estice (eksponencijalni pad
obilnosti destica teZih masa). Novo dodavanje energije samo dovodi do porasta
njihovog broja — do kreacije celog novog univerzuma!
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Redni broj Z — Simbol — (opseg A izotopa datog elementa) — A najobilnijeg stabilnog izotopa

DODATAK

TABLICA

AV-THN-- BN B AT T I S )

H(1—3)1
He(3—74
Li(6—9)7
Be(7—11)9
B(8—13)11
C(10—16)12
N(i2—17)14
O(14—20)16
F(17—21)19
Ne(17-—24)20
Na(20—26)23
Mg(22—28)24
Al(24—30)27
Si(26—32)28

" P(28—34)31

S(30—38)32
Ci(32—40)35
Ar(35—42)40
K(Q37—47)39

Ca(38—49)40 .

Sc(d40—50)45
Ti(43—51)48
V(45—54)51
Cr(46—56)52
Mn(50—58)55
Fe(52—61)56
Co(54—64)59
Ni(56—66)58
Cu(58—68)63
Zn(60—72)64
Ga(63—76)69
Ge(65—T8)74
As(68—85)75
Se(70—85)80

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Br(74—90)79
Kr(74—95)84
Rb(79—95)85
Sr(80—95)88
Y(82—96)89
Zr(85—99)90
Nb(89—101)23
Mo(90-105)98
Tc(92—105)nema
Ru(93—108)102
Rh(96—110)103
Pd(98—115)106
Ag(102—117107
Cd(103—119114
In(106—124)115
Sn(108—132)120
Sb(112—135)121
Te(114—135)130
1(117—139)127
Xe(121—144)132
Cs(123—144)133
Ba(125—144)138
La(124—144)139
Ce(131—148)140
Pr(134-—-147)141
Nd(138—151)142
Pm(141—154)nema
Sm(141—157)152
Eu(144—160)153
Gd(145—162)158
Tb(147—164)159
Dy(149—167)164
Ho(151—170)165
Er(152—172)166
Tm(153-176)169
Yb(154—177)174

7
72
73
74

75.

76
77
78

79

80
81
82
83

84

85
86
87
88
89
9%
91
92
93
94
95

96"

97
98
99

" 100

101
102
103
104

Lu(155—180)175
HIf(157—183)180
Ta(172—186)181
W(175—189)184
Re(177—191)187
Os(181—195)192
Ir(182—198)193
Pt(184—201)195
Au(186—203)197
Hg(187—206)202
TI(191—210)205
Pb(194—214)208
Bi(196—215)209
Po(192—218)nema
At(201—219)nema
Rn(204—224)nema
Fr(204—224)nema
Ra(213—230)nema
Ac(221—231)nema
Th(223—235)nema
Pa(225—237T)nema
U(227—240)nema
Np(231—241)nema
Pu(232—246)nema
Am(237-—246)nema
Cm(238-—250)nema
Bk(234—250)nema

. Cf(244—254)nema

Es(245--256)nema
Fm(248—257)nema
Md(255—256)nema

“No(254—256)nema

Lw(257) rema
Ku(260) nema

Neke atomske mase: (u ajm)

e 0,0005486

n 1,008665
P 1,007276
1H 1,007825
2H 2,014102
SH 3,016050
3He 3,016030
4He 4,002603
Li 7,016004

Semiempirijska formula za energiju veze jezgra je:

DODATAK

7Be

8RBe
12¢
3C
13N
145
1SN
150
2847

7,016929
8,005308

" 12,000000

13,003354
13,005738
14,003074
15,000108
15,003071
27,981907

22

B(Z, A) (MeV) = 14,0 4 — 13,0 43 -0,584 —

— 2
1931227,

A3

33,5 8
A4

+1 za parno 4 i Z

gde je 8=< 0 za neparno A4

—1 za parno A, neparno Z

Semiempirijska formula za masu jezgra je:

Neke potrebne gi

¢ vazduha==1,29x10-3 gem=3 (229 Oz i 78, Ny)

pre=7,8 g cm—3
par=2,7 g cm™3
P4p=10,5 g cm~
pca=8,9 g cm™3

epp,=11,3 g cm~

M (Z, A) ~ Zm, + (A—Z) m,,—‘-!;B(Z, A)
C

EZm,+(A—Z)m"—i2{a,A—a,Am—
[

_QM_'.A}.

“ A

ustine:

3

3

p.4=8,65 g cm™3

72
a,—
A3
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DODATAK 305

MATEMATICKE DOPUNE

o

1 radijan = = 57,3° (57°20)
™
~ 3,44 x 103 lugnih minuta
~2,06% 105 luénih sekundi
1° == ~0,0174 radijana
180°

~2.91x10-4 radijana

1 luéna sekunda ~4,85x 1076 radijana

T 3,14159
72 . 9,87
e 2,72
In= 1,44473
loge 0,43429
In 10 2,30258

Taylorov red funkcije oko tacke a:
S = g
J)=73 o f®(@+R,

K=o
Binomni red: (| x |<a; |y|<l)

(a:&:x)"'=a’"<l j:—ic—) =a" (1 £ p)"

=am { 1xmy+ m—---—~(m:~]—)y2
2
LDy, )
6
Legendreovi polinomi:
Legandreovi polinomi P, (x) su redenja diferencijalne jednadine:
4 (1—x? 4 Pix)|+1(+1) P (x)=0
dx dx
gde je —1<{x<{-+1 a / prirodan ceo broj. Polinomi i njihovi izvodi zadovoljavaju
rekurentne relacije:
(1—x2) Py=—x! Pi+1 P,
(1) Pry=Q2 I+1) x Pr—1 Pr_y.
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Nekoliko prvih polinoma su:
Po (x)=1
P 1 (x):x

3 1
P (%) = e X2 e e
2 (X) 5 5

P,(x)-———z—x3 —‘%x

P4(x)~§8§x4 —-’Zs 2+%

a opsti izrazi su:

1 d'
P, = e (X2 1)
; (x) b7, d'(x )
Pi(D)=1.

Legendreovi polinomi &ine potpun skup ortonormiranih funkeija:
+1
f Pi(x) Pr(x)dx = 2
21+1
~1

Sferne funkcije (harmonici):

S

Sferni harmonici Yim (9, ¢) zadovoljavaju diferencijalnu jednacinu:

P Vi (8, D+ (+1) Yim (9, ¢)=0

gde jcf uglovni deo laplasijana A izraZenog u sfernim koordinatama (r, 9, ¢):

A 2
Fo S fne ) L2
sind 09 09/ sin?§ d¢?

Ove su funkcije ortonormirane:
J¥iae(® @) Yirne (%, 9) Q=81 Spaner.
-Sa. Legendreovim polinomima povezani su izrazom:
I
Y@ @)= {—: e’Mcp] 0r ®)
V2n
gde je, za M>0:

[P, (cos 9)]

OF = (—sin 9™ {(2 L+l (L*M)!}'/z dM

2(L+M)! d (cos HM

orM=(-n™er.
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Eksplicitan oblik nekoliko prvih sfernih harmorika ‘ je:

1 3
Y =3 pm—— = —
* Vam Yo \/4 = oosd
Yigr= \/—'— sind e ® Yzo=\/"“45" (——; cos‘%—%)

Yop1=F gism{)cos&ed:lw Yziz~*—\/—“ sin? $ex2ie,

Operatori teorije polia u sfernim koordinatama:

— Gradijent:
grad U = -[—]%,+~]-~a_(_]—' 1 ‘_)EZ
29 rsind d¢
— Divergencija:
divAd = L2 (r*A,) +- 1 9 (sin § Ag) + ‘l 04,
ror rsind 0% rsind Od¢
— Rotor:
rot A= ———]——- e (smq‘}Am)—f)_C!& e,
rsind | 09 o9
1 1 04,
+ - —L——(rd;) le
r [sm%) op ( @)] ®
1[0 04,
+_.. r
rLor 0%
— Laplasijan:
2 2
AU=9.£/.+_2. d_U ! é_[_]_q. l i(sina‘l(_j)
or2  r or r%sin2% 0¢? r?sind 0% 09

i, u sferno simetricnom polju U(7)=U (r):
1

AU o ru
= e —— (rU).
r oor? )
Sferne Besselove i Neumannove funkcije:

Sferne Besselove i Neumannove funkcije j, (p) i # (p) predstavljaju refenja diferen-
cijalne jednadine oblika:

) 241() a+n
dp? +9 dp +[ p* ]f() o
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Eksplicitni oblik ovih funkcija je:

, sin cos
Jo@="22 )= —22L
P
sinp cos cos sin
Ji(@= P e n (p)= “‘““ig“““f*
P P

31y 3
i @)= (_____) sin p ——cosp.
P e 4

3 1 3 .
n, (p) = —(—;—-—-) cos p—-—sinp.
Poe p?
Asimptotsko pona§anje im je:
of
PR W M—
e — Y

@I1-nit

m (p) —> —

p—»O- [

o) — icos[p~i</+1)w]
ore 2

n; (p) ;—_—: —;—sin [p—u;—(l-i— l)-n:].

Clebsch-Gordanovi koeficijenti:

Clebsh-Gordanovi koeficijenti {jjjof3 | mymams) (koeficijenti »vektorskog sabi-
ranja«) definisani su izrazom:

Y IM)= Z {jij2J | mymy MHD (szn)x(szz)

my my

koji opisuje prelaz od svojstvenih funkeija @i ¥ operatora momenta impulsa 7%

iJie jz i _]u na svojstvene funkcije { operatora zbirnog (rezultujuéeg) momenta
impulsa J2 i Jz:
=B+ D4+J Te=jietiss itd. ..
CG koeficijent razligit je od nule ako i samo ako su ispunjeni uslovi:
M=mi+m; i |h—hI|<I<ihi+a, (&)
CG koeficijenti su realni i zadovoljavaju sledeée relacije ortogonalnosti:

mE,;,. (i Jads|momymyy Gy dy gl mymymyy =8, 8, m,
3 12

J§‘<J‘1 Ja Jslmymymyy (g Jy 3| mymsmyy =8y m, 8y m,
31y
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Sa Wignerovim 3-j simbolima povezani su izrazom:

i J j:)

o do J |y my gy = 2]+ 12 (- l)h~h+ms(
. my m, —ny

Simetrije 3- simbola (preko kojih se lako nalaze simetrije CG koeficijenata) su:

1) parna permutacija kolona — nema promene
2) neparne permutacije kolona — faktor (—I)itizth
- 3) promena znaka svih m-ova — faktor (—1)/r+iatls

Jedna od mnogih ekvivalentnih notacija je:

{ijajz | mymamsd={ jymy jamy | jams).

Wigner-Eckartova teorema:

Matriéni element g-te komponente (od ukupno 2 k+1) ireducibilnog tenzorskog
operatora ranga k, po Wigner~Eckartovoj teoremi, svodi se na:

<TJM( Ty o' ' M «72—-1—)»- T || T || 5 Iy x " M kg IM
= J ko
- (= M T || T || T .
(= Y™™ T || Tl = >(—N’qM’)

L J ] Tk fl v’ J je takozvani redukovani matriéni element koji ne zavisi od mag-

netnih kvantnih brOJeva Celokupna »geometn ja« sadrZana je u odgovarajuéem CG
koeficijentu i uslov njegove egzistencije (&) daje celokupna izborna pravila za mo-

ment impulsa. (Tipini tenzorski operatori su operatori elektromagnetnih momenata

51,, ranga L, sa 2 L+1 komponenti O ).

Tablice za nalaZenje vrednosti CG koeficijenata:

1. {120 mpmy my)
A my=1J2 g —1/2
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2. iy Uiy my my my)
Js my =1 m,=0 my=—1
s | s | Ve
i f A s h+DQ2j+2)

| oy fUEm U =mE D
‘ 2,G,FD

— s [Gi—m) G+ my+ 1)
V25, G+ 1) 2/, 0, +1)

S h—my) G+ my)

. Gi—rmy Uy i)
At \/ BTN YA

2/i @i+ 1)

\/(h +my) Gy +my+ 1)
2/, 24,+1)

< 312 /':]”'n my my)

&~

m, =32

my,=1/2

\/(/'u +my—1/2) (s +my +1/2) (7, + my + 3[2)
Ch+1D) 2/ +2)(2,+3)

\/3 Gy +my+1/2) Gy + my + 3/2) (J—~my + 3/2)
@h+1)(24,+2) 2), +3)

~JNh+m4uam+m+umm—m+ya

24,2/, +1)(2),+3)

—(,— Jitmviz
U3 3 b e

\/3(-’1'“";—1/2) (y—my+1/2) (j,—m,; +3/2)
Qi—1D 24+ 1) 24 +2)™

. _ Tt 12
Ui+ 3m, ”2’\/(21',~1'>(2if+1>(2j.+2)

A=302) R—12 0+ 42 |4, +3)2

_ NG —my—1]2) (j,—m, + 1]2) (j,—m, + 3[2)

13 (i + my—112) (j,—my—1[2) (J,—m, + 1]2)

2/'1 (211"1) (2j| +1)

2/y 2i—1) 24, +1)

>

ny= —1/2

ny=—3/2

\/3 G+ my 7 32) (y—ni, ¥ 1D (1, 5 313)

(27, + 1) (2j,+2) (24, +3)

\/(L—mJ—I/Z) (G, —mt, + 1]2) (J,—m, + 312)
@/, +1)(2/,+2) (2),+3)

Ji—my+1/2

+3m, -
Ut 3my +3/2) \/2/. LT DCLTD

\/3 Uyt my + 3/2) (fy—my—1(2) (j,—nt, + 1/2)
2/, 2L+ @5 +3)

(o —3 e Ji+my+1/2
Uim3Sm=i/2) \/<2i.—1')<2f. D@D

\/3 U+ my+1/2) Gy +m,+3)2) (j,~my~—1/2)
Q5= @/ +1) @24 +2)

_\/Z(jl+m1~l/2)(jl+'n3+ 1/2) (Jy—my—1/2)

J=312] /=172 iy +1/2]j,+3/2

2/ @h—1) 2/, + 1

\/ G+ my—1/2) (J, -+ my + 1/2) (G, +my 4+ 3/2)

L@

2/ @4—1) (24, +1D)
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