
Chapter 1

Portfolio Theory with Matrix
Algebra

Updated: November 9, 2011

When working with large portfolios, the algebra of representing portfolio
expected returns and variances becomes cumbersome. The use of matrix (lin-
ear) algebra can greatly simplify many of the computations. Matrix algebra
formulations are also very useful when it comes time to do actual computa-
tions on the computer. The matrix algebra formulas are easy to translate
into matrix programming languages like R. Popular spreadsheet programs
like Microsoft Excel, which are the workhorse programs of many financial
houses, can also handle basic matrix calculations. All of this makes it worth-
while to become familiar with matrix techniques for portfolio calculations.

1.1 Portfolios with Three Risky Assets

Consider a three asset portfolio problem with assets denoted A, B and C. Let
Ri (i = A,B,C) denote the return on asset i and assume that the constant
expected return (CER) model holds:

Ri ∼ iid N(μi, σ
2
i )

cov(Ri, Rj) = σij.

Example 1 Three asset example data

1
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Stock i μi σi Pair (i,j) σij

A 0.0427 0.1000 (A,B) 0.0018

B 0.0015 0.1044 (A,C) 0.0011

C 0.0285 0.1411 (B,C) 0.0026

Table 1.1: Three asset example data.

Table 1.1 gives example data on monthly means, variances and covariances
for the continuously compounded returns on Microsoft, Nordstrom and Star-
bucks (assets A, B and C) based on sample statistics computed over the
five-year period January, 1995 through January, 20001. The values of μi
and σi (risk-return trade-offs) are shown in Figure 1.1. Clearly, Microsoft
provides the best risk-return trade-off and Nordstrom provides with worst.
¥
Let xi denote the share of wealth invested in asset i (i = A,B,C) , and

assume that all wealth is invested in the three assets so that xA+xB+xC = 1.
The portfolio return, Rp,x, is the random variable

Rp,x = xARA + xBRB + xCRC . (1.1)

The subscript “x” indicates that the portfolio is constructed using the x-
weights xA, xB and xC . The expected return on the portfolio is

μp,x = E[Rp,x] = xAμA + xBμB + xCμC , (1.2)

and the variance of the portfolio return is

σ2p,x = var(Rp,x) (1.3)

= x2Aσ
2
A + x2Bσ

2
B + x2Cσ

2
C + 2xAxBσAB + 2xAxCσAC + 2xBxCσBC .

Notice that variance of the portfolio return depends on three variance terms
and six covariance terms. Hence, with three assets there are twice as many
covariance terms than variance terms contributing to portfolio variance. Even
with three assets, the algebra representing the portfolio characteristics (1.1)
- (1.3) is cumbersome. We can greatly simplify the portfolio algebra using
matrix notation.

1This example data is also analyized in the Excel spreadsheet 3firmExample.xls.
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Figure 1.1: Risk-return tradeoffs among three asset portfolios. The portfo-
lio labeled “E1” is the efficient portfolio with the same expected return as
Microsoft; the portfolio labeled “E2” is the efficient portfolio with the same
expected return as Starbux. The portfolio labeled GLOBAL MIN is the min-
imum variance portfolio consisting of Microsoft, Nordstrom and Starbucks,
respectively.

1.1.1 Portfolio Characteristics Using Matrix Notation

Define the following 3 × 1 column vectors containing the asset returns and
portfolio weights

R =

⎛⎜⎜⎜⎝
RA

RB

RC

⎞⎟⎟⎟⎠ , x =

⎛⎜⎜⎜⎝
xA

xB

xC

⎞⎟⎟⎟⎠ .

In matrix notation we can lump multiple returns in a single vector which we
denote by R. Since each of the elements in R is a random variable we call
R a random vector. The probability distribution of the random vector R is
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simply the joint distribution of the elements of R. In the CER model all
returns are jointly normally distributed and this joint distribution is com-
pletely characterized by the means, variances and covariances of the returns.
We can easily express these values using matrix notation as follows. The
3× 1 vector of portfolio expected values is

E[R] = E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

RA

RB

RC

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
E[RA]

E[RB]

E[RC ]

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
μA

μB

μC

⎞⎟⎟⎟⎠ = μ,

and the 3× 3 covariance matrix of returns is

var(R) =

⎛⎜⎜⎜⎝
var(RA) cov(RA, RB) cov(RA, RC)

cov(RB, RA) var(RB) cov(RB, RC)

cov(RC , RA) cov(RC , RB) var(RC)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
σ2A σAB σAC

σAB σ2B σBC

σAC σBC σ2C

⎞⎟⎟⎟⎠ = Σ.

Notice that the covariance matrix is symmetric (elements off the diago-
nal are equal so that Σ = Σ0, where Σ0 denotes the transpose of Σ) since
cov(RA, RB) = cov(RB, RA), cov(RA, RC) = cov(RC , RA) and cov(RB, RC) =
cov(RC , RB).

Example 2 Example return data using matrix notation

Using the example data in Table 1.1 we have

μ =

⎛⎜⎜⎜⎝
μA

μB

μC

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.0427

0.0015

0.0285

⎞⎟⎟⎟⎠ ,

Σ =

⎛⎜⎜⎜⎝
0.0100 0.0018 0.0011

0.0018 0.0109 0.0026

0.0011 0.0026 0.0199

⎞⎟⎟⎟⎠ .
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In R, these values are created using

> asset.names <- c("MSFT", "NORD", "SBUX")
> mu.vec = c(0.0427, 0.0015, 0.0285)
> names(mu.vec) = asset.names
> sigma.mat = matrix(c(0.0100, 0.0018, 0.0011,
+ 0.0018, 0.0109, 0.0026,
+ 0.0011, 0.0026, 0.0199),
+ nrow=3, ncol=3)
> dimnames(sigma.mat) = list(asset.names, asset.names)
> mu.vec
MSFT NORD SBUX

0.0427 0.0015 0.0285
> sigma.mat

MSFT NORD SBUX
MSFT 0.0100 0.0018 0.0011
NORD 0.0018 0.0109 0.0026
SBUX 0.0011 0.0026 0.0199

¥
The return on the portfolio using matrix notation is

Rp,x = x
0R = (xA, xB, xC) ·

⎛⎜⎜⎜⎝
RA

RB

RC

⎞⎟⎟⎟⎠ = xARA + xBRB + xCRC .

Similarly, the expected return on the portfolio is

μp,x = E[x0R] = x0E[R] = x0μ = (xA, xB, xC)·

⎛⎜⎜⎜⎝
μA

μB

μC

⎞⎟⎟⎟⎠ = xAμA+xBμB+xCμC .

The variance of the portfolio is

σ2p,x = var(x0R) = x0Σx = (xA, xB, xC) ·

⎛⎜⎜⎜⎝
σ2A σAB σAC

σAB σ2B σBC

σAC σBC σ2C

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

xA

xB

xC

⎞⎟⎟⎟⎠
= x2Aσ

2
A + x2Bσ

2
B + x2Cσ

2
C + 2xAxBσAB + 2xAxCσAC + 2xBxCσBC .

Ana Mugosa
Highlight

Ana Mugosa
Highlight
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The condition that the portfolio weights sum to one can be expressed as

x01 = (xA, xB, xC) ·

⎛⎜⎜⎜⎝
1

1

1

⎞⎟⎟⎟⎠ = xA + xB + xC = 1,

where 1 is a 3× 1 vector with each element equal to 1.
Consider another portfolio with weights y = (yA, yB, yC)0. The return on

this portfolio is

Rp,y = y
0R = yARA + yBRB + yCRC .

Later on we will need to compute the covariance between the return on port-
folio x and the return on portfolio y, cov(Rp,x, Rp,y). Using matrix algebra,
this covariance can be computed as

σxy = cov(Rp,x, Rp,y) = cov(x
0R,y0R)

= x0Σy = (xA, xB, xC) ·

⎛⎜⎜⎜⎝
σ2A σAB σAC

σAB σ2B σBC

σAC σBC σ2C

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

yA

yB

yC

⎞⎟⎟⎟⎠
= xAyAσ

2
A + xByBσ

2
B + xCyCσ

2
C

+(xAyB + xByA)σAB + (xAyC + xCyA)σAC + (xByC + xCyB)σAC .

Example 3 Portfolio computations in R

Consider an equally weighted portfolio with xA = xB = xC = 1/3. This
portfolio has return Rp,x = x0R where x = (1/3, 1/3, 1/3)0. Using R, the
portfolio mean and variance are

> x.vec = rep(1,3)/3
> names(x.vec) = asset.names
> mu.p.x = crossprod(x.vec,mu.vec)
> sig2.p.x = t(x.vec)%*%sigma.mat%*%x.vec
> sig.p.x = sqrt(sig2.p.x)
> mu.p.x

[,1]
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[1,] 0.02423
> sig.p.x

[,1]
[1,] 0.07587

Next, consider another portfolio with weight vector y = (yA, yB, yC)0 = (0.8,
0.4, −0.2)0 and return Rp,y = y

0R. The covariance between Rp,x and Rp,y is

> y.vec = c(0.8, 0.4, -0.2)
> names(x.vec) = asset.names
> sig.xy = t(x.vec)%*%sigma.mat%*%y.vec
> sig.xy

[,1]
[1,] 0.003907

¥

1.1.2 Finding the Global Minimum Variance Portfolio

The global minimum variance portfolio m = (mA,mB,mC)
0 for the three

asset case solves the constrained minimization problem

min
mA,mB ,mC

σ2p,m = m2
Aσ

2
A +m2

Bσ
2
B +m2

Cσ
2
C (1.4)

+2mAmBσAB + 2mAmCσAC + 2mBmCσBC

s.t. mA +mB +mC = 1.

The Lagrangian for this problem is

L(mA,mB,mC , λ) = m2
Aσ

2
A +m2

Bσ
2
B +m2

Cσ
2
C

+2mAmBσAB + 2mAmCσAC + 2mBmCσBC

+λ(mA +mB +mC − 1),
and the first order conditions (FOCs) for a minimum are

0 =
∂L

∂mA
= 2mAσ

2
A + 2mBσAB + 2mCσAB + λ, (1.5)

0 =
∂L

∂mA
= 2mBσ

2
B + 2mAσAB + 2mCσBC + λ,

0 =
∂L

∂mA
= 2mCσ

2
C + 2mAσAC + 2mBσBC + λ,

0 =
∂L

∂λ
= mA +mB +mC − 1.
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The FOCs (1.5) gives four linear equations in four unknowns which can be
solved to find the global minimum variance portfolio weights mA,mB and
mC.
Using matrix notation, the problem (1.4) can be concisely expressed as

min
m

σ2p,m =m
0Σm s.t. m01 = 1. (1.6)

The four linear equation describing the first order conditions (1.5) has the
matrix representation⎛⎜⎜⎜⎜⎜⎜⎝

2σ2A 2σAB 2σAC 1

2σAB 2σ2B 2σBC 1

2σAC 2σBC 2σ2C 1

1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
mA

mB

mC

λ

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

or, more concisely, ⎛⎝ 2Σ 1

10 0

⎞⎠⎛⎝m
λ

⎞⎠ =

⎛⎝ 0
1

⎞⎠ . (1.7)

The system (1.7) is of the form

Amzm = b,

where

Am =

⎛⎝ 2Σ 1

10 0

⎞⎠ , zm =

⎛⎝m
λ

⎞⎠ and b =

⎛⎝ 0
1

⎞⎠ .

The solution for zm is then
zm = A

−1
m b. (1.8)

The first three elements of zm are the portfolio weights m = (mA,mB,mC)
0

for the global minimum variance portfolio with expected returnμp,m = m
0μ

and variance σ2p,m =m
0Σm.

Example 4 Global minimum variance portfolio for example data

Using the data in Table 1, we can use R to compute the global minimum
variance portfolio weights from (1.8) as follows:
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> top.mat = cbind(2*sigma.mat, rep(1, 3))
> bot.vec = c(rep(1, 3), 0)
> Am.mat = rbind(top, bot)
> b.vec = c(rep(0, 3), 1)
> z.m.mat = solve(Am.mat)%*%b.vec
> m.vec = z.m[1:3,1]
> m.vec
MSFT NORD SBUX

0.4411 0.3656 0.1933

Hence, the global minimum variance portfolio has portfolio weights mmsft =
0.4411, mnord = 0.3656 and msbux = 0.1933, and is given by the vector

m = (0.4411, 0.3656, 0.1933)0. (1.9)

The expected return on this portfolio, μp,m =m
0μ, is

> mu.gmin = as.numeric(crossprod(m.vec, mu.vec))
> mu.gmin
[1] 0.02489

The portfolio variance, σ2p,m =m
0Σm, and standard deviation, σp,m, are

> sig2.gmin = as.numeric(t(m.vec)%*%sigma.mat%*%m.vec)
> sig.gmin = sqrt(sig2.gmin)
> sig2.gmin
[1] 0.005282
> sig.gmin
[1] 0.07268

In Figure 1.1, this portfolio is labeled “global min”.¥

Alternative derivation of global minimum variance portfolio

The first order conditions (1.5) from the optimization problem (1.6) can be
expressed in matrix notation as

0
(3×1)

=
∂L(m, λ)

∂m
= 2 ·Σm+λ · 1, (1.10)

0
(1×1)

=
∂L(m, λ)

∂λ
=m01− 1. (1.11)
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Using (1.10), first solve for m :

m = −1
2
· λΣ−11.

Next, multiply both sides by 10 and use (1.11) to solve for λ:

1 = 10m = −1
2
· λ10Σ−11

⇒ λ = −2 · 1

10Σ−11
.

Finally, substitute the value for λ back into (1.10) to solve for m:

m = −1
2
(−2) 1

10Σ−11
Σ−11 =

Σ−11

10Σ−11
. (1.12)

Example 5 Finding global minimum variance portfolio for example data

Using the data in Table 1, we can use R to compute the global minimum
variance portfolio weights from (1.12) as follows:

> one.vec = rep(1, 3)
> sigma.inv.mat = solve(sigma.mat)
> top.mat = sigma.inv.mat%*%one.vec
> bot.val = as.numeric((t(one.vec)%*%sigma.inv.mat%*%one.vec))
> m.mat = top.mat/bot.val
> m.mat[,1]
MSFT NORD SBUX

0.4411 0.3656 0.1933

¥

1.1.3 Finding Efficient Portfolios

The investment opportunity set is the set of portfolio expected return, μp,
and portfolio standard deviation, σp, values for all possible portfolios whose
weights sum to one. As in the two risky asset case, this set can be described
in a graph with μp on the vertical axis and σp on the horizontal axis. With
two assets, the investment opportunity set in (μp, σp)− space lies on a curve
(one side of a hyperbola). With three or more assets, the investment oppor-
tunity set in (μp, σp)− space is described by set of values whose general shape
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is complicated and depends crucially on the covariance terms σij. However,
we do not have to fully characterize the entire investment opportunity set.
If we assume that investors choose portfolios to maximize expected return
subject to a target level of risk, or, equivalently, to minimize risk subject to
a target expected return, then we can simplify the asset allocation problem
by only concentrating on the set of efficient portfolios. These portfolios lie
on the boundary of the investment opportunity set above the global mini-
mum variance portfolio. This is the framework originally developed by Harry
Markowitz, the father of portfolio theory and winner of the Nobel Prize in
economics.
Following Markowitz, we assume that investors wish to find portfolios

that have the best expected return-risk trade-off. Markowitz characterized
these efficient portfolios in two equivalent ways. In the first way, investors
seek to find portfolios that maximize portfolio expected return for a given
level of risk as measured by portfolio variance. Let σ2p,0 denote a target level
of risk. Then Harry Markowitz characterized the constrained maximization
problem to find an efficient portfolio as

max
x

μp = x0μ s.t. (1.13)

σ2p = x0Σx = σ2p,0 and x
01 = 1.

Markowitz showed that the investor’s problem of maximizing portfolio ex-
pected return subject to a target level of risk has an equivalent dual represen-
tation in which the investor minimizes the risk of the portfolio (as measured
by portfolio variance) subject to a target expected return level. Let μp,0 de-
note a target expected return level. Then the dual problem is the constrained
minimization problem

min
x

σ2p,x = x0Σx s.t. (1.14)

μp = x0μ = μp,0, and x
01 = 1,

To find efficient portfolios of risky assets in practice, the dual problem (1.14)
is most often solved. This is partially due to computational conveniences and
partly due to investors being more willing to specify target expected returns
rather than target risk levels. The efficient portfolio frontier is a graph of μp
versus σp values for the set of efficient portfolios generated by solving (1.14)
for all possible target expected return levels μp,0 above the expected return
on the global minimum variance portfolio. Just as in the two asset case, the
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resulting efficient frontier will resemble one side of an hyperbola and is often
called the “Markowitz bullet”.
To solve the constrained minimization problem (1.14), first form the La-

grangian function

L(x, λ1, λ2) = x
0Σx+ λ1(x

0μ−μp,0) + λ2(x
01− 1).

Because there are two constraints (x0μ = μp,0 and x
01 = 1) there are two

Lagrange multipliers λ1 and λ2. The FOCs for a minimum are the linear
equations

∂L(x, λ1, λ2)

∂x
= 2Σx+ λ1μ+ λ21 = 0, (1.15)

∂L(x, λ1, λ2)

∂λ1
= x0μ− μp,0 = 0, (1.16)

∂L(x, λ1, λ2)

∂λ2
= x01− 1 = 0. (1.17)

These FOCs consist of five linear equations in five unknowns (xA, xB, xC , λ1, λ2).
We can represent the system of linear equations using matrix algebra as⎛⎜⎜⎜⎝

2Σ μ 1

μ0 0 0

10 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x

λ1

λ2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0

μp,0

1

⎞⎟⎟⎟⎠ ,

or
Axzx= b0,

where

Ax =

⎛⎜⎜⎜⎝
2Σ μ 1

μ0 0 0

10 0 0

⎞⎟⎟⎟⎠ , zx =

⎛⎜⎜⎜⎝
x

λ1

λ2

⎞⎟⎟⎟⎠ and b0 =

⎛⎜⎜⎜⎝
0

μp,0

1

⎞⎟⎟⎟⎠ .

The solution for zx is then
zx = A

−1
x b0. (1.18)

The first three elements of zx are the portfolio weights x = (xA, xB, xC)0 for
the efficient portfolio with expected returnμp,x = μp,0.
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Example 6 Efficient portfolio with the same expected return as Microsoft

Using the data in Table 1, consider finding an efficient portfolio with the same
expected return as Microsoft. That is, consider solving (1.14) with target
expected return μp,0 = μmsft = 0.0427 using (1.18). The R calculations are

> top.mat = cbind(2*sigma.mat, mu.vec, rep(1, 3))
> mid.vec = c(mu.vec, 0, 0)
> bot.vec = c(rep(1, 3), 0, 0)
> Ax.mat = rbind(top.mat, mid.vec, bot.vec)
> bmsft.vec = c(rep(0, 3), mu.vec["MSFT"], 1)
> z.mat = solve(Ax.mat)%*%bmsft.vec
> x.vec = z.mat[1:3,]
> x.vec

MSFT NORD SBUX
0.82745 -0.09075 0.26329

Hence, the efficient portfolio with the same expected return as Microsoft has
portfolio weights xmsft = 0.82745, xnord = −0.09075 and xsbux = 0.26329,
and is given by the vector

x = (0.82745,−0.09075, 0.26329)0. (1.19)

The expected return on this portfolio, μp,x = x0μ, is equal to the target
return μmsft :

> mu.px = as.numeric(crossprod(x.vec, mu.vec))
> mu.px
[1] 0.0427

The portfolio variance, σ2p,x = x
0Σx, and standard deviation, σp,x, are

> sig2.px = as.numeric(t(x.vec)%*%sigma.mat%*%x.vec)
> sig.px = sqrt(sig2.px)
> sig2.px
[1] 0.0084
> sig.px
[1] 0.09166

and are smaller than the corresponding values for Microsoft (see Table 1).
This efficient portfolio is labeled “E1” in Figure 1.1.
Next, consider finding an efficient portfolio with the same expected return

as Starbucks:
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> bsbux.vec = c(rep(0, 3), mu.vec["SBUX"], 1)
> z.mat = solve(Ax.mat)%*%bsbux.vec
> y.vec = z.mat[1:3,]
> y.vec
MSFT NORD SBUX

0.5194 0.2732 0.2075

This efficient portfolio has weights ymsft = 0.5194, ynord = 0.2732 and ysbux =
0.2075 and is given by the vector

y = (0.5194, 0.2732, 0.2075)0. (1.20)

The portfolio expected return and standard deviation are:

> mu.py = as.numeric(crossprod(y.vec, mu.vec))
> sig2.py = as.numeric(t(y.vec)%*%sigma.mat%*%y.vec)
> sig.py = sqrt(sig2.py)
> mu.py
[1] 0.0285
> sig.py
[1] 0.07355

This efficient portfolio is labeled “E2” in Figure 1.1.
The covariance and correlation values between the portfolio returnsRp,x =

x0R and Rp,y = y
0R are given by

> sigma.xy = as.numeric(t(x.vec)%*%sigma.mat%*%y.vec)
> rho.xy = sigma.xy/(sig.px*sig.py)
> sigma.xy
[1] 0.005914
> rho.xy
[1] 0.8772

¥

Alternative derivation of efficient portfolio

Consider the first order conditions (1.15)-(1.17) from the optimization prob-
lem (1.14). First, use (1.15) to solve for x:

x =
−1
2
λ1Σ

−1μ+
−1
2
λ1Σ

−11. (1.21)
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Next, to find the values for λ1 and λ2, pre-multiply (1.21) by μ0 and use
(1.16) to give

μ0 = μ0x =
−1
2
λ1μ

0Σ−1μ+
−1
2
λ1μ

0Σ−11.

Similarly, pre-multiply (1.21) by 10 and use (1.17) to give

1 = 10x =
−1
2
λ11

0Σ−1μ+
−1
2
λ11

0Σ−11.

Now, we have two linear equations involving λ1 and λ2 which we can write
in matrix notation as

−1
2

⎛⎝ A B

B C

⎞⎠⎛⎝ λ1

λ2

⎞⎠ =

⎛⎝ μ0

1

⎞⎠ ,

where A = μ0Σ−1μ, B = μ0Σ−11 and C = 10Σ−11. The solution for (λ1, λ2)0

is ⎛⎝ λ1

λ2

⎞⎠ = −2

⎛⎝ A B

B C

⎞⎠−1⎛⎝ μ0

1

⎞⎠ .

Using ⎛⎝ A B

B C

⎞⎠−1 = 1

AC −B2

⎛⎝ C −B

−B A

⎞⎠ ,

we have

λ1 =
−2

AC −B2
(Cμ0 −B) , λ1 =

−2
AC −B2

(A−Bμ0) .

Substituting these values back into (1.21) gives an explicit expression for the
efficient portfolio weight vector x:

x =
Cμ0 −B

AC −B2
Σ−1μ+

A−Bμ0
AC −B2

Σ−11.
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1.1.4 Computing the Efficient Frontier

The expression for an efficient portfolio derived in the previous sub-section
showed that any efficient portfolio can be created as a convex combination
of any two efficient portfolios with different target expected returns. If the
expected return on the resulting portfolio is greater than the expected on the
global minimum variance portfolio, then the portfolio is an efficient frontier
portfolio. Otherwise, the portfolio is an inefficient frontier portfolio. As a
result, to compute the portfolio frontier in (μp, σp) space (Markowitz bullet)
we only need to find two efficient portfolios. The remaining frontier portfolios
can then be expressed as convex combinations of these two portfolios. The
following proposition describes the process for the three risky asset case using
matrix algebra.

Proposition 7 Creating a frontier portfolio from two efficient portfolios

Let x = (xA, xB, xC)
0 and y = (yA, yB, yC)

0 be any two efficient portfolios
with different target expected returns x0μ = μp,0 6= y0μ = μp,1. That is,
portfoliox solves

min
x

σ2p,x = x
0Σx s.t. x0μ = μp,0 and x

01 = 1,

and portfolio y solves

min
y

σ2p,y = y
0Σy s.t.y0μ = μp,1andy

01 = 1.

Let α be any constant. Then the portfolio

z = α · x+ (1− α) · y (1.22)

=

⎛⎜⎜⎜⎝
αxA + (1− α)yA

αxB + (1− α)yB

αxC + (1− α)yC

⎞⎟⎟⎟⎠ ,

is a frontier portfolio with

μp,z = z0μ = α · μp,x + (1− α) · μp,y, (1.23)

σ2p,z = z0Σz = α2σ2p,x + (1− α)2σ2p,y + 2α(1− α)σxy, (1.24)
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where
σ2p,x = x

0Σx, σ2p,y = y
0Σy, σxy = x

0Σy.

If μp,z ≥ μp,m, where μp,m is the expected return on the global minimum
variance portfolio, then portfolio z is an efficient portfolio. Otherwise, z is
an inefficient frontier portfolio.

Example 8 Creating an arbitrary frontier portfolio from two efficient port-
folios

Consider the data in Table 1 and the previously computed efficient portfolios
(1.19) and (1.20) and let α = 0.5. From (1.22), the frontier portfolio z is
constructed using

z = α · x+ (1− α) · y

= 0.5 ·

⎛⎜⎜⎜⎝
0.82745

−0.09075

0.26329

⎞⎟⎟⎟⎠+ 0.5 ·
⎛⎜⎜⎜⎝
0.5194

0.2732

0.2075

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
(0.5)(0.82745)

(0.5)(−0.09075)

(0.5)(0.26329)

⎞⎟⎟⎟⎠+
⎛⎜⎜⎜⎝
(0.5)(0.5194)

(0.5)(0.2732)

(0.5)(0.2075)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
0.6734

0.0912

0.2354

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
zA

zB

zC

⎞⎟⎟⎟⎠ .

In R, the new frontier portfolio is computed using

> a = 0.5
> z.vec = a*x.vec + (1-a)*y.vec
> z.vec
MSFT NORD SBUX

0.6734 0.0912 0.2354

Using μp,z = z
0μ and σ2p,z = z

0Σz, the expected return, variance and standard
deviation of this portfolio are
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> mu.pz = as.numeric(crossprod(z.vec, mu.vec))
> sig2.pz = as.numeric(t(z.vec)%*%sigma.mat%*%z.vec)
> sig.pz = sqrt(sig2.pz)
> mu.pz
[1] 0.0356
> sig2.pz
[1] 0.00641
> sig.pz
[1] 0.08006

Equivalently, using μp,z = αμp,x+(1−α)μp,y and σ2p,z = α2σ2p,x+(1−α)2σ2p,y+
2α(1 − α)σxy the expected return, variance and standard deviation of this
portfolio are

> mu.pz = a*mu.px + (1-a)*mu.py
> sig.xy = as.numeric(t(x.vec)%*%sigma.mat%*%y.vec)
> sig2.pz = a^2 * sig2.px + (1-a)^2 * sig2.py + 2*a*(1-a)*sig.xy
> sig.pz = sqrt(sig2.pz)
> mu.pz
[1] 0.0356
> sig2.pz
[1] 0.00641
> sig.pz
[1] 0.08006

Because μp,z = 0.0356 > μp,m = 0.02489 the frontier portfolio z is an efficient
portfolio. The three efficient portfolios x,y and z are illustrated in Figure
1.2 and are labeled “E1”, “E2” and “E3”, respectively.¥

Example 9 Creating a frontier portfolio with a given expected return from
two efficient portfolios

Given the two efficient portfolios (1.19) and (1.20) with target expected re-
turns equal to the expected returns on Microsoft and Starbucks, respectively,
consider creating a frontier portfolio with target expected return equal to the
expected return on Nordstrom. Then

μp,z = αμp,x + (1− α)μp,y = μnord = 0.0015,
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Figure 1.2: Three efficient portfolios of Microsoft, Nordstrom and Starbucks.

and we can solve for α using

α =
μnord − μp,y
μp,x − μp,y

=
0.0015− 0.0285
0.0427− 0.0285 = −1.901.

Using R, the weights in this frontier portfolio are

> a.nord = (mu.vec["NORD"] - mu.py)/(mu.px - mu.py)
> z.nord = a.nord*x.vec + (1 - a.nord)*y.vec
> z.nord

MSFT NORD SBUX
-0.06637 0.96509 0.10128

The expected return, variance and standard deviation on this portfolio are

> mu.pz.nord = a.nord*mu.px + (1-a.nord)*mu.py
> sig2.pz.nord = a.nord^2 * sig2.px + (1-a.nord)^2 * sig2.py +
+ 2*a.nord*(1-a.nord)*sigma.xy
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> sig.pz.nord = sqrt(sig2.pz.nord)
> mu.pz.nord
NORD

0.0015
> sig2.pz.nord

NORD
0.01066
> sig.pz.nord
NORD

0.1033

Because μp,z = 0.0015 < μp,m = 0.02489 the frontier portfolio z is an ineffi-
cient frontier portfolio. This portfolio is labeled “IE4” in Figure 1.2.¥
The efficient frontier of portfolios, i.e., those frontier portfolios with ex-

pected return greater than the expected return on the global minimum vari-
ance portfolio, can be conveniently created using (1.22) with two specific
efficient portfolios. The first efficient portfolio is the global minimum vari-
ance portfolio (1.4). The second efficient portfolio is the efficient portfolio
whose target expected return is equal to the highest expected return among
all of the assets under consideration. The steps for constructing the efficient
frontier are:
1. Compute the global minimum variance portfolio m by solving (1.6), and
compute μp,m =m

0μ and σ2p,m =m
0Σm.

2. Compute the efficient portfolio x by with target expected return equal
to the maximum expected return of the assets under consideration. That
is, solve (1.14) with μ0 = max{μ1, μ2, μ3}, and compute μp,x = x0μ and
σ2p,m = x

0Σx.
3. Compute cov(Rp,m, Rp,x) = σmx =m

0Σx.
4. Create an initial grid of α values {1, 0.9, . . . ,−0.9,−1}, compute the
frontier portfolios z using (1.22), and compute their expected returns and
variances using (1.22), (1.23) and (1.24), respectively.
5. Plot μp,z against σp,z and adjust the grid of α values to create a nice plot.

Example 10 Compute and plot the efficient frontier of risky assets (Markowitz
bullet)

To compute and plot the efficient frontier from the three risky assets in Table
1.1 in R use
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Figure 1.3: Efficient frontier of three risky assets.

> a = seq(from=1, to=-1, by=-0.1)
> n.a = length(a)
> z.mat = matrix(0, n.a, 3)
> mu.z = rep(0, n.a)
> sig2.z = rep(0, n.a)
> sig.mx = t(m)%*%sigma.mat%*%x.vec
> for (i in 1:n.a) {
+ z.mat[i, ] = a[i]*m + (1-a[i])*x.vec
+ mu.z[i] = a[i]*mu.gmin + (1-a[i])*mu.px
+ sig2.z[i] = a[i]^2 * sig2.gmin + (1-a[i])^2 * sig2.px +
+ 2*a[i]*(1-a[i])*sig.mx
+ }
> plot(sqrt(sig2.z), mu.z, type="b", ylim=c(0, 0.06), xlim=c(0, 0.17),
+ pch=16, col="blue", ylab=expression(mu[p]),
+ xlab=expression(sigma[p]))
> text(sig.gmin, mu.gmin, labels="Global min", pos=4)
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> text(sd.vec, mu.vec, labels=asset.names, pos=4)

The variables z.mat, mu.z and sig2.z contain the weights, expected returns
and variances, respectively, of the efficient frontier portfolios for a grid of
α values between 1 and −1. The resulting efficient frontier is illustrated in
Figure 1.3. ¥

1.1.5 Efficient Portfolios of Three Risky Assets and a
Risk-Free Asset

In the previous chapter, we showed that efficient portfolios of two risky assets
and a single risk-free (T-Bill) asset are portfolios consisting of the highest
Sharpe ratio portfolio (tangency portfolio) and the T-Bill. With three or
more risky assets and a T-Bill the same result holds.

Computing the Tangency Portfolio

The tangency portfolio is the portfolio of risky assets that has the high-
est Sharpe’s ratio. The tangency portfolio, denoted t = (tmsft, tnord, tsbux)

0,
solves the constrained maximization problem

max
t

t0μ− rf

(t0Σt)
1
2

=
μp,t − rf

σp,t
s.t. t01 = 1.

where μp,t = t
0μ and σp,t = (t

0Σt)
1
2 . The Lagrangian for this problem is

L(t, λ) = (t0μ− rf) (t
0Σt)−

1
2 + λ(t01− 1)

Using the chain rule, the first order conditions are

∂L(t, λ)

∂t
= μ(t0Σt)−

1
2 − (t0μ− rf) (t

0Σt)−3/2Σt+ λ1 = 0

∂L(t, λ)

∂λ
= t01− 1 = 0

After much tedious algebra, it can be shown that the solution for t has a
nice simple expression:

t =
Σ−1(μ− rf · 1)
10Σ−1(μ− rf · 1)

. (1.25)
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The location of the tangency portfolio, and the sign of the Sharpe ratio,
depends on the relationship between the risk-free rate rf and the expected
return on the global minimum variance portfolio μp,m. If μp,m > rf , which
is the usual case, then the tangency portfolio with have a positive Sharpe
ratio. If μp,m < rf , which could occur when stock prices are falling and the
economy is in a recession, then the tangency portfolio with have a negative
Sharpe slope. In this case, efficient portfolios involve shorting the tangency
portfolio and investing the proceeds in T-Bills.

Example 11 Computing the tangency portfolio

Suppose rf = 0.005. To compute the tangency portfolio (1.25) in R for the
three risky asses in Table use

> rf = 0.005
> sigma.inv.mat = solve(sigma.mat)
> one.vec = rep(1, 3)
> mu.minus.rf = mu.vec - rf*one.vec
> top.mat = sigma.inv.mat%*%mu.minus.rf
> bot.val = as.numeric(t(one.vec)%*%top.mat)
> t.vec = top.mat[,1]/bot.val
> t.vec

MSFT NORD SBUX
1.0268 -0.3263 0.2994

The tangency portfolio has weights tmsft = 1.0268, tnord = −0.3263 and
tsbux = 0.2994, and is given by the vector

t = (1.0268,−0.3263, 0.2994)0. (1.26)

Notice that Nordstrom, which has the lowest mean return, is sold short
is the tangency portfolio. The expected return on the tangency portfolio,
μp,t = t

0μ, is

> mu.t = as.numeric(crossprod(t.vec, mu.vec))
> mu.t
[1] 0.05189

The portfolio variance, σ2p,t = t
0Σt, and standard deviation, σp,t, are
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> sig2.t = as.numeric(t(t.vec)%*%sigma.mat%*%t.vec)
> sig.t = sqrt(sig2.t)
> sig2.t
[1] 0.01245
> sig.t
[1] 0.1116

Because rf = 0.005 < μp,m = 0.02489 the tangency portfolio has a positive
Sharpe’s ratio/slope given by

SRt =
μp,t − rf

σp,t
=
0.05189− 0.005

0.1116
= 0.4202.

¥

Alternative Derivation of the Tangency Portfolio

To be completed

1.1.6 Mutual Fund Separation Theorem Again

When there is a risk-free asset (T-bill) available, the efficient frontier of
T-bills and risky assets consists of portfolios of T-bills and the tangency
portfolio. The expected return and standard deviation values of any such
efficient portfolio are given by

μep = rf + xt(μp,t − rf), (1.27)

σep = xtσp,t, (1.28)

where xt represents the fraction of wealth invested in the tangency portfolio
(1− xt represents the fraction of wealth invested in T-Bills), and μp,t = t

0μ

and σp,t = (t
0Σt)1/2 are the expected return and standard deviation on the

tangency portfolio, respectively. Recall, this result is known as the mutual
fund separation theorem. The tangency portfolio can be considered as a
mutual fund of the risky assets, where the shares of the assets in the mutual
fund are determined by the tangency portfolio weights, and the T-bill can
be considered as a mutual fund of risk-free assets. The expected return-risk
trade-off of these portfolios is given by the line connecting the risk-free rate
to the tangency point on the efficient frontier of risky asset only portfolios.
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Which combination of the tangency portfolio and the T-bill an investor will
choose depends on the investor’s risk preferences. If the investor is very risk
averse and prefers portfolios with very low volatility, then she will choose a
combination with very little weight in the tangency portfolio and a lot of
weight in the T-bill. This will produce a portfolio with an expected return
close to the risk-free rate and a variance that is close to zero. If the investor
can tolerate a large amount of volatility, then she will prefer a portfolio with
a high expected return regardless of volatility. This portfolio may involve
borrowing at the risk-free rate (leveraging) and investing the proceeds in the
tangency portfolio to achieve a high expected return.

Example 12 Efficient portfolios of three risky assets and T-bills chosen by
risk averse and risk tolerant investors

Consider the tangency portfolio computed from the example data in Table
1.1 with rf = 0.005. This portfolio is

> t.vec
MSFT NORD SBUX

1.0268 -0.3263 0.2994
> mu.t
[1] 0.05189
> sig.t
[1] 0.1116

The efficient portfolios of T-Bills and the tangency portfolio is illustrated in
Figure .
We want to compute an efficient portfolio that would be preferred by

a highly risk averse investor, and a portfolio that would be preferred by a
highly risk tolerant investor. A highly risk averse investor might have a low
volatility (risk) target for his efficient portfolio. For example, suppose the
volatility target is σep = 0.02 or 2%. Using (1.28) and solving for xt, the
weights in the tangency portfolio and the T-Bill are

> x.t.02 = 0.02/sig.t
> x.t.02
[1] 0.1792
> 1-x.t.02
[1] 0.8208
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In this efficient portfolio, the weights in the risky assets are proportional to
the weights in the tangency portfolio

> x.t.02*t.vec
MSFT NORD SBUX

0.18405 -0.05848 0.05367

The expected return and volatility values of this portfolio are

> mu.t.02 = x.t.02*mu.t + (1-x.t.02)*rf
> sig.t.02 = x.t.02*sig.t
> mu.t.02
[1] 0.01340
> sig.t.02
[1] 0.02

These values are illustrated in Figure as the portfolio labeled “E1”.
A highly risk tolerant investor might have a high expected return target

for his efficient portfolio. For example, suppose the expected return target
is μep = 0.07 or 7%. Using (1.27) and solving for the xt, the weights in the
tangency portfolio and the T-Bill are

> x.t.07 = (0.07 - rf)/(mu.t - rf)
> x.t.07
[1] 1.386
> 1-x.t.07
[1] -0.3862

Notice that this portfolio involves borrowing at the T-Bill rate (leveraging)
and investing the proceeds in the tangency portfolio. In this efficient portfo-
lio, the weights in the risky assets are

> x.t.07*t.vec
MSFT NORD SBUX

1.4234 -0.4523 0.4151

The expected return and volatility values of this portfolio are

> mu.t.07 = x.t.07*mu.t + (1-x.t.07)*rf
> sig.t.07 = x.t.07*sig.t
> mu.t.07
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Figure 1.4: Efficient portfolios of three risky assets. The portfolio labeled
“E1” is chosen by a risk averse investor with a target volatility of 0.02. The
portfolio “E2” is chosen by a risk tolerant investor with a target expected
return of 0.07.

[1] 0.07
> sig.t.07
[1] 0.1547

In order to achieve the target expected return of 7%, the investor must toler-
ate a 15.47% volatility. These values are illustrated in Figure as the portfolio
labeled “E2”.
¥

1.2 Portfolio Analysis Functions in R

The script file portfolio.r contains a fewR functions for computingMarkowitz
mean-variance efficient portfolios allowing for short sales using matrix alge-
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Function Description

getPortfolio create portfolio object

globalMin.portfolio compute global minimum variance portfolio

efficient.portfolio compute minimum variance portfolio subject to target return

tangency.portfolio compute tangency portfolio

efficient.frontier compute efficient frontier of risky assets

Table 1.2: R functions for computing mean-variance efficient portfolios

bra computations2. These functions allow for the easy computation of the
global minimum variance portfolio, an efficient portfolio with a given target
expected return, the tangency portfolio, and the efficient frontier. These
functions are summarized in Table 1.2.
The following examples illustrate the use of the functions in Table 1.2

using the example data in Table 1.1. We first construct the input data:

> asset.names <- c("MSFT", "NORD", "SBUX")
> er <- c(0.0427, 0.0015, 0.0285)
> names(er) <- asset.names
> covmat <- matrix(c(0.0100, 0.0018, 0.0011,
+ 0.0018, 0.0109, 0.0026,
+ 0.0011, 0.0026, 0.0199),
+ nrow=3, ncol=3)
> rk.free <- 0.005
> dimnames(covmat) <- list(asset.names, asset.names)

To specify a portfolio, you need an expected return vector and covariance
matrix for the assets under consideration as well as a vector of portfolio
weights. To create an equally weighted portfolio use

> ew = rep(1,3)/3
> equalWeight.portfolio = getPortfolio(er=er,cov.mat=covmat,weights=ew)

2To use the functions in this script file, load them into R with the source()
function. For example, if portfolio.r is located in C:\mydata run the command
source(“C:/mydata/portfolio.r”) at the beginnin of your R session. Then the func-
tions in the file will be available for your use.
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> class(equalWeight.portfolio)
[1] "portfolio"

Portfolio objects have the following components

> names(equalWeight.portfolio)
[1] "call" "er" "sd" "weights"

There are print(), summary() and plot() methods for portfolio objects.
The print() method gives

> equalWeight.portfolio
Call:
getPortfolio(er = er, cov.mat = covmat, weights = ew)

Portfolio expected return: 0.02423333
Portfolio standard deviation: 0.07586538
Portfolio weights:
MSFT NORD SBUX

0.3333 0.3333 0.3333

The plot() method shows a bar chart of the portfolio weights

> plot(equalWeight.portfolio)

The global minimum variance portfolio (allowing for short sales)m solves
the optimization problem

min
m

m0Σm s.t. m01 = 1.

To compute this portfolio use the function globalMin.portfolio()

> gmin.port <- globalMin.portfolio(er, covmat)
> attributes(gmin.port)
$names
[1] "call" "er" "sd" "weights"

$class
[1] "portfolio"
> gmin.port
Call:
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Figure 1.5:

globalMin.portfolio(er = er, cov.mat = covmat)

Portfolio expected return: 0.02489184
Portfolio standard deviation: 0.07267607
Portfolio weights:
MSFT NORD SBUX

0.4411 0.3656 0.1933

A mean-variance efficient portfolio x that achieves the target expected
return μ0 solves the optimization problem

min
x
x0Σx s.t. x01 = 1 and x0μ = μ0.

To compute this portfolio for the target expected return μ0 = E[Rmsft] =
0.04275 use the efficient.portfolio() function

> target.return <- er[1]
> e.port.msft <- efficient.portfolio(er, covmat, target.return)
> e.port.msft
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Call:
efficient.portfolio(er = er, cov.mat = covmat,

target.return = target.return)

Portfolio expected return: 0.0427
Portfolio standard deviation: 0.091656
Portfolio weights:

MSFT NORD SBUX
0.8275 -0.0907 0.2633

The tangency portfolio t is the portfolio of risky assets with the highest
Sharpe’s slope and solves the optimization problem

max
t

t0μ− rf
(t0Σt)1/2

s.t. t01 = 1,

where rf denotes the risk-free rate. To compute this portfolio with rf = 0.005
use the tangency.portfolio() function

> tan.port <- tangency.portfolio(er, covmat, rk.free)
> tan.port
Call:
tangency.portfolio(er = er, cov.mat = covmat, risk.free = rk.free)

Portfolio expected return: 0.05188967
Portfolio standard deviation: 0.1115816
Portfolio weights:

MSFT NORD SBUX
1.0268 -0.3263 0.2994

The the set of efficient portfolios of risky assets can be computed as a
convex combination of any two efficient portfolios. It is convenient to use the
global minimum variance portfolio as one portfolio and an efficient portfolio
with target expected return equal to the maximum expected return of the
assets under consideration as the other portfolio. Call these portfolios m
and x, respectively. For any number α, another efficient portfolio can be
computed as

z = αm+ (1− α)x

The function efficient.frontier() constructs the set of efficient portfolios
using this method for a collection of α values. For example, to compute 20
efficient portfolios for values of α between −2 and 1.5 use
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> ef <- efficient.frontier(er, covmat, alpha.min=-2,
+ alpha.max=1.5, nport=20)
> attributes(ef)
$names
[1] "call" "er" "sd" "weights"

$class
[1] "Markowitz"

> ef
Call:
efficient.frontier(er = er, cov.mat = covmat, nport = 20, alpha.min = -2,

alpha.max = 1.5)

Frontier portfolios’ expected returns and standard deviations
port 1 port 2 port 3 port 4 port 5 port 6 port 7

ER 0.0783 0.0750 0.0718 0.0685 0.0652 0.0619 0.0586
SD 0.1826 0.1732 0.1640 0.1548 0.1458 0.1370 0.1284

port 8 port 9 port 10 port 11 port 12 port 13 port 14
ER 0.0554 0.0521 0.0488 0.0455 0.0422 0.039 0.0357
SD 0.1200 0.1120 0.1044 0.0973 0.0908 0.085 0.0802

port 15 port 16 port 17 port 18 port 19 port 20
ER 0.0324 0.0291 0.0258 0.0225 0.0193 0.0160
SD 0.0764 0.0739 0.0727 0.0730 0.0748 0.0779

Use the summary() method to show the weights of these portfolios. Use
the plot() method to plot the efficient frontier

> plot(ef)

The resulting plot is shown in Figure 1.6.
To create a plot of the efficient frontier showing the original assets and

the tangency portfolio use

> plot(ef, plot.assets=T)
> points(gmin.port$sd, gmin.port$er, col="blue")
> points(tan.port$sd, tan.port$er, col="red")
> sr.tan = (tan.port$er - rk.free)/tan.port$sd
> abline(a=rk.free, b=sr.tan)

The resulting plot is shown in Figure 1.7.
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Figure 1.6: Plot method for Markowitz object.
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Figure 1.7: Efficient frontier for three firm example.


