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data. Insensibly one begins to twist the facts to suit
theories, instead of theories to suit facts

—Sir Arthur Conan Doyle

CHAPTER

Theoretical Distributions

Science is supposed to explain to us what is actually happening, and indeed
what will happen, in the world. Unfortunately as soon as you try and do
something useful with it, sordid arithmetical numbers start getting in the way
and messing up the basic scientific laws. An unbiased coin may perfectly well
come down heads uppermost 55 times out of 100. A decaying radioactive
source may give 95 counts on a Geiger counter in one minute, and 110 counts
in the next. A 10 volt power supply across a resistor marked 100Q may give
a reading of 103mA on your ammeter. Predictions from basic laws are
modified by statistical distributions, arising from the finite size of the data
sample, the experimental accuracy, and similar causes. This chapter deals
with the basic ideas of distributions, and especially with the three fundamental
statistical distributions: the binomial, the Poisson, and the Gaussian. Only
by understanding the ways the distributions give rise to the data can one go
on to use the particular behaviour of the data to produce general statements
about the processes that produced them in the first place—or, as Holmes
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3.1 GENERAL PROPERTIES OF DISTRIBUTIONS

3.1.1 A Simple Distribution

Suppose you toss four coins. This is a simple example, and I will not
pretend it is of any intrinsic interest; nevertheless we will go through it in
detail as it introduces concepts that will be needed later for real problems.

For each coin the probability of the head landing uppermost is 4, and so
is the probability for the tail. We want to discuss the various possible outcomes
for the four coins, and their probabilities.

1. The four coins could all land head uppermost. The probability of the first
coin giving a head is 4; so are those for the second, third, and fourth. To
find the combined probability of all four giving a head we multiply the
individual probabilities together, so the probability of four heads is (3)*.
Call this P(4); then P(4) = &

2. Suppose the first three coins land head upwards, the fourth tail upwards.
The combined probability for this is again the product of the individual
ones, which gives } for the first three and 4 for the fourth, as the probability
of a tail is also 4, again giving 7. However, if we ask for three heads and
one tail, without specifying which coin gives the tail, there are four choices,
namely HHHT, HHTH, HTHH, and THHH, each with the same
probability of ¥, so the total probability P(3) for three heads and a tail
is: P3)=4x&=1.

3. For two heads and two tails there are six permutations of coins—HHTT,
HTHT, HTTH, TTHH, THTH, and THHT—each of probability i, so
the probability P(2) of getting two heads and two tails is 3.

4. For one head and three tails the probability is the same as one tail and
three heads, so we can write down at once P(1) = P(3) =

5. Likewise, for no heads and four tails, P(0) = P(4) = &

A quick check can be done by making sure that the total probability of
something happening is 1:

3 P(r)=P(O)+ P(1) + P(2) + P(3) + P(4) = ‘_6 _

So if r is the number of heads (r=0,1,2,3,4), we have a collection of
probabilities P(r) = (16,4,8,4, 1s), giving the probability that a toss of four
unbiased coins will give r heads. This is a simple example of a probability
distribution.

3.1.2 The Law of Large Numbers

Having all these numbers, let us try and do something with them. The
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times, there should be one result with four heads, four with three heads and
a tail, etc. Four coins were accordingly tossed sixteen times, and the results
are shown in the following table:

Number of heads r=4 | r=3 r=2 | r=1 r=0
Theory predicts 1 4 6 4 1
Data 2 7 2 4 1

They do not agree. There is certainly a similarity in the pattern, but the
numbers do not match perfectly. Indeed, it would have been surprising if
they had. With such a small number of tosses (only sixteen) statistical
fluctuations are substantial. To give the numbers a chance, the experiment
was repeated with a 160, 1600, and 16000 trials:'

Number of heads r=4 | r=3 r=2 | r=1 r=0
160 tosses

Theory predicts 10 40 60 40 10
Data 10 40 61 38 11
1600 tosses

Theory predicts 100 400 600 400 100
Data 125 403 567 409 96
16000 tosses

Theory predicts 1000 | 4000 | 6000 | 4000 | 1000
Data 1009 | 3946 | 5992 | 4047 | 1006

The agreement becomes better and better as the number of trials increases
and random effects are smoothed out.

The theory predicts a set of probabilities. The observed data frequencies
do not quite agree with them. However, as the size of the data sample N
increases the fluctuations cancel out, and the frequencies tend to the
probabilities as N tends to infinity. This is the law of large numbers.

3.1.3 Expectation Values

If you know the probability distribution for some number r—often, in an
attempt to add excitement to the subject, called the number of ‘successes’—

*Simulated on a computer, of course. You are urged to try some cointossing experiments of
your own, to appreciate the way in which the experimental distributions never quite agree with
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one thing you can easily compute is the average number of ‘successes’ you
would expect. This is called the expectation value of r and is written {r), or
sometimes E(r).' It is given by

ry =Y rP(r). (3.1)

For example, with four coins, as discussed in section 3.1.1, the average

number of heads is given by
1 1 3 1 1
OxT6+l x‘—4+2x§+3xz+4xﬁ—2

which is an obvious result, but shows how the formula works.

Note that {(r) is not necessarily the most probable result, although it is
in this example. For five coins, {r) =2.5.

Any function of r also has its expectation value, defined in the same way:

S =2 f(OP(r). (3.2)

One useful way to think of the expectation value is in terms of gambling;
suppose there is a random process (like a fruit machine) with various possible
outcomes r, each of which has probability P(r), and pays out an amount f(r).
Then the expectation value { f ) is what you would expect, on average, to
win, and would be an exactly fair fee to pay the organiser of the game for
taking part.

There is an obvious parallel between an expectation value and the mean
of a data sample (as described in the previous chapter). The former is a sum
over a theoretical probability distribution and the latter is a (similar) sum
over a real data sample. The law of large numbers ensures that if a data
sample is described by a theoretical distribution, then as N, the size of the
data sample, goes to infinity,

[=. (3.3)
Note that expectation values add
S+g)=Y(f+9Pr) =Y [P+ gPN=<f)+<g)

but they do not multiply. In general, { fg) #<{ f)>{g) unless f and g are
independent.

3.1.4 Probability Density Distributions

Continuous variables need treating slightly differently from discrete
variables. Suppose you are measuring the lengths of a large number of pieces
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of string, randomly distributed between 10cm and 12cm. Somebody asks
you how many are 11cm long. The answer has to be none. There will
presumably be some between 10.5 and 11.5, probably a few between 10.9 and
11.1, maybe a couple between 10.99 and 11.01, but it’s unlikely there will be
any in the narrow range between 10.99999 and 11.00001, and if you insist
that the value has to be exactly 11.00000000000. .. the range is so small that
the probability vanishes.

However, the probability that x will lie within a specified range—like 10.9
to 11.1 cm—is a finite and perfectly sensible thing to talk about, and this is
described by the probability density distribution, P(x), defined by

Probability (result lies between x, and x,) = j P(x)dx

or equivalently

Probability(result lies between x and x + 6x)
ox '

P(x) = limit,,

Probabilities are pure numbers. Probability densities, on the other hand,
have dimensions, the inverse of those of the variable x to which they apply.

For expectation values the same ideas apply as for the earlier probability
functions, except that you get integrals instead of summations:

{x)= ) xP(x)dx (3.4)
(* oo
(= i J(x)P(x)dx. (3.5)

If you have done some quantum mechanics you may have met expressions
like {(x) = jn//*(x)xq//(x) dx. The meaning of the symbol is exactly the same;
it is the expected average value of the result. It is tempting to go further and
equate the quantity y*(x)y(x) = |y(x)|* with the probability density P(x), but
this is wrong, as it does not work for expectation values of quantities (like
momentum) that involve differential operators.

3.2 THE BINOMIAL DISTRIBUTION

The binomial distribution describes processes with a given number of
identical trials, with two possible outcomes. Examples are tossing coins (heads
or tails), quality checks of components (pass or fail), treatment of patients
(kill or cure), and many similar. We call the two outcomes, without prejudice,
‘success’ and ‘failure’, and denote the probability of a success as p, and that
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of failure therefore 1 — p.! This basic process is repeated n times—n is called
the number of trials—and the distribution gives the probability of r successes
(and thus n — r failures) out of these n trials, each of which has an individual

probability of success p.

3.2.1 The Binomial Probability Distribution Formula

The probability of r successes from n trials is a generalisation of the
particular case considered in detail in section 3.1.1. It is made up of two
factors. Firstly, there are 2" possible permutations of success and failure, of
which the number with r successes is the number of ways of selecting r from n:

n!

Cr= riin—r!)’

Secondly, as there are r successes of probability p, and likewise n — r failures
of probability 1 — p, the combined result has a probability obtained by
multiplying all these together, namely p"(1 — p)"~"

Putting these two factors together gives the

Binomial probability distribution The probability of r successes out of n tries,
each of which has probability p of success, is

n!

rn—r) (36)

P(r;p,m)=p (1 —p)"~*

As this probability depends not only on r, the number of successes, but
also on the intrinsic probability p and number of trials n, they are also shown
as arguments of P, separated from r by a semicolon. This is a purely artistic
device to show that usually one considers how P varies with r for a given

n and p.
The ,C, are the binomial coefficients, so the total probability of something

happening is the binomial expansion of [p + (1 — p)]", and is therefore 1, as
it has to be

Z:ZOP'(I —prC=lp+(1-pl=1"=1 3.7

The important properties of the binomial distribution are (proofs, if desired,
are given in section 3.2.2)

the mean number of success is {r)=np (3.8)

'Some people define the probability of a failure as ¢. This makes formulae simpler, at the
price of a new §ymbol and having to remember that q is always equal to 1 — p. Follow your
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Fig. 3.1. Some binomial
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the variance is V(r)=np(1 — p) (3.9)
and thus the standard deviation is o =./np(l —p). (3.10)

Some examples of binomial distributions are shown in Figure 3.1. They
peak around the value np, as expected. As n increases, the peak, in proportion
to the full range of n, becomes progressively narrower, albeit slowly. The
relative width of the peak also depends on p, and (for the same n) peaks with
p close to 0 or 1 are narrower than those with p near 0.5.

Example Detector efficiencies

You are trying to measure the tracks of cosmic ray particles using spark chambers,

which are 959 efficient. You make the sensible decision that at least three points are

needed to define a track. How efficient at detecting tracks would a stack of three

chambers be? Would using four or five chambers give a significant improvement?
The probability of three hits from three chambers is

P(3;0.95,3) =0.95% = 0.857
so this would be 85.79 efficient. For four chambers the probability of three or four
hits is
P(3;0.95,4) + P(4,0.95,4)=0.171 + 0.815 = 98.6%.
For five chambers,
P(3;0.95,5) + P(4;0.95, 5) + P(5;0.95,5) = 0.021 + 0.204 + 0.774 = 99.9%.

Example Guessing cards
In an experiment into extrasensory perception, a subject guesses the symbol on a
card. There are five different symbols so they have a 209, chance of guessing right
by chance. If they guess six cards, what is the probability of getting more than half
correct by chance?

The probability is

P(4;0.2,6) + P(5;0.2,6) + P(6;0.2,6) = 1.54%, + 0.154%, + 0.0064%, = 1.7%;.

% 3.2.2 Proof of Properties of the Binomial Distribution

To prove equation 3.8, put the binomial formula (equation 3.6) in the
expectation value (equation 3.1)

n!

-— - "1 —=p)y" .
{ry 'ZO rp"(1 —p) e
Take out a factor of np and drop the r =0 term (which is zero):

r=n - 1)
{r)=np Z Pl ot (':\u..) e
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Substituting ¥ =r — 1, "’ = n — 1, this becomes

Yoy N .

(r)=np "20 pi—-pf—r =)
The sum is the expansion of [p + (1 — p)]*, and is just 1 (by equation 3.7).
Therefore,
{r) =np.

To find V(r), start with the expression

=l n!

=)= 3, e = P =P " e

Similar treatment (the first two terms are now zero) gives

r=n n"

Cr=1D>=pnin—1) F 50— i

where r' =r — 2,n' =n— 2. The sum is again 1, so
< =1y =nn— 1)p?
and using {r) =np
(r*) —<r>* =n(n—1)p* + np — (np)’*
V(r) =np(1 — p)

which is equation 3.9.

33 THE POISSON DISTRIBUTION

The binomial distribution describes cases where particular outcomes occur
in a certain number of trials, n. The Poisson distribution describes cases
where there are still particular outcomes but no idea of the number of trials;
instead these are sharp events occurring in a continuum. For example, during
a thunderstorm there will be a definite number of flashes of lightning (sharp
events), but it is meaningless to ask how often there was not a flash. A Geiger
counter placed near a radioactive source will produce definite clicks, but not
definite non-clicks.

If in such an experiment one knows that the average number of events
is, say, ten a minute, then in a particular minute one expects on average
ten events, though intuitively one feels that nine or eleven would be
unremarkable... but suppose there were five or fifteen? Is that compatible,
or has something changed? We need to know the probability of obtaining
a particular number of events, given the average number. This can be analysed
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n, becomes large while at the same time the probability p becomes small, with
their product constant.

3.3.1 The Poisson Probability Formula

- - Suppose that on average A events would be expected to occur in some
interval. Split the interval up into n very small equal sections, so small that
the chance of getting two events in one section can be discounted. Then the

probability that a given section contains an event is p = A/n.
The probability that there will be r events in the n sections of the interval

is given by the binomial formula (equation 3.6)

P(r; A/n,n) = ’V( ‘%)—;7(7,1_"7)7

As n — oo with r finite the factorials give a power of »:
n!

TR A R G Rl

and an exponential appears:

n-—r n
(-8 (3
n n
(This limit is actually a definition of e*; alternatively it can be seen by taking

logarithms of both sides and using In (1 4+ 6) = §
Inserting these two limits in the binomial formula above gives the

Poisson probability formula The probability of obtaining r events if the mean

expected number is A is
e A’

P(r; ) = (3.11)

r!

In calculating a series of Poisson probabilities it is often convenient to
start with P(0), which is just €4, and then successively multiply by 4 and
divide by 1,2,3,4,... to get P(1), P(2), P(3), P(4),... .

Example Fatal horse kicks

The classic example of Poisson statistics is the set of figures on the numbers of Prussian
soldiers kicked to death by horses. In ten different army corps, over twenty years (in
the last century), there were 122 deaths, so that 4, the mean number of deaths in one
corps in one year, is i—%% 0.610. The probability of no deaths occurring, in a given
corps for a given year, is P(0;0.61) = ¢ ~9610.61°/0! = 0.5434; to get the prediction for
the number of cases where no fatality occurred we just multiply by the number of cases
considered (200) to get 108.7. Actually there were 109, so the agreement is virtually
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Number of deaths Actual number Poisson
in 1 corpsin | year of such cases prediction
0 109 108.7
1 65 66.3
2 22 20.2
3 3 41
4 1 0.6

Example Supernova neutrinos

Here are the numbers of neutrino events detected in 10 second intervals by the Irvine—
Michigan—-Brookhaven experiment on 23 February 1987—around which time the
supernova S1987a was first seen by astronomers:

No. of events 0 1 21 3|1 4| 516 |7 8 9
No. of intervals 1042 {860 {307 (78 |15{3 |0 |O 0 1
Prediction 1064 | 823 {318 (82|16 2 (0.3 ]0.03 | 0.003 {0.0003

Ignoring the interval with nine events (for a strict justification of this see problem
8.2) the mean 7 is

860+307x2+ 78 x3+15x44+3 x5

=0.77.
1042 + 860 + 307 + 78 + 15+ 3 0

The Poisson predictions this gives are shown, and agree well with the data, except
for the interval with nine events. This shows that the background due to random
events is Poisson, and well understood, and the nine events are not a fluctuation on
background, and came from the supernova.

Looking at the formula, or at the distributions shown in Figure 3.2, you
can see that for A below 1.0, the most probable result is zero. For higher
values a peak develops, but note that this is below A—although 4 is the
mean, it is not the mode. Indeed the formula shows that, for 4 integer, r =4
and r =4 — 1 are equally probable.

The Poisson distribution is always broader than a binomial distribution
with the same mean. The Poisson variance is equal to the mean 4, whereas
the binomial variance np(1 — p) is always smaller than the mean np. This is
understandable, as the number of binomial success does have an upper limit
(as r cannot exceed n) whereas the Poisson distribution can have a long tail.
This upper tail is a characteristic of the Poisson distribution.

The important properties of the Poisson distribution (proofs, if desired,
are in section 3.3.2) are

the total probability is 1 Y P(r;)=1 (3.12)
r=0
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with variance Vir)=4 (3.14)
and thus a standard deviation g= ﬂ (3.15)

and this last is overwhelmingly the most important thing to remember: for
a Poisson distribution, the standard deviation is just the square root of the
mean number of events.

Example More horse kicks
In the previous example of the Prussian horsemen, the mean was found to be 0.610.
The variance is 0.608 —almost identical.

The Poisson can make a useful approximation to the binomial distribution
in cases where the number of trials, n, is large, and/or the probability p is
small—it is easier to calculate as it does not involve messy factorials.

Example Poisson approximation of a binomial
If there are 100 trials, with individual probability of success of 2%, then the binomial
probabilities for the numbers of successes are

r 0 1 2 3 4 5 6

P(binomial) 13.3% | 27.1% | 27.3% | 182% | 9.0% | 3.5% 1.1%
The Poisson distribution, for a mean of 2, gives the probabilities

P(Poisson) 13.5% | 27.1% | 27.1% | 180% | 9.0% | 3.6% | 1.2%.

Unless you are very demanding, this accuracy is presumably ample, and the
computation is much easier—try them yourself and see.

% 3.3.2 Proof of Properties of the Poisson Distribution

To show that the normalisation (equation 3.12) is correct is straightforward

a0 Ar
N -2V
';o P(r;))=e™*) _
—e~*e* (as the sum is just the expansion of e*)
=1.

{r) is given by

ry=§ reit,
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Drop the r =0 term and take out some factors:

o0 Af—l

(r)y = le"'ral(r_ I

Setr'=r—1:
(ry=A4e* Y —Af.l
r’=0r.

and use equation 3.12 to get equation 3.13:

r)=4
To find V(r), start with
lr

{rir—1)) = ; r(r— l)e“ﬁ.
As before, dropping the first two terms and putting r=r—2,
< r> 12 -2 Z
r Or
> =<y =12

and then using equation 3.13 gives equation 3.14:
2y —(r)*=A2+4-A2
V(ir)=A4

% 3.3.3 Two Poisson Distributions

If there are two separate types of events occurring according to Poisson
statistics and we do not distinguish between the two (for example, a
radioactive source containing two different unstable isotopes both giving
identical clicks on a Geiger counter), then the probability of r events is also

Poisson, with mean equal to the sum of the two means.

Suppose the two events types are called a and b, with individual means 4,
and 4,, so we know the probability of observing r, and r,. A total of r events
could be all of type b, or one of type a and the rest of type b, and so on. The

total probability is given by

PO)= Y P(ra; a)P(r—ra i)

rg=0

Jrajr—ra
—e—*ap— 4 a *b
e e i —r)]
—(J...+41.,)('1 +)~b)’ z': r! Ao )"' Ay )'-"'
ey U\ D 4 1 42 )

L
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The summation, on closer inspection, is just the binomial expansion of

A A r c . .
"4 _ 4+ "%}, which is just 1, so the result is
b+ Ay A+ Ay

~Ga+anlta T AN

P(r)=e
r!

(3.16)
i.c. the sum of two Poisson processes is another Poisson process. This can
be extended to any number of Poisson processes. The proof also shows (from
the fact that the sum is a binomial expansion) that given r events, the

distribution of events of type a is described by a binomial, P(ra;,—ff-,r).
/va /vb

3.4 THE GAUSSIAN DISTRIBUTION
3.4.1 The Gaussian Probability Distribution Function

P(x; u,0) = L g~ (x-m2e? (3.17)
o./2n

The Gaussian or normal is the most well known and useful of all
distributions. It is a bell-shaped curve centred on, and symmetric about,
x = p. The width is controlled by the parameter o, which is also the standard
deviation of the distribution (which will be shown in section 3.4.2). It is broad
if o is large, narrow if ¢ is small. At x =u + o, P(x) falls to 0.61 of its peak
value—at a bit more than half. These are also the points of inflexion, where

the second derivative is zero.

| 1 | ] ] J
pu—4c u—3¢ py—20 uy—6 u pu+0 pu+20 pu+30c p+éc

™. A L L /Nt 2% _altL At
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Changing the value of u shifts the distribution along the x axis without
any change to its shape. Increasing or decreasing o stretches or shrinks the
curve about the central value. In this way all Gaussians are equivalent, in
that a change of origin and scale reduces them to a standard form. This is
why only one Gaussian is shown here, in contrast to the many pictures of
different binomial and Poisson distributions. If you substitute z = (x — u)/o
then the Gaussian becomes

\/li_e"”z (3.18)
n

which is often called the unit Gaussian or unit normal distribution.
The important properties of the distribution (proofs, if required, are in
section 3.4.2) are

it is normalized to 1:

fm P(x;u,0)dx =1 (3.19)

— @

u is the mean of the distribution:

J xP(x; pu,0)dx = p (3.20)
(it is also the mode and the median.)
the standard deviation is o, and variance o2;

J‘oo (x — u)*P(x; p,0)dx = a2 (3.21)

(This justifies our use of g to represent both of the two quantities, the standard
deviation of the distribution and the parameter in the Gaussian distribution
formula, as they turn out to be the same.)

Although called after Gauss, the distribution was in fact discovered and
investigated independently by many people. In France it is known as the
Laplacean. The first recorded reference to it is by de Moivre (who was English)
in 1733, in a work entitled Approximatio ad summam terminorum binomii
(a + b)" in seriem expansi.

It is also often called the normal distribution. However, the use of this
name implies a value-judgement (nobody, after all, would use an abnormal
distribution) which is best avoided. It does indeed describe many different
sorts of data, particularly in the field of measurement errors, but the reasons
for this are complex and not to be glossed over by a bland label—this
is the point of Lippman’s famous remark (quoted by Poincaré): ‘everybody

helisvee 1in the law Af errarce the avmarimantarce harcance thav thinl it ic a



mathematical theorem, the mathematicians because they think it is an
experimental fact.’

*34.2 Proof of Properties of the Gaussian

When working with Gaussians, it is usually simpler to shift the origin so that
u =0, but to leave in the scale factor of g, as then the dimensions make sense.
To prove the normalisation, we have to show that

1 2 2
e~ TWY2% gy = |,
—00. /27

Setting x' = x — u the expression becomes
1 o
j e~ x29% dy'
0./2n J-w

and this integral is given in Table 3.1 (with a = 1/2¢2), giving

: J20%*n

o./21

which is 1, as desired.
That u is the mean of the distribution, which is also the expectation value
(x>, is obvious, but a proof can be spelt out if desired by writing

© 1 2/242
(x)= J xe ™ (xTu/2e% gy
-~ 0./27m

Putting x = (x — u) + u and splitting the integral into two gives

[+ o]
e~ x—w? 202 4,

(x)= Jw L (x - pemtwaet gy 4 #I
-0 0./21 -0 0. /271
=0+uxl
=p.
The variance is found from another standard integral from Table 3.1:

[ o]

(x— ”)2 e~ (x—w?¥2e% 4y

x—p?)=

-0 27[

= g2,

343 Definite Integrals

In working with the Gaussian function there are various standard integrals
that occur frequently. Their derivation is usually straightforward, and can
be found in any reputable mathematics textbook. They are collected here for



TABLE 3.1
USEFUL INTEGRALS

[ erman f ["eonaa /o
c® a .

® 1 (* oo
f xe *dx=— ze #12dz=1

o 2a JO

® S 1 7 (* o ,

xle T dx=— [— zle *12dz=_/2n.
—w 2a\ a J-w
Higher powers can be obtained by differentiating these with respect to a, giving
x2n+le—¢x2dx= - J‘ 22n+le—31I2dz=2nn!
0 24" 0

@ 1.35...2n—1
J xZne—-axzdx= ( n )\/E
— o 2"a" a

f z"e"*12dz =1.35...2n — 1) /2n.

-

For any odd power, the symmetric integral vanishes:

@ o
I x2n+le-ax2dx=‘[ 22"+le—’2’2dz=0.

- @ - o

344 Indefinite Integrals

Unfortunately the indefinite integral of the Gaussian cannot be done
analytically and written down as a nice expression. Instead you have to look
it up in tables, or most reputable computers will provide a library function
to evaluate it. Table 3.2 thus shows the value of the integrated Gaussian
distribution, between the symmetric limits —(x — y)/e and +(x — y)/o, i.e.
the probability that, if an event is drawn from a Gaussian distribution, it will
lie within some number of standard deviations of the mean. The probability
that it will lie outside the range specified is, of course, just one minus the
tabulated value.

From Table 3.2 you can see that

68.27%, of the area lies within ¢ of the mean,
95.459% lies within 2g,

99.73%, lies within 3.

If round numbers in the percentages are required, then

90% lie within 1.6450,
959 lie within 1.9600,
999% lie within 2.5760,
99.9% lie within 3.290c.
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TABLE 3.2

TWO-TAILED GAUSSIAN INTEGRAL

Giving the percentage probability that a

point lies within the given number of ¢

from the mean

xo a 000 001 002 003 004 005 006 007 0.08 0.09
0.00 000 080 160 239 319 399 478 558 638 717
0.10 797 876 955 1034 1113 1192 1271 1350 14.28 15.07
0.20 1585 16.63 1741 18.19 1897 19.74 20.51 21.28 2205 22.82
0.30 23.58 2434 2510 2586 2661 27.37 28.12 28.86 29.61 30.35
0.40 31.08 31.82 3255 3328 3401 3473 3545 36.16 36.88 37.59
0.50 3829 3899 39.69 4039 4108 41.77 4245 43.13 43.81 4448
0.60 45.15 4581 4647 47.13 4778 4843 49.07 49.71 50.35 5098
0.70 51.61 5223 5285 5346 5407 54.67 5527 5587 5646 57.05
0.80 5763 5821 5878 59.35 5991 6047 61.02 61.57 62.11 62.65
0.90 63.19 63.72 6424 6476 6528 65.79 6629 66.80 67.29 67.78
1.00 68.27 68.75 69.23 69.70 70.17 70.63 71.09 71.54 7199 7243
1.10 7287 7330 7373 7415 7457 7499 7540 7580 76.20 76.60
1.20 7699 77.37 7775 7813 7850 78.87 7923 79.59 79.95 80.29
1.30 80.64 8098 81.32 81.65 8198 8230 82.62 8293 83.24 83.55
1.40 83.85 84.15 8444 8473 8501 8529 8557 8584 86.11 86.38
1.50 86.64 8690 87.15 8740 87.64 87.89 88.12 88.36 88.59 88.82
1.60 89.04 89.26 8948 89.69 89.90 90.11 9031 9051 90.70 90.90
1.70 91.09 91.27 9146 91.64 9181 9199 9216 9233 9249 9265
1.80 92.81 9297 93.12 9328 9342 93.57 97.71 9385 9399 94.12
1.90 94.26 94.39 9451 9464 9476 94.88 9500 95.12 9523 9534
2.00 9545 9556 9566 95.76 9586 9596 96.06 96.15 96.25 96.34
2.10 9643 96.51 96.60 96.68 9676 96.84 9692 97.00 97.07 97.15
2.20 9722 9729 9736 9743 9749 97.56 97.62 97.68 97.74 97.80
2.30 97.86 9791 9797 98.02 9807 98.12 98.17 98.22 9827 98.32
240 9836 9840 9845 9849 9853 98.57 98.61 98.65 98.69 98.72
2.50 98.76 98.79 9883 98.86 9889 98.92 9895 9898 99.01 99.04
2.60 99.07 99.09 99.12 99.15 99.17 99.20 9922 99.24 99.26 99.29
2.70 99.31 99.33 9935 9937 99.39 9940 9942 99.44 9946 9947
2.80 99.49 99.50 99.52 99.53 99.55 99.56 99.58 99.59 99.60 99.61
290 99.63 99.64 99.65 99.66 99.67 99.68 99.69 99.70 99.71 99.72
3.00 99.73 99.74 99.75 99.76 99.76 99.77 99.78 99.79 99.79 99.80
3.10 99.81 99.81 9982 99.83 9983 99.84 99.84 99.85 99.85 99.86
3.20 99.86 99.87 99.87 99.88 99.88 99.88 99.89 99.89 99.90 99.90
3.30 9990 9991 9991 9991 9992 9992 9992 99.92 99.93 99.93
3.40 9993 9994 9994 9994 9994 9994 9994 9995 9995 99.95
3.50 9995 9996 9996 99.96 9996 99.96 99.96 99.96 99.97 99.97
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TABLE 3.3

ONE-TAILED GAUSSIAN INTEGRAL
Giving the percentage probability that a
point lies within the given number of ¢

to one side of the mean

000 001 002 003 004 005 006 007 008 0.09

0.00 50.00 5040 5080 5120 51.60 5199 5239 5279 53.19 53.59
0.10 5398 54.38 54.78 5517 55.57 5596 56.36 56.75 57.14 57.53
0.20 5793 5832 58.71 59.10 5948 5987 60.26 60.64 61.03 61.41
0.30 61.79 62.17 62.55 6293 6331 6368 64.06 6443 64.80 65.17
0.40 65.54 6591 6628 6664 67.00 6736 67.72 68.08 68.44 68.79

0.50 69.15 69.50 69.85 70.19 7054 70.88 7123 71.57 7190 72.24
0.60 72.57 7291 7324 7357 7389 7422 74.54 7486 75.17 75.49
0.70 7580 76.11 7642 7673 7104 7734 77.64 7794 7823 78.52
0.80 78.81 79.10 79.39 79.67 79.95 80.23 80.51 80.78 81.06 81.33
0.90 81.59 81.86 8212 8238 8264 8289 83.15 8340 83.65 83.89

1.00 84.13 84.38 84.61 8485 85.08 8531 8554 8577 8599 86.21
1.10 86.43 86.65 86.86 8708 87.29 8749 87.70 8790 88.10 88.30
1.20 88.49 88.69 88.88 89.07 89.25 8944 8962 89.80 8997 90.15
1.30 90.32 9049 90.66 90.82 90.99 91.15 9131 9147 91.62 91.77
1.40 9192 9207 9222 9236 92.51 9265 9279 9292 93.06 93.19

1.50 9332 9345 93.57 93.70 93.82 9394 9406 94.18 9429 94.41
1.60 94.52 9463 94.74 9484 9495 9505 9515 9525 9535 9545
1.70 9554 9564 9573 95.82 9591 9599 96.08 96.16 96.25 96.33
1.80 9641 96.49 ‘- 96.56 96.64 96.71 96.78 9686 96.93 96.99 97.06
1.90 97.13 97.19 9726 9732 9738 9744 9750 97.56 97.61 97.67

2.00 97.72 9778 97.83 97.88 9793 9798 9803 9808 98.12 98.17
2.10 98.21 9826 9830 9834 9838 9842 9846 98.50 98.54 98.57
2.20 98.61 98.64 98.68 9871 98.75 98.78 9881 98.84 98.87 98.90
230 9893 9896 98.98 99.01 99.04 99.06 99.09 99.11 99.13 99.16
240 99.18 9920 99.22 99.25 99.27 99.29 99.31 99.32 99.34 99.36

2.50 99.38 9940 9941 9943 9945 9946 9948 9949 99.51 99.52
2.60 99.53 99.55 99.56 99.57 99.59 99.60 99.61 99.62 99.63 99.64
2.70 99.65 99.66 99.67 99.68 99.69 99.70 99.71 99.72 99.73 99.74
2.80 99.74 99.75 99.76 99.77 99.77 99.78 99.79 99.79 99.80 99.81
290 99.81 9982 99.82 9983 99.84 9984 9985 99.85 99.86 99.86

3.00 99.87 99.87 99.87 99.88 99.88 99.890 99.89 99.89 99.90 99.90
3.10 99.90 9991 9991 9991 9992 9992 9992 99.92 9993 99.93
3.20 99.93 9993 9994 9994 9994 9994 9994 9995 99.95 99.95
3.30 99.95 9995 9995 9996 9996 99.96 9996 99.96 99.96 99.97
340 99.97 9997 9997 99.97 9997 9997 9997 99.97 99.97 99.98

3.50 99.98 9998 9998 9998 9998 9998 9998 99.98 99.98 99.98



The 20 value is so close to 95% (and vice versa) that in practice the difference
can often be ignored. From the 1o value you obtain the useful rule of thumb
that when a curve is shown going through a set of measured points with
error bars, about one third of the error bars should miss the curve. Many
people fail to realise this and overestimate their errors in an effort to make
the curve go through all the points. It is thus a standard ploy in seminars,
etc., when hapless speakers proudly present fitted data, to attack them for
having too good a fit.

Sometimes you are interested in the probability of a value straying in one
direction only—for example, you may want to be sure that some upper limit
is not exceeded, but do not care how far it strays below the mean. For this
you need the one-tailed probability, as shown in Table 3.3, as opposed to
the two-tailed probability of Table 3.2.

Should you ever need to know the integrated Gaussian for any other
(asymmetric) limits, it can be obtained from these tables by simple arithmetic.
Indeed, Tables 3.2 and 3.3 can readily be obtained from each other, but both
are given here for convenience of use.

345 Gaussian as Limit of the Poisson and Binomial

From the distributions shown Figure 3.2 it can be seen that for large 4,

the Poisson distribution tends to a Gaussian shape, with uy=4, 6 = ﬂ In
such cases the Gaussian may be used as a very convenient approximation
to the Poisson. What is ‘large’ depends on how good an agreement you require.
Some people put the requirement as low as 4 =S5, but 10 is probably safer.

Proof: let r = 4 + x, and use Stirling’s approximation:

Inr'~rinr—r+In./(2nr).
Then, taking the logarithm of equation 3.11,

InP(r;A\)~ —A+rinA—(@Inr—r)—In./2zr

x —l+r{lnl—ln[l(l +%)]}+(2+x)—ln 27A.

Using the expansion In(1 + z) =z — z%/2...,
2

lnP(r;l)zx—().+x)(;—;7)—ln,/21:/1

2
z—%—ln,/Zn)..

Thus, exponentiating, —x2/22

€

,/2nl'

P(x)=




Example Poisson approximated by Gaussian

If A is 5.3, then the probability of two events or less is 10.2%,, using the Poisson
formula. Approximating the histogram of the Poisson by the smooth Gaussian curve,
the appropriate value for the Gaussian is halfway between the possible discrete values

of 2 and 3, at 2.5 ‘events’. This is (5.3 — 2.5)/ /5.3 = 1.22¢ from the mean, and Table
3.3 gives this one-tailed probability as 11.1%.

Likewise the binomial tends to a Gaussian with u = np and 6 = . /np(1 — p).
(The proof is similar to that for the Poisson.) This happens first for p = 0.5;
large or small values of p require a larger n. Indeed, almost everything tends
to a Gaussian as the numbers become large—this is due to the central limit
theorem, discussed in the next chapter.

*3.4.6 The Many-dimensional Gaussian

Consider a distribution in n variables, denoted by x,,, X3,...,Xu—the
notation is discussed in section 2.6.3. These can be written compactly as a
vector X, likewise the means, uy, K3);.--,Hw can be written g. The most
general form of multi-dimensional Gaussian is an exponential of a quadratic
form, which will contain terms in x3,, cross terms in XX, linear terms, and
a constant, but nothing of higher power. This can be written:

P(X) ocexp[ S E— AR - n)].

Even this contains some ambiguity, which can be resolved by insisting that
A be symmetric:

Ai f = A ji
Henceforth suppose, without loss of generality, that all u, are zero.

It may be that A is diagonal, i.e. all the cross terms are zero. In that case
P(x) factorises into n independent Gaussians:

2 2 2 2 2 2
e A1xT+A42x3+ A33x3+ V2 _ o —A11X1/2 o= A22%2/2 o —A33¥32

and the diagonal elements can be identified as

A=—
‘ .
{4 aiz

As A is diagonal this can be written in the form
A=V~ (3.22)

Now we go on to consider the general case and to show that the above
equation is still true. Even if A is not diagonal, a unitary matrix U can always
be found to diagonalise it; i.e.

'TAfI — A' mhnrn A' ;n AiamAanal



“+4L 11IouUiIctLIval Ubndtliivutivibp wiap. I

Note: ‘unitary’ means that the transposed matrix is the same as the
inverse: U~ ! = U. The significance of this is that if one considers vectors
X,Y,... transformed by U

xX'=Ux y=Uy etc
then the transposes (denoted by a tilde, ) are given by
% =x0

so the ‘scalar product’ of two vectors does not change under transforma-
tions by a unitary matrix,

X'y =xUUy =xU " 'Uy =&y
and they thus represent generalised rotations.

It is a basic fact of matrix algebra that for any symmetric matrix a
unitary matrix can always be found for which UAU is diagonal.

The exponent XAx can be written
xOUAUUXx.

This is x’A’x’, with A’ diagonal. The variance matrix V', for the x’, is thus
diagonal with elements (UAU) ™! = UA~'T, by equation 3.22.

So we know the variance matrix for the x’, and also that the x are related
to these by x = Ux’. We now (anticipating a result from the next chapter)
invoke the generalised combination of errors formula, equation 4.19, which
gives the variance matrix for a set of variables which are a function of another
set. (Incidentally, as in this case the relation is linear, the equation is exact
and not an approximation.) The derivative matrix G in 4.19 is just U, so

V=0UvU=0UUA"'0OU

323
V=A"l (3-23)

Result The matrix in the exponent of the multidimensional Gaussian is the
inverse of the covariance matrix.

In full, with the normalisation (which can be found from the Jacobian of
the x —» x’ transformation):

P(x exp[—3(X— AV~ '(x — p)].

1
)_(2n)"'2\/|V|

% 3.4.7 The Binormal Distribution

Ear turn Aimanciance {rallinag the variahlac v and v acain rathar than v
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and x,,,) the covariance matrix is

Vo ( o2 pa,a,)
- 2
po,o, Oy
which has the inverse

. 1 ol — po,o,
B a:zcayz(l - pZ) - paxay 6:2: .
The full formula (including normalisation) for the binormal or two-
dimensional Gaussian is thus

P(x,y)= 1 X €X {— ! [(x—u,)2+(y—y,)2
V= rwewe, J—p) Pl 2=\, s,

()2

This can be drawn on paper using contour lines. The contours of equal
probability are curves for which the exponent in equation 3.24 is constant,
and that is the equation of an ellipse. Manipulation of equation 3.24 shows
that the ellipse for which the exponent is —3 has extreme x and y values at
u, o, and pu,+ 0, ie. it fits exactly into a rectangular box between these
limits.

If you take a slice through the distribution, considering the distribution
in y, say, for a fixed value of x, then, by inspection, equation 3.24 becomes
a Gaussian distribution in y whose standard deviation is narrowed to

o,//1—p? and mean is u, + p(6,/0,)(x — p,).

In two dimensions the unitary matrix U that diagonalises the exponent is
the familiar rotation matrix
cosf —sinf
sinf cos@

which rotates the (x, y) axes by some angle 6 such that the major and minor
axes of these ellipses coincide with the new axes: call them u and v. The three
parameters of the binormal can thus be written o,, o, p, as previously, or
as g, 0,, 0, where u and v are uncorrelated and with standard deviations o,
and o,, and the x, y system is given by rotating the u, v system through an
angle 6.

A little algebra gives the relations between the two parameter sets:

2p0.0,

0: — o}

tan 20 =

cos? 602 — sin? 6g2

cos? o2 — sin? Oo?
~an~2n 2.2 n

o=

o;

-—==2n 2_-2n
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03 =cos? g +sin?062 o2 = cos? Bo% + sin? O

2_ 2
: 6l—o¢

p =sinf cos 6——.
0.0,

Figure 3.4 shows the lines of constant probability for a two-dimensional
distribution, where x and y are positively correlated. The ellipses of constant

probability (at 90, 80,...,10% of the peak value) are shown. The parameters
for this figure are

0,=10 06,=05 0=45°

o= P o= [P ,23
=8 =g P75

%35 OTHER DISTRIBUTIONS

The Gaussian, Poisson, and binomial distributions are, in that order, far
and away the most common and useful. However, they are not the only ones,
and some others are described here; in addition the y? distribution, Student’s
t distribution, and Fisher’s F distribution will be discussed in later chapters.

or, equivalently,

Fie A Tha hinarmal Aictrihntinn



N J.J WJLLHCL UDLLIVULIVID “+0

1/(b — a)

a b

Fig. 3.5. The uniform distribution.

% 3.5.1 The Uniform Distribution

Also known as the rectangular or top hat distribution, the uniform
distribution (Figure 3.5) describes a probability which is constant over a
certain range and zero outside it. If the range limits are a and b then

1
P(x) = b—a for a<x<b

0 elsewhere.

The mean is obviously (a + b)/2. On doing the integral to obtain {(x?) and
thus the variance one gets

(b—a)’
12

i.e. the standard deviation for a uniform distribution is the width divided

by \/12.

% 3.5.2 The Weibull Distribution
P(x; o, B) = aP(ax)f ~le-=,

Originally invented to describe failure rates in ageing lightbulbs, the Weibull
distribution (Figure 3.6) is useful for parametrising functions which rise as x
increases from 0 and then fall again. « is just a scale factor. f expresses the

charnneace nf the neallr R — 1 aivac the avnanantial fiinctinn

V(x) = (3.25)
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ax

Fig. 3.6. Some Weibull functions. The successively sharper
peaks are for f = 2.0, 4.0, and 7.0.

% 3.5.3 The Breit—Wigner or Cauchy Distribution

1 r
Fmi M, ) = o =M+ (T2
11
o= v

The Breit—Wigner function, used by nuclear physicists to give the distribution
of particles of mass m due to a resonance of mass M and width I', reduces
to the Cauchy function F(z) (Figure 3.7) by a change of origin and scale. Its
chief feature is its unlovable mathematical behaviour. It does not have a
variance as the integral |z2F(z)dz diverges.

—-4-3-2-10 1 2 3 4
Fig. 3.7. The Cauchy function.

3.6 PROBLEMS

3.1

A defence system is 99.5% efficient in intercepting ballistic missiles. What is the
wmenhahilitu that it anll intarcant all Af 10N miccilac lannchad acainct 1t? How manv
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missiles must an aggressor launch to have a better than evens chance of one or more
penetrating the defences?

3.2
In the previous question, how many missiles would be needed to ensure a better than

evens chance of more than two missiles evading the defences?

33
During a meteor shower, meteors fall at the rate 15.7 per hour. What is the probability

of observing less than S in a given period of 30 minutes?

34
Repeat the previous problem, using the Gaussian approximation to the Poisson.

3.5
A student is trying to hitch a lift. Cars pass at random int&gvals, at an average rate

of 1 per minute. The probability of a car giving a lift is 19,./What is the probability
that the student will still be waiting:

(a) after 60 cars have passed?

(b) after 1 hour?

3.6
For a Gaussian distribution, using Tables 3.2 and 3.3:

(a) What is the probability of a value lying more than 1.23¢ from the mean?

(b) What is the probability of a value lying more than 2.43¢ above the mean?

(c) What is the probability of a value lying less than 1.09¢ below the mean?

(d) What is the probability of a value lying above a point 0.45¢ below the mean?

(e) What is the probability that a value lies more than 0.5¢ but less than 1.5¢
from the mean?

(f) What is the probability that a value lies above 1.26 on the low side of the mean,
and below 2.1¢ on the high side?

(g) Within how many standard deviations does the probability of a value occurring
equal 5097

(h) How many standard deviations correspond to a one-tailed probability of 99%?

* 3.7
Show that the skew and curtosis of a Gaussian are zero.



