
Chapter 5

Convolution

In the previous chapter we introduced the Fourier transform with two purposes in mind: (1)
Finding the inverse for the Radon transform. (2) Applying it to signal and image processing
problems. Indeed (1) is a special case of (2). In this chapter we introduce a fundamental
operation, called the convolution product. The idea for convolution comes from considering
moving averages.

Suppose we would like to analyze a smooth function of one variable, s but the available
data is contaminated by noise. For the purposes of the present discussion, this means that
the measured signal is of the form f = s+ εn. Here ε is a (small) number and n is function
which models the noise. An example is shown in figure 5.1.
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Figure 5.1: A smooth function gets corrupted by noise.

Noise is typically represented by a rapidly varying function which is locally of “mean
zero.” This means that, for any x, and a large enough δ, the average

1

δ

x+δ∫

x

n(y)dy
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is small compared to the size of n. The more “random” the noise, the smaller δ can be
taken. On the other hand, since s is a smooth function, the analogous average of s should
be close to s(x). The moving average of f is defined to be

Mδ(f)(x) =
1

δ

x+δ∫

x

f(y)dy. (5.1)

If the noise is very random, so that δ can be taken small, then Mδ(f) should be close to
s. The results of applying this averaging process to the function shown in figure 5.1(c) are
shown in figure 5.2.
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(a) δ = .1.
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Figure 5.2: The moving average Mδ(f) for various values of δ.

There is a somewhat neater and more flexible way to express the operation defined
in (5.1). Define the weight function

mδ(x) =

{
1
δ

for x ∈ [−δ, 0],
0 otherwise.

The moving average then becomes

Mδ(f) =

∞∫

−∞

f(y)mδ(x− y)dy. (5.2)

In this formulation we see that the value ofMδ(f)(x) is obtained by translating the weight
function along the axis, multiplying it by f and integrating. To be a little more precise the
weight function is first reflected around the vertical axis, i.e. mδ(y) is replaced by mδ(−y)
and then translated to give mδ(−(y − x)) = mδ(x − y). At this stage it is a little difficult
to motivate the reflection step, but in the end it leads to a much simpler theory.

The weight function in (5.2) is just one possible choice. Depending upon the properties
of the noise (or the signal) it might be advantageous to use a different weight function. For
w an integrable function, define the w-weighted moving average by

Mw(f) =

∞∫

−∞

f(y)w(x− y)dy. (5.3)
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For this to be an “average” in the usual sense, w should be non-negative with total integral
equal to one. The operation f 7→ Mw(f) is defined under much weaker conditions on w.
The main features of this operation are: 1. It is linear in f . 2. The weight assigned to f(y)
in the ouputMw(f)(x) depends only on the difference x− y. Many operations of this type
appear in mathematics and image processing.
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(c) f ∗ w
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(d) f =
χ[−1,1].
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χ[−1,1]
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Figure 5.3: Examples of the convolution product.

It turns out that the simplest theory results from thinking of this as a bi-linear operation
in the two functions f and w. The result, denoted by f ∗w, is called the convolution product.
Several examples are shown in figures 5.3 and 5.4. As we show below, this operation has
many of the properties of ordinary pointwise multiplication, with one important addition:
Convolution is intimately connected to the Fourier transform. Because there are very
efficient algorithms for approximating the Fourier transform and its inverse, convolution lies
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(a) f =

|x|χ[−1,1](x) sin(10πx).
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Figure 5.4: More examples of the convolution product.

at the heart of many practical filters. After defining the convolution product for functions
on Rn and establishing its basic properties we briefly turn our attention to filtering theory.

5.1 Convolution

See: A.7.1.

For applications to medical imaging we use convolution in 1-, 2- and 3-dimensions. As
the definition and formal properties of this operation do not depend on the dimension, we
define it and consider its properties for functions defined on Rn.

Definition 5.1.1. If f is an integrable function defined on Rn and g is a bounded, locally
integrable function then the convolution product of f and g is the function on Rn defined
by the integral

f ∗ g(x) =
∫

Rn
f(x− y)g(y)dy. (5.4)

Remark 5.1.1. There are many different conditions under which this operation is defined.
If the product f(y)g(x − y) is an integrable function of y then f ∗ g(x) is defined by an
absolutely convergent integral. For example, if g is bounded with bounded support then it is
only necessary that f be locally integrable in order for f ∗g to be defined. In this chapter we
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use functional analytic methods to extend the definition of convolution to situations where
these integals are not absolutely convergent. This closely follows the pattern established to
extend the Fourier transform to L2(Rn).

We consider a couple of additional examples:

Example 5.1.1. Let g(x) = cnr
−nχBr(‖x‖); here Br is the ball of radius r in Rn and c−1

n is
the volume of B1. For any locally integrable function f the value of f ∗ g(x) is given by

f ∗ g(x) =
∫

Rn
f(x− y)g(y)dy

=
cn

rn

∫

Br

f(x− y)dy.

(5.5)

This is the ordinary average of the values of f over points in Br(x).

Convolution also appears in the partial inverse of the Fourier transform. In this case
the weighting function assumes both positive and negative values.

Example 5.1.2. Let f belong to either L1(R) or L2(R). In section 4.4.1 we defined the
partial inverse of the Fourier transform

SR(f)(x) =
1

2π

R∫

−R

f̂(ξ)eixξdξ. (5.6)

This can be represented as a convolution,

SR(f) = f ∗DR,

where

DR(x) =
R sinc(Rx)

π
.

For functions in either L1 or L2 this convolution is given by an absolutely convergent
integral.

5.1.1 Basic properties of the convolution product

The convolution product satisfies many estimates, the simplest is a consequence of the
triangle inequality for integrals:

‖f ∗ g‖∞ ≤ ‖f‖L1‖g‖∞. (5.7)

We now establish another estimate which, via Theorem 4.2.3, extends the domain of the
convolution product.

Proposition 5.1.1. Suppose that f and g are integrable and g is bounded then f ∗ g is
absolutely integrable and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 . (5.8)
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Proof. It follows from the triangle inequality that

∫

Rn

|f ∗ g(x)|dx ≤
∫

Rn

∫

Rn

|f(x− y)g(y)|dydx

=

∫

Rn

∫

Rn

|f(x− y)g(y)|dxdy.
(5.9)

Going from the first to the second lines we interchanged the order of the integrations. This is allowed
by Fubini’s theorem, since f(y)g(x − y) is absolutely integable over Rn × Rn. Changing variables
in the x-integral by setting t = x− y, we get

‖f ∗ g‖L1 ≤
∫

Rn

∫

Rn

|f(t)||g(y)|dtdy = ‖f‖L1‖g‖L1 .

For a fixed f in L1(Rn) the map from bounded, integrable functions to L1(Rn) defined
by Cf (g) = f ∗ g is linear and satisfies (5.8). As bounded functions are dense in L1(Rn),
Theorem 4.2.3 applies to show that Cf extends to define a map from L1(Rn) to itself.
Because f is an arbitrary integrable function, convolution extends as a map from L1(Rn)×
L1(Rn) to L1(Rn). The following proposition summarizes these observations.

Proposition 5.1.2. The convolution product extends to define a continuous map from
L1(Rn)× L1(Rn) to L1(Rn) which satisfies (5.8).

Remark 5.1.2. If f and g are both in L1(Rn) then the integral defining f ∗ g(x) may not
converge for every x. The fact that f(y)g(x− y) is integrable over Rn × Rn implies that

∫

Rn
f(y)g(x− y)dy

might diverge, but only for x belonging to a set of measure zero. An inequality analogous
to (5.8) holds for any 1 ≤ p ≤ ∞. That is, if f ∈ Lp(Rn) and g ∈ L1(Rn) then f ∗ g is
defined as an element of Lp(Rn), satisfying the estimate

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 . (5.10)

The proof of this statement is left to the exercises.

Example 5.1.3. Some decay conditions are required for f ∗ g to be defined. If f(x) =

[
√

1 + |x|]−1 then

f ∗ f(x) =
∞∫

−∞

1√
1 + |y|

1√
1 + |x− y|

dy =∞ for all x.

If, on the other hand, we let g = [
√

1 + |x|]−(1+ε), for any positive ε then f ∗ g is defined.

The basic properties of integration lead to certain algebraic properties for the convolu-
tion product.
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Proposition 5.1.3. The convolution product is commutative, distributive and associative,
that is if f1, f2, f3 belong to L1(Rn) then the following identities hold:

f1 ∗ f2 = f2 ∗ f1,

f1 ∗ (f2 + f3) = f1 ∗ f2 + f1 ∗ f3,

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3.

(5.11)

Remark 5.1.3. If convolution were defined without “reflecting” the argument of the second
function through the origin, i.e. if f ∗g(x) =

∫
f(y)g(y−x)dy then the convolution product

would not be commutative. Instead we would have the identity f ∗ g(x) = g ∗ f(−x).
Proof. We prove the first assertion; it suffices to assume that f2 is bounded, the general case then
follows from (5.8). The definition states that

f1 ∗ f2(x) =
∫

Rn

f1(y)f2(x− y)dy.

Letting t = x− y this integral becomes
∫

Rn

f1(x− t)f2(t)dt = f2 ∗ f1(x).

The proofs of the remaining parts are left to the exercises.

Convolution defines a multiplication on L1(Rn) which is commutative, distributive and
associative. The only thing missing is a multiplicative unit, that is a function i ∈ L1(Rn)
so that f ∗ i = f for every f in L1(Rn). It is not hard to see that such a function cannot
exist. For if

f(x) =

∫

Rn
f(x− y)i(y)dy,

for every point x and every function f ∈ L1(Rn) then i must vanish for x 6= 0. But in this
case f ∗ i ≡ 0 for any function f ∈ L1(Rn). In section 5.3 we return to this point.

A reason that the convolution product is so important in applications is that the Fourier
transform converts convolution into ordinary pointwise multiplication.

Theorem 5.1.1. Suppose that f and g are L1-functions then

F(f ∗ g) = F(f)F(g). (5.12)

Proof. The convolution, f ∗ g is an L1-function and therefore has a Fourier transform. Because
f(x− y)g(y) is an L1-function of (x,y), the following manipulations are easily justified,

F(f ∗ g)(ξξξ) =
∫

Rn

(f ∗ g)(x)e−i〈ξξξ,x〉dx

=

∫

Rn

∫

Rn

f(x− y)g(y)e−i〈ξξξ,x〉dydx

=

∫

Rn

∫

Rn

f(t)g(y)e−i〈ξξξ,(y+t)〉dtdy

= f̂(ξξξ)ĝ(ξξξ).

(5.13)
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Remark 5.1.4. The conclusion of Theorem 5.1.1 remains true if f ∈ L2(Rn) and g ∈ L1(Rn).

In this case f ∗ g also belongs to L2(Rn). Note that ĝ is a bounded function, so that f̂ ĝ
belongs to L2(Rn) as well.

Example 5.1.4. Let f = χ[−1,1]. Formula (5.12) simplifies the computation of the Fourier
transform for f ∗ f or even the j-fold convolution of f with itself

f ∗j f d
= f ∗ · · · ∗

j−times
f.

In this case
F(f ∗j f)(ξ) = [2 sinc(ξ)]j .

Example 5.1.5. A partial inverse for the Fourier transform in n-dimensions is defined by

SnR(f) =
1

[2π]n

R∫

−R

· · ·
R∫

−R

f̂(ξξξ)ei〈x,ξξξ〉dξξξ.

The Fourier transform of the function

Dn
R(x) =

[
R

π

]n n∏

j=1

sinc(Rxj)

is χ[−R,R](ξ1) · · ·χ[−R,R](ξn) and therefore Theorem 5.1.1 implies that

SnR(f) = Dn
R ∗ f.

Exercises

Exercise 5.1.1. For f ∈ L1(R) define

fB(x) =

{
f(x) if |f(x)| ≤ B,

0 if |f(x)| > B.

Show that limB→∞ ‖f − fB‖L1 = 0. Use this fact and the inequality, (5.8) to show that the
sequence < fB ∗ g > has a limit in L1(R).

Exercise 5.1.2. Prove the remaining parts of Proposition 5.1.3. Explain why it suffices to
prove these identities for bounded integrable functions.

Exercise 5.1.3. Compute χ[−1,1] ∗j χ[−1,1] for j = 2, 3, 4 and plot these functions on a
single graph.

Exercise 5.1.4. Prove that ‖f ∗ g‖L2 ≤ ‖f‖L2‖g‖L1 . Hint: Use the Cauchy-Schwarz in-
equality.

Exercise 5.1.5. ∗ For 1 < p < ∞ use Hölder’s inequality to show that ‖f ∗ g‖Lp ≤
‖f‖Lp‖g‖L1 .

Exercise 5.1.6. Show that F(Dn
R)(ξξξ) = χ[−R,R](ξ1) · · ·χ[−R,R](ξn).
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Exercise 5.1.7. Prove that the conclusion of Theorem 5.1.1 remains true if f ∈ L2(Rn)
and g ∈ L1(Rn). Hint: Use the estimate ‖f ∗ g‖L2 ≤ ‖f‖L2‖g‖L1 to reduce to a simpler
case.

Exercise 5.1.8. Suppose that the convolution product were defined by f∗g(x) =
∫
f(y)g(y−

x)dx show that (5.12) would not hold. What would replace it?

Exercise 5.1.9. Show that there does not exist an integrable function i so that i∗f = f for
every integrable function f. Hint: Use Theorem 5.1.1 and the Riemann-Lebesgue Lemma.

Exercise 5.1.10. A different partial inverse for the n-dimensional Fourier transform is
defined by

ΣR(f) =
1

[2π]n

∫

‖ξξξ‖≤R

f̂(ξξξ)ei〈x,ξξξ〉dξξξ.

This can also be expressed as the convolution of f with a function F n
R. Find an explicit

formula for F nR.

Exercise 5.1.11. Use the Fourier inversion formula to prove that

f̂g(ξ) =
1

2π
f̂ ∗ ĝ(ξ). (5.14)

What assumptions are needed for f̂ ∗ ĝ to make sense?

5.1.2 Shift invariant filters?

In engineering essentially any operation which maps inputs to outputs is called a filter.
Since most inputs and outputs are represented by functions, a filter is usually a map from
one space of functions to another. The filter is a linear filter if this map of function spaces is
linear. In practice many filtering operations are given by convolution with a fixed function.
If ψ ∈ L1(Rn) then

Cψ(g) = ψ ∗ g,
defines such a filter. A filter which takes bounded inputs to bounded outputs is called a
stable filter. The estimate (5.7) shows that any filter defined by convolution with an L1-
function is stable. Indeed the estimates in (5.10) show that such filters act continuously
on many function spaces.

Filters defined by convolution have an important physical property: they are shift in-
variant.

Definition 5.1.2. For τττ ∈ Rn the shift of f by τττ is the function fτττ , defined by

fτττ (x) = f(x− τττ).

A filter, A mapping functions defined on Rn to functions defined on Rn is shift invariant if

A(fτττ ) = (Af)τττ .

If n = 1 and the input is a function of time, then a filter is shift invariant if the action
of the filter does not depend on when the input arrives. If the input is a function of spatial
variables, then a filter is shift invariant if its action does not depend on where the input is
located.
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Example 5.1.6. Suppose the τττ is a point in Rn; the shift operation f 7→ fτττ defines a shift
invariant filter.

Proposition 5.1.4. A filter defined by convolution is shift invariant.

Proof. The proof is a simple change of variables.

Cψ(fτττ )(x) =

∫

Rn

ψ(x− y)f(y − τττ)dy

=

∫

Rn

ψ(x− τττ −w)f(w)dw

= Cψ(f)(x− τττ).

(5.15)

In going from the first to the second line we used the change of variable w = y − τττ .

In a certain sense the converse is also true: “Any” shift invariant, linear filter can be
represented by convolution. What makes this a little complicated is that the function ψ

may need to be replaced by a generalized function.
Beyond the evident simplicity of shift invariance, this class of filters is important for

another reason: Theorem 5.1.1 shows that the output of such a filter can be computed
using the Fourier transform and its inverse, explicitly

Cψ(f) = F−1(ψ̂f̂). (5.16)

This is significant because, as noted above, the Fourier transform has a very efficient,
approximate numerical implementation.

Example 5.1.7. Let ψ = 1
2χ[−1,1], the convolution ψ ∗ f is the moving average of f over

intervals of length 2. It can be computed using the Fourier transform by,

ψ ∗ f(x) = 1

2π

∞∫

−∞

sinc(ξ)f̂(ξ)eixξdξ.

Exercises

Exercise 5.1.12. For each of the following filters, decide if is shift invariant or non-shift
invariant.

(1). Translation: Aτττ (f)(x) d
= f(x− τττ).

(2). Scaling: Aε(f)(x) d
= 1

εn
f
(
x
ε

)
.

(3). Multiplication by a function: Aψ(f) d
= ψf.

(4). Indefinite integral from 0: I0(f)(x)
d
=
∫ x
0 f(y)dy.

(5). Indefinite integral from −∞ : I−∞(f)(x)
d
=
∫ x
−∞ f(y)dy.
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(6). Time reversal: Tr(f)(x) d
= f(−x).

(7). An integral filter: f 7→
∫∞
−∞ xyf(y)dy.

(8). Differentiation: D(f)(x) = f ′(x).

Exercise 5.1.13. Suppose that A and B are shift invariant. Show that their composition

A ◦ B(f) d
= A(B(f)) is also shift invariant.

5.1.3 Convolution equations

Convolution provides a model for many measurement and filtering processes. If f is the
state of a system then, for a fixed function ψ, the output g is modeled by the convolution
g = ψ ∗ f. In order to recover the state of the system from the output one must therefore
solve this equation for f as a function of g. Formally this equation is easy to solve, (5.13)
implies that

f̂(ξξξ) =
ĝ(ξξξ)

ψ̂(ξξξ)
.

There are several problems with this approach. The most obvious problem is that ψ̂
may vanish for some values of ξξξ. If the model were perfect then, of course, ĝ(ξξξ) would
also have to vanish at the same points. In real applications this leads to serious problems
with stability. A second problem is that, if ψ is absolutely integrable, then the Riemann-
Lebesgue lemma implies that ψ̂(ξξξ) tends to 0 as ‖ξξξ‖ goes to infinity Unless the measurement
g is smooth and noise free it is not possible to exactly determine f by applying the inverse
Fourier transform to this ratio. In Chapter 9 we discuss how these issues are handled in
practice.

Example 5.1.8. The rectangle function defines a simple weight, ψε = (2ε)−1χ[−ε,ε]. Its
Fourier transform is given by

ψ̂ε(ξ) = sinc(εξ).

This function has zeros at ξ = ±(ε−1mπ), where m is any positive integer. These zeros are
isolated so it seems reasonable that an integrable function f should be uniquely specified
by the averages ψε ∗ f, for any ε > 0. In fact it is, but f cannot be stably reconstructed
from these averages.

Exercises

Exercise 5.1.14. If a and b are positive numbers then define

wa,b(x) =
1

2

[
χ[−a,a](x)

2a
+
χ[−b,b](x)

2b

]
.

Graph wa,b(x) for several different choices of (a, b). Show that for appropriate choices of a
and b the Fourier transform ŵa,b(ξ) does not vanish for any value of ξ.

Exercise 5.1.15. Define a function

f(x) = χ[−1,1](x)(1− |x|)2.
Compute the Fourier transform of this function and show that it does not vanish anywhere.
Let fj = f ∗j f (the j-fold convolution of f with itself). Show that the Fourier transforms,

f̂j are also non-vanishing.
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5.2 Convolution and regularity

Generally speaking the averages of a function are smoother than the function itself. If f
is a locally integrable function and ϕ is continuous, with bounded support then f ∗ ϕ is
continuous. Let τττ be a vector in Rn then

lim
τττ→0

[f ∗ ϕ(x+ τττ)− f ∗ ϕ(x)] = lim
τττ→0

∫

Rn
f(y)[ϕ(x+ τττ − y)− ϕ(x− y)]dy.

Because ϕ has bounded support it follows that the limit on the right can be taken inside
the integral, showing that

lim
τττ→0

f ∗ ϕ(x+ τττ) = f ∗ ϕ(x).

This argument can be repeated with difference quotients to prove the following result.

Proposition 5.2.1. Suppose that f is locally integrable, ϕ has bounded support and k

continuous derivatives, then f ∗ ϕ also has k continuous derivatives. For any multi-index
ααα with |ααα| ≤ k we have

∂αααx (f ∗ ϕ) = f ∗ (∂αααxϕ). (5.17)

Remark 5.2.1. This result is also reasonable from the point of view of the Fourier transform.
Suppose that ϕ has k integrable derivatives, then Proposition 4.5.3 shows that

|ϕ̂(ξξξ)| ≤ C

(1 + ‖ξξξ‖)k .

If f is either integrable or square-integrable then the Fourier transform of f ∗ϕ satisfies an
estimate of the form

|F(f ∗ ϕ)(ξξξ)| ≤ C|f̂(ξξξ)|
(1 + ‖ξξξ‖)k .

This shows that the Fourier transform of f ∗ ϕ has a definite improvement in its rate of
decay over that of f and therefore f ∗ ϕ is commensurately smoother.

5.2.1 Approximation by smooth functions

Convolution provides a general method for approximating integrable (or locally integrable)
functions by smooth functions. Beyond that it gives a technique to define regularized
derivatives for functions which are not differentiable. We begin with a definition:

Definition 5.2.1. For a function ϕ, defined on Rn, and ε, a positive real number, define
the scaled function ϕε by

ϕε(x) = ε−nϕ(
x

ε
). (5.18)

While this notation is quite similar to that used, in definition 5.1.2, for the translation of
a function, the meaning should be clear from the context. A one-dimensional example is
shown in figure 5.5.

Let ϕ be an infinitely differentiable function with total integral one:
∫

Rn
ϕ(x)dx = 1.
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Figure 5.5: Graphs of ϕε, with ε = .5, 2, 8.

If ϕ is supported in the ball of radius 1 then ϕε is supported in the ball of radius ε and also
has total integral one: Using the change of variables εy = x gives

∫

Rn
ϕε(x)dx =

∫

Rn

1

εn
ϕ(
x

ε
)dx =

∫

Rn
ϕ(y)dy = 1. (5.19)

This allows the difference between f and ϕε ∗ f to be expressed in a convenient form:

ϕε ∗ f(x)− f(x) =
∫

Bε(x)

[f(y)− f(x)]ϕε(x− y)dy. (5.20)

The integral is over the ball of radius ε, centered at x. It is therefore reasonable to expect
that, as ε goes to zero, ϕε ∗ f converges, in some sense, to f. The fact that ϕ has total
integral one implies that ϕ̂(0) = 1. This gives another heuristic for understanding what
happens to ϕε ∗ f as ε tends to 0. It follows from Theorem 5.1.1 that

F(ϕε ∗ f)(ξξξ) = ϕ̂ε(ξξξ)f̂(ξ)

= ϕ̂(εξξξ)f̂(ξξξ).
(5.21)

Thus, for each fixed ξξξ, the limit of F(ϕε ∗ f)(ξξξ) is f̂(ξξξ).
Convolution with ϕε tends to average out the noise, while, at the same time, blurring

the fine detail in the image. The size of ε determines the degree of blurring. Because both
noise and fine detail are carried by the high frequency components, this can be understood
in the Fourier representation. Since ϕ has integral 1 it follows that ϕ̂(0) = 1; as ϕ̂ is a
smooth function

ϕ̂(εξξξ) ≈ 1 for ‖ξξξ‖ << ε−1.

Hence, for “low frequencies,” that is ‖ξξξ‖ << ε−1, the Fourier transform F(ϕε ∗f)(ξξξ) closely
approximates f̂(ξξξ). On the other hand, ϕ̂(ξξξ) tends to zero rapidly as ‖ξξξ‖ → ∞ and therefore
the high frequency content of f is suppressed in ϕε ∗ f. Using convolution to suppress noise
inevitably destroys fine detail.

Example 5.2.1. Consider the function of two variables f shown (as a density plot) in fig-
ure 5.6(a). The convolution of f with a smooth function is shown in figures 5.6(b-c). Near
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points where f is slowly varying ϕε ∗ f is quite similar to f. Near points where f is rapidly
varying this is not the case.

(a) A reconstruction of
the Shepp-Logan phan-
tom, see figure 3.7 .

(b) The function in (a)
convolved with ϕε with
a small ε.

(c) The function in (a)
convolved with ϕε with
a large ε.

Figure 5.6: Convolving f reduces the noise but blurs the detail.

Remark 5.2.2. In practice, infinitely differentiable functions can be difficult to work with.
To simplify computations a finitely differentiable version may be preferred. For example,
given k ∈ N define the function

ψk(x) =

{
ck(1− x2)k if |x| ≤ 1,

0 if |x| > 1.
(5.22)

The constant, ck is selected so that ψk has total integral one. The function ψk has k − 1
continuous derivatives. If

ψk,ε(x) = ε−1ψk(
x

ε
)

and f is locally integrable, then < ψk,ε ∗ f > is a family of (k − 1)-times differentiable
functions, which converge, in an appropriate sense to f.

Exercises

Exercise 5.2.1. Let f be an integrable function with support in the interval [a, b] and g
an integrable function with support in [−ε, ε]. Show that the support of f ∗ g is contained
in [a− ε, b+ ε].

Exercise 5.2.2. For the functions ψk, defined in (5.22), find the constants ck so that

1∫

−1

ψk(x)dx = 1.

5.2.2 Some convergence results∗

We now prove some precise results describing different ways in which ϕε ∗ f converges to f.
For most of these results it is only necessary to assume that ϕ is an L1-function with total
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integral one. The sense in which ϕε ∗ f converges to f depends on its regularity and decay.
The square-integrable case is the simplest.

Proposition 5.2.2. Suppose that ϕ is an L1-function with
∫

Rn
ϕ(x)dx = 1.

If f ∈ L2(Rn) then ϕε ∗ f converges to f in L2(Rn).

Proof. The Plancherel formula implies that

‖ϕε ∗ f − f‖L2 =
1

[2π]
n
2

‖ϕ̂ε ∗ f − f̂‖L2 .

The Fourier transform of ϕε at ξξξ, computed using (4.37), is

F(ϕε)(ξξξ) = ϕ̂(εξξξ). (5.23)

From Theorem 5.1.1 we obtain

‖ϕ̂ε ∗ f − f̂‖L2 = ‖f̂(ϕ̂ε − 1)‖L2 .

The Lebesgue dominated convergence theorem, (5.23) and the fact that ϕ̂(0) = 1 imply that

lim
ε→∞

‖f̂(ϕ̂ε − 1)‖L2 = 0.

A similar result holds in the L1-case.

Proposition 5.2.3. Suppose that ϕ is an L1-function with
∫

Rn
ϕ(x)dx = 1.

If f belongs to L1(Rn) then ϕε ∗ f converges to f in the L1-norm.

Proof. The proof of this result is quite different from the L2-case it relies on the follwing lemma:

Lemma 5.2.1. If f belongs to L1(Rn) then

lim
τττ→0

‖fτττ − f‖L1 = 0.

In other words the translation operator, (τττ , f) 7→ fτττ is a continuous map of Rn×L1(Rn) to L1(Rn).
The proof of this statement is left to the exercises. The triangle inequality shows that

‖ϕε ∗ f − f‖L1 =

∫

Rn

∣∣∣∣∣∣

∫

Rn

[f(x− εt)− f(x)]ϕ(t)dt

∣∣∣∣∣∣
dx

≤
∫

Rn

|ϕ(t)|




∫

Rn

|f(x− εt)− f(x)|dx


 dt

=

∫

Rn

|ϕ(t)|‖fεt − f‖L1dt.

(5.24)

The last integrand is bounded by 2‖f‖L1 |ϕ(t)| and therefore the limit, as ε goes to zero, can be
brought inside the integral. The conclusion of the proposition follows from Lemma.
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Finally it is useful to examine ϕε ∗ f(x) at points where f is smooth. Here we use a
slightly different assumption on ϕ.

Proposition 5.2.4. Let f be a locally integrable function and ϕ an integrable function with
bounded support and total integral one. If f is continuous at x then

lim
ε↓0

ϕε ∗ f(x) = f(x).

Proof. As f is continuous at x, given η > 0 there is a δ > 0 so that

‖x− y‖ < δ ⇒ |f(x)− f(y)| < η. (5.25)

This implies that |f(y)| is bounded for y in Bδ(x). If ε is sufficiently small, say less than ε0, then the
support of ϕε is contained in the ball of radius δ and therefore ϕε ∗ f(x) is defined by an absolutely
convergent integral. Since the total integral of ϕ is 1 we have, for an ε < ε0, that

|ϕε ∗ f(x)− f(x)| =

∣∣∣∣∣∣

∫

Bδ

ϕε(y)(f(x− y)− f(x))dy

∣∣∣∣∣∣

≤
∫

Bδ

|ϕε(y)||f(x− y)− f(x)|dy

≤
∫

Bδ

|ϕε(y)|ηdy

≤ ‖ϕ‖L1η.

(5.26)

In the third line we use the estimate (5.25). Since η > 0 is arbitrary this completes the proof of the
proposition.

Remark 5.2.3. There are many variants of these results. The main point of the proofs is
that ϕ is absolutely integrable. Many similar looking results appear in analysis, though
with much more complicated proofs. In most of these cases ϕ is not absolutely integrable.
For example, the Fourier inversion formula in one-dimension amounts to the statement that
ϕε ∗ f converges to f where ϕ(x) = π−1 sinc(x). As we have noted several times before,
sinc(x) is not absolutely integrable.

We close this section by applying the approximation results above to complete the proof
of the Fourier inversion formula. Thus far Theorems 4.2.1 and 4.5.1 were proved with the
additional assumption that f is continuous.

Proof of the Fourier inversion formula, completed. Suppose that f and f̂ are absolutely integrable

and ϕε is as above. Note that f̂ is a continuous function. For each ε > 0 the function ϕε ∗ f is
absolutely integrable and continuous. Its Fourier transform, ϕ̂(εξξξ)f̂(ξξξ), is absolutely integrable. As

ε goes to zero it converges locally uniformly to f̂(ξ). Since these functions are continuous we can
use the Fourier inversion formula to conclude that

ϕε ∗ f(x) =
1

2π

∫

Rn

ϕ̂(εξξξ)f̂(ξξξ)i〈x,ξξξ〉dξξξ.

This is a locally uniformly convergent family of continuous functions and therefore has a continuous
limit. The right hand side converges pointwise to

F (x) =

∫

Rn

f̂(ξξξ)i〈x,ξξξ〉dξξξ.
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Proposition 5.2.3 implies that ‖ϕε ∗ f − f‖L1 also goes to zero as ε tends to 0 and therefore F (x) =
f(x). (To be precise we should say that after modification on a set of measure 0, F (x) = f(x).) This
completes the proof of the Fourier inversion formula.

Exercises

Exercise 5.2.3. Use Corollary A.7.1 to prove Lemma 5.2.1.

Exercise 5.2.4. Give the details of the argument, using Lemma 5.2.1, to show that if f is
an L1-function, then

lim
ε→0

∫

Rn
ϕ(t)‖fεt − f‖L1dt = 0.

Exercise 5.2.5. Use the method used to prove Proposition 5.2.4 to show that if f ∈ Lp(R)
for a 1 ≤ p <∞ then ϕε ∗ f converges to f in the Lp-norm. Give an example to show that
if f is a bounded, though discontinuous function, then ‖ϕε ∗ f − f‖∞ may fail to tend to
zero.

Exercise 5.2.6. Let ψε(x) = [2ε]−1χ[−ε,ε](x). Show by direct computation that if f ∈ L2(R)

then ψε ∗ f converges to f in L2(R).

5.2.3 Approximating derivatives and regularized derivatives

If either f or ϕ is a differentiable function then ϕ∗f is as well. In this section we assume that
ϕ is a bounded function with support in B1 and total integral one. If f has k continuous
derivatives in Bδ(x) then, for ε < δ the convolution ϕε ∗ f is k-times differentiable. For
each ααα with |ααα| ≤ k, Proposition 5.2.1 implies that

∂αx (ϕε ∗ f)(x) = ϕε ∗ ∂αααxf(x).

Proposition 5.2.4 can be applied to conclude that

lim
ε→0

∂αx (ϕε ∗ f)(x) = ∂αααxf(x).

On the other hand, if f is not a differentiable function but ϕ is, then

∂xj (ϕε ∗ f) = (∂xjϕε) ∗ f

can be used to define regularized approximations to the partial derivatives of f. This can be
useful if f is the result of a noisy measurement of a smooth function which, for one reason or
another, must be differentiated. Precisely this situation arises in the reconstruction process
used in x-ray CT-imaging. We illustrate this idea with an example:
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(a) A noisy function smoothed
by convolution with a triangle
function, ε = .1.
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(b) The regularized derivative
of the noisy function, ε = .1.

Figure 5.7: Using convolution to find a regularized approximate derivative.

Example 5.2.2. Let f be the noise corrupted version of cos(x) depicted in figure 5.1(c). To
smooth f we use the “triangle function”

tε(x) =

{
ε−|x|
ε2

if |x| ≤ ε,

0 if |x| > ε.

The derivative of f ∗ tε is computed using the weak derivative of tε. The result of computing
f ∗ t.1 is shown in figure 5.7(a) while f ∗ t′.1 is shown in figure 5.7(b). The approximation
to − sin(x) provided by f ∗ t′.1 is impressive given that t.1 has only a weak derivative.

Exercise

Exercise 5.2.7. ∗ For k a positive integer suppose that f and ξkf̂(ξ) belong to L2(R). By
approximating f by smooth functions of the form ϕε ∗ f show that f has k L2-derivatives.

5.2.4 The support of f ∗ g.

Suppose that f and g have bounded support. For applications to medical imaging it is
important to understand how the support of f ∗ g is related to the supports of f and g. To
that end we define the algebraic sum of two subsets of Rn.

Definition 5.2.2. Suppose A and B are subsets of Rn. The algebraic sum of A and B is
defined as the set

A+B = {a+ b ∈ Rn : a ∈ A, and b ∈ B}.

Using this concept we can give a quantitative result describing the way in which con-
volution “smears” out the support of a function.
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Proposition 5.2.5. The support of f ∗ g is contained in supp f + supp g.

Proof. Suppose that x is not in supp f + supp g. This means that no matter which y is selected
either f(y) or g(x− y) is zero. Otherwise x = y + (x− y) would belong to supp f + supp g. This
implies that f(y)g(x− y) is zero for all y ∈ Rn and therefore

f ∗ g(x) =
∫

Rn

f(y)g(x− y)dy = 0

as well. Because supp f + supp g is a closed set there is an η > 0 such that Bη(x) is disjoint from
supp f + supp g. The argument showing that f ∗ g(x) equals 0 applies to any point x′ in Bη(x) and
therefore proves the proposition.

If ϕ is a function supported in the ball of radius one then ϕε is supported in the ball of
radius ε. According to Proposition 5.2.5 the support of ϕε ∗ f is contained in the set

{x+ y : x ∈ supp f and y ∈ Bε}.

These are precisely the points that are within distance ε of the support of f, giving another
sense in which ε reflects the resolution available in ϕε∗f. Figure 5.8 shows a one dimensional
example.

f

(a) supp f

g

(b) supp g

f*g

(c) supp f + supp g

Figure 5.8: The support of f ∗ g is contained in supp f + supp g.

Example 5.2.3. Suppose that ψ is a non-negative function which vanishes outside the in-
terval [−ε, ε] and has total integral 1,

∞∫

−∞

ψ(x)dx = 1.

If f is a locally integrable function then f ∗ ψ(x) is the weighted average of the values of f
over the interval [x− ε, x+ ε]. Note that ψ ∗ ψ also has total integral 1

∞∫

−∞

ψ ∗ ψ(x)dx =

∞∫

−∞

∞∫

−∞

ψ(y)ψ(x− y)dydx

=

∞∫

−∞

∞∫

−∞

ψ(y)ψ(t)dtdy

= 1 · 1 = 1.

(5.27)
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In the second to last line we reversed the order of the integrations and set t = x− y.
Thus f ∗ (ψ ∗ ψ) is again an average of f. Note that ψ ∗ ψ(x) is generally non-zero for

x ∈ [−2ε, 2ε], so convolving with ψ ∗ ψ produces more blurring than convolution with ψ

alone. Indeed we know from the associativity of the convolution product that

f ∗ (ψ ∗ ψ) = (f ∗ ψ) ∗ ψ,

so we are averaging the averages, f ∗ ψ. This can be repeated as many times as one likes,
the j-fold convolution ψ ∗j ψ has total integral 1 and vanishes outside the interval [−jε, jε].
Of course the Fourier transform of ψ ∗j ψ is [ψ̂(ξ)]j which therefore decays j times as fast

as ψ̂(ξ).
We could also use the scaled j-fold convolution δ−1ψ ∗j ψ(δ−1x) to average our data.

This function vanishes outside the interval [−jδε, jδε] and has Fourier transform [ψ̂(δξ)]j .
If we choose δ = j−1 then convolving with this function will not blur details any more than
convolving with ψ itself but better suppresses high frequency noise. By choosing j and δ
we can control, to some extent, the trade off between blurring and noise suppression.

5.3 The δ-function?

See: A.5.6.

The convolution product defines a multiplication on L1(Rn) with all the usual properties
of a product except that there is no unit. If i were a unit then i ∗ f = f for every function
in L1(Rn). Taking the Fourier transform, this would imply that, for every ξξξ,

î(ξξξ)f̂(ξξξ) = f̂(ξξξ).

This shows that î(ξξξ) ≡ 1 and therefore i cannot be an L1-function. Having a multiplicative
unit is so useful that engineers, physicists and mathematicians have all found it necessary
to simply define one. It is called the δ-function and is defined by the property that for any
continuous function f

f(0) =

∫

Rn
δ(y)f(y)dy. (5.28)

Proceeding formally we see that

δ ∗ f(x) =
∫

Rn
δ(y)f(x− y)dy

= f(x− 0) = f(x).

(5.29)

So at least for continuous functions δ ∗ f = f.

It is important to remember the δ-function is not a function. In the mathematics
literature the δ-function is an example of a distribution or generalized function. The basic
properties of generalized functions are introduced in Appendix A.5.6. In the engineering
and physics literature it is sometimes called a unit impulse. In section 4.4.4 the Fourier
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transform is extended to generalized functions (at least in the one-dimensional case). The
Fourier transform of δ is as expected, identically equal to 1:

F(δ) ≡ 1.

While (5.28) only makes sense for functions continuous at 0, the convolution of δ with an
arbitrary locally integrable function is well defined and satisfies δ ∗ f = f. This is not too
different from the observation that if f and g are L1-functions then f ∗ g(x) may not be
defined at every point, nonetheless, f ∗ g is a well defined element of L1(Rn).

In both mathematics and engineering it is useful to have approximations for the δ-
function. There are two complementary approaches to this problem, one is to use functions
like ϕε, defined in (5.18) to approximate δ in x-space. The other is to approximate δ̂ in
ξξξ-space. To close this chapter we consider some practical aspects of approximating the
δ-function in one-dimension and formalize the concept of resolution.

5.3.1 Approximating the δ-function in 1-dimension

Suppose that ϕ is an even function with bounded support and total integral one. The
Fourier transform of ϕε is ϕ̂(εξ). Because ϕε vanishes outside a finite interval its Fourier
transform is a smooth function and ϕ̂(0) = 1. As ϕ is a non-negative, even function its
Fourier transform is real valued and assumes its maximum at zero. In applications it is
important that the difference 1 − ϕ̂(εξ) remain small over a specified interval [−B,B]. It
is also important that ϕ̂(εξ) tend to zero rapidly outside a somewhat larger interval. As
ϕ is non-negative, ∂ξϕ̂(0) = 0; thism means that the behavior of ϕ̂(ξ) for ξ near to zero is
largely governed by the “second moment”

∂2
ξ ϕ̂(0) = −

∞∫

−∞

x2ϕ(x)dx.

One would like this number to be small. This is accomplished by putting more of the mass
of ϕ near to x = 0. On the other hand the rate at which ϕ̂ decays as |ξ| → ∞ is determined
by the smoothness of ϕ. If ϕ = 1

2χ[−1,1] then ϕ̂ decays like |ξ|−1. Better decay is obtained
by using a smoother function. In applications having ϕ̂ absolutely integrable is usually
adequate. In one-dimension this is the case if ϕ is continuous and piecewise differentiable.

The other approach to constructing approximations to the δ-function is to approximate
its Fourier transform. One uses a sequence of functions which are approximately 1 in an
interval [−B,B] and vanish outside a larger interval. Again a simple choice is χ[−B,B](ξ).

The inverse Fourier transform of this function is ψB(x) = π−1B sinc(Bx). In this context
it is called a sinc pulse. Note that ψB assumes both positive and negative values. A
sinc-pulse is not absolutely integrable; the fact that the improper integral of ψB over the
whole real line equals 1 relies on subtle cancellations between the positive and negative
parts of the integral. Because ψB is not absolutely integrable, it is often a poor choice
for approximating the δ-function. Approximating δ̂ by (2B)−1χ[−B,B] ∗ χ[−B,B](ξ) gives a

sinc2-pulse, (2B)−1ψ2
B(x), as an approximation to δ. This function has better properties: it

does not assume negative values, is more sharply peaked at 0 and is absolutely integrable.
These functions are graphed in figure 5.9.
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(b) A sinc2-pulse.

Figure 5.9: Approximate δ-functions

Neither the sinc nor sinc2 has bounded support, both functions have oscillatory “tails”
extending to infinity. In the engineering literature these are called side lobes. Side lobes
result from the fact that the Fourier transform vanishes outside a bounded interval, see
section 4.4.3. The convolutions of these functions with χ[−1,1] are shown in figure 5.10. In
figure 5.10(a) notice that the side lobes produce large oscillations near the jump. This is an
example of the “Gibbs phenomenon.” It results from using a discontinuous cutoff function
in the Fourier domain. This effect is analyzed in detail, for the case of Fourier series in
section 7.5.
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(a) sinc ∗χ[−1,1].
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(b) sinc2 ∗χ[−1,1].

Figure 5.10: Approximate δ-functions convolved with χ[−1,1].

Exercises

Exercise 5.3.1. Suppose that f is a continuous L1-function and ϕ is absolutely integrable
with

∫
R ϕ = 1. Show that < ϕε ∗ f > converges pointwise to f.
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Exercise 5.3.2. Suppose that ϕ is an integrable function on the real line with total integral
1 and f is an integrable function such that, for a k > 1,

|f̂(ξ)| ≤ C

(1 + |ξ|)k .

Use the Fourier inversion formula to estimate the error ‖ϕε ∗ f(x)− f(x)|.

5.3.2 Resolution and the full width half maximum

We now give a standard definition for the resolution present in a measurement of the form
ψ ∗ f. Resolution is a subtle and, in some senses, subjective concept. It is mostly useful
for purposes of comparision. The definition presented here is just one of many possible
definitions.

Suppose that ψ is a non-negative function with a single hump similar to those shown
in figure 5.5. The important features of this function are

1. It is non-negative,

2. It has a single maximum value, which it attains at 0,

3. It is monotone increasing to the left of the maximum

and monotone decreasing to the right.

(5.30)

Definition 5.3.1. Let ψ satisfy the conditions in (5.30) and let M be the maximum value
it attains. Let x1 < 0 < x2 be respectively the smallest and largest numbers so that

ψ(x1) = ψ(x2) =
M

2
.

The difference x2−x1 is called the full width half maximum of the function ψ. It is denoted
FWHM(ψ).

If f is an input then the resolution available in the output, ψ ∗ f is defined to be the
FWHM(ψ). In principle if FWHM(ψ1) < FWHM(ψ2) then f 7→ ψ1 ∗ f should have better
resolution than f 7→ ψ2 ∗f. Here is a heuristic explanation for this definition. Suppose that
the signal f is pair of unit impulses separated by a distance d,

f(x) = δ(x) + δ(x− d).

Convolving ψ with f produces two copies of ψ,

ψ ∗ f(x) = ψ(x) + ψ(x− d).

If d > FWHM(ψ) then ψ ∗ f has two distinct maxima separated by a valley. If d ≤
FWHM(ψ) then the distinct maxima disappear. If the distance between the impulses is
greater than the FWHM(ψ) then we can “resolve” them in the filtered output. More gen-
erally the FWHM(ψ) is considered to be the smallest distance between distinct “features”
in f which can be seen in ψ ∗ f. In figure 5.11 we use a triangle function for ψ. The FWHM
of this function is 1, the graphs show ψ and the results of convolving ψ with a pair of unit
impulses separated, respectively by 1.2 > 1 and .8 < 1.
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Figure 5.11: Illustration of the FWHM definition of resolution

This FWHM-definition of resolution is often applied to filters defined by functions which
do not satisfy all the conditions in (5.30) but are qualitatively similar. For example the
characteristic function of an interval χ[−B,B](x) has a unique maximum value and is mono-
tone to the right and left of the maximum. The FWHM(χ[−B,B]) is therefore 2B. Another
important example is the sinc-function. It has a unique maximum and looks correct near
to it. This function also has large side-lobes which considerably complicate the behavior of
the map f 7→ f ∗ sinc . The FWHM(sinc) is taken to be the full width half maximum of its
central peak, it is approximately given by

FWHM(sinc) ≈ 3.790988534.

We return to the problem of quantifying resolution in Chapter 9.

Exercises

Exercise 5.3.3. Numerically compute the FWHM(sinc2(x)). How does it compare to
FWHM(sinc(x)).

Exercise 5.3.4. Suppose that

hj(x) =

[
sin(x)

x

]j
.

Using the Taylor expansion for sine function show that, as j gets large,

FWHM(hj) ' 2

√
6 log 2

j
.

Exercise 5.3.5. Using the Taylor expansion for the sine, show that as B gets large

FWHM(sinc(Bx)) ' 2
√
3

B
.

Exercise 5.3.6. For a > 0 let ga(x) = e
−x2

a2 . Compute FWHM(ga) and FWHM(ga ∗ gb).


