Chapter 1

Portfolio Theory with Matrix
Algebra

Updated: November 9, 2011

When working with large portfolios, the algebra of representing portfolio
expected returns and variances becomes cumbersome. The use of matrix (lin-
ear) algebra can greatly simplify many of the computations. Matrix algebra
formulations are also very useful when it comes time to do actual computa-
tions on the computer. The matrix algebra formulas are easy to translate
into matrix programming languages like R. Popular spreadsheet programs
like Microsoft Excel, which are the workhorse programs of many financial
houses, can also handle basic matrix calculations. All of this makes it worth-
while to become familiar with matrix techniques for portfolio calculations.

1.1 Portfolios with Three Risky Assets

Consider a three asset portfolio problem with assets denoted A, B and C. Let
R; (i = A, B,C) denote the return on asset ¢ and assume that the constant
expected return (CER) model holds:

COV(Ri,Rj) = 0yj.

Example 1 Three asset example data

1
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Stock ¢y, op Pair (i,j) oy

A 0.0427 0.1000 (A,B)  0.0018
B 0.0015 0.1044 (A,C) 0.0011
C 0.0285 0.1411 (B,C) 0.0026

Table 1.1: Three asset example data.

Table 1.1 gives example data on monthly means, variances and covariances
for the continuously compounded returns on Microsoft, Nordstrom and Star-
bucks (assets A, B and C) based on sample statistics computed over the
five-year period January, 1995 through January, 2000'. The values of p;
and o; (risk-return trade-offs) are shown in Figure 1.1. Clearly, Microsoft
provides the best risk-return trade-off and Nordstrom provides with worst.
|

Let z; denote the share of wealth invested in asset ¢ (i = A, B,C), and
assume that all wealth is invested in the three assets so that x4 +zp+xc = 1.
The portfolio return, R, ., is the random variable

Rp,z =x4Rs+ 2R + 2cRc. (11)

The subscript “z” indicates that the portfolio is constructed using the x-
weights x4, xg and xc. The expected return on the portfolio is

fpo = E[Ry] = wapiy +wppip + vopc, (1.2)
and the variance of the portfolio return is
o2, = var(Ry,) (1.3)
= 1‘1240124 + Z‘%U% + Z’%U% 4+ 20430 AB + 20 4Tc0 Ac + 22 BXCOBC.-

Notice that variance of the portfolio return depends on three variance terms
and six covariance terms. Hence, with three assets there are twice as many
covariance terms than variance terms contributing to portfolio variance. Even
with three assets, the algebra representing the portfolio characteristics (1.1)
- (1.3) is cumbersome. We can greatly simplify the portfolio algebra using
matrix notation.

!This example data is also analyized in the Excel spreadsheet 3firmExample.xls.
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Figure 1.1: Risk-return tradeoffs among three asset portfolios. The portfo-
lio labeled “E1” is the efficient portfolio with the same expected return as
Microsoft; the portfolio labeled “E2” is the efficient portfolio with the same
expected return as Starbux. The portfolio labeled GLOBAL MIN is the min-
imum variance portfolio consisting of Microsoft, Nordstrom and Starbucks,
respectively.

1.1.1 Portfolio Characteristics Using Matrix Notation

Define the following 3 x 1 column vectors containing the asset returns and
portfolio weights

Re xc

In matrix notation we can lump multiple returns in a single vector which we
denote by R. Since each of the elements in R is a random variable we call
R a random vector. The probability distribution of the random vector R is
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simply the joint distribution of the elements of R. In the CER model all
returns are jointly normally distributed and this joint distribution is com-
pletely characterized by the means, variances and covariances of the returns.
We can easily express these values using matrix notation as follows. The
3 x 1 vector of portfolio expected values is

Ry E[RA] N
ER =E|| ry || =| BElRe | = | 1p | =12
Re E[Rc] fho

and the 3 x 3 covariance matrix of returns is

var(Ra)  cov(Ra, Rp) cov(Ra, Re)
var(R) = | cov(Rp,Rs) var(Rg) cov(Rp, Re)
cov(Re, Ra) cov(Re, Rg)  var(Re)

2
04 0AB 0AC

2 _
= | oup 0} opc | =%

2
0AC 0BC O¢

Notice that the covariance matrix is symmetric (elements off the diago-
nal are equal so that ¥ = X', where ¥’ denotes the transpose of X) since
cov(Ra, Rp) = cov(Rp, Ra), cov(Ra, Rc) = cov(Re, Ra) and cov(Rp, Ro) =
COV(Rc, R B)-

Example 2 FEzample return data using matriz notation

Using the example data in Table 1.1 we have

Ly 0.0427
p=1pu;|=100015 |,
L 0.0285

0.0100 0.0018 0.0011
3 = | 0.0018 0.0109 0.0026
0.0011 0.0026 0.0199
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In R, these values are created using

asset.names <- c("MSFT", "NORD", "SBUX")
mu.vec = ¢(0.0427, 0.0015, 0.0285)
names (mu.vec) = asset.names
sigma.mat = matrix(c(0.0100, 0.0018, 0.0011,
0.0018, 0.0109, 0.0026,
0.0011, 0.0026, 0.0199),
nrow=3, ncol=3)
dimnames (sigma.mat) = list(asset.names, asset.names)
mu.vec
MSFT NORD SBUX
.0427 0.0015 0.0285
sigma.mat
MSFT NORD SBUX
MSFT 0.0100 0.0018 0.0011
NORD 0.0018 0.0109 0.0026
SBUX 0.0011 0.0026 0.0199

[ |
The return on the portfolio using matrix notation is

vV V 4+ + + V V V V

v O

R4
R,. =xR = (za,2p,2¢) | Rg | =xaRa+ 2R+ xcRc.
Rc
Similarly, the expected return on the portfolio is

Ha
. = EXR] =xX'ER] =x'p = (z4,25,30) | pg | =vapatzsugtzcuc.

276}
The variance of the portfolio is
0,24 OAB 0AC TA
af,’z = var(xX'R) = x'Sx = (24,2B,%¢) - | oup 0% onc T
0ACc OBC 0% Tc

2 2 2 2 2 2
= 1504 + TR0 + X000 + 20470 AB + 204700 ACc + 22T 0O BC.
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The condition that the portfolio weights sum to one can be expressed as

1
x'1=(za,2,20) | 1 | =xa+2p+ 120 =1,

1

where 1 is a 3 x 1 vector with each element equal to 1.
Consider another portfolio with weights y = (v, y5, yc). The return on
this portfolio is

R,y = YR =yaRs +ypRp + ycRe.

Later on we will need to compute the covariance between the return on port-
folio x and the return on portfolio y, cov(R, ., R,,). Using matrix algebra,
this covariance can be computed as

Ozy = cOV(R, ., Ry,) = cov(x'R,y'R)

2
04 OAB 0AC Ya
/
= ny:(xA,xB,xc)- O AB 023 0Bc YB
2
0AC OBc O¢ Yo

2 2 2
= TAYAOy +XZBYBOE + TcYcTo

+H(@ayp + rYa)oas + (Tayc + rcya)oac + (Tpyc + Tcyp)oac.
Example 3 Portfolio computations in R

Consider an equally weighted portfolio with x4 = xp = z¢ = 1/3. This
portfolio has return R,, = x'R where x = (1/3,1/3,1/3)". Using R, the
portfolio mean and variance are

> x.vec = rep(1,3)/3

> names(x.vec) = asset.names

> mu.p.x = crossprod(x.vec,mu.vec)

> sig2.p.x = t(x.vec)’*)sigma.mat)*%x.vec
> sig.p.x = sqrt(sig2.p.x)

> mu.p.x

[,1]
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[1,] 0.02423

> sig.p.x
[,1]

[1,] 0.07587

Next, consider another portfolio with weight vector y = (ya,y5, yc)" = (0.8,
0.4, —0.2)" and return R, , = y'R. The covariance between R,, and R, is

> y.vec = ¢(0.8, 0.4, -0.2)
> names(x.vec) = asset.names
> sig.xy = t(x.vec)¥%*)sigma.matl*%y.vec

> sig.xy
[,1]
[1,] 0.003907
|

1.1.2 Finding the Global Minimum Variance Portfolio

The global minimum variance portfolio m = (mu,mp, m¢)" for the three
asset case solves the constrained minimization problem

2 2

: _ 2 2 2 2 2
min o, =Mmu0, + Moy +meog (1.4)

maA,mp,mc
+2mampo ap + 2mameo ac + 2mpmeo e
s.t. ma+mp+me = 1.
The Lagrangian for this problem is
L(ma,mp,ma, \) = m40% +myop + mios
+2MmAampo ap + 2mameo ac + 2mpmeope
+A(ma+mp+me — 1),

and the first order conditions (FOCs) for a minimum are

oL
0 = B :2mA0124—|—2mBOAB+2mCUAB+)\a (1'5)
A
oL 9
0 = - =2mpoy + 2maoap + 2mcope + A,
A
oL 9
0 = o =2mco + 2macac + 2mpope + A,
A
oL
0= & st mp +me— 1.

()
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The FOCs (1.5) gives four linear equations in four unknowns which can be
solved to find the global minimum variance portfolio weights m 4, mp and
mc.

Using matrix notation, the problem (1.4) can be concisely expressed as
min o2, =m'Sms.t. m'l=1. (1.6)

The four linear equation describing the first order conditions (1.5) has the
matrix representation

20?4 20'AB 2UAC 1 ma 0
QUAB 20'23 20’30 1 mpg 0
240 205c 20% 1| | me ol
1 1 1 0 A 1
or, more concisely,
2> 1 m 0
= (1.7)
1 0 A 1
The system (1.7) is of the form
A,.z,, = Db,
where
2> 1 m
A, = y Ty = and b =
1 0 A 1
The solution for z,, is then
zn = A 'b. (1.8)

The first three elements of z,, are the portfolio weights m = (ma, mg, m¢)’
for the global minimum variance portfolio with expected return j, ,, = m'u
and variance o7, = m'Xm.

Example 4 Global minimum variance portfolio for example data

Using the data in Table 1, we can use R to compute the global minimum
variance portfolio weights from (1.8) as follows:



1.1 PORTFOLIOS WITH THREE RISKY ASSETS 9

top.mat = cbind(2*sigma.mat, rep(1, 3))
bot.vec = c(rep(1l, 3), 0)

Am.mat = rbind(top, bot)

b.vec = c(rep(0, 3), 1)

z.m.mat = solve(Am.mat)%*¥%b.vec

m.vec = z.m[1:3,1]

m.vec

MSFT NORD SBUX

0.4411 0.3656 0.1933

V V V V V V V

Hence, the global minimum variance portfolio has portfolio weights 12,55 =
0.4411, mporq = 0.3656 and My, = 0.1933, and is given by the vector

m = (0.4411, 0.3656,0.1933)". (1.9)

The expected return on this portfolio, j,,, = m’y, is

> mu.gmin = as.numeric(crossprod(m.vec, mu.vec))
> mu.gmin
[1] 0.02489

The portfolio variance, Jf,m = m’¥m, and standard deviation, 0, ,,, are

> sig2.gmin = as.numeric(t(m.vec)%*%sigma.maty*/m.vec)
> sig.gmin = sqrt(sig2.gmin)

> sig2.gmin

[1] 0.005282

> sig.gmin

[1] 0.07268

In Figure 1.1, this portfolio is labeled “global min”.H

Alternative derivation of global minimum variance portfolio

The first order conditions (1.5) from the optimization problem (1.6) can be
expressed in matrix notation as

o = JHmAN _y e, (1.10)
(3x1) om
o - LNy (1.11)

(1x1) O\
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Using (1.10), first solve for m :
1
= ——- A%
M=
Next, multiply both sides by 1’ and use (1.11) to solve for A:

1 = 1’m:—%-)\1'2_11
1

A= 2
1'¥-11

Finally, substitute the value for A back into (1.10) to solve for m:

1 1 $-11
(2 Rt P
m (=2 s 1 1S 11

(1.12)

Example 5 Finding global minimum variance portfolio for example data

Using the data in Table 1, we can use R to compute the global minimum
variance portfolio weights from (1.12) as follows:

one.vec = rep(1l, 3)

sigma.inv.mat = solve(sigma.mat)

top.mat = sigma.inv.matl*}one.vec

bot.val = as.numeric((t(one.vec)%*%sigma.inv.mat)*}one.vec))
m.mat = top.mat/bot.val

m.mat[,1]

MSFT NORD  SBUX

0.4411 0.3656 0.1933

>
>
>
>
>
>

1.1.3 Finding Efficient Portfolios

The investment opportunity set is the set of portfolio expected return, ),
and portfolio standard deviation, o, values for all possible portfolios whose
weights sum to one. As in the two risky asset case, this set can be described
in a graph with p,, on the vertical axis and o, on the horizontal axis. With
two assets, the investment opportunity set in (u,,0,)— space lies on a curve
(one side of a hyperbola). With three or more assets, the investment oppor-
tunity set in (u,, o) — space is described by set of values whose general shape
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is complicated and depends crucially on the covariance terms o;;. However,
we do not have to fully characterize the entire investment opportunity set.
If we assume that investors choose portfolios to maximize expected return
subject to a target level of risk, or, equivalently, to minimize risk subject to
a target expected return, then we can simplify the asset allocation problem
by only concentrating on the set of efficient portfolios. These portfolios lie
on the boundary of the investment opportunity set above the global mini-
mum variance portfolio. This is the framework originally developed by Harry
Markowitz, the father of portfolio theory and winner of the Nobel Prize in
€COoNnomics.

Following Markowitz, we assume that investors wish to find portfolios
that have the best expected return-risk trade-off. Markowitz characterized
these efficient portfolios in two equivalent ways. In the first way, investors
seek to find portfolios that maximize portfolio expected return for a given
level of risk as measured by portfolio variance. Let 012)70 denote a target level
of risk. Then Harry Markowitz characterized the constrained maximization
problem to find an efficient portfolio as

max j1, = X p s.t. (1.13)

2 _ 2 14
o, =x¥x=0,5and x1=1

Markowitz showed that the investor’s problem of maximizing portfolio ex-
pected return subject to a target level of risk has an equivalent dual represen-
tation in which the investor minimizes the risk of the portfolio (as measured
by portfolio variance) subject to a target expected return level. Let p,,, de-
note a target expected return level. Then the dual problem is the constrained
minimization problem

min o2, = xX'¥x s.t. (1.14)

py, = X't = 1,0, and x'1 = 1,

To find efficient portfolios of risky assets in practice, the dual problem (1.14)
is most often solved. This is partially due to computational conveniences and
partly due to investors being more willing to specify target expected returns
rather than target risk levels. The efficient portfolio frontier is a graph of ,
versus o, values for the set of efficient portfolios generated by solving (1.14)
for all possible target expected return levels y, , above the expected return
on the global minimum variance portfolio. Just as in the two asset case, the
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resulting efficient frontier will resemble one side of an hyperbola and is often
called the “Markowitz bullet”.

To solve the constrained minimization problem (1.14), first form the La-
grangian function

L(x, A1, Ao) = X'Bx 4+ M (X' pp—p,,0) + Ao(x'1 = 1).

Because there are two constraints (x'p = g, and x'1 = 1) there are two
Lagrange multipliers A; and A\y. The FOCs for a minimum are the linear
equations

aL(X, )\1, )\2) ’

a—)\l = XHu— /uLp,O = Oa (116)

8L(x, )\1, )\2) ’

e %1 —-1=0. 1.1
N X 0 (1.17)

These FOCs consist of five linear equations in five unknowns (x4, g, o, A1, A2).
We can represent the system of linear equations using matrix algebra as

2 p 1 X 0
w 00 A = o |
17 00 A2 1
or
A, z,= by,
where
2 p 1 X 0
A= i 00|, 2.=] )\ | andby= Iy 0
1 00 A2 1

The solution for z, is then
z, = A, 'by. (1.18)

The first three elements of z, are the portfolio weights x = (x4, zp,x¢) for
the efficient portfolio with expected return p,, , = 1,
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Example 6 Efficient portfolio with the same expected return as Microsoft

Using the data in Table 1, consider finding an efficient portfolio with the same
expected return as Microsoft. That is, consider solving (1.14) with target
expected return g1, o = fi,,sp; = 0.0427 using (1.18). The R calculations are

> top.mat = cbind(2*sigma.mat, mu.vec, rep(l, 3))
> mid.vec = c(mu.vec, 0, 0)

> bot.vec = c(rep(1, 3), 0, 0)

> Ax.mat = rbind(top.mat, mid.vec, bot.vec)

> bmsft.vec = c(rep(0, 3), mu.vec["MSFT"], 1)

> z.mat = solve(Ax.mat)%*)bmsft.vec

> x.vec = z.mat[1:3,]

> x.vec

MSFT NORD SBUX
0.82745 -0.09075 0.26329

Hence, the efficient portfolio with the same expected return as Microsoft has
portfolio weights s = 0.82745, Xporq = —0.09075 and g, = 0.26329,
and is given by the vector

x = (0.82745, —0.09075, 0.26329) . (1.19)

The expected return on this portfolio, y,, = x'u, is equal to the target
return fi,,

> mu.px = as.numeric(crossprod(x.vec, mu.vec))
> mu.px
[1] 0.0427

2

The portfolio variance, o, ,

= x'3x, and standard deviation, o, ,, are

> sig2.px = as.numeric(t(x.vec)’%*)sigma.mat*%x.vec)
> sig.px = sqrt(sig2.px)

> sig2.px

[1] 0.0084

> sig.px

[1] 0.09166

and are smaller than the corresponding values for Microsoft (see Table 1).
This efficient portfolio is labeled “E1” in Figure 1.1.

Next, consider finding an efficient portfolio with the same expected return
as Starbucks:
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bsbux.vec = c(rep(0, 3), mu.vec["SBUX"], 1)
z.mat = solve(Ax.mat)%*¥bsbux.vec

y.vec = z.mat[1:3,]

y.vec

MSFT NORD SBUX

0.5194 0.2732 0.2075

vV V VvV V

This efficient portfolio has weights .57+ = 0.5194, Yora = 0.2732 and yYspys =
0.2075 and is given by the vector

y = (0.5194,0.2732,0.2075)’. (1.20)
The portfolio expected return and standard deviation are:

> mu.py = as.numeric(crossprod(y.vec, mu.vec))

> sig2.py = as.numeric(t(y.vec)’%*%sigma.mat)*x%y.vec)
> sig.py = sqrt(sig2.py)

> mu.py

[1] 0.0285

> sig.py

[1] 0.07355

This efficient portfolio is labeled “E2” in Figure 1.1.
The covariance and correlation values between the portfolio returns R, , =
x'R and R, , = y'R are given by

> sigma.xy = as.numeric(t(x.vec)%*)sigma.mat)*%y.vec)
> rho.xy = sigma.xy/(sig.px*sig.py)

> sigma.xy

[1] 0.005914

> rho.xy

[1] 0.8772
[ |

Alternative derivation of efficient portfolio

Consider the first order conditions (1.15)-(1.17) from the optimization prob-
lem (1.14). First, use (1.15) to solve for x:

-1 -1
X = 7>\12‘1u + 7A12—11. (1.21)
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Next, to find the values for A\; and Ay, pre-multiply (1.21) by p' and use
(1.16) to give

-1 -1
fo = p'X = 7)\1;1/271;1, + 7)\1;1/2711.

Similarly, pre-multiply (1.21) by 1’ and use (1.17) to give
! —1 Iy—1 —1 Iy —1

Now, we have two linear equations involving A; and Ay which we can write
in matrix notation as

—_1 A B )\1 Mo
2 \BC Ay 1]

where A = /37y, B= /Y711 and C = 1’S7'1. The solution for (A, As)’

1S
-1

)\1 o A B Ho
Ao B C 1
Using
-1
A B 1 C -B
BC AC-B*\ _p 4
we have
/\__—2(0 — B) )\__—Q(A_B )
V= Ao —pz e M T UC - B Hol -

Substituting these values back into (1.21) gives an explicit expression for the
efficient portfolio weight vector x:

~ Cuy—B

A— By ¢4
X=r X1

-1
Xntae T B
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1.1.4 Computing the Efficient Frontier

The expression for an efficient portfolio derived in the previous sub-section
showed that any efficient portfolio can be created as a convex combination
of any two efficient portfolios with different target expected returns. If the
expected return on the resulting portfolio is greater than the expected on the
global minimum variance portfolio, then the portfolio is an efficient frontier
portfolio. Otherwise, the portfolio is an inefficient frontier portfolio. As a
result, to compute the portfolio frontier in (u,,0,) space (Markowitz bullet)
we only need to find two efficient portfolios. The remaining frontier portfolios
can then be expressed as convex combinations of these two portfolios. The
following proposition describes the process for the three risky asset case using
matrix algebra.

Proposition 7 Creating a frontier portfolio from two efficient portfolios

Let x = (za,2p,2¢) and y = (ya,yn,yc)" be any two efficient portfolios
with different target expected returns x'p = p,o # y'm = p,;. That is,
portfoliox solves

2 =

min o, ,

X

x'¥x st x'p=p,,and x'1 =1,

and portfolio y solves

m;n 0129731 =y' By st.y'pu=p,,andy’l = 1.

Let o be any constant. Then the portfolio
z=ax+(l—-a)y (1.22)
axs+ (1 —a)ya
= | azp+(1—a)ys |
)

azxe + (1 — a)ye

is a frontier portfolio with

Hpz = Z,IJ’ = Qg + (]' - Oé) *Hp oy (123)
012973 = 7z'Yz = a20]237x + (1 - a)QJ?W +20(1 — )0y, (1.24)
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where

ol =x¥x,02, =y3y, 0., =xTy.

b,z TPy
If pu,, > ftpm, Where p,,, is the expected return on the global minimum
variance portfolio, then portfolio z is an efficient portfolio. Otherwise, z is
an inefficient frontier portfolio.

Example 8 Creating an arbitrary frontier portfolio from two efficient port-
folios

Consider the data in Table 1 and the previously computed efficient portfolios
(1.19) and (1.20) and let @ = 0.5. From (1.22), the frontier portfolio z is
constructed using

z=o-x+(1-a)y

0.82745 0.5194
= 0.5-1 —0.09075 | +0.5- | 0.2732
0.26329 0.2075
(0.5)(0.82745) (0.5)(0.5194)
= | (0.5)(—0.09075) | + | (0.5)(0.2732)
(0.5)(0.26329) (0.5)(0.2075)
0.6734 ZA
= 10.0912 | = | 2B
0.2354 zc

In R, the new frontier portfolio is computed using

>a=20.5
> z.vec = a*x.vec + (1-a)*y.vec
> z.vec
MSFT NORD  SBUX
0.6734 0.0912 0.2354

Using p,, , = z’'p and 012)’2 = 7/Xz, the expected return, variance and standard
deviation of this portfolio are
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> mu.pz = as.numeric(crossprod(z.vec, mu.vec))

> sig2.pz = as.numeric(t(z.vec)%*)sigma.mat)*%z.vec)
> sig.pz = sqrt(sig2.pz)

> mu.pz

[1] 0.0356

> sig2.pz

[1] 0.00641

> sig.pz

[1] 0.08006

Equivalently, using 1, , = ap, ,+(1—a)u, , and o’ . = o’o) . +(1-a)’0)  +
20(1 — a)o,y the expected return, variance and standard deviation of this
portfolio are

mu.pz = a*mu.px + (1-a)*mu.py

sig.xy = as.numeric(t(x.vec)*)sigma.mati*%y.vec)

sig2.pz = a"2 * sig2.px + (1-a)~2 * sig2.py + 2*xax(l-a)*sig.xy
sig.pz = sqrt(sig2.pz)

mu.pz

[1] 0.0356

> sig2.pz

[1] 0.00641

> sig.pz

[1] 0.08006

V V V V V

Because p1,, , = 0.0356 > p,,,,, = 0.02489 the frontier portfolio z is an efficient
portfolio. The three efficient portfolios x,y and z are illustrated in Figure
1.2 and are labeled “E1”, “E2” and “E3”, respectively.ll

Example 9 Creating a frontier portfolio with a given expected return from
two efficient portfolios

Given the two efficient portfolios (1.19) and (1.20) with target expected re-
turns equal to the expected returns on Microsoft and Starbucks, respectively,
consider creating a frontier portfolio with target expected return equal to the
expected return on Nordstrom. Then

Hp o = Clhy o + (1 - a):up,y = Hnord = 000157
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Figure 1.2: Three efficient portfolios of Microsoft, Nordstrom and Starbucks.

and we can solve for o using

o Huord My _ 0.0015 — 0.0285

= = —1.901.
loo — fp,  0.0427 —0.0285

Using R, the weights in this frontier portfolio are

> a.nord = (mu.vec["NORD"] - mu.py)/(mu.px - mu.py)

> z.nord = a.nord*x.vec + (1 - a.nord)*y.vec
> z.nord
MSFT NORD SBUX

-0.06637 0.96509 0.10128
The expected return, variance and standard deviation on this portfolio are

> mu.pz.nord = a.nord*mu.px + (1-a.nord)*mu.py
> sig2.pz.nord = a.nord"2 * sig2.px + (l-a.nord)"2 * sig2.py +
+ 2%a.nord*(1-a.nord) *sigma.xy
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> sig.pz.nord = sqrt(sig2.pz.nord)
> mu.pz.nord

NORD
0.0015
> sig2.pz.nord

NORD

0.01066
> sig.pz.nord

NORD
0.1033

Because p, , = 0.0015 < p, ,,, = 0.02489 the frontier portfolio z is an ineffi-
cient frontier portfolio. This portfolio is labeled “IE4” in Figure 1.2.1

The efficient frontier of portfolios, i.e., those frontier portfolios with ex-
pected return greater than the expected return on the global minimum vari-
ance portfolio, can be conveniently created using (1.22) with two specific
efficient portfolios. The first efficient portfolio is the global minimum vari-
ance portfolio (1.4). The second efficient portfolio is the efficient portfolio
whose target expected return is equal to the highest expected return among
all of the assets under consideration. The steps for constructing the efficient
frontier are:
1. Compute the global minimum variance portfolio m by solving (1.6), and
compute f,,, = m'p and 0, = m'Em.
2. Compute the efficient portfolio x by with target expected return equal
to the maximum expected return of the assets under consideration. That
is, solve (1.14) with 1y = max{p, iy, i3}, and compute p,, = x'pu and

o2, =xX'3x.
3. Compute cov(Rym, Rps) = Ome = m'3x.
4. Create an initial grid of « values {1,0.9,...,—-0.9,—1}, compute the

frontier portfolios z using (1.22), and compute their expected returns and
variances using (1.22), (1.23) and (1.24), respectively.
5. Plot pu, , against 0, . and adjust the grid of o values to create a nice plot.

Example 10 Compute and plot the efficient frontier of risky assets (Markowitz
bullet)

To compute and plot the efficient frontier from the three risky assets in Table
1.1 in R use
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Figure 1.3: Efficient frontier of three risky assets.

a = seq(from=1, to=-1, by=-0.1)

n.a = length(a)

z.mat = matrix(0, n.a, 3)

mu.z = rep(0, n.a)

sig2.z = rep(0, n.a)

sig.mx = t(m)%*%sigma.matl*%x.vec

for (i in 1:n.a) {
z.mat[i, ] = alil*m + (1-al[i])*x.vec
mu.z[i] = ali]l*mu.gmin + (1-a[i])*mu.px
sig2.z[i] = alil"2 * sig2.gmin + (1-al[i])~"2 * sig2.px +

2xalil*(1-al[i])*sig.mx

}

plot(sqrt(sig2.z), mu.z, type="b", ylim=c(0, 0.06), xlim=c(0, 0.17),
pch=16, col="blue", ylab=expression(mulp]),
xlab=expression(sigmalp]))

text(sig.gmin, mu.gmin, labels="Global min", pos=4)

v + + Vv + + + 4+ + V V V V VVYV
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> text(sd.vec, mu.vec, labels=asset.names, pos=4)

The variables z.mat, mu.z and sig2.z contain the weights, expected returns
and variances, respectively, of the efficient frontier portfolios for a grid of
« values between 1 and —1. The resulting efficient frontier is illustrated in
Figure 1.3. 1

1.1.5 Efficient Portfolios of Three Risky Assets and a
Risk-Free Asset

In the previous chapter, we showed that efficient portfolios of two risky assets
and a single risk-free (T-Bill) asset are portfolios consisting of the highest
Sharpe ratio portfolio (tangency portfolio) and the T-Bill. With three or
more risky assets and a T-Bill the same result holds.

Computing the Tangency Portfolio

The tangency portfolio is the portfolio of risky assets that has the high-
est Sharpe’s ratio. The tangency portfolio, denoted t = (t,.s7¢, tnord, tsbuz)’
solves the constrained maximization problem

t'u—ry =Ty

max 2 = st. t'1 =1.
t (t’Et)E Op,t

where j1,, = t'p and o,,; = (t' Y't)z. The Lagrangian for this problem is
L(t, ) = (t'p—rp) (£3)72 + A(t'1— 1)

Using the chain rule, the first order conditions are

aL(att’ N st)E - (6 — ) (€58) Y25 1 M = 0
OL(t,\) ., .
= t1-1=0

After much tedious algebra, it can be shown that the solution for t has a
nice simple expression:
2_1<[J, — Ty 1)

t = . 1.25
TS (5 =y ) (1.2
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The location of the tangency portfolio, and the sign of the Sharpe ratio,
depends on the relationship between the risk-free rate ry and the expected
return on the global minimum variance portfolio w,,,,. If w,,, > ry, which
is the usual case, then the tangency portfolio with have a positive Sharpe
ratio. If i, ,, < ry, which could occur when stock prices are falling and the
economy is in a recession, then the tangency portfolio with have a negative
Sharpe slope. In this case, efficient portfolios involve shorting the tangency
portfolio and investing the proceeds in T-Bills.

Example 11 Computing the tangency portfolio

Suppose r; = 0.005. To compute the tangency portfolio (1.25) in R for the
three risky asses in Table use

rf = 0.005
sigma.inv.mat = solve(sigma.mat)
one.vec = rep(1l, 3)
mu.minus.rf = mu.vec - rf*one.vec
top.mat = sigma.inv.mat¥%*)mu.minus.rf
bot.val = as.numeric(t(one.vec)*%top.mat)
t.vec = top.mat[,1]/bot.val
t.vec
MSFT NORD SBUX
1.0268 -0.3263 0.2994

>
>
>
>
>
>
>
>

The tangency portfolio has weights t,,s;¢ = 1.0268, t,,,¢ = —0.3263 and
tspur = 0.2994, and is given by the vector

t = (1.0268, —0.3263,0.2994)’. (1.26)

Notice that Nordstrom, which has the lowest mean return, is sold short
is the tangency portfolio. The expected return on the tangency portfolio,

/’Lp,t = t,’“l’a is

> mu.t = as.numeric(crossprod(t.vec, mu.vec))
> mu.t
[1] 0.05189

The portfolio variance, Jf,t = t'3t, and standard deviation, o, are
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> sig2.t = as.numeric(t(t.vec)*%sigma.mat%*t.vec)
> sig.t = sqrt(sig2.t)

> sig2.t

[1] 0.01245

> sig.t

[1] 0.1116

Because ry = 0.005 < p,,,, = 0.02489 the tangency portfolio has a positive
Sharpe’s ratio/slope given by

{0 —7¢  0.05189 — 0.005
Opt 0.1116

SR, = = 0.4202.

Alternative Derivation of the Tangency Portfolio

To be completed

1.1.6 Mutual Fund Separation Theorem Again

When there is a risk-free asset (T-bill) available, the efficient frontier of
T-bills and risky assets consists of portfolios of T-bills and the tangency
portfolio. The expected return and standard deviation values of any such
efficient portfolio are given by

py = 15+ Ty —7y), (1.27)
o, = TiOpg, (1.28)

where x; represents the fraction of wealth invested in the tangency portfolio
(1 — = represents the fraction of wealth invested in T-Bills), and p,,, = t'p
and 0,; = (t'Xt)1/2 are the expected return and standard deviation on the
tangency portfolio, respectively. Recall, this result is known as the mutual
fund separation theorem. The tangency portfolio can be considered as a
mutual fund of the risky assets, where the shares of the assets in the mutual
fund are determined by the tangency portfolio weights, and the T-bill can
be considered as a mutual fund of risk-free assets. The expected return-risk
trade-off of these portfolios is given by the line connecting the risk-free rate
to the tangency point on the efficient frontier of risky asset only portfolios.
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Which combination of the tangency portfolio and the T-bill an investor will
choose depends on the investor’s risk preferences. If the investor is very risk
averse and prefers portfolios with very low volatility, then she will choose a
combination with very little weight in the tangency portfolio and a lot of
weight in the T-bill. This will produce a portfolio with an expected return
close to the risk-free rate and a variance that is close to zero. If the investor
can tolerate a large amount of volatility, then she will prefer a portfolio with
a high expected return regardless of volatility. This portfolio may involve
borrowing at the risk-free rate (leveraging) and investing the proceeds in the
tangency portfolio to achieve a high expected return.

Example 12 Efficient portfolios of three risky assets and T-bills chosen by
risk averse and risk tolerant investors

Consider the tangency portfolio computed from the example data in Table
1.1 with ry = 0.005. This portfolio is

> t.vec
MSFT NORD SBUX
1.0268 -0.3263 0.2994
> mu.t
[1] 0.05189
> sig.t
[1] 0.1116

The efficient portfolios of T-Bills and the tangency portfolio is illustrated in
Figure .

We want to compute an efficient portfolio that would be preferred by
a highly risk averse investor, and a portfolio that would be preferred by a
highly risk tolerant investor. A highly risk averse investor might have a low
volatility (risk) target for his efficient portfolio. For example, suppose the
volatility target is o5, = 0.02 or 2%. Using (1.28) and solving for z;, the
weights in the tangency portfolio and the T-Bill are

> x.t.02 = 0.02/sig.t
> x.t.02

[1] 0.1792

> 1-x.t.02

[1] 0.8208
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In this efficient portfolio, the weights in the risky assets are proportional to
the weights in the tangency portfolio

> x.t.02%t.vec
MSFT NORD SBUX
0.18405 -0.05848 0.05367

The expected return and volatility values of this portfolio are

>mu.t.02 = x.t.02*xmu.t + (1-x.t.02)*rf
> sig.t.02 = x.t.02xsig.t

> mu.t.02

[1] 0.01340

> sig.t.02

[1] 0.02

These values are illustrated in Figure as the portfolio labeled “E1”.

A highly risk tolerant investor might have a high expected return target
for his efficient portfolio. For example, suppose the expected return target
is p15 = 0.07 or 7%. Using (1.27) and solving for the x;, the weights in the
tangency portfolio and the T-Bill are

> x.t.07 = (0.07 - rf)/(mu.t - rf)
> x.t.07

[1] 1.386

> 1-x.t.07

[1] -0.3862

Notice that this portfolio involves borrowing at the T-Bill rate (leveraging)
and investing the proceeds in the tangency portfolio. In this efficient portfo-
lio, the weights in the risky assets are

> x.t.07*t.vec
MSFT NORD SBUX
1.4234 -0.4523 0.4151

The expected return and volatility values of this portfolio are

>mu.t.07 = x.t.07*mu.t + (1-x.t.07)*rf
> sig.t.07 = x.t.07*sig.t
> mu.t.07
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Figure 1.4: Efficient portfolios of three risky assets. The portfolio labeled
“E1” is chosen by a risk averse investor with a target volatility of 0.02. The
portfolio “E2” is chosen by a risk tolerant investor with a target expected

return of 0.07.

[1] 0.07
> sig.t.07
[1] 0.1547

In order to achieve the target expected return of 7%, the investor must toler-
ate a 15.47% volatility. These values are illustrated in Figure as the portfolio

labeled “E27”.
|

1.2 Portfolio Analysis Functions in R

The script file portfolio.r contains a few R functions for computing Markowitz
mean-variance efficient portfolios allowing for short sales using matrix alge-
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Function Description

getPortfolio create portfolio object

globalMin.portfolio compute global minimum variance portfolio
efficient.portfolio compute minimum variance portfolio subject to target return
tangency.portfolio  compute tangency portfolio

efficient.frontier compute efficient frontier of risky assets

Table 1.2: R functions for computing mean-variance efficient portfolios

bra computations®. These functions allow for the easy computation of the
global minimum variance portfolio, an efficient portfolio with a given target
expected return, the tangency portfolio, and the efficient frontier. These
functions are summarized in Table 1.2.

The following examples illustrate the use of the functions in Table 1.2
using the example data in Table 1.1. We first construct the input data:

asset.names <- c("MSFT", "NORD", "SBUX")
er <- c¢(0.0427, 0.0015, 0.0285)
names (er) <- asset.names
covmat <- matrix(c(0.0100, 0.0018, 0.0011,
0.0018, 0.0109, 0.0026,
0.0011, 0.0026, 0.0199),
nrow=3, ncol=3)
rk.free <- 0.005
dimnames (covmat) <- list(asset.names, asset.names)

vV V + + 4+ V V VYV

To specify a portfolio, you need an expected return vector and covariance
matrix for the assets under consideration as well as a vector of portfolio
weights. To create an equally weighted portfolio use

> ew = rep(1,3)/3
> equalWeight.portfolio = getPortfolio(er=er,cov.mat=covmat,weights=ew)

2To use the functions in this script file, load them into R with the source()
function. For example, if portfolio.r is located in C:\mydata run the command
source (“C:/mydata/portfolio.r”) at the beginnin of your R session. Then the func-
tions in the file will be available for your use.



1.2 PORTFOLIO ANALYSIS FUNCTIONS IN R 29

> class(equalWeight.portfolio)
[1] "portfolio"

Portfolio objects have the following components

> names (equalWeight.portfolio)
[1] "call" "er" "Sd" "weights"

There are print(), summary() and plot() methods for portfolio objects.
The print () method gives

> equalWeight.portfolio
Call:
getPortfolio(er = er, cov.mat = covmat, weights = ew)

Portfolio expected return: 0.02423333
Portfolio standard deviation: 0.07586538
Portfolio weights:

MSFT NORD  SBUX
0.3333 0.3333 0.3333

The plot () method shows a bar chart of the portfolio weights
> plot(equalWeight.portfolio)

The global minimum variance portfolio (allowing for short sales) m solves
the optimization problem

min m'Y¥m s.t. m'l = 1.
m

To compute this portfolio use the function globalMin.portfolio()

> gmin.port <- globalMin.portfolio(er, covmat)
> attributes(gmin.port)

$names

[1] "call" "er" "sd" "weights"

$class

[1] "portfolio"
> gmin.port
Call:
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Figure 1.5:

globalMin.portfolio(er = er, cov.mat = covmat)

Portfolio expected return: 0.02489184
Portfolio standard deviation: 0.07267607
Portfolio weights:

MSFT NORD  SBUX
0.4411 0.3656 0.1933

A mean-variance efficient portfolio x that achieves the target expected
return y, solves the optimization problem

min x'¥x s.t. xX'1 =1 and x'pu = .

To compute this portfolio for the target expected return py = E[Rpsp] =
0.04275 use the efficient.portfolio() function

> target.return <- er[1]
> e.port.msft <- efficient.portfolio(er, covmat, target.return)
> e.port.msft
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Call:
efficient.portfolio(er = er, cov.mat = covmat,
target.return = target.return)

Portfolio expected return: 0.0427
Portfolio standard deviation: 0.091656
Portfolio weights:

MSFT NORD SBUX
0.8275 -0.0907 0.2633

The tangency portfolio t is the portfolio of risky assets with the highest
Sharpe’s slope and solves the optimization problem
t'u—ry ,
Il’lél,X W st. t'l= 1,
where 7 denotes the risk-free rate. To compute this portfolio with ry = 0.005
use the tangency.portfolio() function

> tan.port <- tangency.portfolio(er, covmat, rk.free)

> tan.port

Call:

tangency.portfolio(er = er, cov.mat = covmat, risk.free = rk.free)

Portfolio expected return: 0.05188967
Portfolio standard deviation: 0.1115816
Portfolio weights:

MSFT NORD SBUX
1.0268 -0.3263 0.2994

The the set of efficient portfolios of risky assets can be computed as a
convex combination of any two efficient portfolios. It is convenient to use the
global minimum variance portfolio as one portfolio and an efficient portfolio
with target expected return equal to the maximum expected return of the
assets under consideration as the other portfolio. Call these portfolios m
and x, respectively. For any number «, another efficient portfolio can be
computed as

z=am+ (1 —a)x
The function efficient.frontier () constructs the set of efficient portfolios
using this method for a collection of o values. For example, to compute 20
efficient portfolios for values of v between —2 and 1.5 use
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> ef <- efficient.frontier(er, covmat, alpha.min=-2,

+ alpha.max=1.5, nport=20)
> attributes(ef)

$names

[1] "call" ||ern IISdII "weights"

$class

[1] "Markowitz"

> ef

Call:

efficient.frontier(er = er, cov.mat = covmat, nport = 20, alpha.min = -2,
alpha.max = 1.5)

Frontier portfolios’ expected returns and standard deviations
port 1 port 2 port 3 port 4 port 5 port 6 port 7

ER 0.0783 0.0750 0.0718 0.0685 0.0652 0.0619 0.0586

SD 0.1826 0.1732 0.1640 0.1548 0.1458 0.1370 0.1284
port 8 port 9 port 10 port 11 port 12 port 13 port 14

ER 0.0554 0.0521 0.0488 0.0455 0.0422 0.039 0.0357

SD 0.1200 0.1120 0.1044 0.0973 0.0908 0.085 0.0802
port 15 port 16 port 17 port 18 port 19 port 20

ER 0.0324 0.0291 0.0258 0.0225 0.0193 0.0160

SD 0.0764 0.0739 0.0727 0.0730 0.0748 0.0779

Use the summary () method to show the weights of these portfolios. Use
the plot () method to plot the efficient frontier

> plot(ef)

The resulting plot is shown in Figure 1.6.
To create a plot of the efficient frontier showing the original assets and
the tangency portfolio use

plot(ef, plot.assets=T)

points(gmin.port$sd, gmin.port$er, col="blue")
points(tan.port$sd, tan.port$er, col="red")
sr.tan = (tan.port$er - rk.free)/tan.port$sd
abline(a=rk.free, b=sr.tan)

vV V V V V

The resulting plot is shown in Figure 1.7.
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Figure 1.6: Plot method for Markowitz object.
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Figure 1.7: Efficient frontier for three firm example.



