Racunske vjezbe 3

Programabilni uredaji i objektno orijentisano programiranje

1. Realizovati klasu Point koja sadrzi:
e koordinate tacke (dva realna broja);
e odgovarajuce konstruktore;
e funkciju clanicu za racunanje rastojanja izmedu dvije tacke.
Nakon toga napraviti klasu Circle koja sadrzi:
e tacku koja predstavlja centar kruga i tacku sa ivice kruga (objekti tipa klase tacka);
e odgovarajuce konstruktore;

e funkcije ¢lanice za izracunavanje obima i povrSine kruga.

Ovaj zadatak moze se rijesiti na dva nacina. Prvi nacin je da u klasi Circle koja ima dva polja tipa
Point prilikom inicijalizacije ipak koristimo realne brojeve pomocu kojih ¢emo inicijalizovati objekte tipa
Point pa pomocu njih inicijalizovati odgovarajuca polja, a drugi nacin bi bio da prilikom inicijalizacije
polja direktno prosljedujemo objekte tipa Point. Obratite paznju da smo unutar klase Circle definisali
staticko polje u kojem ¢uvamo vrijednost 7. To smo uradili pomocu:

static constexpr double pi = 3.14;

i u ovom slucaju kljucna rije¢ constexpr nam omogucéava da staticko polje inicijalizujemo unutar tijela
klase. Imajte na umu da se u memoriji ¢cuva samo jedna kopija ove vrijednosti koju dijele svi objekti
ovog tipa. Samim tim, ona ne pripada posebno jednom objektu pa joj, van oblasti definisanosti klase,
pristupamo sa:

Circle::pi

mada joj mozemo pristupiti i direktno preko objekta. Prilikom definicije konstruktora u slucaju klase
Circle jedno polje smo inicijalizovali u inicijalizatoru dok smo drugom dodijelili vrijednost u tijelu klase
sto je dozvoljeno mada se upotrebi inicijalizatora obi¢no treba dati prvenstvo jer se izvrSava prije tijela
konstruktora i jer direktno inicijalizuje polje.

| #include <iostream>
2 #include <cmath>

1 using namespace std;

6 class Point

7 A{

g private:

9 double x, y;
o public:

Point () : x(0), y(0) {} //inicijalizujemo koordinate na (0, 0)
Point (double, double) ;
double distance(Point) const;

};

; Point::Point (double x, double y) : x(x), y(y) {}

double Point::distance(Point other) const
{

return sqrt(pow(x - other.x, 2) + pow(y - other.y, 2));
}

class Circle
{
private:
Point center;
Point onTheCircle;
public:
static constexpr double pi = 3.14;
Circle() {} //pozvace podrazumijevane konstruktore za center i onTheCircle (0, 0)
//drugi nacin: Circle(): center(Point (0,0)), onTheCircle(Point (0,0)) {};
Circle (double, double, double, double);
Circle (Point, Point);
double area();
double perimeter () ;

5 s

Circle::Circle(double x1, double yl1, double x2, double y2) : center (Point(xl, y1))
{
onTheCircle = Point(x2, y2); // postavljanje vrijednosti, eksplicitan poziv
konstruktora
¥
//nije dobro mijesati inicijalizaciju i dodjelu vrijednosti, radi se o demonstraciji!
Circle::Circle(Point pl, Point p2) : center(pl)

»

{
onTheCircle = p2;
double Circle::area()
{
double r;
r = center.distance(onTheCircle);
return pow(r, 2) * pi;
}
double Circle::perimeter ()
{
double r;
r = center.distance(onTheCircle) ;
return 2 * r * pij;
}

int main ()
{
double x1, y1, x2, y2;
cout << "Unesite koordinate centra kruga i tacke sa kruga" << endl;
cin >> x1 >> y1 >> x2 >> y2;
Circle circle(xl, y1, x2, y2);
//Drugi nacin: Circle center (Point(xl,yl), Point(x2,y2));

cout << "Povrsina kruga je: " << circle.area() << endl;

cout << "QObim kruga je: " << circle.perimeter () << endl;
cout << "Pi je: " << Circle::pi << endl;

2. Realizovati klasu Student koja ima cetiri podatka ¢lana i to:
e godinu upisa (cijeli broj),
e redni broj studenta (pokaziva¢ na cijeli broj),
e ime studenta (pokaziva¢ na niz karaktera),
e javni staticki podatak koji ¢e sluziti za brojanje ukupnog broja studenata (objekata date klase).

Klasa posjeduje konstruktor, destruktor i konstruktor kopije, kao i funkcije ¢lanice za pristup podacima
¢lanovima radi ocitavanja i izmjene. Potrebno je realizovati i funkciju koja od dva studenta vrac¢a ime onog
koji je stariji (prije upisao studije).

#include <iostream>
#include <cstring>

using namespace std;

class Student

{

private:

int year;
int *number;
char *name;

public:

Student ()
{

number = 0;

name = O0;

counter ++;
}
Student (int, int, char *);
Student (const Student &) ;
“Student () ;

int getYear () const {return year;}
int getNumber () const {return #*number;}
char * getName () const {return name;}

void setYear (int _year) {year = _year;}

void setNumber (int _number)

{
if (number == 0) number = new int(_number);
else *number = _number;

}

void setName (char *_name)

{

delete [] name;
name = new char[strlen(_name) + 1];
strcpy (name, _name);

96

char * older (Student) ;
void print ();

static int counter;

7 {

2 }

int main ()

5 {

int year , number;
char name [20];

cout <<

e
int Student::counter = 0;
Student ::Student (int _year, int _number,
{
number = new int (_number) ;
name = new char[strlen(_name) + 1];
strcpy (name, _name);
counter++;
}

; Student ::Student (const Student &student)
number = new int (*student.number) ;
name = new char[strlen(student.name) +
strcpy(name, student .name) ;
counter++;

3 Student :: "~ Student ()

{
delete number;
number = O0;
delete [] name;
name 0;
counter - -—;
}
char * Student::older (Student student)
{
if (year <= student.year)
return name;
else
return student.name;
}
void Student::print ()
{
cout << "Ime studenta je: " << name <<
year << endl;
}

cin>> year >> number >> name;

Student studentl (year,
studentl.print () ;

cout <<

number ,

name) ;

cin >> year >> number >> name;
Student student2(year, number, name);

11;

>

"Unesite podatke za prvog studenta"

"Unesite podatke za drugog studenta"

char *_name)

broj

indeksa:

<< endl;

<< endl;

year (student .year)

year (_year)

<< *xnumber <<

II/II

<<

97

98

99

100

101

102

103

student2.print () ;

Student student3(student?2);

cout << "Sada student 3 ima ime " << student3.getName () << endl;

cout << "Stariji je student " << studentl.older (student2) << endl;

cout << "Ukupno je kreirano " << Student::counter << " studenata." << endl;

}

U slucaju kada klasa ima pokaziva¢ kao podatak ¢lan, prilikom destrukcije objekta doé¢i ¢e do dealokacije
podatka clana, ali ne i onoga na sta on pokazuje. Mi smo preko tog pokazivaca recimo mogli da zauzmemo
memoriju za cijeli broj ili niz cijelih brojeva koja nece biti oslobodena. Zbog toga je, kada god radimo
sa podacima ¢lanovima koji su pokazivaci, neophodno da realizujemo destruktor kako bismo oslobodili
memoriju. Takode, neophodan nam je i podrazumijevani konstruktor koji postavlja pokazivac da ni na sta
ne pokazuje, odnosno da pokazuje na 0. Jos jednom naglasavamo, programer brine o dinamicki zauzetoj
memoriji, a OS o staticki zauzetoj memoriji. Drugim rijeCima, upotrebom naredbe delete mi oslobadamo
onu memoriju na koju pokazuje pokazivac¢, dok memoriju za sam pokaziva¢ implicitno oslobada destruktor
bez nase kontrole. U kodu:

class X
{
private:
int *p;
public:
X0
{
p = 0; // ni na sta ne pokazuje
}
“X() // sa 7 naglasavamo da se radi o destruktoru
{

delete p; // brisemo ono na sta pokazivac pokazuje
p = 0; // ni na sta ne pokazuje

};

U ovom zadatku neophodno je realizovati i konstruktor kopije. Namjena konstruktora kopije jeste da
novostvoreni objekat inicijalizuje kopijom sadrzaja drugog objekta istog tipa. Parametar konstruktora
kopije mora da bude referenca na primjerak istog tipa zato $to konstruktor ne moze da ima parametar
tipa svoje klase. Kao i za podrazumijevani konstruktor, tako i za konstruktor kopije postoji implicitna
definicija. Ovako definisani konstruktor kopira sva polja izvorisnog objekta u novostvoreni objekat. Ukoliko
su neka od polja tipa (drugih) klasa, za njihovo kopiranje pozivaée se kopirajuéi konstruktori tih klasa.
Ako su neka od polja pokazivaci, kopira¢e se samo vrijednosti tih pokazivaca, a nece se praviti kopije
pokazivanih podobjekata. Ovakva kopija naziva se plitka kopija jer nije nezavisna od originala pa se
obi¢no zeli izbjedi jer njome postizemo da polja dva objekta pokazuju na istu memorijsku lokaciju. Kopija
koja objekte ¢ini nezavisnim naziva se duboka kopija. Iz gore navedenog jasno je da implicitno definisani
konstruktor kopije ne moze rijesiti ovaj problem pa se on mora preklopiti. Uocite kako smo, upravo radi
prevazilazenja ovog problema, koristili funkciju strcpy ().

Takode, uocite kako smo u konstruktoru kopije upotrijebili kljuénu rije¢ const. Referenca je drugo ime za
neki memorijski objekat odnosno njegov alijas. Referenca ne moze da promijeni objekat na koji se odnosi,
ali se pomoc¢u nje moze mijenjati sadrzaj referenciranog objekta. Kako se referenca sama po sebi ne moze
naknadno mijenjati, konstantna referenca nam garantuje da ono na Sta ona referencira postaje konstantno
odnosno read-only. Zasto uopste koristimo reference? Zato sto kada prosljedujemo argument po referenci
ne pravi se kopija toga objekta kao u slucaju prosljedivanja po vrijednosti. Time se u slucaju kompleksnijih
klasa dobija znacajna usteda u vremenu.

