
 KCPSM3
 Reference
 Design
UART Real Time Clock

Ken Chapman
Xilinx Ltd
September 2003 Rev.1

UART_real_time_clock 2

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 and this reference design would be gratefully
received by the author.

Ken Chapman
Staff Engineer - Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using any version of PicoBlaze or the UART macros with information
about your application and how these macros have been useful.

UART_real_time_clock 3

What is a UART Real Time Clock ?
The main purpose of this package is as a reference design for the KCPSM3 variant of PicoBlaze although it is hoped that some
people may use it directly in there own product designs as a suitable ‘IP core’. The design as a whole implements a simple real
time clock maintaining time in hours, minutes and seconds together with the ability to set an alarm. The unusual feature of the
design is that a UART serial communication is used to set an observe the time and alarm via simple text commands and
messages.

UART
Serial Link

UART Real
Time Clock

Terminal

tx

rx
alarm

HyperTerminal on a PC
provides a suitable terminal to
send commands and observe
messages.

The design even supports
some minor editing facilities
during command entry.

The design may also be
connected as a UART linked
peripheral to a MicroBlaze or
PowerPC processor in order to
provide an independent real
time clock facility. The ‘alarm’
signal may then be used to
interrupt the host processor.

The design will work in
Spartan-3 and Virtex-

II(PRO) devices

Connection to true RS232 will
require a voltage level shifter
on the ‘tx’ and ‘rx’ serial lines.

UART_real_time_clock 4

Reference Design
As a reference design, the supplied VHDL and assembler code illustrates a design based on the KCPSM3 variant of PicoBlaze
and demonstrates the following…...

• Connection of KCPSM3 to the Program ROM.
• Connection of UART macros supplied with KCPSM3 - Input and output ports and baud rate timing.
• Interrupt generation with a fixed interval timer and use of interrupt acknowledge signal.

Hardware VHDL design

Software KCPSM3 design

• Use of CONSTANT directives to define ports, bits within ports, scratch pad memory locations and useful values.
• Interrupt Service Routine (ISR).
• Use of scratch pad memory.
• Communications with UART receiver and transmitter.
• ASCII string handling.
• Use of COMPARE and TEST instructions which are new with the KCPSM3 variant of PicoBlaze.

Useful PSM subroutines include….

• UART communications.
• ASCII to decimal and decimal to ASCII conversions.
• Lower case to upper case character conversion.
• UART character string reading and editing.
• Real time clock.
• List of ASCII constants.

UART_real_time_clock 5

Understanding the Design
To begin to use the design as a reference, it is useful to understand what it does and ideally to try it out with some suitable
hardware and a PC. The design is supplied as just two files…..

The hardware definition is supplied in a VHDL file called ‘uart_clock.vhd. This will need to be added to a suitable project and
either used directly as the top level of your project or as a macro within a larger design. To complete the hardware definition you
will need to add all the VHDL files from the KCPSM3 (PicoBlaze) package, which also includes the UART macros.

The KCPSM3 software is provided as ‘uclock.psm’ which you will need to assemble using the KCPSM3 assembler.

Recommendation

Using the KCPSM3 documentation for guidance, ensure that you can assemble the supplied PSM program and synthesize the
complete design into a Spartan3 or Virtex-II(PRO) device. These files are known to work and will help you to resolve any design
flow issues.

If you are fortunate enough to have some suitable hardware to actually try the design, you will need to connect the UART to a
couple of pins. A User Constraints File (UCF) can be used to specify the physical pins and provide timing constraints.

TIMESPEC TS01 = FROM : FFS : TO : FFS : 18 ns;
TIMESPEC TS02 = FROM : RAMS : TO : FFS : 18 ns;
TIMESPEC TS03 = FROM : FFS : TO : RAMS : 18 ns;
TIMESPEC TS04 = FROM : RAMS : TO : RAMS : 18 ns;
TIMESPEC TS05 = FROM : FFS : TO : PADS : 18 ns;
TIMESPEC TS06 = FROM : PADS : TO : FFS : 18 ns;
TIMESPEC TS07 = FROM : PADS : TO : RAMS : 18 ns;
NET "tx" LOC = "A10";
NET "rx" LOC = "A7";
NET ”alarm" LOC = "J15";

These specifications should provide 100% coverage.
 (18ns is constant with a 55MHz clock)

It is nice to make ‘alarm’ available on a pin (ideally an LED)
but you could remove it from the design or leave it
disconnected.

UART_real_time_clock 6

HyperTerminal Setup
HyperTerminal running on a PC can provide a very simple terminal for communication with ‘uart_clock’. Here are the required
settings for the design and how to configure HyperTerminal.

1 - Disconnect
2 - Configure the communication link

2a - select serial port (typically COM1)

2b - Port Settings

8 bits

None

1 stop
None

38400

3 - Settings
4 - Connect

3a - ASCII Setup

‘uart_clock’ will echo characters

‘uart_clock’ only transmits carriage return

UART_real_time_clock 7

Commands
The UART Real Time Clock design understands some simple ASCII commands and even supports some editing during their
entry using the backspace key on your keyboard. A command is only competed when carriage return is entered. The design is
ready to accept a command when the “KCPSM3>” prompt is displayed.

TIME The current time will be displayed in the form hh:mm:ss

TIME hh:mm:ss Allows the time to be set. The values of ‘hh’, ‘mm’ and ‘ss’
must provide a valid time using a 24-hour clock. The new time
will then be displayed.

ALARM

ALARM hh:mm:ss

KCPSM3>time
16:54:28

KCPSM3>time 17:23:56
17:23:56

The current alarm time will be displayed in the form hh:mm:ss together
with the current status of the alarm (OFF, ON, or Active)

Allows the alarm time to be set. The values of ‘hh’, ‘mm’ and
‘ss’ must provide a valid time using a 24-hour clock. The new
alarm time and current status will then be displayed.

KCPSM3>alarm 07:15:00
07:15:00
Alarm OFF
KCPSM3>alarm 17:28:55
17:28:55
Alarm OFF
KCPSM3>

ALARM ON

ALARM OFF

Enables the alarm to become active. The current alarm time and status
will be displayed

Disables the alarm from becoming active and will cancel the alarm if
already active. The current alarm time and status will be displayed

KCPSM3>alarm on
17:28:55
Alarm ON
KCPSM3>alarm
17:28:55
Alarm Active
KCPSM3>alarm off
17:28:55
Alarm OFF
KCPSM3>

Note - All commands and responses are defined by the KCPSM3 program and is therefore easy
to modify. The program is less than 50% of the available program space available allowing the
potential for many more commands and features.

The ‘uclock’ program is able to interpret upper and lower case characters by converting commands to upper case before
analysing them. Incorrect commands will result in a “Syntax Error” message and incorrect time values will be indicated by an
“Invalid Time” message. Although it is unlikely to occur when using HyperTerminal, an “Overflow Error” message will be
generated if commands are transmitted faster than the design can process them (i.e. the UART receiver buffer becomes full).

UART_real_time_clock 8

The Hardware - Program ROM
The connection of the program ROM is a straight forward. The KCPSM3 processor and the ‘uclock’ program are instantiated and
signals used to make direct connections. In this design the reset port is not required so it is tied to ground.

IN_PORT[7:0]

PORT_ID[7:0]
INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]CLK

READ_STROBE

WRITE_STROBE

kcpsm3.vhd

RESET

INTERRUPT_ACK

ADDRESS[9:0]

INSTRUCTION[17:0]

CLK

uclock.vhd

 processor: kcpsm3
 port map(address => address,
 instruction => instruction,
 port_id => port_id,
 write_strobe => write_strobe,
 out_port => out_port,
 read_strobe => read_strobe,
 in_port => in_port,
 interrupt => interrupt,
 interrupt_ack => interrupt_ack,
 reset => ‘0’,
 clk => clk);

 program_rom: uclock
 port map(address => address,
 instruction => instruction,
 clk => clk);

ad
dr

es
s

in
st

ru
ct

io
n

The complete reference design is connected to a single clock source ‘clk’. We will see this signal used in the more generic VHDL
code, but here it is again a direct connection to the instantiated components.

UART_real_time_clock 9

The Hardware - Interrupt
The interrupt in this design is used to provide a regular timing reference for the clock in the form of 1µs pulses. This is achieved
by counting system clock cycles. In the example code, the counter has 55 states (0 to 54) to be consistent with a 55MHz clock.
This is a functional diagram of the logic and may not represent the exact implementation style used by the synthesis tool.
However, the code is specifically written to use synchronous controls and provide pipelining where appropriate.

IN_PORT[7:0]

PORT_ID[7:0]
INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]CLK

READ_STROBE

WRITE_STROBE

kcpsm3.vhd

RESET

INTERRUPT_ACK

The use of an integer makes this simple synchronous counter easy to
modify and very generic. It is very important to specify a range and initial
condition for the integer because the VHDL default is a 32-bit vector and
would initialise with the value -2,147,483,648 leading to a very long delay
before the first ‘timer_pulse’!

interrupt

interrupt_ack

timer_pulse

counter

timer_count
RST =54

if clk'event and clk='1' then
 if timer_count=54 then
 timer_count <= 0;
 timer_pulse <= '1';
 else
 timer_count <= timer_count + 1;
 timer_pulse <= '0';
 end if;
end if;

signal timer_count : integer range 0 to 63 :=0;

if clk'event and clk='1' then
 if interrupt_ack = '1' then
 interrupt <= '0';
 elsif timer_pulse = '1' then
 interrupt <= '1';
 else
 interrupt <= interrupt;
 end if;
end if;

Clk=55MHz

Hint - SRL16E based shift registers will often result
in a more efficient clock divider.

Using ‘interrupt_ack’ ensures that each pulse is processed by
KCPSM3 even when interrupts are temporarily disabled.

UART_real_time_clock 10

The Hardware - Inputs
The UART macros provide the only inputs to KCPSM3. There is the data received from the ‘rx’ serial input and captured by the
UART_RX macro, but there is also the status signals associated with the FIFO buffers within the UART receiver and transmitter
macros which KCPSM3 will need to monitor. This leads to a simple multiplexer and address decoding logic.

DATA_IN[7:0]

WRITE_BUFFER

RESET_BUFFER

CLK

EN_16_X_BAUD

SERIAL_OUT

BUFFER_HALF_FULL

BUFFER_FULL

uart_tx.vhd

SERIAL_IN

READ_BUFFER

uart_rx.vhd

DATA_PRESENT

DATA_OUT[7:0]

EN_16_X_BAUD

BUFFER_HALF_FULL

BUFFER_FULLRESET_BUFFER

CLK

tx_half_full 0

tx_full 1

rx_half_full 2

rx_full 3

rx_data_present 4

IN_PORT[7:0]

PORT_ID[7:0]
INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]CLK

READ_STROBE

WRITE_STROBE

kcpsm3.vhd

RESET

INTERRUPT_ACK

5
6
7

ua
rt_

st
at

us
_p

or
t

rx_data

in_port
0
1

BUFFER_

port_id_(0)

read_from_uart

0

Notes

Minimum of address decoding to support the two ports.

Pipeline registers are included to ensure that
performance is maintained. The port_id is valid for 2
clock cycles during an INPUT operation.

The READ_BUFFER control to the UART receiver FIFO will be
active just after the INPUT operation, but this acceptable as the
next DATA_OUT will be presented well before the next time the
receiver is read.

UART_real_time_clock 11

The Hardware - Inputs
The input logic is straight forward to define in VHDL, but it would be very easy to increase the complexity of the logic with
resulting higher cost and lower performance. Note the minimum decoding implied by the code and the inclusion of pipeline
registers. There is no need for a global reset, as is the case with the majority of designs.

if clk'event and clk='1' then

 case port_id(0) is

 -- read UART status at address 00 hex
 when '0' => in_port <= uart_status_port;

 -- read UART recieve data at address 01 hex
 when '1' => in_port <= rx_data;

 when others => in_port <= "XXXXXXXX";

 end case;

 -- Form read strobe for UART receiver FIFO buffer.
 read_from_uart <= read_strobe and port_id(0);

end if;

uart_status_port <= "000" & rx_data_present & rx_full & rx_half_full & tx_full & tx_half_full;

Grouping the individual UART status signals into a bus makes the code easy to read. The MSB’s have been forced low in this
example, but these could also be masked or ignored in the KCPSM3 program.

The ‘port_id’ is valid for 2 clock cycles during an
INPUT operation so the multiplexer can be pipelined.

Use the minimum number of ‘port_id’ bits to control
the multiplexer. In this design only bit0 is ever used.

Avoid using the common syntax….
 when others => null;
In designs were there are logical ‘others’, the ‘null’
will result in feedback to latch the valid last state
resulting in unnecessary functionality with
associated cost.

It is vital that ‘read_strobe’ is used to qualify the
‘port_id’ when reading the FIFO. ‘port_id’ changes
during execution of all instructions and not just I/O
operations.

UART_real_time_clock 12

The Hardware - Outputs
Data is output to the UART transmitter and one simple register. Again the minimum of address decoding can be employed.

DATA_IN[7:0]

WRITE_BUFFER

RESET_BUFFER

CLK

EN_16_X_BAUD

SERIAL_OUT

BUFFER_HALF_FULL

BUFFER_FULL

uart_tx.vhd

write_to_uart
out_port

IN_PORT[7:0]

PORT_ID[7:0]
INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]CLK

READ_STROBE

WRITE_STROBE

kcpsm3.vhd

RESET

INTERRUPT_ACK

alarm

port_id(0)

CE

write_strobe

0

write_to_uart <= write_strobe and port_id(0);

Since the FIFO inside the UART macro effectively provides the destination of the data, the design only needs to provide the
address decoding. Since ‘write_strobe’ is only active for one clock cycle, this decode must be performed combinatorially.

if clk'event and clk='1' then
 if write_strobe='1' then

 -- Alarm register at address 00 hex
 if port_id(0)='0' then
 alarm <= out_port(0);
 end if;

 end if;
end if;

By keeping the ‘port_id’ decoding to an absolute minimum, it should
not be necessary to add a pipeline stage in the 2-clock cycle ‘port_id’
path. When more complex decoding is required, the code can be
modified to perform the bulk of the address decoding in the first clock
cycle and then qualify with the ‘write_strobe’ using a simple AND gate
in the second cycle.

port_id
=5A

write_strobe

en5A

UART_real_time_clock 13

The Hardware - UART
In the reference design provided, the UARTs are set up to operate at 38400 BAUD with a 55MHz reference clock.
Documentation for the UART macros is provided separately, so here we just look at the connections and baud rate generation
used in this design.

DATA_IN[7:0]

WRITE_BUFFER

RESET_BUFFER

CLK

EN_16_X_BAUD

SERIAL_OUT

BUFFER_HALF_FULL

BUFFER_FULL

uart_tx.vhd

SERIAL_IN

READ_BUFFER

uart_rx.vhd

DATA_PRESENT

DATA_OUT[7:0]

EN_16_X_BAUD

BUFFER_HALF_FULL

BUFFER_FULLRESET_BUFFER

CLK

BUFFER_

counter

baud_count
RST =89

Clk=55MHz

if clk'event and clk='1' then
 if baud_count=89 then
 baud_count <= 0;
 en_16_x_baud <= '1';
 else
 baud_count <= baud_count + 1;
 en_16_x_baud <= '0';
 end if;
end if;

signal baud_count : integer range 0 to 127 :=0;

en_16_x_baud

In a very similar way to the interrupt timer, a simple counter can
be used to generate the pulses required to define the UART
communication rate. Make sure you define the integer range and
initial condition. An SRL16E based shift register could also be
used in this situation.

Clock division =
clk_rate

BAUD × 16
= 55,000,000

38400 × 16

= 89.52 We can round this up to 90

Therefore ‘baud_count’ will count from 0 to 89.

UART_real_time_clock 14

KCPSM3 Program Code
As a reference design, this document is not intended to teach how to write software or explain how the individual instructions for
KCPSM3 operate. Coding styles are very much a personal choice, but it is always useful to know what is possible and to
consider some useful techniques which enable code to be easier to write, manage and understand.

In the following pages, excerpts of the supplied ‘uclock.psm’ program are selected to highlight particular coding styles and
illustrate how the features and instruction set of KCPSM3 can be used. There will be cases where more efficient code could be
written and there will be cases where more readable code could be written, but it is hoped that even in the form supplied it will
inspire you with some ideas of your own.

Finally, the program has been written using multiple sub routines. Since some of these provide useful functions such as
communications with the UART macros, these may also be directly useful in other designs.

Hint - It will be useful to have a copy of the KCPSM3 documentation when reviewing the code.

Assemble the ‘uclock.psm’ program and become familiar with the files which KCPSM3 generates.
Take a look at the ‘uclock.log’ file…....

How much of the available program memory has been used?
Where is the interrupt service routine (ISR) located?
Four registers have been given special names. What are they?

Take a look at the ‘constant.txt’ file…....
Observe the relatively long list of constants that were declared.
Notice how many have the same value.
How many minutes are there in an hour (in hexadecimal)?

Before you continue…..

Register Names

sC
sD
sE
sF

UART_real_time_clock 15

Software - I/O Ports
The CONSTANT directive is provided to allow values to be given a name which are then used in the program code. Although
optional, they are probably the most significant way to make your code easier to understand and portable. Is is therefore not
surprising to find that the program begins with a list of constants.

CONSTANT UART_status_port, 00 ;UART status input
CONSTANT tx_half_full, 01 ; Transmitter half full - bit0
CONSTANT tx_full, 02 ; FIFO full - bit1
CONSTANT rx_half_full, 04 ; Receiver half full - bit2
CONSTANT rx_full, 08 ; FIFO full - bit3
CONSTANT rx_data_present, 10 ; data present - bit4
;
CONSTANT UART_read_port, 01 ;UART Rx data input
;
CONSTANT UART_write_port, 01 ;UART Tx data output
;
CONSTANT alarm_port, 00 ;Alarm output
CONSTANT alarm_control, 01 ; bit0

Providing each port with a name really helps to make the code understandable and helps define the boundary between hardware
and software where it is all too easy to make a mistakes. The port address values assigned here directly reflect the hardware.

It is often useful to identify particular bit positions within a port. The UART status bits are an excellent example of this. Each of
the 5 status bits are identified with the hexadecimal code for which only the corresponding bit position is high. It is a good idea to
use the same names as used in the VHDL code to further solidify the bridge between hardware and software design.

rx_full = 0816 = 000010002

uart_status_port <= "000" & rx_data_present & rx_full & rx_half_full & tx_full & tx_half_full;

Defining the I/O ports

UART_real_time_clock 16

Software - Scratch Pad Memory
It useful to have a picture of how the scratch pad memory will be used. This ‘memory map’ will help you allocate locations and be
a useful reference to the names you have allocated as you write your code. Below is the map for the ‘uclock’ program. At the end
of this document you will find a set of clean resource charts for you to help with development of your own programs.

;Scratch Pad Memory Locations
;
CONSTANT us_time_stamp_lsb, 00 ;16-bit micro-second timestamp
CONSTANT us_time_stamp_msb, 01

Constant values are now used to define the address within scratch pad memory at which a value is stored or at which the start of
a block of data will be stored. Again, constants can be used to identify the special meaning of bits at some locations.

Defining the Scratch Pad Memory Locations

Scratch Pad Memory
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

us_time_stamp_lsb
us_time_stamp_msb

us_time_msb
us_time_lsb

ms_time_msb
ms_time_lsb

real_time_hours
real_time_minutes
real_time_seconds
alarm_time_hours
alarm_time_minutes
alarm_time_seconds

time_preserve0
time_preserve1
time_preserve2
time_preserve3
time_preserve4
time_preserve5

string_start

alarm_status

te
m

po
ra

ry
st

or
ag

e

Te
xt

 s
tri

ng
 s

to
ra

ge
(e

nd
s

w
ith

 c
ar

ria
ge

 re
tu

rn
)

time

alarm

milli
micro

UART_real_time_clock 17

Software - Constants
The final use of the CONSTANT directive is to define actual constant values which will be used to make the code easier to read
and write. Note that these constants do not really need to be located at the beginning of the program. If they are significant to a
given sub routine, then this is a good place to put them and will make the code more portable.

;Useful constants for real time clock operations
;
CONSTANT count_1000_lsb, E8 ;lower 8-bits of 1000 count value
CONSTANT count_1000_msb, 03 ;upper 8-bits of 1000 count value
CONSTANT hours_in_a_day, 18 ;24 hours in a day
CONSTANT minutes_in_an_hour, 3C ;60 minutes in an hour
CONSTANT seconds_in_a_minute, 3C ;60 seconds in a minute

Constants are used to define useful values where they are needed in the program. They are particularly good at helping to
document the code automatically especially as the KCPSM3 assembler only directly supports hexadecimal values.

Note - The KCPSM3 assembler currently supports a maximum of 300 constants within a program, but this really should be
adequate for any program. ‘uclock.psm’ defines just over 100 constants including the table of ASCII characters.

Defining useful values

100010 = 03E816

;ASCII table
;
CONSTANT character_a, 61
CONSTANT character_b, 62
CONSTANT character_c, 63
CONSTANT character_d, 64

Constant values are applied globally to the program regardless of where they are defined. Therefore the very end of the program
is a good place to define useful constant values even if they are not all required by the program.

The end of ‘uclock.psm’ defines many of the characters in the ASCII table. These
make it easier to define and interpret text messages. It is unlikely that every
character is used in the program (and it isn’t) but the complete definition is useful
to copy to other programs and makes modifications to the program simple.

UART_real_time_clock 18

Software - Registers
KCPSM3 has 16 general purpose registers providing significant flexibility when writing programs. Indeed, many users of the
original PicoBlaze (KCPSM) have reported that all the variables required by the application could be contained in these 16
registers without need for external memory. Under such conditions it is vital to manage the allocation of registers very well to
prevent destruction of data by inadvertent reuse of a particular register in another part of the program. The NAMEREG directive
is an ideal way to allocate registers and help prevent this undesirable situation.

;Special Register usage
;
NAMEREG sF, UART_data ;used to pass data to and from the UART
;
NAMEREG sE, store_pointer ;used to pass location of data in scratch pad memory
;
;Two registers to form a 16-bit counter used to count
;interrupt pulses generated at 1us intervals.
;
NAMEREG sD, int_counter_lsb ;lower 8-bits
NAMEREG sC, int_counter_msb ;upper 8-bits

When writing sub routines it is recommended that you add comments naming the registers which are used. Some may be used
to transfer information between the subroutine and the invoking level of code. It is likely that other registers will only be used as
‘working registers’ within the sub routine to perform the required operations. It is these ‘working registers’ that you need to be the
most careful with to ensure that they do not modify valuable data.

The ‘uclock.psm’ only defines the names for 4 of the registers. Although any register can be renamed, by allocating the registers
from the highest downwards, the lowest register numbers always remain. The lower registers with default names are then ideal
as ‘working registers’ in sub routines. Adopting this style will make much of your code highly portable.

 ;Registers used s0, s1, s2, 'store_pointer' and 'UART_data'.
 ;
transmit_time: LOAD store_pointer, real_time_hours ;locate current time in memory

UART_real_time_clock 19

Software - Code Strategy
The larger block RAM provided with Spartan-3 devices means that KCPSM3 can execute programs up to 4 times longer than
with the original KCPSM PicoBlaze in a Spartan-II(E) device. Longer programs can naturally lead to more complexity as they
implement more functionality. It is also likely that more variables and data will be required by such applications and this was the
main motivation for including the 64-bytes of Scratch Pad Memory in KCPSM3.

The introduction of scratch pad memory within a PicoBlaze has tended to change the overall coding strategy. Although some
registers are still reserved for special tasks using the NAMEREG directive, the majority of variables and data is now stored in the
scratch pad memory and accessed and manipulated using ‘working registers’. Obviously there is both a code and performance
overhead to this technique but the flexibility and portability of code is highly desirable.

The ‘uclock.psm’ program allocates registers using NAMEREG for the following reasons:-

 a) Time critical access - ‘int_counter_lsb’ and ‘int_counter_msb’ need to be updated quickly during an ISR.
 b) Code independence - The ISR uses only ‘int_counter_lsb’ and ‘int_counter_msb’ and guarantees that no other variables are
 modified during this event that could occur at any time.
 c) Frequently used - ‘UART_data’ is used in many parts of the program and makes the code more understandable.
 d) Code interaction and portability - ‘store_pointer’ is used to pass the location of information in
 scratch pad memory to subroutines.

Allocating Registers

Allocating Scratch Pad Memory
The scratch pad memory is then used for the majority of data and variables associated with the clock application. Clearly there is
far more information than could be held within registers alone. The memory is used in 3 different ways by the ‘uclock’ program:-

 a) Non time critical variables - The variables defining the real time and alarm time.
 b) Temporary storage - The ‘update_time’ subroutine requires several ‘working registers’ and is invoked from various places
 within the program. The ‘time_preserve’ locations are used to preserve the contents of those ‘working
 registers’ during execution and then restore them on completion.
 c) Data Buffer - The ‘string_start’ constant identifies the beginning of a memory block used to buffer text strings received from,
 or to be transmitted to the UART.

UART_real_time_clock 20

Software - Code Strategy
The register and scratch pad memory strategy is nicely demonstrated at various points within the ‘uclock’ program. The
‘time_to_ASCII’ sub routine takes the values for hours, minutes and seconds and converts them into a an ASCII text string ready
to be transmitted on the UART. The code excerpts below show how the strategy is applied with this routine…..

There are currently 2 time values which need to be
transmitted, the real time and the alarm time. Rather than
have a separate sub routine for each, the same routine can
be used by passing a pointer to the appropriate time value
using a named register.

transmit_time: LOAD store_pointer, real_time_hours ;locate current time in memory
 CALL time_to_ASCII

transmit_alarm_time: LOAD store_pointer, alarm_time_hours ;locate alarm time in memory
 CALL time_to_ASCII

06
07
08
09
0A
0B

real_time_minutes
real_time_seconds
alarm_time_hours
alarm_time_minutes
alarm_time_seconds

time

alarm

real_time_hours

store_pointer

FETCH s0, (store_pointer) ;read hours value
CALL decimal_to_ASCII ;convert to ASCII

ADD store_pointer, 01 ;move to minutes
FETCH s0, (store_pointer) ;read minutes value
CALL decimal_to_ASCII ;convert to ASCII

ADD store_pointer, 01 ;move to seconds
FETCH s0, (store_pointer) ;read seconds value
CALL decimal_to_ASCII ;convert to ASCII

Within the ‘time_to_ASCII’ sub routine, the time values are
accessed from the memory by incrementing the pointer
address supplied. Although this increases the code length
slightly compared with directly accessing each location with
a constant address (i.e. FETCH s0,real_time_seconds), the
overall program code is more compact due to the complete
reuse of the sub routine.

Notice how the named constants make all this code easier to understand.

UART_real_time_clock 21

Software - UART Transmit
At the lowest level of the code, the software must communicate with the hardware. With CONSTANT directives defining the
actual port addresses to be used, and in some cases, the meanings of specific bits, this code can be much more pleasant to
write. Obviously the code which interacts with hardware often needs to consider how the external logic behaves in order to
operate efficiently as well as correctly.

LOAD UART_data, character_K
CALL send_to_UART

send_to_UART: INPUT s0, UART_status_port
 TEST s0, tx_full
 JUMP Z, UART_write
 CALL update_time
 JUMP send_to_UART
 UART_write: OUTPUT UART_data, UART_write_port
 RETURN

The ‘uclock’ program includes a simple sub routine to send a byte of data (or
character) to the UART transmitter. The named register ‘UART_data’ is used to
pass data to the sub routine.

All this routine really needs to do is to write the data contained in the ‘UART_data’ register to the appropriate port which has
been named ‘UART_write_port’. This is achieved with just one OUTPUT instruction. However, the ‘uart_tx’ macro contains a
FIFO buffer, and it is therefore wise to determine if there is space in the buffer to accept the new character before attempting to
write it.

read FIFO status

Testfull

not full

Write character

‘tx_full’
constant to

test correct bit

The program will need to wait until there is space, which could be as long as it takes the UART to transmit one whole character
(260µs at 38400 BAUD). This could be an undesirable situation if it prevents other processing from being performed.
‘uclock’ demonstrates 2 solutions to this issue….
 1) Interrupts are used to ensure that the 1µs reference time pulses are never missed.
 2) The subroutine includes a call to the ‘update_time’ subroutine each time it encounters the full condition. This routine executes
 in under 4 µs (55MHz clock) which is insignificant to the UART operation but ensures that the real time is accurate and the
 alarm will still be activated. Your programs could include a call to a similar subroutine.

(see 2 below)

What if the FIFO buffer really is full?

UART_real_time_clock 22

Software - UART Receive
Not surprisingly, the ‘read_from_UART’ routine has to deal with very similar issues to the ‘send_to_UART’ routine. In this case
the program may need to wait indefinitely for information to be available to read from the FIFO buffer contained in the ‘uart_rx’
macro and it it therefore critical that the ‘uclock’ program uses interrupts and an embedded call to the ‘update_time’ routine to
ensure that everything doesn’t come grinding to a halt!

CALL read_from_UART ;obtain and echo character
STORE UART_data, (s1)

read_from_UART: INPUT s0, UART_status_port
 TEST s0, rx_data_present
 JUMP NZ, read_character
 CALL update_time
 JUMP read_from_UART
read_character: INPUT UART_data, UART_read_port
 CALL send_to_UART
 RETURN

The character data obtained from the UART receiver
will be passed back from the routine using the
‘UART_data’ register assigned for the purpose.

Once a character has been obtained, the routine immediately calls ‘send_to_UART’ to transmit back the same character to the
monitor which performs a ‘remote echo’ function.

read FIFO status

Test no data

data

read character

‘rx_data_present’
constant to test correct bit

echo character

update
time

This routine does not consider the situation in which the receiver FIFO becomes full with the associated risk of data being lost.
‘uclock’ handles this an an exception error elsewhere in the code. You may decide to treat this as a further cause for interrupt with
associated changes to the hardware.

UART_real_time_clock 23

Software - Interrupt

By their very nature, interrupts can occur at any time relative to the execution of the main program code. It is vital that any
actions which take place during the execution of the Interrupt Service Routine (ISR) do not have an adverse effect on the main
program. This is where it is useful to reserve some registers purely for use by the ISR.

ENABLE INTERRUPT ;enable the 1us interrupts

 ADDRESS 3FC
ISR: ADD int_counter_lsb, 01
 ADDCY int_counter_msb, 00
 RETURNI ENABLE

The interrupt will invoke a ‘CALL 3FF’ operation requiring an appropriate JUMP instruction to be
placed at the most significant address of the program memory. The ADDRESS directive ensures
this JUMP ‘vector’ is located it this position.

The first part of the process to ‘update_time’ requires the current value of
the interrupt counter (µs) to be captured. Because the counter is formed
by two registers, this capture requires two (STORE) instructions. It is
possible that in interrupt could occur during this capture such that the
LS-Byte and MS-Byte values do not correspond to the same value
(i.e. count value 3AFF could be captured as 3BFF as the counter
increments to 3B00). To prevent this, interrupts are temporarily disabled.
The hardware ensures that an interrupt pulse will not be missed during
this brief period.

;Interrupt vector
;
ADDRESS 3FF
JUMP ISR

The ‘uclock’ program really doesn’t have to do very much when it receives an interrupt but it is absolutely critical to the clock
application because the pulses occurring every 1µs are the fundamental timing reference. The code illustrates the general
configuration required for the software to behave correctly.

Interrupts must be enabled to work. In ‘uclock’, this
occurs just after initialisation of registers and memory.

Each interrupt is used to increment a 16-bit counter formed by two assigned
registers. This counter allows up to 65,536µs of real time to be recorded. The ISR
can be located anywhere in the program memory, but in ‘uclock’ it has been forced
to assemble in the locations adjacent to the interrupt vector purely to keep
associated code together. The ISR ends with the RETURNI instruction which
prepares KCPSM3 to capture the next pulse.

DISABLE INTERRUPT
STORE int_counter_lsb, us_time_stamp_lsb
STORE int_counter_msb, us_time_stamp_msb
ENABLE INTERRUPT

UART_real_time_clock 24

Software - ASCII codes

upper_case: COMPARE s0, 61
 RETURN C
 COMPARE s0, 7B
 RETURN NC
 AND s0, DF
 RETURN

It is not the intention of this document to explain every line of the ‘uclock’ program. However, some of the code may be directly
applicable to the applications as well as providing worthwhile examples of KCPSM3 assembler. The following routines are used
to manipulate ASCII codes.

‘A’ = 41 = 0100 0001
‘Z’ = 5A = 0101 1010

‘a’ = 61 = 0110 0001
‘z’ = 7A = 0111 1010

 DF = 1101 1111

Lower to Upper Case Conversion

A quick review of the ASCII codes reveals that the letters ‘A’ to ‘Z’ and ‘a’ to ‘z’ appear in blocks.
Close inspection reveals that these codes are identical except for bit 5 which effectively identifies the
letter as upper or lower case. The ‘upper_case’ subroutine determines if the character contained in
register ‘s0’ is in the range 61 to 7A signifying a lower case letter and then converts it to upper case.

Equivalent to ‘s0-61’, so values below 61 will result in a carry
which will reject all character codes below the letter ‘a’.
Equivalent to ‘s0-7B’, so values above 7A will not produce a
carry which will reject all character codes above the letter ‘z’.

Forces bit 5 to be low

1char_to_value: ADD s0, C6
 RETURN C
 SUB s0, F6
 RETURN

ASCII number to value Conversion
‘0’ = 30 = 0011 0000
‘9’ = 39 = 0011 1001

The ASCII codes for numbers ‘0’ to ‘9’ are conveniently arranges in a block such that the 4 least significant bits directly correspond
to the numerical value. This means that the conversion process simply requires that the 4 most significant bits need to be masked
to zero. The ‘1char_to_value’ subroutine performs this simple conversion but includes the test for character codes in the correct
range using the carry flag to indicate failure.

30 + C6 = F6
39 + C6 = FF

Character codes greater than 39 will result in a sum greater than FF
and generate a carry.

F6 - F6 = 00
FF - F6 = 09

The character codes which were less than 30 will now result in an
underflow with associated carry flag. Valid characters have correct
numerical value.

UART_real_time_clock 25

Software - String Input
The clock receives commands from the UART link as ASCII characters. To make the interface more human friendly, the
commands can be entered and modified using the backspace key before confirming entry using the carriage return.
KCPSM3 performs the task of controlling the display during command entry and forms the ASCII string in scratch pad memory.

The ‘receive_string’ sub routine commences with the definition of the scratch pad memory locations. The first location is defined
as a constant, but the length of the string has been included in the code and is used to compute the last location.

receive_string: LOAD s1, string_start ;locate start of string
 LOAD s2, s1 ;compute 16 character address
 ADD s2, 10

receive_full_test: INPUT s0, UART_status_port ;test Rx_FIFO buffer for full
 TEST s0, rx_full
 JUMP NZ, read_error

The receiver FIFO buffer is tested to see if it has become full. If this is the case, then it is assumed that characters have been
missed and an ‘Overflow_Error’ message is transmitted and all the existing data in the FIFO is discarded. It is never easy to
decide the best way to deal with an unexpected situation, but assembler code in KCPSM makes these situations relatively easy
to identify and adapt to.

The routine is then ready to enter the normal sequence of events with register ‘s1’ acting as a pointer to the scratch pad
memory. Each character is read using the ‘read_from_UART’ subroutine described earlier which also echoes the received
character to the UART transmitter to control the display and provide feedback. The received character is then stored in the
scratchpad memory.

 CALL read_from_UART ;obtain and echo character
 STORE UART_data, (s1) ;write to memory

UART_real_time_clock 26

Software - String Input

 COMPARE UART_data, character_CR ;test for end of string
 RETURN Z
 COMPARE UART_data, character_BS ;test for back space
 JUMP Z, BS_edit
 ADD s1, 01 ;increment memory pointer
 COMPARE s1, s2 ;test for pointer exceeding 16 characters
 JUMP NZ, receive_full_test ;next character
 CALL send_backspace ;hold end of string position on display
 BS_edit: SUB s1, 01 ;memory pointer back one
 COMPARE s1, string_start ;test for under flow
 JUMP C, string_start_again
 CALL send_space ;clear character at current position
 CALL send_backspace ;position cursor
 JUMP receive_full_test ;next character
string_start_again: CALL send_greater_than ;restore '>' at prompt
 JUMP receive_string ;begin again

After each character is received and stored, it is tested for ‘carriage return’ or ‘backspace’ so that the appropriate action can be
performed.

Carriage Return - This signifies the end of the string and the routine is complete.

Normal character - Increments the memory pointer ready for the next character. It must also check to see if this is the
maximum length for a string, in which case, it decrements the memory pointer and transmits a backspace so that the monitor
indicates that no more characters can be entered (the last character just gets over written on the display).

Backspace - Decrements the the memory pointer so that the backspace just stored is ignored and the previous character will
be overwritten by the next input. The echoed character has already controlled the display cursor position, but in order to look
like a delete function, a space is transmitted to clear the displayed character. This in turn requires another backspace to move
the cursor back. A test is also performed to ensure that a backspace can not move back into the command prompt.

UART_real_time_clock 27

Software - String Output
This routine simply transmits an ASCII string held in scratch pad memory to the UART transmitter. The characters are
transmitted one at a time using the ‘send_to_UART’ routine described previously.

The start of the string is defined by a constant and the end of the string is identified by the carriage return character (which is
also transmitted). The register ‘s1’ is used as a memory pointer in this routine.

 transmit_string: LOAD s1, string_start ;locate start of string
 next_char_tx: FETCH UART_data, (s1) ;read character from memory
 CALL send_to_UART ;transmit character
 COMPARE UART_data, character_CR ;test for last character
 RETURN Z
 ADD s1, 01 ;move to next character
 JUMP next_char_tx

The execution speed of this subroutine will depending on the length of the string and the available space in the UART
transmitter FIFO. The ‘send_to_UART’ routine waits for space to be available for each character.

UART_real_time_clock 28

Software - Clock
Although the main application focus of this reference design provides a real time clock, the code for this is actually of less
interest to analyze and would be less likely to be used in another application. For this reason, only small sections of code are
described to make some useful observations. update_time: STORE s0, time_preserve0

 STORE s1, time_preserve1
 STORE s2, time_preserve2
 STORE s3, time_preserve3
 STORE s4, time_preserve4
 STORE s5, time_preserve5

Transparent Processing

The ‘update_time’ routine is a significant section of code which is
called from various points in the program. The routine requires
several ‘working registers’. Since it would become difficult to
manage the use of these registers when dealing with other parts of
the program, the routine is made effectively ‘transparent’ by
preserving the contents of all the used registers in scratch pad
memory during the routine.

The store and fetch instructions clearly take some code space and
require time to execute, but this technique will make applications
very portable and safe to use. This would be particularly useful for
interrupt service routines requiring significant processing.

finish_update: FETCH s0, time_preserve0
 FETCH s1, time_preserve1
 FETCH s2, time_preserve2
 FETCH s3, time_preserve3
 FETCH s4, time_preserve4
 FETCH s5, time_preserve5
 RETURN

S0 to s5 free to be used

SUB s4, s2
SUBCY s5, s3
FETCH s2, us_time_lsb
FETCH s3, us_time_msb
ADD s2, s4
ADDCY s3, s5

16-bit operations

[s5,s4] = [s5,s4] - [s3,s2]

Interrupt counter
time (µs)

[s5,s4][s3,s2]

The ‘µs’ and ‘ms’ values of real time are handled as 16-bit quantities. The ability to include the CARRY flag in arithmetic
operations makes it possible to perform the 16-bit calculations that are required. In each case the LS-Bytes are processed first
(without carry) and the carry incorporated into the processing of the MS-Bytes.

Elapsed time(µs)
Calculate number of ‘µs’ elapsed since last

update. This could be up to 65,536µs.

[s3,s2] = [s3,s2] + [s5,s4]
Add elapsed ‘µs’ to the real time total of ‘µs’.

UART_real_time_clock 29

Software - Clock
The seconds, minutes, and hours operation is just a classic example of assembler programming. This section of code begins
with the value ‘00’ or ‘01’ in the ‘s0’ register indicating the requirement to add one second of real time.

 FETCH s1, real_time_seconds
 ADD s1, s0
 COMPARE s1, seconds_in_a_minute
 JUMP Z, inc_minutes
 STORE s1, real_time_seconds
 JUMP time_update_complete
inc_minutes: LOAD s1, 00
 STORE s1, real_time_seconds
 FETCH s1, real_time_minutes
 ADD s1, 01
 COMPARE s1, minutes_in_an_hour
 JUMP Z, inc_hours
 STORE s1, real_time_minutes
 JUMP time_update_complete
 inc_hours: LOAD s1, 00
 STORE s1, real_time_minutes
 FETCH s1, real_time_hours
 ADD s1, 01
 COMPARE s1, hours_in_a_day
 JUMP Z, reset_hours
 STORE s1, real_time_hours
 JUMP time_update_complete
reset_hours: LOAD s1, 00
 STORE s1, real_time_hours

Note that the actual code includes comments. These are always
worth adding to your code to increase the understandability of
the code especially when you return to it several weeks or
months later. However, it is advisable to keep comments brief
otherwise log files can become difficult to print.

Value Constants make the code easier to read and understand
and are used here in the COMPARE instructions which actually
perform a subtraction, discard the result, but still set the flags.
Equal values will therefore cause the ZERO flag to be set.

Scratch pad memory and location constants.
The memory provided the main variable storage for the real
time clock application and the registers are only used on a
temporary basis. The use of location constants makes the
meaning of each location obvious leading to very readable code
which is portable.

Line labels are so easy to use and again help readability of the
code. It is most unusual to use absolute address values in any
JUMP or CALL instruction. Whilst it is useful to use descriptive
labels, try to keep them brief to help formatting.

UART_real_time_clock 30

Future Plans and Exercises
Since the main purpose of this package was as a reference design, there is no commitment to further enhance this as a design.
However, if user feedback indicates that this is a useful ‘IP core’ in itself, there may be further development. At this time, it is left
to the reader to modify this reference design to provide any required functionality. Your feedback will be very useful in improving
the reference design for both educational and IP requirements.

It is suggested that the addition of the following features would provide suitable self training opportunities.

Future Plans

Exercises

Similar to setting a home VCR or central heating controller, provide the ability to program the clock with a start time
and an end time which results in an output pin being turned ‘on’ during the specified times.
 Hardware - Add an additional output port.
 Software - interpret new command string and implement another time value in scratch pad memory.

Start/Stop Timer

Modify the existing design to…..
1) Operate at a baud rate of 9600 - Hardware change only.
2) Provide an interrupt at 10µs intervals - Hardware and software changes (ISR).
3) Make the alarm condition transmit a message to the terminal - Software change only.

Add support for day name and full date. My be you even know the way to compute the day from the date!
 Software - New command strings, messages and values stored in scratch pad memory.

Day/Date support

UART_real_time_clock 31

KCPSM3 Resource Charts

Ken Chapman - Xilinx Ltd - 2003

Scratch Pad Memory
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

Register Names
s0
s1
s2
s3
s4
s5
s6
s7
s8
s9
sA
sB
sC
sD
sE
sF

Constants Values

