
KCPSM3
8-bit Micro Controller
for Spartan-3,
Virtex-II and Virtex-IIPRO

Ken Chapman

Xilinx Ltd

October 2003

For Spartan-II(E) and Virtex(E) please use KCPSM
Virtex-II and Virtex-IIPro are also supported by KCPSM2

Rev.7



KCPSM3 Manual   2

Contents
1
2
3
4

5-6
7
8

9-11
12
13
14
15

Title
Contents page
Limitations
What is KCPSM3?
KCPSM3 is small 
Size and Performance
KCPSM3 Architecture
KCPSM3 Feature Set
Constant (k) Coded
Using KCPSM3 (VHDL)
Connecting the Program ROM
Verilog and System Generator

28
29
30
31
32
33
34
35
36
37

Understanding KCPSM3

Instruction Set

ADDCY
SUB
SUBCY
COMPARE
SR0, SR1, SRX, SRA, RR
SL0, SL1, SLX, SLA, RL
OUTPUT
INPUT
STORE
FETCH

KCPSM3 Assembler

40
41
42
43
44
45
46
47
48
49

50-51

KCPSM3 Assembler - Basic usage.
Assembler Errors
Assembler Files
ROM_form.vhd File
ROM_form.v File 
ROM_form.coe File
<filename>.fmt File
<filename>.log file
constant.txt & labels.txt Files
pass.dat files
Program Syntax

63
64

65-66
67-68

69
70

71-75

Interrupts and worked example

Interrupt Handling
Basics of Interrupt Handling
Example Design (VHDL)
Interrupt Service Routine
Interrupt Operation
Timing of Interrupt Pluses38

39

Interface Signals

READ and WRITE STOBES
RESET

16
17
18
19
20
21
22
23
24
25
26
27

KCPSM3 Instruction Set
JUMP
CALL
RETURN
RETURNI 
ENABLE/DISABLE INTERRUPT
LOAD
AND
OR
XOR
TEST
ADD

52
53
54
55
56

CONSTANT Directive
NAMEREG Directive
ADDRESS Directive
KCPSM and KCPSM2 Compatibility
PicoBlaze Comparison

Hints and Tips

CALL/RETURN Stack
Sharing program space
Design of Output Ports
Design of Input Ports
Connecting Memory
Simulation of KCPSM3
VHDL Simulation

57
58
59
60
61
62



KCPSM3 Manual   3

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 would be gratefully received by the author.

Ken Chapman
Senior Staff Engineer - Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using KCPSM or KCPSM2 with information about your application and
how these macros have been useful.



KCPSM3 Manual   4

What is KCPSM3 ?
KCPSM3 is a very simple 8-bit microcontroller primarily for the Spartan-3 devices but also suitable for use in Virtex-II and Virtex-
IIPRO devices. Although it could be used for processing of data, it is most likely to be employed in applications requiring a
complex, but non-time critical state machine. Hence it has the name of ‘(K)constant Coded Programmable State Machine’.

This revised version of popular KCPSM macro has still been developed with one dominant factor being held above all others -
Size! The result is a microcontroller which occupies just 96 Spartan-3 Slices which is just 5% of the XC3S200 device and less
than 0.3% of the XC3S5000 device. Together with this small amount of logic, a single block RAM is used to form a ROM store
for a program of up to 1024 instructions. Even with such size constraints, the performance is respectable at approximately 43 to
66 MIPS depending on device type and speed grade.

IN_PORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]

CLK

READ_STROBE

WRITE_STROBE

Interface to logic

Interface to logic

KCPSM3

ADDRESS[9:0]

INSTRUCTION[17:0]

CLK

Block Memory
(Program)

One of the most exciting features of the KCPSM3 is that it is totally embedded into the device and requires no external support.
The very fact that ANY logic can be connected to the module inside the Spartan-3 or Virtex-II device means that any additional
features can be added to provide ultimate flexibility. It is not so much what is inside the KCPSM3 module that makes it useful,
but the environment in which it lives.

RESET

INTERRUPT_ACK



KCPSM3 Manual   5

KCPSM3 is small!
KCPSM3 is supplied as VHDL and as a pre-compiled soft macro which is handled by the place and route tools to merge with the
logic of a design. In large devices, the KCPSM3 is virtually free! The potential to place multiple KCPSM3 within a single design is
obvious. Whenever a non time critical complex state machine is required, this macro is easy to insert and greatly simplifies design.

96 Slices

5% of XC3S200 
Spartan-3 device

~87MHz in -4
Speed Grade

~43.5 MIPS

This plot from the FPGA Editor viewer shows the
macro in isolation within the XC3S200 Spartan-3
device.



KCPSM3 Manual   6

KCPSM3 is small!
This plot from the Xilinx Floorplanner shows the same implementation of KCPSM3 in an XC3S200 Spartan-3 device. This makes it
easier to appreciate the actual logic resources required by the macro without the interconnect obscuring the detail.

The placement in this Floorplanner view  was achieved using a
simple area constraint in the project UCF file.

Such constraints are not required in normal designs and it has only
been used in this case because so little of the device is occupied.
Experiments have shown that placement constraints have very little
effect on performance.

The FPGA Editor view shown
to the right was the result
when no constraints were
used. The size is still 96
slices but this is now a little
less obvious! The
performance was actually a
little higher than when using
the area constraint indicating
that a ‘tidy’ design is not
always the fastest!



KCPSM3 Manual   7

Size and Performance
The following device resource information is taken from the ISE reports for the KCPSM3 macro in an XC3S200 device. The reports
reveal the features that are utilised and the efficiency of the macro. The 96 ‘slices’ reported by the MAP process in this case may
reduce to the minimum of 89 ‘slices’ when greater packing is used to fit a complete design into a device.

XST Report MAP Report

TRACE Report

109 LUTs
(55 slices)

Carry and MUX logic
(Free with LUTs)

76 Flip_flops
(Free with LUTs)

Register bank (8 slices)
Call/Return Stack (10 slices)

43.8 MIPS

Total = 89 Slices

Scratch Pad Memory (16 slices)

TRACE Report for Virtex-IIPRO

66.6 MIPS

12 × KCPSM3 can fit into the XC3S200 device (40% of the logic
slices remaining). An equivalent gate count of 897,768 gates in a
200,000 gate device!



KCPSM3 Manual   8

KCPSM3 Architecture

IN_PORT[7:0]

PORT_ID[ 7:0]

INTERRUPT

OUT_PORT[7:0]

ADDRESS[9:0]

READ_STROBE

WRITE_STROBE

Program
Counter

Program
Counter
Stack

ZERO &
CARRY

flags

Program
Flow

Control

Interrupt
Control

16 Registers
8-bit

Interrupt
Shadow Flags

Port
Address
Control

ALU

8 bit data path

8 bit port address

10 bit program address

Constants

18 bit instruction word

INSTRUCTION[17:0]

CLK

Operational
control &

Instruction
decoding aaa / pp / ss / kk

Program
ROM/RAM

1024 words

s7 
s6 
s5
s4
s3
s2
s1
s0

sF
sE 
sD
sC
sB
sA
s9
s8

RESET

INTERRUPT_ACK

PARITY
Scratch Pad

Memory
64-Bytes

kk

pp

ss

aaa

Arithmetic
Logical

Shift
Rotate



KCPSM3 Manual   9

KCPSM3 Feature Set
KCPSM3 is a very simple processor architecture and anyone familiar with PSM, KCSPM or KCSPM2 will recognise that this is
just the latest in a close family of 8-bit programmable state machines (see ‘PicoBlaze Comparison’). The motivation to develop
this variant was the release of Spartan-3 devices and the highly constructive feedback from so many users of its predecessors.

Spartan-3 has adopted the 18Kbit Block RAM elements previously seen in the Virtex-II devices. This enables KCPSM3 to
support programs up to 1024 locations which overcomes the most commonly encountered limit of KCPSM with Spartan-II(E).

At the risk of making KCPSM3 appear more complex than previous versions, some additional features have been included to
address the most popular requests. COMPARE and TEST instructions enable register contents to be interrogated without
changing their contents. The TEST instruction also calculates PARITY, useful for many communication applications. A 64-byte
internal scratch pad memory allows many more variables to be held internally, more intuitive programs to be written and will
typically eliminate requirement for memory attached to the I/O ports. Finally, an interrupt acknowledgement signal is provided.

The additional features make KCPSM3 26% larger than KCPSM and 14% larger than KCPSM2. However, It is expected that the
additional features will enable more efficient programs to be written and for designs to require less peripheral logic.

Features new to KCSPM3

Program Size

KCPSM3 supports a program up to a length of 1024 instructions utilising one block memory. Requirements for larger program
space are typically addressed by using multiple KCPSM3 processors each with an associated block memory to distribute the
various system tasks. Programs requiring significantly more memory are normally the domain of a full data processor such as
MicroBlaze with its C-language programming support.

16 General Purpose Registers.

There are 16 general purpose registers of 8-bits specified as ‘s0’ through to ‘sF’ which may be renamed in the assembler code.
All operations are completely flexible about the use of registers with no registers reserved for special tasks or having any priority
over any other register. There is no accumulator as any register can be adopted for this task.



KCPSM3 Manual   10

KCPSM3 Feature Set
ALU

The Arithmetic Logic Unit (ALU) provides many simple operations expected in an 8-bit processing unit.
All operations are performed using an operand provided from any  register (sX). The result is returned to the same register.
For operations requiring a second operand, a second register can be specified (sY) or a constant 8-bit value (kk) can be
supplied. The ability to specify any constant value with no additional penalty to program size or performance enhances the
simple instruction set i.e. the ability to ‘ADD 1’ is the same as a dedicated INCREMENT operation.
Addition (ADD) and Subtraction (SUB) have the option to include the carry flag as an input (ADDCY and SUBCY) for the support
of arithmetic operations requiring more than 8-bits.
LOAD, AND, OR and XOR bit-wise operators provide ability to manipulate and test values.
Comprehensive SHIFT and ROTATE group.
COMPARE and TEST instructions enable register contents to be tested without altering their contents and determine PARITY.

Flags and Program Flow Control

The results of ALU operations determine the status of the ZERO and CARRY flags. The ZERO flag is set whenever the ALU
result has all bits reset (0016). The CARRY flag is set when there is an overflow from an arithmetic operation. It is also used to
capture the bit moved out of a register during shift and rotate instructions.  During a TEST instruction, the carry flag is used to
indicate if the 8-bit temporary result has ODD PARITY.

This  status of the flags can be used to determine the execution sequence of the program using conditional and non-conditional
program flow control instructions. JUMP commands are used to specify absolute addresses (aaa) within the program space.
CALL and RETURN commands provide sub-routine facilities for commonly used sections of code. A CALL is made to an
absolute address (aaa) and an internal program counter stack preserves the associated address required by the RETURN
instruction. The stack supports up to 31 nested subroutine levels.

Reset

The RESET input forces the processor back into the initial state. The program will execute from address ‘000’ and interrupts will
be disabled. The status flags and CALL/RETURN stack will also be reset. Note that register contents are not affected.



KCPSM3 Manual   11

KCPSM3 Feature Set
Input/Output

KCPSM3 effectively has 256 input ports and 256 output ports. The port being accessed is indicated by an 8-bit address value
provided on the ‘PORT_ID’. The port address can be specified in the program as an absolute value (pp), or may be indirectly
specified as the contents of any of the 16 registers ( (sY) ).

During an ‘INPUT’ operation the value provided at the input port is transferred into any of the 16 registers. An input operation is
indicated by a pulse being output on the READ_STROBE. It is not always necessary to use this signal in the input interface
logic, but it can be useful to indicate that data has been acquired by the processor. During an ‘OUTPUT’, the contents of any of
the 16 registers are transferred to the output port. An output operation is indicated by a pulse being output on the
WRITE_STROBE. This strobe signal will be used by the interface logic to ensure that only valid data is passed to external
systems. Typically, WRITE_STROBE will be used as a clock enable or write enable (see ‘READ and WRITE STROBES’).

Interrupt

The processor provides a single INTERRUPT input signal. Simple logic can be used to combine multiple signals if required.
Interrupts are disabled (masked) by default, and are then enabled and disabled under program control. An active interrupt forces
KCPSM3 to initiate a ‘CALL 3FF’ (a subroutine call to the last program memory location) from where the user can define a
suitable jump vector to an Interrupt Service Routine (ISR). At this time, a pulse is generated on the INTERRUPT_ACK output,
the ZERO and CARRY flags are automatically preserved and any further interrupts are disabled. The ‘RETURNI’ instruction
ensures that the end of an ISR restores the status of the flags and specifies if future interrupts will be enabled or disabled.

Scratch Pad Memory

This is an internal 64 byte general purpose memory. The contents of any of the 16 registers can be written to any of the 64
locations using a STORE instruction. The complementary FETCH instruction allows the contents of any of the 64 memory
locations to be written to any of the 16 registers. This allows a much greater number of variables to be held within the boundary
of the processor and tends to reserve all of the I/O space for real inputs and output signals.

The 6-bit address to specify a scratch pad memory location can be specified in the program as an absolute value (ss), or may be
indirectly specified as the contents of any of the 16 registers (sY). Only the lower 6-bits of the register are used, so care must be
taken not to exceed the 00 - 3F16 range of the available memory.



KCPSM3 Manual   12

Constant(k) Coded
The KCPSM3 is in many ways a machine based on Constants…....

Constant Values
Constant values may be specified for use in most aspects of a program….

• Constant data value for use in an ALU operation.
• Constant port address to access a specific piece of information or control logic external to KCPSM3.
• Constant address values for controlling the execution sequence of the program.
• Constant address values for accessing internal scratch pad memory.

The KCPSM3 instruction set coding has been designed to allow constants to be specified within any instruction word. Hence
the use of a constant carries no additional overhead to the program size or its execution. This effectively extends the simple
instruction set with a whole range of ‘virtual instructions’.

Constant Cycles

All instructions under all conditions will execute over 2 clock cycles.
Such constant execution rate is of great value when determining the execution time of a program particularly when embedded
into a real time situation.

Constant Program Length

The program length is 1024 instructions and therefore conforms to the 1024x18 format of a single Spartan-3, Virtex-II or
Virtex-IIPRO Block RAM. This means that all address values are specified as 10-bits contained within the instruction coding
(the assembler supports line labels to simplify the writing of programs). The fixed memory size promotes a consistent  level of
performance from the module. See also ‘Sharing Program Space’.



KCPSM3 Manual   13

Using KCPSM3 (VHDL)
The principle method by which KCPSM3 will be used is in a VHDL design flow. The KCPSM3 macro is provided as source VHDL
(kcspm3.vhd) which has been written to provide an optimum and predictable implementation in a Spartan-3 or Virtex-II(PRO)
device. The code is suitable for implementation and simulation of the macro. It has been developed and tested using XST for
implementation and ModelSim for simulation. The code should not be modified in any way.

VHDL Component
declaration of KCPSM3

VHDL Component
instantiation of KCPSM3



KCPSM3 Manual   14

Connecting the Program ROM
The principle method by which KCPSM3 program ROM will be used is in a VHDL design flow. The KCPSM3 assembler will
generate a VHDL file in which a block RAM and its initial contents are defined (see assembler notes for more detail). This
VHDL can be used for implementation and simulation of the processor. It has been developed and tested using XST for
implementation and ModelSim for simulation.

To aid with development, a VHDL file called ‘embedded_kcpsm3.vhd’ is also supplied in which the KCPSM3 macro is
connected to its associated block RAM program ROM. This entire module can be embedded in the design application, or simply
used to cut and paste the component declaration and instantiation information into your own code.

VHDL Component
declaration of program ROM

VHDL Component
instantiation of program ROM

Note - The name of the program ROM (shown as ‘prog_rom’ in the above examples) will depend on the name of your program.
For example, if your program file was called ‘phone.psm’, then the assembler will generate a program ROM definition file called
‘phone.vhd’.

Note: It is recommended that ‘embedded_kcpsm3.vhd’ is used for the generation of an ECS schematic symbol. 



KCPSM3 Manual   15

Verilog and System Generator
Although the primary design flow is VHDL, KCPSM3 can be used in any design flow supported by Xilinx. The assembler  also
generates program memory definition files suitable for Verilog and the Simulink based System Generator design flows.

kcpsm3.ngc - The NGC file provided was generated by synthesising the kcpsm3.vhd file with XST (without inserting I/O
buffers). This file can be used as a ‘black box’ in a Spartan-3, Virtex-II or Virtex-IIPRO design, and it will be merged with the
rest of your design during the translate phase (ngdbuild). Note that busses are defined in the style ‘IN_PORT<7:0>’ with
individual signals ‘in_port_0’ through to ‘in_port_7’.

<filename>.coe - The COE file generated by the assembler is suitable for use with the Xilinx Core Generator. The file defines
the initial contents of a block ROM. The files generated by Core Generator can then be used as normal in your chosen design
flow and connected to the kcpsm3 ‘black box’ in your design (see assembler notes for more details).

Simulation Models

If the NGC file is used in the design flow, then some form of back annotated description will be required for simulation of your
design in order to fill in the ‘black box’ details. The following command can be used to generate a Verilog simulation model (see
the Xilinx online manuals for more details  - Synthesis and Simulation Design Guide - section 6).

<filename>.v - The assembler generates a Verilog file in which a block RAM and its initial contents are defined (see assembler
notes for more detail). This Verilog can be used for implementation and simulation of the processor. The kcspm3.ngc file will be
used to define the processor.

<filename>.m - The assembler generates a m-function used to define the contents of a System Generator memory block within
the MATLAB Simulink environment. (see System Generator documentation for more information on this design flow).



KCPSM3 Manual   16

KCPSM3 Instruction Set
‘X’ and ‘Y’ refer to the definition of the storage registers ‘s’ in the range 0 to F.
‘kk’ represents a constant value in the range 00 to FF.  
‘aaa’ represents an address in the range 000 to 3FF.
‘pp’ represents a port address in the range 00 to FF.
‘ss’ represents an internal storage address in the range 00 to 3F.

Program Control Group

Note that call and return supports
 up to a stack depth of 31.

Logical GroupArithmetic Group Shift and Rotate Group

Input/Output GroupInterrupt Group Storage Group



KCPSM3 Manual   17

JUMP

PC

Unconditional or
condition valid

Under normal conditions, the program counter (PC) increments  to point to the next instruction. The address space is fixed to
1024 locations (000 to 3FF hex) and therefore the program counter is 10 bits wide. It is worth noting that the top of memory is
3FF hex and will increment to 000.

The JUMP instruction may be used to modify this sequence by specifying a new address. However, the JUMP instruction may be
conditional. A conditional JUMP will only be performed if a test performed on either the ZERO flag or CARRY flag is valid. The
JUMP instruction has no effect on the status of the flags.

+ 1

PC

Normal Instruction

New Address

PC
+ 1

PC

a a a a a a a a

Condition
not valid

Each JUMP instruction must specify the 10-bit address as a 3 digit hexadecimal value. The assembler supports labels to simplify
this process.

a a

01234567891011121314151617

a a a a a a a aa a1
if Zero  
if NOT Zero
if Carry
if NOT Carry0 - UNCONDITIONAL  

1 - CONDITIONAL

0
1
0
1

0
0
1
1

0 11 0

Bit 12

Bit 11 Bit 10 Condition



KCPSM3 Manual   18

CALL
The CALL instruction is similar in operation to the JUMP instruction in that it will modify the normal program execution sequence by
specifying a new address. The CALL instruction may also be conditional. In addition to supplying a new address, the CALL
instruction also causes the current program counter (PC) value to be pushed onto the program counter stack. The CALL instruction
has no effect on the status of the flags.

PC
Unconditional or
condition valid

The program counter stack supports a depth of 31 address values. This enables nested ‘CALL’ sequences to a depth of 31 levels
to be performed. However, the stack will also be used during an interrupt operation and hence at least one of these levels should
be reserved when interrupts are enabled. The stack is implemented as a separate cyclic buffer. When the stack becomes full, it
simply overwrites the oldest value. Hence it is not necessary to reset the stack pointer when performing a software reset. This also
explains why there are no instructions to control the stack and why no other memory needs to be reserved or provided for the
stack.

Each CALL instruction must specify the 10-bit address as a 3 digit hexadecimal value. The assembler supports labels to simplify
this process.

Stack

Unconditional or
condition valid

New Address

+ 1

PC

a a a a a a a a

Condition
not valid

a a

01234567891011121314151617

a a a a a a a aa a1
if Zero  
if NOT Zero
if Carry
if NOT Carry0 - UNCONDITIONAL  

1 - CONDITIONAL

0
1
0
1

0
0
1
1

0 01 0

Bit 12

Bit 11 Bit 10 Condition



KCPSM3 Manual   19

RETURN

Unconditional or
condition valid

The RETURN instruction is the complement to the CALL instruction. The RETURN instruction may also be conditional. In this case
the new program counter (PC) value will be formed internally by incrementing the last value on the program address stack. This
ensures that the program will execute the instruction following the CALL instruction which resulted in the subroutine. The RETURN
instruction has no effect on the status of the flags.

PC
+ 1

PCCondition
not valid

It is the responsibility of the programmer to ensure that a RETURN is only performed in response to a previous CALL instruction
such that the program counter stack contains a valid address. The cyclic implementation of the stack will continue to provide
values for RETURN instructions which can not be defined.

Stack

+ 1

01234567891011121314151617

0 0 0 0 0 0 0 00 01
if Zero  
if NOT Zero
if Carry
if NOT Carry0 - UNCONDITIONAL  

1 - CONDITIONAL

0
1
0
1

0
0
1
1

1 00 1

Bit 12

Bit 11 Bit 10 Condition



KCPSM3 Manual   20

RETURNI
The RETURNI instruction is a special variation of the RETURN instruction which should be used to conclude an interrupt service
routine. The RETURNI is unconditional and therefore will always load the program counter (PC) with the last address on the
program counter stack (the address is not incremented in this case since the instruction at the address stored will need to be
executed).  The RETURNI instruction restores the flags to the condition they were in at the point of interrupt. The RETURNI also
determines the future ability of interrupts using ENABLE and DISABLE as an operand.

PC

It is the responsibility of the programmer to ensure that a RETURNI is only performed in response to an interrupt. Each RETURNI
must specify if further interrupt is to be enabled or disabled.

Stack
CARRY 

Preserved
CARRY 

ZERO 
Preserved

ZERO 

INTERRUPT
ENABLED ‘1’

‘0’

ENABLE

DISABLE

012345671314151617

1 1 0

89101112

RETURNI  ENABLE 00 0 0 0 0 0 0 0 0 0 0 0

RETURNI  DISABLE

1 1

012345671314151617

1 1 0

89101112

00 0 0 0 0 0 0 0 0 0 0 01 0



KCPSM3 Manual   21

ENABLE/DISABLE INTERRUPT

INT_ENABLE

‘1’

‘0’

ENABLE

DISABLE

These instructions are used to set and reset the INT_ENABLE flag. Before using ENABLE INTERRUPT a suitable interrupt
routine must be associated with the interrupt address vector (located at address 3FF). Interrupts should never be enabled whilst
performing an interrupt service routine.

012345671314151617

1 1 1

89101112

ENABLE INTERRUPT 00 0 0 0 0 0 0 0 0 0 0 0

DISABLE INTERRUPT

1 1

012345671314151617

1 1 1

89101112

00 0 0 0 0 0 0 0 0 0 0 01 0

Interrupts are masked when the INT_ENABLE flag is low. This is the default state of the flag following device configuration or a
KCPSM3 reset. The INT_ENABLE is also reset during an active interrupt.



KCPSM3 Manual   22

LOAD
sX

The LOAD instruction provides a method for specifying  the contents of any register. The new value can be a constant, or the
contents of any other register. The LOAD instruction has no effect on the status of the flags.

Constant
k k k k k k k k

The first operand of a LOAD instruction must specify the register to be loaded as register ‘s’ followed by a hexadecimal digit. The
second operand must then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits.
The assembler supports register naming and constant labels to simplify the process.

sX sY

Since the LOAD instruction does not effect the flags it may be used to reorder and assign register contents at any stage of the
program execution. The ability to assign a constant with no impact to the program size or performance means that the load
instruction is the most obvious way to assign a value or clear a register.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xLOAD sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xLOAD sX,sY

sY

00

0 0 0 0 0

0 0 0

0 0 0 1

0

0



KCPSM3 Manual   23

AND

sX

The AND instruction performs a bit-wise logical ‘AND’ operation between two operands. For example 00001111 AND  00110011
will produce the result 00000011. The first operand is any register, and it is this register which will be assigned the result of the
operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected by this operation. The AND
operation is useful for resetting bits of a register and performing tests on the contents (see also TEST instruction). The status of
the ZERO flag will then control the flow of the program.

Constant
k k k k k k k k

sX sY

sX

sX

AND

AND

CARRY 0 ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Each AND instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xAND sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xAND sX,sY

sY

00

0 0 0 0 0

1 0 1

1 0 1 1

0

0



KCPSM3 Manual   24

OR

sX

The OR instruction performs a bit-wise logical ‘OR’ operation between two operands. For example 00001111 OR  00110011 will
produce the result 00111111. The first operand is any register, and it is this register which will be assigned the result of the
operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected by this operation. OR
provides a way to force any bits of the specified register to be set which can be useful in forming control signals.

Constant
k k k k k k k k

sX sY

sX

sX

OR

OR

CARRY 0 ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Each OR instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xOR sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xOR sX,sY

sY

00

0 0 0 0 0

1 1 0

1 1 0 1

0

0



KCPSM3 Manual   25

XOR

sX

The XOR instruction performs a bit-wise logical ‘XOR’ operation between two operands. For example 00001111 XOR  00110011
will produce the result 00111100. The first operand is any register, and it is this register which will be assigned the result of the
operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected by this operation. The XOR
operation is useful for inverting bits contained in a register which is useful in forming control signals.

Constant
k k k k k k k k

sX sY

sX

sX

XOR

XOR

CARRY 0 ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Each XOR instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xXOR sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xXOR sX,sY

sY

00

0 0 0 0 0

1 1 1

1 1 1 1

0

0



KCPSM3 Manual   26

TEST

Temporary

The TEST instruction performs a bit-wise logical ‘AND’ operation between two operands. Unlike the ‘AND’ instruction, the result of
the operation is discarded and only the flags are affected. The ZERO flag is set if all bits of the temporary result are low. The
CARRY flag is used to indicate the ODD PARITY of the temporary result. Parity checks typically involve a test of all bits, i.e. if  the
contents of ‘s5’ = 3D (00111101), the execution of TEST s5,FF will set the CARRY flag indicating ODD parity. Bit testing is typically
used to isolate a single bit. For example TEST s5,04 will test bit2 of the ‘s5’ register which would set the CARRY flag if the bit is
high (reset if the bit is low) and set the ZERO flag if the bit is low (reset if the bit is high).

Constant
k k k k k k k k

sY

sX

sX

AND

AND

CARRY ZERO ?
Set if all bits of temporary result are zero.
Reset in all other cases.

Each TEST instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. The second operand must
then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits. The assembler
supports register naming and constant labels to simplify the process.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xTEST sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xTEST sX,sY

sY

10

0 1 0 0 0

0 0 1

0 0 1 1

0

0

Temporary

?
Set if there are an odd number of bits
set to ‘1’ in the temporary result.



KCPSM3 Manual   27

ADD

sX

The ADD instruction performs an 8-bit addition of two operands. The first operand is any register, and it is this register which will be
assigned the result of the operation. A second operand may also be any register or an 8-bit constant value. Flags will be effected
by this operation. Note that this instruction does not use the CARRY as an input, and hence there is no need to condition the flags
before use. The ability to specify any constant is useful in forming control sequences and counters.

Constant
k k k k k k k k

sX sY

sX

sX

+

Each ADD instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

+

CARRY ? ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Set if result of addition exceeds FF.
Reset in all other cases.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xADD sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xADD sX,sY

sY

10

0 1 0 0 0

1 0 0

1 0 0 1

0

0



KCPSM3 Manual   28

ADDCY

sX

The ADDCY instruction performs an addition of two 8-bit operands together with the contents of the CARRY flag. The first operand
is any register, and it is this register which will be assigned the result of the operation. A second operand may also be any register
or an 8-bit constant value. Flags will be effected by this operation. The ADDCY operation can be used in the formation of adder
and counter processes exceeding 8 bits.

Constant
k k k k k k k k

sX sY

sX

sX

+

Each ADDCY instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also
form the destination for the result. The second operand must then specify a second register value in a similar way or specify an
8-bit constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

+

CARRY ? ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Set if result of addition exceeds FF.
Reset in all other cases.

+

+
CARRY 

CARRY 

0123456789101112131415

Constant

1617

k k k k k k k kx xx xADDCY sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xADDCY sX,sY

sY

10

0 1 0 0 0

1 0 1

1 0 1 1

0

0



KCPSM3 Manual   29

SUB

sX

The SUB instruction performs an 8-bit subtraction of two operands. The first operand is any register, and it is this register which will
be assigned the result of the operation. The second operand may also be any register or an 8-bit constant value. Flags will be
effected by this operation. Note that this instruction does not use the CARRY as an input, and hence there is no need to condition
the flags before use. The CARRY flag indicates when an underflow has occurred. For example, if ‘s05’ contains 27 hex and the
instruction SUB s05,35 is performed, then the stored result will be F2 hex and the CARRY flag will be set.

Constant
k k k k k k k k

sX sY

sX

sX

-

Each SUB instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also form the
destination for the result. The second operand must then specify a second register value in a similar way or specify an 8-bit
constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

-

CARRY ? ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Set if result is negative.
Reset in all other cases.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xSUB sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xSUB sX,sY

sY

10

0 1 0 0 0

1 1 0

1 1 0 1

0

0



KCPSM3 Manual   30

SUBCY

sX

The SUBCY instruction performs an 8-bit subtraction of two operands together with the contents of the CARRY flag. The first
operand is any register, and it is this register which will be assigned the result of the operation. The second operand may also be
any register or an 8-bit constant value. Flags will be effected by this operation. The SUBCY operation can be used in the formation
of subtract and down counter processes exceeding 8 bits.

Constant
k k k k k k k k

sX sY

sX

sX

-

Each SUBCY instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. This register will also
form the destination for the result. The second operand must then specify a second register value in a similar way or specify an
8-bit constant using 2 hexadecimal digits. The assembler supports register naming and constant labels to simplify the process.

-

CARRY ? ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

Set if result is negative.
Reset in all other cases.

-

-
CARRY 

CARRY 

0123456789101112131415

Constant

1617

k k k k k k k kx xx xSUBCY sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xSUBCY sX,sY

sY

10

0 1 0 0 0

1 1 1

1 1 1 1

0

0



KCPSM3 Manual   31

COMPARE
The COMPARE instruction performs an 8-bit subtraction of two operands Unlike the ‘SUB’ instruction, the result of the operation is
discarded and only the flags are affected. The ZERO flag is set when all the bits of the temporary result are low and indicates that
both input operands were identical. The CARRY flag indicates when an underflow has occurred and indicates that the second
operand was larger than the first. For example, if ‘s05’ contains 27 hex and the instruction COMPARE s05,35 is performed, then
the CARRY flag will be set (35>27) and the ZERO flag will be reset (35 27).

Constant
k k k k k k k k

sY

sX

sX

-

Each COMPARE instruction must specify the first operand register as ‘s’ followed by a hexadecimal digit. The second operand
must then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits. The assembler
supports register naming and constant labels to simplify the process.

-

CARRY ? ZERO ?
Set if operands are equal.
Reset in all other cases.

Set if ‘sY’ or ‘kk’ is greater than ‘sX’.
Reset in all other cases.

0123456789101112131415

Constant

1617

k k k k k k k kx xx xCOMPARE sX,kk

sX

sX

01234567891011121314151617

y y y yx xx xCOMPARE sX,sY

sY

10

0 1 0 0 0

0 1 0

0 1 0 1

0

0

Temporary

Temporary



KCPSM3 Manual   32

SR0, SR1, SRX, SRA, RR
The shift and rotate right group all modify the contents of a single register. All instructions in the group have an effect on the flags.

sX
SR0 sX ‘0’

sX
SR1 sX ‘1’

sX
SRX sX

CARRY 

CARRY 

CARRY 

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

ZERO 0

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

sX
SRA sX

sXRR sX

CARRY 

CARRY 

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

01234567121314151617

0 0 0 0 11

SR0 sX  
SR1 sX
SRX sX
SRA sX
RR sX

0
1
0
0
0

1
1
1
0
0

0 00 0

Bit 1 Bit 0 Instruction

sX

89101112

x xx x

Bit 2

1
1
0
0
1

Each instruction must specify the register as ‘s’ followed by a hexadecimal digit. The assembler supports register naming to
simplify the process.

0



KCPSM3 Manual   33

SL0, SL1, SLX, SLA, RL
The shift and rotate left group all modify the contents of a single register. All instructions in the group have an effect on the flags.

SL0 sX  
SL1 sX
SLX sX
SLA sX
RL sX

0
1
0
0
0

1
1
0
0
1

Bit 1 Bit 0 InstructionBit 2

1
1
1
0
0

sX
SL0 sX ‘0’

sX
SL1 sX ‘1’

sX
SLX sX

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

ZERO 0

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

sX
SLA sX

sXRL sX CARRY 

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

ZERO ?
Set if all bits of result are zero.
Reset in all other cases.

CARRY 

CARRY 

CARRY 

CARRY 

Each instruction must specify the register as ‘s’ followed by a hexadecimal digit. The assembler supports register naming to
simplify the process.

01234567121314151617

0 0 0 0 01 0 00 0

sX

89101112

x xx x0



KCPSM3 Manual   34

OUTPUT
The OUTPUT instruction enables the contents of any register to be transferred to logic external to KCPSM3. The port address (in
the range 00 to FF) can be defined by a constant value or indirectly as the contents of any other register. The Flags are not
affected by this operation.

Each OUTPUT instruction must specify the source register as ‘s’ followed by a hexadecimal digit. It must then specify the output
port address using a register value in a similar way or specify an 8-bit constant port identifier using 2 hexadecimal digits. The
assembler supports register naming and constant labels to simplify the process.

The user interface logic is required to decode the PORT_ID port address value and capture the data provided on the OUT_PORT.
The WRITE_STROBE is set during an output operation (see ‘READ and WRITE STROBES’), and should be used to clock enable
the capture register or write enable a RAM (see ‘Design of Output Ports’).

PORT_ID Address

sYPORT_ID Address

Constant
p p p p p p p p

OUTPUT sX,PP

OUTPUT sX,(sY)

sXPort Value 

sXPort Value

01234567

Constant PORT_ID

p p p p p p p p

sX

01234567891011121314151617

y y y yx xx x

sY

1 0 0 0 01 1 0 1 0

891011121314151617

x xx x

sX

01 1 1 0 0



KCPSM3 Manual   35

INPUT

sX

The INPUT instruction enables data values external to KCPSM3 to be transferred into any one of the internal registers. The port
address (in the range 00 to FF) can be defined by a constant value or indirectly as the contents of any other register. The Flags are
not affected by this operation.

Port Value 

Each INPUT instruction must specify the destination register as ‘s’ followed by a hexadecimal digit. It must then specify the input
port address using a register value in a similar way or specify an 8-bit constant port identifier using 2 hexadecimal digits. The
assembler supports register naming and constant labels to simplify the process.

sX Port Value

The user interface logic is required to decode the PORT_ID port address value and supply the correct data to the IN_PORT. The
READ_STROBE is set during an input operation (see ‘READ and WRITE STROBES’), but it is not always necessary for the
interface logic to decode this strobe. However, it can be useful for determining when data has been read, such as when reading a
FIFO buffer (see ‘Design of Input Ports’).

PORT_ID Address

sYPORT_ID Address

Constant
p p p p p p p p

01234567

Constant PORT_ID

p p p p p p p pINPUT sX,PP

INPUT sX,(sY)

sX

01234567891011121314151617

y y y yx xx x

sY

0 0 0 0 00 1 0 1 0

891011121314151617

x xx x

sX

00 0 1 0 0



KCPSM3 Manual   36

STORE
The STORE instruction enables the contents of any register to be transferred to the 64-byte internal scratch pad memory. The
storage address (in the range 00 to 3F) can be defined by a constant value or indirectly as the contents of any other register. The
Flags are not affected by this operation.

Each STORE instruction must specify the source register as ‘s’ followed by a hexadecimal digit. It must then specify the storage
address using a register value in a similar way or specify a 6-bit constant storage address using 2 hexadecimal digits. The
assembler supports register naming and constant labels to simplify the process. Although the assembler will reject constants
greater than 3F, it is the responsibility of the programmer to ensure that the value of ‘sY’ is within the address range.

sYConstant
0 0 s s s s s s

STORE sX,PP

STORE sX,(sY)

sX

01234567

Constant address

s s s s s s

sX

01234567891011121314151617

y y y yx xx x

sY

1 0 0 0 01 1 1 1 0

891011121314151617

x xx x

sX

01 1 1 1 0

Scratch pad
memory

0 0

00

3F
sX

00

3F

Scratch pad
memory

address address



KCPSM3 Manual   37

FETCH
The FETCH instruction enables data held in the 64-byte internal scratch pad memory to be transferred any of the internal
registers. The storage address (in the range 00 to 3F) can be defined by a constant value or indirectly as the contents of any
other register. The Flags are not affected by this operation.

Each FETCH instruction must specify the destination register as ‘s’ followed by a hexadecimal digit. It must then specify the
storage address using a register value in a similar way or specify a 6-bit constant storage address using 2 hexadecimal digits.
The assembler supports register naming and constant labels to simplify the process. Although the assembler will reject
constants greater than 3F, it is the responsibility of the programmer to ensure that the value of ‘sY’ is within the address range.

FETCH sX,PP

FETCH sX,(sY)

sX

01234567891011121314151617

y y y yx xx x

sY

0 0 0 0 00 1 1 1 0

891011121314151617

x xx x

sX

00 0 1 1 0

01234567

Constant address

s s s s s s0 0

sYConstant
0 0 s s s s s s

sX sX

00

3F

Scratch pad
memory

address

00

3F

Scratch pad
memory

address



KCPSM3 Manual   38

READ and WRITE STROBES
These pulses are used by external circuits to confirm input and output operations. In the waveforms below, it is assumed that the
content of register sE is 47, and the content of register sA is 42.

CLK

ADDRESS[9:0]

INSTRUCTION[17:0]

18B 18C 18D 18E 18F

inst18A inst18EOUTPUT sA,65inst18C

18A

INPUT s2,(sE)

PORT_ID[7:0] 6547

OUT_PORT[7:0] 42

WRITE_STROBE

READ_STROBE

Use WRITE_STROBE to clock
enable external circuit and

capture data on this clock edge

KCPSM3 captures data into s2
register on this clock edge.

PORT_ID[7:0] is valid for 2 clock cycles providing additional time for external decoding logic and enabling the connection of
synchronous RAM. The WRITE_STROBE is provided on the second clock cycle to confirm an active write by KCPSM3. In most
cases, the READ_STROBE will not be utilised by the external decoding logic, but again occurs in the second cycle and indicates
the actual clock edge on which data is read into the specified register.

Note for timing critical designs, your timing specifications can allow 2 clock cycles for PORT_ID and data paths, and only the
strobes need to be constrained to a single clock cycle. Ideally, a pipeline register can be inserted where possible (see ‘Design of
Input Ports’, ‘Design of Output Ports’ and ‘Connecting Memory’).



KCPSM3 Manual   39

RESET
KCPSM3 contains an internal reset control circuit to ensure the correct start up of KCPSM3 following device configuration or
global reset (GSR). This reset can also be activated within your design.

reset

internal_reset
FDS FDSThe KCPSM3 reset is sampled synchronous to the clock and used to

form a controlled internal reset signal which is distributed locally as
required. A small ‘filter’ circuit (see right) ensures that the release of the
internal reset is clean and controlled.

CLK

ADDRESS[9:0]

INSTRUCTION[17:0]

Release of Reset after configuration.

internal_reset

000 001 002 003 004

inst000 inst001 inst002 inst003

GSR=1

CLK

Application of user reset input

RESET

124 000 001 002

inst123 inst000 inst001

123

inst124

ADDRESS[9:0]

INSTRUCTION[17:0]

internal_reset

The reset input can be tied to logic ‘0’ if not required and the ‘filter’ will still be used to
ensure correct power-up sequence.



KCPSM3 Manual   40

KCPSM3  Assembler
The KCPSM3 Assembler is provided as a simple DOS executable file together with three template files. Copy all the files
KCPSM3.EXE, ROM_form.vhd, ROM_form.v and ROM_form.coe into your working directory.

Programs are best written with either the standard Notepad or Wordpad tools. The file is saved with a ‘.psm’ file extension (8
character name limit).

Open a DOS box and navigate to the working directory. Then run the assembler ‘kcpsm3 <filename>[.psm]’ to assemble your
program. It all happens very fast!!

<filename>.vhd <filename>.coe

Spartan-3/Virtex-II Block RAM program ROM definition files 

<filename>.v <filename>.m



KCPSM3 Manual   41

Assembler Errors
The assembler will stop as soon as an error is detected. A short message will be displayed to help determine the reason for the
error. The assembler will also display the line it was analyzing when it detected the problem. The user should fix each reported
problem in turn and re-execute the assembler.

Line being processed

Error message

Previous Progress

Since the execution of the assembler is very fast, it is unlikely that you will be able to ‘see’ it making progress and the display
will appear to be immediate. If you would like to review everything that the assembler has written to the screen, the DOS output
can be redirected to a text file using…….    kcpsm3 <filename>[.psm] > screen_dump.txt



KCPSM3 Manual   42

Assembler Files
The KCPSM3 assembler actually reads four input files and generates 15 output files. These are described in more detail on the
following pages.

<filename>.vhd

<filename>.v

KCPSM3.EXE

<filename>.psm

ROM_form.vhd

ROM_form. v

<filename>.log

constant.txt

labels.txt

<filename>.fmt

pass1.dat
pass2.dat
pass3.dat
pass4.dat
pass5.dat

ROM definition
files for a variety
of design flows

Assembler
report files

Formatted version of
user input file

Assembler intermediate
processing files
(may be useful for debugging)

Program file

Note - All output files are overwritten each time the assembler is executed.

The ‘hex’ and ‘dec’ files provide the program ROM contents in unformatted hexadecimal and decimal which is useful for
conversion to other formats not supported directly by the assembler. There is no further description in this manual.

<filename>.hex

<filename>.dec

ROM definition files
for other utilities

ROM_form. coe

<filename>.coe

<filename>.m



KCPSM3 Manual   43

ROM_form.vhd File
This file provides the template for the VHDL file generated by the assembler and suitable for synthesis and simulation. This file
is provided with the assembler and must be placed in the working directory.

ROM_form.vhd

The supplied ROM_form.vhd template file defines a Single Port Block RAM for Spartan-3, Virtex-II or Virtex-IIPRO configured
as a ROM. You can adjust this template to define the type of memory you want. The template supplied includes some
additional notes on how the template works

The assembler reads the ROM_form.vhd
template and simply copies the
information into the output file
<filename>.vhd. There is no checking of
syntax, so any alterations are the
responsibility of the user.

The template contains some special text strings contained in {} brackets. These are {name}, and a
whole family of initialisation identifiers such as {INIT_01}. The assembler uses {begin template} to identify where the VHDL
definition begins. It then intercepts and replaces all other special strings with the appropriate information. {name} is replaced with
the name of the input program ‘.psm’ file.



KCPSM3 Manual   44

ROM_form.v File
This file provides the template for the Verilog file generated by the assembler and suitable for synthesis and simulation. This file
is provided with the assembler and must be placed in the working directory.

ROM_form.v

The supplied ROM_form.v template file defines a Single Port Block RAM for Spartan-3, Virtex-II or Virtex-IIPRO configured as a
ROM. You can adjust this template to define the type of memory you want. The template supplied includes some additional
notes on how the template works

The assembler reads the ROM_form.v template and
simply copies the information into the output file
<filename>.v. There is no checking of syntax, so any
alterations are the responsibility of the user.

The template contains some special text strings contained in {} brackets. These are {name}, and a
whole family of initialisation identifiers such as {INIT_01}. The assembler uses {begin template} to identify where the Verilog
definition begins. It then intercepts and replaces all other special strings with the appropriate information. {name} is replaced with
the name of the input program ‘.psm’ file.



KCPSM3 Manual   45

ROM_form.coe File
This file provides the template for the coefficient file generated by the assembler and suitable for the Core Generator. This file is
provided with the assembler and must be placed in the working directory.

KCPSM3 Assembler

ROM_form.coe

<filename>.coe

The supplied ROM_form.coe template file defines a Dual Port Block RAM for Spartan-3, Virtex-II or Virtex-IIPRO in which the
A-port is read only and the B-port is read/write. You can adjust this template to define the type of memory you want Core
Generator to implement.

The assembler reads the ROM_form.coe template and simply copies the
information into the output file <filename>.coe. There is no checking of syntax,
so any alterations are the responsibility of the user.

The template may contain the special text string {name} which the assembler
will intercept and replace with the name of the program file. In this example
you can see that {name} has been replaced with ‘simple’.

It is vital that the last line of the template contains the key words...
      
These are used by the Core Generator to identify that the data values
follow, and the assembler will append the 1024 values required. Indeed,
the template could simply contain this one line provided the Core
Generator GUI is used to define all other parameters.



KCPSM3 Manual   46

<filename>.fmt File
When a program passes through the assembler additional files to the ‘.vhd’ and ‘.coe’ files are produced to be of assistance to
the programmer. One of these is called ‘<filename>.fmt’. This file is the original program but formatted to look nice. Looking at
this file is also an easy way to see that everything has been interpreted the way you had expected.

Write your PSM program
quickly and then use KCPSM3
to make a nice formatted
version for you to adopt as
your own.KCPSM3 Assembler

<filename>.psm

<filename>.fmt

• Formats labels and comments
• Puts all commands in upper case
• correctly spaces operands
• Gives registers an ‘sX’ format
• Converts hex constants to upper case



KCPSM3 Manual   47

<filename>.log File
The ‘.log’ file provides you with the most detail about the assembly process which has been performed. This is where you can
observe how each instruction and directive has been used. Address and op-code values are associated with each line of the
program and the actual values of addresses, registers, and constants defined by labels are specified.

<filename>.log

Address

Op-Code

Label

Instruction Comment

Values contained in [ ] brackets indicate
the value associated with the label
i.e. ‘loop’ is resolved to be address ‘001’.



KCPSM3 Manual   48

constant.txt & labels.txt Files
These two files provide a list of the line labels and their associated addresses, and a list of constants and their values as defined
by ‘constant’ directives in the program file. These can be useful during the development and testing of larger programs.

constant.txt

Value

Constant
Label

labels.txt

Address

Line
Label



KCPSM3 Manual   49

pass.dat Files
These are really internal files to the assembler and represent intermediate stages of the assembly process. These files will
typically be ignored, but may just help in identifying how the assembler has interpreted the program file syntax. The files are
automatically deleted at the start of the assembly process. If there is an error detected by the assembler, the ‘.dat’ files will
only be complete until the point of the last successful processing.

Part of pass5.dat

The ‘.dat. Files segment the information from each line into the
different fields. Each pass resolves more information.

The example shown here is related to the line……..

       

It can be seen that pass1 has purely segmented the fields of the
line. In the final pass5, you can see that the assembler has
resolved all the relevant information.

Part of pass1.dat



KCPSM3 Manual   50

Program Syntax
Probably the best way to understand what is and is not valid syntax is to look at the examples and try the assembler. However
there are some simple rules which are of assistance from the beginning.

No blank lines - A blank line will be ignored by the assembler and removed from any formatted files. If you would like to keep a
line use a blank comment (a semicolon).

Comments - Any item on a line following a semi-colon (;) will be ignored by the assembler. Whilst comments are useful, it is
helpful if they are kept concise otherwise you will have very long lines and find it difficult to print out programs and log files.

Labels - Labels are any text string which the user defines. Labels are case sensitive for additional flexibility. Labels must not
contain any spaces although the under-score character is supported. Valid characters are ‘0’ to ‘9’, ‘a’ to ‘z’, and ‘A’ to ‘Z’.  Again it
is helpful for labels to be reasonably concise if only for the formatting of a program to be reasonable. Labels which could be
confused with hexadecimal values or register specifications are rejected by the assembler.

Line Labels - A label is used to identify a program line for reference in a JUMP or CALL instruction and should be followed by a
colon (:). The following example shows the use of a label to identify a program line and its use later in a JUMP instruction.

Registers - All registers should be defined as the letter ‘s’ immediately followed by one hexadecimal digit the range 0 to F. The
assembler will accept any mixture of upper and lower case characters and automatically convert them to the ‘sX’ format where ‘X’
is one of 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. The NAMEREG directive can be used to assign new register names.

Constants - A constant must be specified using hexadecimal. Data values and Port Addresses in range 00 to FF. Memory store
values in the range 00 to 3F and program addresses in the range 000 to 3FF. The assembler will accept any mixture of upper and
lower case characters and automatically convert them to upper case.



KCPSM3 Manual   51

Program Syntax
Instructions - The instructions should be of the format described in the “KCPSM3 instruction set” page of this document. The
assembler is very forgiving over the use of spaces and <TAB> characters, but instructions and the first operand must be separated
by at least one space. Instructions with two operands must ensure that a comma (,) separator is used.

The assembler will accept any mixture of upper and lower case characters for the instruction and automatically convert them to
upper case. The following examples all show acceptable instruction specifications, but the formatted output shows how it was
expected.

Assembler

Most other syntax issues will be solved by reading the error messages provided by the assembler.



KCPSM3 Manual   52

CONSTANT Directive
The assembler supports three assembler directives. These are commands included in the program which are used purely by the
assembly process and do not correspond to instructions executed by KCPSM3.

The CONSTANT directive provides a way to assign an 2-digit hexadecimal value to a label. In this way the program can declare
constants such as port and storage addresses and particular data values needed in the program. By defining constant values in
this way it is often easier to understand their meaning in the program rather than using absolute values in the program lines. The
following example illustrates the directive syntax and its uses.

‘ ‘ and ‘ ‘ are used to specify port addresses. This is particularly useful when defining the hardware
interface, and allows the program to be developed before the I/O addresses are fully defined.  ‘ ’ is being used to
specify a data constant which in this case identifies which bit is to be tested. ‘ ’ defines a scratch pad memory location
which is then used to hold a variable.

Note - A constant is global.
Even if a constant is defined at
the end of the program file, it
can be used in instructions
anywhere in the program.

Constant names must not
contain any spaces although the
under-score character is
supported. Valid characters are
‘0’ to ‘9’, ‘a’ to ‘z’, and ‘A’ to ‘Z’.



KCPSM3 Manual   53

NAMEREG Directive
The NAMEREG directive provides a way to assign a new name to any of the 16 registers. In this way the program can refer to
‘variables’ by name rather than as absolute register specifications. By naming registers in this way it is often easier to understand
the meaning in the program without the need for so many comments. It can also help to prevent inadvertent reuse of a  register
with associated data corruption.

The register ‘sD’ has been renamed to be ‘ ‘ and is then used in multiple instructions making it clear what the
meaning of the register contents actually are.

Register names must not
contain any spaces although
the under-score character is
supported. Valid characters are
‘0’ to ‘9’, ‘a’ to ‘z’, and ‘A’ to ‘Z’.

Important - The NAMEREG directive is applied in-line with the code by the assembler. Before the NAMEREG directive, the
register will be named in the ‘sX’ style. Following the directive, only the new name will apply. It is also possible to rename a
register again (i.e. NAMEREG counter_reg, hours) and only the new name will apply in the subsequent program lines.



KCPSM3 Manual   54

ADDRESS Directive
The ADDRESS directive provides a way force the assembly of the following instructions commencing at a new address value. This
is useful for separating subroutines into specific locations, and vital for handling interrupts. The address must be specified as a 3-
digit hexadecimal value in the range ‘00’ to ‘3FF’.

The log file clearly shows that the ADDRESS directive has forced the last instruction into the highest memory location in the
program RAM. This is the address to which the program counter is forced during an active interrupt.

In the following code segment, the ADDRESS directive defines the address for the interrupt vector.



KCPSM3 Manual   55

KCPSM and KCPSM2 Compatibility
KCPSM and KCPSM2 are very much ‘brothers’ with many similarities (see ‘PicoBlaze Comparison’). However, each has been
tuned to the specific device architecture so there are differences.

KCPSM to KCPSM3

KCPSM3 is in every way a superset of of KCPSM so there will be very few issues migrating a KCPSM based design and code.
The address range of KCPSM3 supports a program which is four times larger than KCPSM and therefore all programs will be
able to fit. Code will need to reflect that absolute address values need to be specified with 3 hexadecimal digits (not 2). The use
of line labels will mean that most cases will be handled automatically by the assembler, but special care should be taken with
ADDRESS directives. Most critical is that the interrupt vector will need to be located at ‘3FF’ (not FF).

KCPSM2 to KCPSM3

KCPSM3 has 16 registers compared with the 32 registers of KCPSM2. The default register names used in KCPSM2 are ‘s00’ to
‘s1F’ and will need to be modified to conform to the default names ‘s0’ to ‘sF’ available in KCSPM. Although the use of
NAMEREG directives will be helpful, some fundamental changes will almost certainly be required to compensate for the lower
number of available registers. The internal scratch pad memory provides 64 locations which should more than compensate for
the lower number of registers but obviously requires a change to the coding style. The program address range and interrupt
vector are identical.

Common points

The KCPSM3 assembler has slightly different rules concerning which labels for lines, constants, and registers are acceptable.
Therefore, it may be necessary to adjust some of the user names in your program code. Typically, labels are nicely ‘descriptive’
and this issue will not be encountered.

The KCPSM3 macro has an INTERRUPT_ACK output signal which the previous versions did not have. It is not vital to use this
signal in your design, but should be included in the component port definitions.

The internal scratch pad memory will often mean that external memory connected to I/O ports can be removed. This will simplify
the logic design and require the code to reflect the use of STORE and FETCH instructions in place of INPUT and OUTPUT.



KCPSM3 Manual   56

PicoBlaze Comparison
This chart shows a comparison of the features offered by the FPGA variants of PicoBlaze. XAPP387 describes the CoolRunner
implementation of an 8-bit micro controller which was also based on the original KCPSM processor.

Program Size

KCPSM KCPSM2 KCPSM3

Target Devices Spartan-II, Spartan-IIE, 
Virtex, Virtex-E

Virtex-II, Virtex-IIPRO Spartan-3, 
Virtex-II, Virtex-IIPRO

1024 instructions
(1024×18 Block RAM)

256 instructions
(256×16 Block RAM)

Registers 16 1632

Scratch-Pad Memory 64 Bytes- -

Size 96 Slices84 Slices76 Slices

CALL/RETURN stack 15 levels 31 levels 31 levels

Features and Comments
Smallest and oldest!

Very well used and proven.
Relatively small program

space.

Register rich.
Virtex-II devices only.

Can not migrate design
directly to Spartan-3.

COMPARE and TEST
instructions, PARITY test,

Scratch-pad memory,
INTERRUPT_ACK signal

1024 instructions
(1024×18 Block RAM)

As with most things, there is a clear trend for PicoBlaze to become larger as more features are added.  The author welcomes all
feedback regarding this trend to determine the size acceptable for a programmable state machine (PSM).



KCPSM3 Manual   57

Interrupt Handling
Effective interrupt handling is a skillful task and this document does not attempt to explain how and when an interrupt should be
used. The information supplied should be adequate for the capability of KCPSM3 to be assessed and for interrupt based
systems to be created.

Default State - By default the interrupt input is disabled. This means that the entire 1024 words of program space can be used
without any regard to interrupt handling or use of the interrupt instructions.

Enabling Interrupts - For an interrupt to take place the ENABLE INTERRUPT command must be used. At critical stages of a
program execution where an interrupt would be unacceptable, a DISABLE INTERRUPT can be used. Since an active interrupt
will automatically disable the interrupt input, the interrupt service routine will end with a RETURNI instruction which also includes
the option to ENABLE or DISABLE the interrupt input as it returns to the main program.

What happens during an interrupt? The program counter is pushed onto the stack and the values of the CARRY and ZERO
flags are preserved (to be restored by the RETURNI instruction). The interrupt input is automatically disabled. Finally the
program counter is forced to address 3FF (last program memory location) from which the next instruction is executed.

PC

Stack CARRY 
Preserved
CARRY 

ZERO 
Preserved

ZERO 

INT_ENABLE

‘0’

New Address
1 1 1 1 1 1 1 1

Effects of an active interrupt.

1 1



KCPSM3 Manual   58

Basics of Interrupt Handling
Since the interrupt will force the program counter to address ‘3FF’ it will generally be necessary to ensure that a jump vector to a
suitable interrupt service routine (ISR) is located at this address otherwise the program will ‘roll over’ to address zero.

In most cases an ISR will be provided. The routine can be located at any position in the program and jumped to by the interrupt
vector located at the ‘3FF” address. The ISR will perform the required tasks and then end in RETURNI with ENABLE or
DISABLE.

Simple Example - The following example illustrates a very simple interrupt handling routine…….

The KCPSM3 is generally involved with generating waveforms to an output by writing the values ‘55’ and ‘AA’ to the
‘waveform_port’ (port address 02). It does this at regular intervals by decrementing a register (s0) based counter 7 times in a
loop.

When an interrupt is asserted, the KCPSM3 breaks off from the waveform generation and simply increments a separate counter
register (sA) and writes the counter value to the ‘counter_port’ (port address 04).

Interrupt_event

CE

D Q

CE

D Q

PORT_ID[7:0]

PORT_ID1

PORT_ID2

Waveforms

Counter

IN_PORT[7:0]

PORT_ID[7:0]INTERRUPT

INSTRUCTION[17:0]

OUT_PORT[7:0]

ADDRESS[9:0]

CLK

READ_STROBE

WRITE_STROBE

KCPSM3

RESET

INTERRUPT_ACK



KCPSM3 Manual   59

Example Design (VHDL)
The following VHDL shows the addition of the data capture registers and interrupt control to the processor. Note the simplified port
decoding logic through careful selection of port addresses. The complete VHDL file is supplied as ‘kcpsm3_int_test.vhd’.



KCPSM3 Manual   60

Interrupt Service Routine

Interrupt vector set at address 3FF
and causing JUMP to service routine

Interrupt Service Routine
(located at address 2B0 onwards)

Main program delay loop where
most time is spent

In the assembler log file for the example, it can be seen that the interrupt service routine has been force to compile at address
‘2B0’, and that the waveform generation is located in the base addresses. This makes it easier to observe the interrupt in action in
the operation waveforms. This program is supplied as ‘int_test.psm’ for you to assemble yourself.



KCPSM3 Manual   61

Interrupt Operation
The waveforms below taken from an actual ModelSim-XE simulation show the operation of KCPSM3 when executing the example
program at the time of an interrupt. The VHDL test bench used to generate these waveforms is supplied as ‘testbench.vhd’.

By observing the address bus, it is possible to see that the program is busy generating the waveforms and even shows the
‘waveforms’ port being written the ‘AA’ pattern value. Then whilst in the delay loop which repeats addresses ‘005’ and ‘006’ it
receives an interrupt pulse.

It can be seen that KCPSM3 took a few clock cycles to respond to this particular pulse (see ‘timing of interrupt pulses’) before
forcing the address bus to ‘3FF’ and issuing an INTERRUPT_ACK pulse.  From ‘3FF’, the obvious JUMP to the service routine
located at ‘2B0’ can be seen to follow and a new counter value (in this case ‘03’) is written to the ‘counter’ port.

Point of 
interrupt

Delay loop

Write to ‘waveforms’ port Write to ‘counter’ port

Interrupt
vector

Service
Routine

The operation of a KCPSM3 interrupt can also be observed. It can be seen that the last address active before the interrupt is ‘006’.
The JUMP NZ instruction obtained at this address (op-code 35405) is not executed. The flags preserved are those which were set
at the end of the instruction at the previous address (SUB s0,01). The RETURNI has restored the flags and returned the program
to address ‘006’ in order that the JUMP NZ instruction can at last be executed.

clk
address

write_strobe
instruction

counter

interrupt
waveforms

interrupt_event

interrupt_ack

Acknowledge
clears interrupt

Event sets
interrupt



KCPSM3 Manual   62

Timing of Interrupt Pulses
It is clear from the previous simulation waveforms that the constant two cycles per instruction is maintained at all times. Since this
includes an interrupt, the use of single cycle pulse for interrupt can be risky. However, the following waveform can be used to
determine the exact cycle on which the interrupt is observed and the true reaction rate of KCPSM3.

It is therefore advisable that an interrupt signal should be active for a minimum of two KCPSM3 rising clock cycle edges. It is
generally advisable to use the INTERRUPT_ACK signal in a similar way to that demonstrated in the example to ensure that an
interrupt is not missed.

When using logic to combine multiple sources of interrupt, a typical interrupt service routine will read a specific port to determine
the reason for interrupt. In this case, the READ_STROBE and PORT_ID can be decoded and used to clear the external interrupt
register.

CLK

ADDRRESS[9:0]

INSTRUCTION[17:0]

006 005 006 3FF 2B0

1C001 1C001 35405 342B0

005

35405

INTERRUPT

2 cycles

Interrupt sampled on clock edge associated
with change of address

INTERRUPT_ACK



KCPSM3 Manual   63

CALL/RETURN Stack
KCPSM3 contains an automatic embedded stack which is used to store the program counter value during a CALL instruction or
interrupt and restore the program counter value during a RETURN or RETURNI instruction. The stack does not need to be
initialised or require any control by the user. However, the stack can only support nested subroutine calls to a depth of 31.

This simple program can calculate the sum of all integers up to a certain value, i.e. ‘sum_of_value’ when value=5 is
1+2+3+4+5=15. In this case, the sum of integers up to the value 31 (1F hex) is calculated to be 496 (01F0 hex). This is achieved
by using a recursive call of a subroutine and results in the full depth of the call/return stack being utilised. Obviously, this is not a
particularly efficient implementation of this algorithm, but it does fully test the stack.

Increasing value to 20 (32 decimal) will result in incorrect
operation of KCPSM3. The stack is a cyclic buffer, so the
‘bottom’ of the stack will be overwritten by the ‘top’ of the
stack during the 32nd nested CALL instruction.



KCPSM3 Manual   64

Sharing Program Space
For ease of design and possibly to meet system performance requirements, it is often desirable to use multiple KCPSM3 macros in the same
device. Each KCPSM3 is designed to work with a single Block RAM which provides 1024 locations in the Spartan-3 and Virtex-II devices.
For many control and state machine applications, this program size may be found to be excessive and lead to wasted block memory
resources.

Since block RAM is dual port, it is quite possible to connect two KCPSM3 macros to the same block memory…..

16
DOA

DOPA 18

10

CLKA

ADDRA

WEA

9

Aspect Ratio
2048×9

2

16
DOA

DOPA 18

10

CLKA

ADDRA

WEA
2

RAMB16_S18_S18

Vcc

KCPSM3

address

instruction

9

KCPSM3

address

instruction

Both processors use an address range 000
to 1FF and only use the lower 9 address
lines. Interrupts will still work, but the
interrupt vector must be placed at address
1FF (the last effective memory location).

Memory address
range 200 to 3FF

Memory address
range 000 to 1FF

Concept acknowledgement : Steve Knapp (Xilinx Inc.)



KCPSM3 Manual   65

Design of Output Ports
Being thoughtful about your interface circuit design will enable the logic to remain compact and performance to be maintained.
The following diagrams show suitable circuits for output ports, input ports and connection of memory. If you are using a
synthesis tool, it is advisable to check that your code is not describing a circuit which is more complex than is really required and
that the synthesis tool is implementing the correct logic.

CE

D Q

CE

D Q

PORT_ID[7:0]

PORT_ID2

PORT_ID3

Port_C

Port_D

PORT_ID[7:0]

OUT_PORT[7:0]

WRITE_STROBE

KCPSM3
CE

D Q

CE

D Q

PORT_ID0

PORT_ID1

Port_A

Port_B

OUT_PORT[7:0]

For 8 or less simple output ports try to assign ‘one-hot’ addresses and then
make sure that your design only  decodes the appropriate PORT_ID signal.
This greatly reduces the logic for address decoding which is advantageous
for lower cost and performance. It also reduces the loading on the PORT_ID
bus which is often critical to overall system performance.

Use of CONSTANT directives in the program make the code readable and
help ensure that the correct ports are used.

Simple Outputs

Note that all blocks share a common clock



KCPSM3 Manual   66

Design of Output Ports

PORT_ID[7:0]
PORT_ID[7:0]

OUT_PORT[7:0]

WRITE_STROBE

KCPSM3

CE

D Q
Port_A

OUT_PORT[7:0]

When there is a requirement to address blocks of memory and many simple ports, a
large number of the 256 output port locations may be used requiring the PORT_ID
addresses to be more fully decoded. If performance is critical, then careful design
will again be advantageous.

Fully Decoded Outputs and high performance

D

WE

WCLK

A[4:0]

O

RAM32X1S (×8)

D

WE

WCLK

A[3:0]

SPO

RAM16X1D (×8)

DPRA[3:0]

DPO

The key observation is that during a write
operation the PORT_ID and OUT_PORT
are provided for 2 clock cycles with the
WRITE_STROBE only active during the
second of the two cycles (see read and
write strobes). Although time
specifications can be used to cover the
2-cycle paths, it is often easier to insert
pipeline stages and split the address
decoding effort as shown here.

PIPE_OUT_PORT[7:0]

PORT_ID[7:4]

PORT_ID[7:5]

PORT_ID[7:0] EN_A

EN_SP

EN_DP

PIPE_PORT_ID[4:0]PORT_ID[4:0]

‘0000’

‘001’

‘01000000’

Address
Decoding
(cycle 1)

WRITE_STROBE
gating (cycle 2)

Dual Port (16 bytes) - 00 to 0F

Note that all blocks share a common clock

Port Mapping

Single Port (32 bytes) - 20 to 3F

[4:0]

[3:0]Port_A  - 40

See
 ‘Connecting Memory’



KCPSM3 Manual   67

Design of Input Ports
The connection of input ports leads to the definition of a multiplexer. Obviously the size of this multiplexer is proportional to the
number of inputs and having many inputs can lead to issues with performance unless care is taken with the description of this
multiplexer structure.

PORT_ID[7:0]

IN_PORT[7:0]

PORT_ID[7:0]

READ_STROBE

KCPSM3

For 8 or less simple input ports the single multiplexer is ideally suited to connect the various input
signals to the IN_PORT. It is advisable to check the results of synthesis to ensure that the
special MUXF5 and MUXF6 are being employed to make the most efficient multiplexer structure.

Simple Inputs

Because the PORT_ID is valid for 2 clock cycles
the multiplexer can be registered to maintain
performance.

In the majority of cases, the actual clock cycle at
which an input is read by the processor isn’t critical.
Therefore the paths from the sources can typically
be registered such as using the I/O registers when
coming from actual device pins. This will help
simplify time specifications, avoid reports of ‘false
paths’ and lead to reliable designs.

Source_D

Source_C

Source_B

Source_A

The multiplexer means that the best
addresses to assign for input ports are
normal binary encoding.

IN_PORT[7:0]
Note that all blocks share a common clock

PORT_ID[1:0]

IMPORTANT

Failure to include a register anywhere in
the path from PORT_ID to IN_PORT is
the most common reason for observing
significantly lower clock rates than
indicated in the ‘Size and Performance’
section of this manual. So make sure
you have one!



KCPSM3 Manual   68

Design of Input Ports
Occasionally it will be important that a circuit providing data to KCPSM3 to know that it has been read. The obvious example is a
FIFO buffer which will then prepare the next data to be read.

PORT_ID[7:0]

IN_PORT[7:0]

PORT_ID[7:0]

READ_STROBE

KCPSM3

The data path from the FIFO is quite separate to the
read acknowledgement circuit.

In this example the FIFO is assigned the address
‘00’. Initially the FIFO is providing data with the value
‘3A’. The act of reading the port causes the FIFO to
provide the next data of value ‘7B’.

FIFO

Source_C

Source_B

Source_A

Note that all blocks share a common clock

PORT_ID[1:0]

data_out
read

FIFO_data

PORT_ID decode and
READ_STROBE gating
may be combined by
removing the flip-flop if
performance is adequate.

CLK

PORT_ID[7:0]

EN_F

READ_STROBE

EN_F

00

3AIN_PORT[7:0]

FIFO_data 3A 7B

XX

XX

XX

XX



KCPSM3 Manual   69

Connecting Memory

PORT_ID7

PORT_ID[7:0]

OUT_PORT[7:0]

WRITE_STROBE

KCPSM3

The connection of memory (Dual port is ideal for communication with other modules) is the most common cause for reduction in
system performance. Observing where pipeline registers can be inserted, splitting the input multiplexer and careful allocation of
port addresses all contribute to improving system performance.

PORT_ID[3:0]

IN_PORT[7:0]

Source_D

Source_C

Source_B

Source_A

CE

D Q

CE

D Q

PORT_ID5

PORT_ID6

Port_A

Port_B

1

0

Port Mapping

Read/Write memory (16 bytes) - 80 to 8F
Output Port_A  - 20
Output Port_B  - 40

Normal inputs
can be registered

Small combinatorial multiplexer
required to read synchronous
memory during second cycle

Single PORT_ID line used to
select combinatorial MUX.

Register output of distributed RAM to make ‘synchronous
read’ style. This breaks the 2-cycle path mid-way. Block
memory is ‘synchronous read’ by default.

Input Source_A - 00
Input Source_B - 01
Input Source_C - 02
Input Source_D - 03

Can not register address
because memory is read

on first cycle

= Additional places to insert flip-flops if really necessary for performance.

D

WE

WCLK

A[3:0]

SPO

RAM16X1D (×8)

DPRA[3:0]

DPO


