
Računske vježbe 3

Programabilni uredaji i objektno orijentisano programiranje

1. Realizovati klasu Point koja sadrži:

• koordinate tačke (dva realna broja);

• odgovarajuće konstruktore;

• funkciju članicu za računanje rastojanja izmedu dvije tačke.

Nakon toga napraviti klasu Circle koja sadrži:

• tačku koja predstavlja centar kruga i tačku sa ivice kruga (objekti tipa klase tačka);

• odgovarajuće konstruktore;

• funkcije članice za izračunavanje obima i površine kruga.

Ovaj zadatak može se riješiti na dva načina. Prvi način je da u klasi Circle koja ima dva polja tipa
Point prilikom inicijalizacije ipak koristimo realne brojeve pomoću kojih ćemo inicijalizovati objekte tipa
Point pa pomoću njih inicijalizovati odgovarajuća polja, a drugi način bi bio da prilikom inicijalizacije
polja direktno prosljedujemo objekte tipa Point. Obratite pažnju da smo unutar klase Circle definisali
statičko polje u kojem čuvamo vrijednost π. To smo uradili pomoću:

static constexpr double pi = 3.14;

i u ovom slučaju ključna riječ constexpr nam omogućava da statičko polje inicijalizujemo unutar tijela
klase. Imajte na umu da se u memoriji čuva samo jedna kopija ove vrijednosti koju dijele svi objekti
ovog tipa. Samim tim, ona ne pripada posebno jednom objektu pa joj, van oblasti definisanosti klase,
pristupamo sa:

Circle ::pi

mada joj možemo pristupiti i direktno preko objekta. Prilikom definicije konstruktora u slučaju klase
Circle jedno polje smo inicijalizovali u inicijalizatoru dok smo drugom dodijelili vrijednost u tijelu klase
što je dozvoljeno mada se upotrebi inicijalizatora obično treba dati prvenstvo jer se izvršava prije tijela
konstruktora i jer direktno inicijalizuje polje.

 #include <iostream >

 #include <cmath >



 using namespace std;



 class Point

 {

 private:

 double x, y;

 public:

1



 Point () : x(0), y(0) {} // inicijalizujemo koordinate na (0, 0)

 Point(double , double);

 double distance(Point) const;

 };



 Point ::Point(double x, double y) : x(x), y(y) {}



 double Point:: distance(Point other) const

 {

 return sqrt(pow(x - other.x, 2) + pow(y - other.y, 2));

 }



 class Circle

 {

 private:

 Point center;

 Point onTheCircle;

 public:

 static constexpr double pi = 3.14;

 Circle () {} // pozvace podrazumijevane konstruktore za center i onTheCircle (0, 0)

 //drugi nacin: Circle (): center(Point (0,0)), onTheCircle(Point (0,0)) {};

 Circle(double , double , double , double);

 Circle(Point , Point);

 double area();

 double perimeter ();

 };



 Circle :: Circle(double x1 , double y1 , double x2 , double y2) : center(Point(x1 , y1))

 {

 onTheCircle = Point(x2, y2); // postavljanje vrijednosti , eksplicitan poziv

konstruktora

 }

 //nije dobro mijesati inicijalizaciju i dodjelu vrijednosti , radi se o demonstraciji!

 Circle :: Circle(Point p1 , Point p2) : center(p1)

 {

 onTheCircle = p2;

 }



 double Circle ::area()

 {

 double r;

 r = center.distance(onTheCircle);

 return pow(r, 2) * pi;

 }



 double Circle :: perimeter ()

 {

 double r;

 r = center.distance(onTheCircle);

 return 2 * r * pi;

 }



 int main()

 {

 double x1 , y1 , x2 , y2;

 cout << "Unesite koordinate centra kruga i tacke sa kruga" << endl;

 cin >> x1 >> y1 >> x2 >> y2;

 Circle circle(x1 , y1 , x2 , y2);

 //Drugi nacin: Circle center(Point(x1 ,y1), Point(x2 ,y2));

2



 cout << "Povrsina kruga je: " << circle.area() << endl;

 cout << "Obim kruga je: " << circle.perimeter () << endl;

 cout << "Pi je: " << Circle ::pi << endl;

 }

2. Realizovati klasu Student koja ima četiri podatka člana i to:

• godinu upisa (cijeli broj),

• redni broj studenta (pokazivač na cijeli broj),

• ime studenta (pokazivač na niz karaktera),

• javni statički podatak koji će služiti za brojanje ukupnog broja studenata (objekata date klase).

Klasa posjeduje konstruktor, destruktor i konstruktor kopije, kao i funkcije članice za pristup podacima
članovima radi očitavanja i izmjene. Potrebno je realizovati i funkciju koja od dva studenta vraća ime onog
koji je stariji (prije upisao studije).

 #include <iostream >

 #include <cstring >



 using namespace std;



 class Student

 {

 private:

 int year;

 int *number;

 char *name;

 public:

 Student ()

 {

 number = 0;

 name = 0;

 counter ++;

 }

 Student(int , int , char *);

 Student(const Student &);

 ~Student ();



 int getYear () const {return year;}

 int getNumber () const {return *number ;}

 char * getName () const {return name;}



 void setYear(int _year) {year = _year;}

 void setNumber(int _number)

 {

 if (number == 0) number = new int(_number);

 else *number = _number;

 }

 void setName(char *_name)

 {

 delete [] name;

 name = new char[strlen(_name) + 1];

 strcpy(name , _name);

 }

3





 char * older(Student);



 void print();



 static int counter;

 };



 int Student :: counter = 0;



 Student :: Student(int _year , int _number , char *_name) : year(_year)

 {

 number = new int(_number);

 name = new char[strlen(_name) + 1];

 strcpy(name , _name);

 counter ++;

 }

 Student :: Student(const Student &student) : year(student.year)

 {

 number = new int(* student.number);

 name = new char[strlen(student.name) + 1];

 strcpy(name , student.name);

 counter ++;

 }

 Student ::~ Student ()

 {

 delete number;

 number = 0;

 delete [] name;

 name = 0;

 counter --;

 }

 char * Student :: older(Student student)

 {

 if(year <= student.year)

 return name;

 else

 return student.name;

 }



 void Student :: print()

 {

 cout << "Ime studenta je: " << name << ", broj indeksa: " << *number << "/" <<

year << endl;

 }



 int main()

 {

 int year , number;

 char name [20];



 cout << "Unesite podatke za prvog studenta" << endl;

 cin >> year >> number >> name;

 Student student1(year , number , name);

 student1.print ();



 cout << "Unesite podatke za drugog studenta" << endl;

 cin >> year >> number >> name;

 Student student2(year , number , name);

4



 student2.print ();



 Student student3(student2);

 cout << "Sada student 3 ima ime " << student3.getName () << endl;

 cout << "Stariji je student " << student1.older(student2) << endl;

 cout << "Ukupno je kreirano " << Student :: counter << " studenata." << endl;

 }

U slučaju kada klasa ima pokazivač kao podatak član, prilikom destrukcije objekta doći će do dealokacije
podatka člana, ali ne i onoga na šta on pokazuje. Mi smo preko tog pokazivača recimo mogli da zauzmemo
memoriju za cijeli broj ili niz cijelih brojeva koja neće biti oslobodena. Zbog toga je, kada god radimo
sa podacima članovima koji su pokazivači, neophodno da realizujemo destruktor kako bismo oslobodili
memoriju. Takode, neophodan nam je i podrazumijevani konstruktor koji postavlja pokazivač da ni na šta
ne pokazuje, odnosno da pokazuje na 0. Još jednom naglašavamo, programer brine o dinamički zauzetoj
memoriji, a OS o statički zauzetoj memoriji. Drugim riječima, upotrebom naredbe delete mi oslobadamo
onu memoriju na koju pokazuje pokazivač, dok memoriju za sam pokazivač implicitno oslobada destruktor
bez naše kontrole. U kodu:

class X

{

private:

int *p;

public:

X()

{

p = 0; // ni na sta ne pokazuje

}

~X() // sa ~ naglasavamo da se radi o destruktoru

{

delete p; // brisemo ono na sta pokazivac pokazuje

p = 0; // ni na sta ne pokazuje

}

};

U ovom zadatku neophodno je realizovati i konstruktor kopije. Namjena konstruktora kopije jeste da
novostvoreni objekat inicijalizuje kopijom sadržaja drugog objekta istog tipa. Parametar konstruktora
kopije mora da bude referenca na primjerak istog tipa zato što konstruktor ne može da ima parametar
tipa svoje klase. Kao i za podrazumijevani konstruktor, tako i za konstruktor kopije postoji implicitna
definicija. Ovako definisani konstruktor kopira sva polja izvorǐsnog objekta u novostvoreni objekat. Ukoliko
su neka od polja tipa (drugih) klasa, za njihovo kopiranje pozivaće se kopirajući konstruktori tih klasa.
Ako su neka od polja pokazivači, kopiraće se samo vrijednosti tih pokazivača, a neće se praviti kopije
pokazivanih podobjekata. Ovakva kopija naziva se plitka kopija jer nije nezavisna od originala pa se
obično želi izbjeći jer njome postižemo da polja dva objekta pokazuju na istu memorijsku lokaciju. Kopija
koja objekte čini nezavisnim naziva se duboka kopija. Iz gore navedenog jasno je da implicitno definisani
konstruktor kopije ne može riješiti ovaj problem pa se on mora preklopiti. Uočite kako smo, upravo radi
prevazilaženja ovog problema, koristili funkciju strcpy().
Takode, uočite kako smo u konstruktoru kopije upotrijebili ključnu riječ const. Referenca je drugo ime za
neki memorijski objekat odnosno njegov alijas. Referenca ne može da promijeni objekat na koji se odnosi,
ali se pomoću nje može mijenjati sadržaj referenciranog objekta. Kako se referenca sama po sebi ne može
naknadno mijenjati, konstantna referenca nam garantuje da ono na šta ona referencira postaje konstantno
odnosno read-only. Zašto uopšte koristimo reference? Zato što kada prosljedujemo argument po referenci
ne pravi se kopija toga objekta kao u slučaju prosljedivanja po vrijednosti. Time se u slučaju kompleksnijih
klasa dobija značajna ušteda u vremenu.

5


