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Preface to the First Edition

This is a textbook on Galois theory. Galois theory has a well-deserved repu-
tation as one of the most beautiful subjects in mathematics. I was seduced by
its beauty into writing this book. I hope you will be seduced by its beauty in
reading it.

This book begins at the beginning. Indeed (and perhaps a little unusually
for a mathematics text), it begins with an informal introductory chapter, Chap-
ter 1. In this chapter we give a number of examples in Galois theory, even
before our terms have been properly defined. (Needless to say, even though
we proceed informally here, everything we say is absolutely correct.) These
examples are sort of an airport beacon, shining a clear light at our destination
as we navigate a course through the mathematical skies to get there.

Then we start with our proper development of the subject, in Chapter 2.
We assume no prior knowledge of field theory on the part of the reader. We
develop field theory, with our goal being the Fundamental Theorem of Galois
Theory (the FTGT). On the way, we consider extension fields, and deal with
the notions of normal, separable, and Galois extensions. Then, in the penulti-
mate section of this chapter, we reach our main goal, the FTGT.

Roughly speaking, the content of the FTGT is as follows: To every Galois
extension E of a field F we can associate its Galois group G = Gal(E/F). By
definition, G is the group of automorphisms of E that are the identity on F.
Then the FTGT establishes a one-to-one correspondence between fields B that
are intermediate between E and F, i.e., between fields B with F ⊆ B ⊆ E, and
subgroups of G. This connection allows us to use the techniques of group the-
ory to answer questions about fields that would otherwise be intractable. (In-
deed, historically Galois theory has been used to solve questions about fields
that were outstanding for centuries, and even for millenia. We will treat some
of these questions in this book.) In the final section of this chapter, we return
to the informal examples with which we started the book, as well as treat-
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ing more intricate and advanced ones that we can handle with our new-found
knowledge.

In Chapter 3 we further develop and apply Galois theory. In this chapter
we deal with a variety of different topics, some of which we mention here.
In the first section we use Galois theory to investigate the field of symmet-
ric functions and the ring of symmetric polynomials. Galois theory allows us
to completely determine the structure of finite fields, and we do this in the
third section. Two important properties of fields are the existence of primitive
elements and normal bases, and we prove these in Sections 3.5 and 3.6. We
can also say quite a bit about abelian extensions (i.e., extensions with abelian
Galois groups), and we treat these in Section 3.7.

We develop Galois theory in complete generality, with careful considera-
tion to the situation in positive characteristic as well as in characteristic 0. But
we are especially interested in algebraic number fields, i.e., finite extensions of
the field of rational numbers Q. We devote Chapter 4 to considering extensions
of Q. Again we deal with a variety of different topics. We consider cyclotomic
polynomials. We consider the question as to when equations are solvable by
radicals (and prove Abel’s theorem that the general equation of degree at least
5 is not). We show that the three classical geometric problems of Greek an-
tiquity: trisecting the angle, duplicating the cube, and squaring the circle, are
unsolvable with straightedge and compass. We deal with quadratic fields and
their relation to cyclotomic fields, and we deal with radical polynomials, i.e.,
polynomials of the form Xn − a, which have a particular theory.

In Chapter 5 we consider more advanced topics in Galois theory. In par-
ticular, we prove that every field has an algebraic closure, and that the field
of complex numbers C is algebraically closed, in Section 5.3, and we develop
Galois theory for infinite algebraic extensions in Section 5.4.

Note that in Chapters 1 through 4, we assume that all field extensions are
finite, except where explicitly stated otherwise. In Chapter 5 we allow exten-
sions to be infinite.

There are three appendices. In the first we develop some necessary group
theory. (We have put this in the appendix for logical reasons. The main text
deals with field theory, and to develop the necessary group theory would lead
to digressions in the main line of argument. Thus we collect these facts in an
appendix in order to have a clear line of argument.) The second appendix re-
visits some material in the text from a more advanced point of view, which we
do not want to presuppose of the reader, while the third appendix presents an
elementary but tricky argument that enables us to avoid relying on Dirichlet’s
theorem about primes in an elementary progression at one point.

Our approach has been heavily influenced by Artin’s classic 1944 text
Galois Theory. Artin’s approach emphasized linear algebra, and our approach
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has the same (and perhaps greater) emphasis. We have tried to have minimal
prerequisites for this book, but, given this emphasis, the reader should have a
sound knowledge of linear algebra. Beyond that the reader should know the
basic facts about groups and rings, and especially about polynomial rings. As
a source for this background material we naturally recommend our previous
book, Algebra: An Approach via Module Theory, by William A. Adkins and
Steven H. Weintraub, Springer-Verlag Graduate Texts in Mathematics No. 136.
We refer to this text as [AW] when we have occasion to cite it. Also, the reader
should be familiar with elementary number theory (the material contained
in any standard undergraduate course in the subject will more than suffice).
Finally, the Krull topology is the key to understanding infinite Galois exten-
sions, so in the final section of this book (Section 5.4), and in this section
alone, the reader must have a good knowledge of point-set topology.

There is, roughly speaking, enough material in this book for a year-long
course in Galois theory. A one-semester course could consist of Chapters 1
and 2 (both of which can be easily covered in a semester) plus additional ma-
terial from Chapters 3 and 4 as interest dictates and time permits.

We would like to mention that our previous book, [AW], treated groups,
rings, modules, and linear algebra. This book treats field theory, so together
these two books cover the topics of a standard one-year graduate algebra
course. Also, given our particular attention to Galois theory over Q, we feel
this book would be especially well-suited to students with an interest in alge-
braic number theory.

Our numbering system in this book is fairly standard. Theorem a.b.c refers
to Theorem b.c in section b of Chapter a (or Appendix a). We denote the end
of proofs by ��, as usual. In case a result is immediate, we simply append
this symbol to its statement. Theorems, etc., are in italics, so are naturally set
off from the remaining text. Definitions, etc., are in roman, and so are not.
To delimit them, we end them with the symbol �. Our notation is also fairly
standard, but we call the reader’s attention to the following conventions: We
use A ⊆ B to mean that A is a subset of B, while A ⊂ B means that A is
a proper subset of B. We denote fields by boldface letters and the integers by
Z. We will often be considering the situation where the field E is an extension
of the field F, and in this situation we will use greek letters (α, β, γ, . . . ) to
denote elements of E and roman letters (a, b, c, . . . ) to denote elements of
F. The greek letter ω will denote the primitive complex cube root of unity
ω = (−1 + i

√
3)/2. The letter p will always denote a prime. Finally, id will

denote the identity automorphism of whatever object is under consideration.

June 2005 Steven H. Weintraub



Preface to the Second Edition

I am pleased that there has been enough interest in this book to justify a second
edition in such a short time since the first edition appeared.

The main change in this second edition is that I have added a new chapter,
Chapter 6, that deals with transcendental extensions, thereby expanding the
scope of the book. In addition, I have added smaller amounts of material: the
statement and proof of Newton’s Identities at the end of Section 3.1, material
on linear disjointness at the end of Section 3.4, an expanded treatment of Ex-
ample 2.9.7, and an additional corollary at the end of Section 4.7. Also, there
is one consistent change, purely for esthetic reasons: Defined terms are in ital-
ics, instead of boldface, as they were previously. Beyond that, I have taken the
opportunity to correct all (known) typos and minor errors in the first edition.
(To my knowledge, there were no major errors.) It would be nice to hope that
in adding around 25 pages to the text, I have not introduced any new errors;
alas, that is probably too optimistic. Well, one can hope, anyway.

I have made it a point to preserve the numbering from the first edition
intact. That is, in all cases Theorem a.b.c from the first edition remains Theo-
rem a.b.c in the second edition, etc. Thus readers of the first edition should not
be too disadvantaged.

June 2008 Steven H. Weintraub



1

Introduction to Galois Theory

1.1 Some Introductory Examples

In this section we will proceed informally, neither proving our claims nor even
carefully defining our terms. Nevertheless, as you will see in the course of
reading this book, everything we say here is absolutely correct. We proceed in
this way to show in advance what our main goals are, and hence to motivate
our development.

Example 1.1.1. Let F = Q, the field of rational numbers, and consider the
polynomial X2−2 ∈ Q[X ]. We let E be the “splitting field” of this polynomial,
i.e., the “smallest” field which contains “all” the roots of this polynomial. Then
E = Q(

√
2), the field obtained by “adjoining”

√
2 to Q. Then Q(

√
2) =

{a + b
√

2 | a, b ∈ Q}, so as a vector space, dimF E = 2. We ask for all
automorphisms of E that fix F. If σ : E → E is such an automorphism, then it
must take a root of X2 −2 to a root of X2 −2. Thus there are two possibilities:
σ1(

√
2) = √

2, in which case σ1 : E → E is the identity map, or σ2(
√

2) =
−√

2, in which case σ2 : E → E is given by σ2(a+b
√

2) = a−b
√

2. Thus the
group of automorphisms of E that fix F, known as the Galois group Gal(E/F),
is {σ1 = id, σ2}, isomorphic to Z/2Z, of order 2. Note that | Gal(E/F)| =
dimF E. �
Example 1.1.2. Let F = Q and consider the polynomial (X2 − 2)(X2 − 3) ∈
Q[X ]. The splitting field of this polynomial is E = Q(

√
2,

√
3) and E =

{a + b
√

2 + c
√

3 + d
√

6 | a, b, c, d ∈ Q}, so dimF E = 4. Again we ask
for all automorphisms σ of E that fix F. We must have that σ takes a root of
X2 −2 to a root of X2 −2, so σ(

√
2) = ±√

2, and that σ takes a root of X3 −3
to X2 − 3, so σ(

√
3) = ±√

3. Indeed, the values of σ on
√

2 and
√

3 can be

S.H. Weintraub, Galois Theory, DOI 10.1007/978-0-387-87575-0_1,  
© Springer Science+Business Media, LLC 2009 



2 1 Introduction to Galois Theory

chosen independently, and these determine the values of σ on all elements of
E, so we have the four automorphisms of E given by

σ1(a + b
√

2 + c
√

3 + d
√

6) = a + b
√

2 + c
√

3 + d
√

6,
σ2(a + b

√
2 + c

√
3 + d

√
6) = a − b

√
2 + c

√
3 − d

√
6,

σ3(a + b
√

2 + c
√

3 + d
√

6) = a + b
√

2 − c
√

3 − d
√

6,
σ4(a + b

√
2 + c

√
3 + d

√
6) = a − b

√
2 − c

√
3 + d

√
6;

thus, G = Gal(E/F) = {σ1 = id, σ2, σ3, σ4} is isomorphic to Z/2Z ⊕ Z/2Z,
and | Gal(E/F)| = 4 = dimF E.

Now we ask for all fields B “intermediate” between E and F, i.e., fields B
containing F and contained in E. Of course B1 = F and B5 = E are certainly
intermediate fields. Here are three others that easily appear:

B2 = Q(
√

2), B3 = Q(
√

3), B4 = Q(
√

6).

Now let us look at subgroups H of G. It is easy to list all such H . They are
H1 = G, H5 = {id} and also

H2 = {id, σ3}, H3 = {id, σ2}, H4 = {id, σ4}.
Note we have a one-to-one correspondence between {Hi } and {Bi } given

by

Bi = Fix(Hi )

where Fix(H) is the subfield of E fixed by all elements of the subgroup H .
In fact, the Fundamental Theorem of Galois Theory (FTGT) tells us there is
a one-to-one correspondence between subgroups H of Gal(E/F) and fields B
intermediate between E and F given by

H ←→ B where B = Fix(H).

It is easy to determine all the subgroups of G, as this is a finite group,
so this gives us a way of determining all intermediate fields (a priori, a much
more different task), and in our case this shows that B1, . . . , B5 are indeed all
the intermediate fields.

Let us make a further observation here, which the FTGT also tells us is
true in general: If B is an intermediate field, then B is an F-vector space and E
is a B-vector space, and

dimF B = [G : H ], dimB E = |H |.
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One more observation: For each intermediate field B, we may consider
Gal(B/F), the group of automorphisms of B fixing F. If B = F, then
Gal(B/F) = Gal(F/F) consists of the identity element alone, while if B = E,
then Gal(B/F) = Gal(E/F) is the whole original Galois group. For B = Bi ,
i = 2, 3, 4, Gal(B/F) is isomorphic to Z/2Z, of order 2. Thus in all five cases,

| Gal(B/F)| = dimF B. �
Example 1.1.3. Let F = Q and consider the polynomial X3 − 2 ∈ Q[X ].
We let E be the splitting field of this polynomial. Then 3

√
2 ∈ E and, since

E is a field, (
3
√

2)2 = 3
√

4 ∈ E. Now E contains all the roots of x3 − 2, so
if ω is a primitive cube root of 1, then ω

3
√

2 ∈ E, and since E is a field,
ω

3
√

2/
3
√

2 = ω ∈ E. (Also, ω2 ∈ E, but note that ω3 = 1, ω3 − 1 = 0,
(ω − 1)(ω2 + ω + 1) = 0 and ω �= 1, so ω2 + ω + 1 = 0 and ω2 = −1 − ω;
thus once we add ω to F we already have ω2 as well.) Then E = Q(ω,

3
√

2)

and E = {a + b 3
√

2 + c 3
√

4 + dω + eω 3
√

2 + f ω
3
√

4 | a, b, c, d, e, f ∈ Q} and
dimF E = 6.

Now we wish to determine Gal(E/F). Again, any automorphism of E must
take a root of X3 − 2 to another root of X3 − 2, so σ(

3
√

2) = 3
√

2, ω
3
√

2, or
ω2 3

√
2. Also, as we just observed, ω is a root of X2 + X +1, whose other root is

ω2, so σ(ω) = ω or ω2. There are three choices for σ(
3
√

2) and two choices for
σ(ω). We may make these choices independently, and these choices determine
σ on all of E, so | Gal(E/F)| = 6.

In particular we have the following elements:

ϕ : E → E with ϕ(
3
√

2) = ω
3
√

2, ϕ(ω) = ω,

ψ : E → E with ψ(
3
√

2) = 3
√

2, ψ(ω) = ω2.

It is easy to check that ϕ3 = id and ψ2 = id.
Let us compute further:

ϕψ(
3
√

2) = ϕ(ψ(
3
√

2)) = ϕ(
3
√

2) = ω
3
√

2,

ϕψ(ω) = ϕ(ψ(ω)) = ϕ(ω2) = ω2,

while

ψϕ2(
3
√

2) = ϕ(ψ2(
3
√

2)) = ψ(ω2 3
√

2) = ω
3
√

2,

ψϕ2(ω) = ψ(ϕ2(ω)) = ψ(ω) = ω2.

Thus we see that ϕψ = ψϕ2, and so

G = Gal(E/F) = 〈ψ, ϕ | ϕ3 = 1, ψ2 = 1, ϕψ = ψϕ−1〉
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is isomorphic to the dihedral group of order 6.
Now it is easy to list all subgroups H of G; by the FTGT this gives us all

intermediate fields B. The subgroups H are

H1 = G, H2 = {id, ϕ, ϕ2}, H3 = {id, ψ},
H4 = {id, ϕψ}, H5 = {id, ϕ2ψ}, H6 = {id}.

Then we can compute that the corresponding subfields Bi = Fix(Hi ) are
given by

B1 = Q,

B2 = Q(ω) = {a + dω | a, d ∈ Q},
B3 = Q(

3
√

2) = {a + b
3
√

2 + c
3
√

4 | a, b, c ∈ Q},
B4 = Q(ω

3
√

2) = {a + c
3
√

4 + eω
3
√

2 + cω
3
√

4 | a, c, e ∈ Q},
B5 = Q(ω2 3

√
2) = {a + b

3
√

2 + bω
3
√

2 + f ω
3
√

4 | a, b, f ∈ Q},
B6 = Q(ω,

3
√

2).

Again we see that for each H and corresponding B,

dimF B = [G : H ], dimB E = |H |.
Once again, let us compute Gal(B/F) for each intermediate field B. For

B = B1, Gal(B/F) = {id} and for B = B6, Gal(B/F) = G. More inter-
estingly, Gal(B2/F) is isomorphic to Z/2Z, with the nontrivial element τ ob-
tained as follows: ω is a root of X2 + X + 1, so τ must take ω to the other root
of x2 + x + 1, which is ω2 = −1 − ω. Thus

τ(a + dω) = a + d(−1 − ω) = (a − d) − dω.

(Actually, B2 and τ have an alternate description. By the quadratic formula,
ω = (−1+i

√
3)/2 and ω2 = ω̄ = (−1−i

√
3)/2. Thus B2 = Q(i

√
3) = {a′+

b′i
√

3 | a′, b′ ∈ Q} and τ(a′ + b′i
√

3) = a′ − b′i
√

3, so τ is simply complex
conjugation on B2). In each of these three cases we see that | Gal(B/F)| =
dimF B.

On the other hand, consider B3. An automorphism of B3 = Q(
3
√

2) fixing
Q is determined by its effect on 3

√
2. Since 3

√
2 is a root of X3 − 2, it must take

3
√

2 to a root of this same polynomial. But 3
√

2 is the only root of X3 − 2 in
B3, so any automorphism of B3 must fix 3

√
2 and hence must be the identity.

A similar argument works for B4 and B5, so we see that 1 = | Gal(Bi/F)| <

dimF Bi = 3 for i = 3, 4, 5. Thus the situation here is different.
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Why is it different? The answer is that the subgroups H1, H2, and H6 of
G are normal subgroups of G, while the subgroups H3, H4, and H5 are not.
As we will see from the FTGT, in case H is a normal subgroup of G and
B = Fix(H), then | Gal(B/F)| = dimF B and, moreover, Gal(B/F) is the quo-
tient group G/H . You can verify that this is true here for H1 and H6 (which
is immediate) and for H2 (which is more interesting). Also, we’ll remark that
H3, H4, and H5 are conjugate subgroups of G and that B3, B4 and B5 are “con-
jugate” intermediate fields, in that there are automorphisms of E fixing F and
permuting these subfields; indeed ϕ(B3) = B4 and ϕ2(B3) = B5.

Note that in Example 1.1.2 the Galois group G was abelian, so every
subgroup was normal, and hence for every intermediate field B, we had
| Gal(B/F)| = dimF B and in fact Gal(B/F) = G/H . �
Example 1.1.4. Let F = Q and consider the polynomial X2 − 5 ∈ Q[X ].
The splitting field of this polynomial is B = Q(

√
5) and the Galois group

Gal(B/F) = {id, ϕ} where ϕ(
√

5) = −√
5. Now consider the polynomial


5(X) = (X5 − 1)/(X − 1) = X4 + X3 + X2 + X + 1. This polynomial is
irreducible. Let E be the splitting field of this polynomial. Then E = Q(ζ5)

where ζ5 = exp(2π i/5), a fifth root of 1, and dimF E = 4. The automorphism
of E fixing F must take ζ5 to some other root of 
5(X), and any root is pos-
sible, as 
5(X) is irreducible. Now 
5(X) has roots ζ5, ζ 2

5 , ζ 3
5 , and ζ 4

5 . Let
σ ∈ Gal(E/F) with σ(ζ5) = ζ 2

5 . Then σ 2(ζ5) = ζ 4
5 and σ 3(ζ5) = ζ 8

5 = ζ 3
5 .

By the FTGT, | Gal(E/F)| = 4 so Gal(E/F) = {id, σ, σ 2, σ 3} is cyclic of
order 4.

Now 0 = 
5(ζ5) = ζ 4
5 + ζ 3

5 + ζ 2
5 + ζ5 + 1, so (ζ5 + ζ 4

5 )2 = ζ 2
5 + ζ 3

5 + 2 =
ζ5 + ζ 4

5 + 1, so θ = ζ5 + ζ 4
5 is a root of X2 − X − 1, as is θ ′ = ζ 2

5 + ζ 3
5 . By

the quadratic formula θ = (1 +√
5)/2 and θ ′ = (1 −√

5)/2. Thus we see that
E ⊃ Q(θ) = Q(

√
5) = B, and dimB E = 2 as θ = ζ5 + ζ 4

5 = ζ5 + ζ−1
5 , so

ζ5 is a root of the quadratic equation X2 − θ X + 1, a polynomial in B[X ]. (Its
other root is ζ−1

5 .)
By the FTGT, Gal(E/B) has order 2, and is a subgroup of Gal(E/F). Then

it must be the subgroup {id, σ 2}, and that checks as σ(θ) = σ(ζ5 + ζ 4
5 ) =

ζ 2
5 + ζ 3

5 = θ ′ so σ 2 does not fix B, but σ 2(θ) = θ (and σ 2(θ ′) = θ ′) so σ 2

does. Also, Gal(B/Q) = Gal(E/Q)/ Gal(E/B) = {id, σ, σ 2, σ 3}/{id, σ 2} has
σ as a representative of the nontrivial element. The quotient map is given by
restricting an automorphism of E to B. We have already seen that Gal(B/Q) =
{id, ϕ}. But note that σ | B = ϕ as σ

(
(1+√

5)/2
) = (1−√

5/2), so σ(
√

5) =
−√

5 = ϕ(
√

5).
In this example, we are back to the case in which Gal(E/F) is abelian, so

by the FTGT, any intermediate field B will also be a Galois extension of F,
i.e., will have | Gal(B/F)| = dimF B. Since Gal(E/F) is cyclic of order 4, it
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has a unique subgroup of order 2 corresponding to a unique intermediate field
B with dimB E = 2, and we have explicitly identified this field B as Q(

√
5).

Also, we have shown how to obtain E in two stages: First, adjoin θ (or
√

5)

to Q, creating an extension of degree 2, and the adjoin ζ5 to B, creating an
extension E of B degree 2, and hence an extension E of Q of degree 4. (The
degree of an extension is its dimension as a vector space over the base field.)

Finally, this example is interesting as it is an example of the relationship
between a quadratic field B (i.e., a field obtained by adjoining a square root
to Q) and a cyclotomic field E (i.e., a field obtained by adjoining a root of
1 to Q). �



2

Field Theory and Galois Theory

2.1 Generalities on Fields

We begin by defining the objects we will be studying.

Definition 2.1.1. F is a field if F is an abelian group under addition, F − {0}
is an abelian group under multiplication, and multiplication distributes over
addition.

In other words, F is a field if :

1. For any a, b ∈ F, a + b ∈ F.
2. For any a, b ∈ F, a + b = b + a.
3. For any a, b, c ∈ F, (a + b) + c = a + (b + c).
4. There is a 0 ∈ F such that a + 0 = 0 + a = a for every a ∈ F.
5. For every a ∈ F there is an element −a ∈ F with a+(−a)=(−a)+a = 0.
6. For any a, b ∈ F, ab ∈ F, and if a �= 0 and b �= 0, then ab �= 0.
7. For any a, b ∈ F, ab = ba.
8. For any a, b, c ∈ F, (ab)c = a(bc).
9. There is a 1 ∈ F such that a1 = 1a = a for every a ∈ F.

10. For every a �= 0 ∈ F there is an element a−1 ∈ F with aa−1 = a−1a = 1.
11. For every a ∈ F, a0 = 0a = 0.
12. For every a, b, c ∈ F, (a + b)c = ac + bc.
13. For every a, b, c ∈ F, c(a + b) = ca + ba.
14. 0 �= 1. �
Example 2.1.2. Here are some examples of fields. The first three are very
familiar.

S.H. Weintraub, Galois Theory, DOI 10.1007/978-0-387-87575-0_2,  
© Springer Science+Business Media, LLC 2009 
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(1) The rational numbers Q.
(2) The real numbers R.
(3) The complex numbers C.
(4) The field F = Q(

√
D) where D is not a perfect square.

By definition, F = {a +b
√

D | a, b ∈ Q} with addition and multiplication
defined “as usual”. That is, (a + b

√
D)+ (c + d

√
D) = (a + c)+ (b + d)

√
D

and (a + b
√

D)(c + d
√

D) = (ac + bd D) + (ad + bc)
√

D. We need to see
that inverses exist, and this comes from the familiar method of “rationalizing
the denominator”:

1

a + b
√

D
= 1

a + b
√

D
· a − b

√
D

a − b
√

D
= a − b

√
D

a2 − b2 D

= a

a2 − b2 D
− b

a2 − b2 D

√
D.

(5) The fields F = Fp of integers modulo p, where p is a prime. Fp =
{0, 1, . . . , p−1} with addition and multiplication defined mod p, i.e., i+ j = k
in Fp if i + j ≡ k(mod p) and i j = k in Fp if i j ≡ k(mod p). �

Example 2.1.2 (4) illustrates a construction of particular importance to us.
It is, as we shall see below, an “algebraic extension” of Q, obtained by “adjoin-
ing” the element

√
D, an element that is a root of the irreducible polynomial

X2 − D ∈ Q[X ]. (In a similar way, C = R(i) where i is a root of the ir-
reducible polynomial X2 + 1 ∈ R[X ]). In fact, this chapter will be entirely
devoted to studying algebraic extensions of fields and their properties.

In this book, we shall not only be studying individual fields, but also, and
especially, maps between them. We thus make the following important obser-
vation.

Lemma 2.1.3. Let F and F′ be fields and let ϕ : F → F′ be a map with
ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for every a, b ∈ F. Then
one of the following two alternatives holds:

(1) ϕ(0) = 0, ϕ(1) = 0, and ϕ is the zero map.
(2) ϕ(0) = 0, ϕ(1) = 1, and ϕ is an injection.

Proof. We have that ϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0) so 0 = ϕ(0).
We also have that ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1) so 0 = ϕ(1)ϕ(1) − ϕ(1) =

ϕ(1)(1−ϕ(1)) and hence, by the contrapositive of property (6) of a field, either
ϕ(1) = 0 or ϕ(1) = 1.

First, suppose ϕ(1) = 0. Then for any a ∈ F, we have that ϕ(a) =
ϕ(a · 1) = ϕ(a)ϕ(1) = ϕ(a) · 0 = 0, and ϕ is the zero map.
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Next suppose ϕ(1) = 1. Then for any c ∈ F, c �= 0, we have that 1 =
ϕ(1) = ϕ(cc−1) = ϕ(c)ϕ(c−1) so ϕ(c) �= 0. Now let a, b ∈ F with a �= b,
and set c = b−a �= 0. Then ϕ(b) = ϕ(a+(b−a)) = ϕ(a+c) = ϕ(a)+ϕ(c) �=
ϕ(a), and ϕ is an injection. ��
Definition 2.1.4. The characteristic char(F) of the field F is the smallest pos-
itive integer n such that n · 1 = 0 ∈ F, or 0 if no such n exists. �

Examining Example 2.1.2, we see that the fields in parts (1)–(4) have char-
acteristic 0, while the fields in part (5) have characteristic p.

Lemma 2.1.5. Let F be a field. Then char(F) is either 0 or a prime.

Proof. Suppose char(F) = n is neither 0 nor a prime, and let n = ab with
1 < a, b < n. Then a ·1 �= 0 and b·1 �= 0 but (a ·1)(b·1) = (ab)·1 = n ·1 = 0.
But this is impossible as the product of any two nonzero elements in a field is
nonzero. ��
Remark 2.1.6. If F is any field, there is a canonical map ϕ from the integers Z
to F determined by ϕ(1) = 1. If char(F) = 0, then ϕ is an injection; using ϕ

we regard Z as a subring of F, and then we also regard F0 = Q as a subfield
of F. If char(F) = p, then ϕ gives an injection from Fp into F and we regard
F0 = Fp as a subfield of F. In either case, F0 is called the prime field. �
Definition 2.1.7. A field E is an extension of the field F if F is a subfield
of E. �

We will often be in the situation of considering a field F and an extension
field E. To help the reader keep track of what is going on, we will adopt the
notational convention that, in this situation, we will denote elements of F by
Roman letters (a, b, . . . ) and elements of E by Greek letters (α, β, . . . ).

It easy to check that if E is an extension of F, then char(E) = char(F) and
furthermore E is an F-vector space. This leads us to the following definition.

Definition 2.1.8. (1) The degree (E/F) of E over F is dimF E, the dimension
of E as an F-vector space.

(2) E is a finite extension of F (or E/F is finite) if (E/F) is finite. �
(Although we will not use it here, another common notation for (E/F) is

[E : F].)
Examining Example 2.1.2 (4), we see that (Q(

√
D)/Q) = 2 as Q(

√
D)

has basis {1,
√

D} as a Q-vector space (and similarly (C/R) = 2 as C has basis
{1, i} as an R-vector space). Note that 2 is also the degree of the polynomial
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X2− D (and of the polynomial X2+1). As we shall see, this is no coincidence.
On the other hand, (C/Q) = ∞. As we shall also see, with considerably more
work, for every prime p and every positive integer n there is a field Fpn with
pn elements, and Fpn is unique up to isomorphism. Then (Fpn /Fp) = n.

Here is an important observation about arithmetic in fields of characteris-
tic p.

Lemma 2.1.9. Let F be a field of characteristic p. Then (a + b)p = a p + bp

for any elements a, b of F.

Proof. By the Binomial Theorem, (a + b)p = �
p
i=0

(p
i

)
ai bp−i = a p + bp as(p

i

) = p!/(i !(p − i)!) is divisible by p for all 1 ≤ i ≤ p − 1. ��
Definition 2.1.10. Let F be a field of characteristic p. The Frobenius map

 : F → F is the map defined by 
(X) = X p. �
Corollary 2.1.11. Let F be a field of characteristic p. Then 
 : F → F is an
endomorphism. If F is finite, 
 is an automorphism.

Proof. Clearly 
(1) = 1 and 
(ab) = 
(a)
(b). But also 
(a + b) =

(a) + 
(b) by Lemma 2.1.9. Now, by Lemma 2.1.3, 
 is injective, so
| Im(
)| = |F|. Thus, if |F| is finite, Im(
) = F. ��
Lemma 2.1.12. Let F = Fp. Then 
 : F → F is the identity automorphism.

Proof. By Fermat’s Little Theorem, x p ≡ x(mod p) for x = 0, 1, . . . ,

p − 1. ��
Thus, for the field Fp, the Frobenius automorphism 
 is uninteresting. But,

as we shall see, for other fields of characteristic p it plays an important role.
We shall find it convenient to introduce the following notion.

Definition 2.1.13. An integral domain is a ring R that satisfies properties (1)–
(9) and (11)–(14) of Definition 2.1.1. �

In particular, in an integral domain R, property (6) holds, so the product of
any two nonzero elements of R is nonzero. However, property (11) may not
hold, so a nonzero element of R may not have an inverse. Those elements of
R that do have inverses are called the units of R. As an example of an integral
domain, we have the integers Z, from which the name integral domain arises.
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2.2 Polynomials

In this section we consider polynomial rings. We shall assume the reader has
already encountered them, and so will not prove the more basic facts. As a
reference for them, we recommend [AW, Sections 2.4 and 2.5].

For any field F, we let F[X ] be the ring of polynomials in the variable
X with coefficients in F. We observe that the product f (X)g(X) of any two
nonzero polynomials f (X), g(X) ∈ F[X ] is nonzero, and so F[X ] is an inte-
gral domain. We regard F ⊂ F[X ] by identifying the element a ∈ F with the
constant polynomial a ∈ F[X ], and observe that, under this identification, the
units of F[X ] (i.e., the invertible elements of F[X ]) are precisely the nonzero
elements of F.

The most basic fact about F[X ] is that we have the division algorithm: For
any polynomials f (X) and g(X) ∈ F[X ] with g(X) �= 0, there exist unique
polynomials q(X) and r(X) with

f (X) = g(X)q(X) + r(X),

where either r(X) = 0 or r(X) is a nonzero polynomial with deg(r(X)) <

deg(g(X)). (Here deg is the degree of a polynomial.) We call q(X) the quotient
and r(X) the remainder. Note that the quotient and remainder are independent
of the field: If E is an extension of F and f (X) = g(X)q(X) + r(X) is an
equation in F[X ], this equation holds in E[X ] as well, so by the uniqueness of
the quotient and remainder, q(X) and r(X) are the quotient and remainder in
E[X ] as well.

From the existence of the division algorithm we conclude that F[X ] is a
Euclidean domain, where the norm of a nonzero polynomial is equal to its
degree. A Euclidean domain is so named because it is an integral domain in
which Euclid’s algorithm holds. One of the consequences of Euclid’s algo-
rithm is that any two nonzero elements of F[X ] have a greatest common di-
visor (gcd). In general, the gcd of two elements of a Euclidean ring is only
well defined up to multiplication by a unit, but in F[X ] we specify the gcd
by requiring it to be monic. Then the greatest common divisor (gcd) of two
polynomials f (X) and g(X) is defined to be the unique monic polynomial
of highest degree that divides both f (X) and g(X), and two polynomials are
relatively prime if their gcd is 1.

In addition, since F[X ] is a Euclidean domain, the gcd d(X) of the
polynomials f (X) and g(X) may be expressed as a linear combination of
f (X) and g(X), i.e., there are polynomials a(X) and b(X) with d(X) =
a(X) f (X) + b(X)g(X).

Furthermore, every Euclidean domain is a principal ideal domain (PID). A
principal ideal domain R is so named because it is an integral domain in which
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every ideal I is principal, i.e., consists of the multiples of a single element i ,
in which case we write I = 〈i〉. Applying that here, we see that every ideal of
F[X ] is of the form 〈 f (X)〉 for some polynomial f (X).

In an integral domain R, we have the notion of irreducible and prime ele-
ments: A nonunit a ∈ R is irreducible if a = bc implies that b or c is a unit,
and a nonunit a ∈ R is prime if a divides bc implies that a divides b or a di-
vides c. In any integral domain R, every prime is irreducible, and in a PID R,
every irreducible is prime, so in a PID R the notions of prime and irreducible
are the same.

Finally, in any PID unique factorization holds. In particular, it holds in
F[X ]. Concretely, in F[X ] this means: Every nonconstant polynomial f (X) ∈
F[X ] can be factored into irreducible polynomials in an essentially unique
way. Furthermore, we may write f (X) uniquely (up to the order of the terms)
as

f (X) = u f1(X) · · · fk(X) with u ∈ F, fi ∈ F[X ] monic irreducible

(and in particular, if f (X) is also monic then u = 1). We call this the prime
factorization of f (X).

Given this background, we now get to work.

Lemma 2.2.1. Let f (X) ∈ F[X ] be a nonzero polynomial.
(1) For a ∈ F, a is a root of f (X), i.e., f (a) = 0, if and only if X − a

divides f (X).
(2) The number of roots of f (X) is less than or equal to the degree of

f (X).

Proof. (1) By the division algorithm, we may write f (X) = (X − a)q(X) +
b, b ∈ F. Setting X = a, we see b = f (a).

(2) We prove this part of the lemma by induction on d = deg( f (X)),
beginning with d = 0. If d = 0, then f (X) is a nonzero constant polynomial,
so has 0 roots, and this part of the lemma holds. Now assume it holds for every
polynomial of degree d and let f (X) have degree d + 1. If f (X) has no roots,
we are done. Otherwise, let f (α) = 0. Then f (X) = (X − α)g(X), so by
induction g(X) has e ≤ d roots. Then f (X) has e′ roots, with e′ = e or e + 1
according as α is or is not a root of g(X), but in any case e′ ≤ d + 1 and we
are done by induction. ��

Lemma 2.2.1 has the following important consequence.

Corollary 2.2.2. Let G be any finite subgroup of the multiplicative group of a
field F. Then G is cyclic.
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Proof. Let G have order n. Then any element g of G has order d for some
d dividing n. Now an element g of G is a nonzero element of F, and so the
equation gd = 1 in G is equivalent to the equation gd − 1 = 0 in F. Thus
we see that if g has order d, then g is a root of the polynomial Xd − 1. By
Lemma 2.2.1, this polynomial has at most d roots. Hence G is an abelian
group of order n with the property that G has at most d elements of order d,
for any d dividing n. But it is easy to check that an abelian group with this
property must be cyclic (and furthermore that in this case G has exactly d
elements of order d , for any d dividing n). ��
Lemma 2.2.3. Let F be a field and R an integral domain that is a finite-
dimensional F-vector space. Then R is a field.

Proof. We need to show that any nonzero r ∈ R has an inverse. Consider
{1, r, r2, . . . , }. This is an infinite set of elements of R, and by hypothesis R
is finite dimensional as an F-vector space, so this set is linearly dependent.
Hence �n

i=0cir i = 0 for some n and some ci ∈ F not all zero. In other words,
f (r) = 0 where f (X) = �n

i=0ci Xi ∈ F[X ].
First, suppose c0 �= 0. Then

cnrn + · · · + c1r + c0 = 0,

c−1
0 (cnrn + · · · + c1r + c0) = 0,

c−1
0 cnrn + · · · + c−1

0 c1r + 1 = 0,

−c−1
0 cnrn − · · · − c−1

0 c1r = 1,

r(−c−1
0 cnrn−1 · · · − c−1

0 c1) = 1,

so r has inverse −c−1
0 cnrn−1 · · · − c−1

0 c1 ∈ R.
If c0 = 0, write f (X) = Xkq(X) where the constant term of q(X) is

nonzero. Then 0 = f (r) = rkq(r) and R is an integral domain, so q(r) = 0
and we may apply the above argument to the polynomial q(X). ��
Proposition 2.2.4. Let f (X) ∈ F[X ] be an irreducible polynomial of degree
d. Then F[X ]/〈 f (X)〉 is a field and is a d-dimensional F-vector space.

Proof. Let π : F[X ] → F[X ]/〈 f (X)〉 be the canonical projection and set
π( f (X)) = f̄ (X).

By hypothesis, f (X) has degree d. We claim that S = {1̄, X̄ , . . . , X̄ d−1}
is a basis for F[X ]/〈 f (X)〉.

S spans F[X ]/〈 f (X)〉: Let ḡ(X) ∈ F[X ]/〈 f (X)〉. Then, by the division
algorithm, g(X) = f (X)q(X)+r(X) where either r(X) = 0 or deg r(X) < d.
Then ḡ(X) = r̄(X) = �d−1

i=0 ci X̄ i is a linear combination of elements of S.
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S is linearly independent: Suppose �d−1
i=0 ci X̄ i = ḡ(X) = 0. Then g(X)

is divisible by f (X). But deg g(X) < deg f (X), so this is impossible unless
g(X) = 0, in which case c0 = c1 = . . . = cd−1 = 0.

Thus F[X ]/〈 f (X)〉 is a d-dimensional vector space over F.

Next observe that F[X ]/〈 f (X)〉 is an integral domain: Suppose ḡ(X)h̄(X)

= 0. Then g(X)h(X) is divisible by f (X). Since f (X) ∈ F[X ] is irreducible,
and hence prime, we have that f (X) divides g(X), in which case ḡ(X) = 0,
or f (X) divides h(X), in which case h̄(X) = 0.

Then, by Lemma 2.2.3, we conclude that F[X ]/〈 f (X)〉 is a field. ��
Remark 2.2.5. It is worthwhile to give an explicit description of the field E =
F[X ]/〈 f (X)〉. Let f (X) ∈ F[X ] be an irreducible polynomial of degree n,
f (X) = an Xn +· · ·+a0. By taking representatives of equivalence classes, we
may regard

E = {g(X) ∈ F[X ] | deg g(X) < n}
as a set. Addition in E is the usual addition of polynomials, while multipli-
cation in E is defined as follows: Let g1(X), g2(X) ∈ F[X ] and let h(X) =
g1(X)g2(X) ∈ F[X ]. We may write uniquely h(X) = f (X)q(X) + r(X)

where either r(X) = 0 or r(X) is a nonzero polynomial with deg r(X) <

deg f (X) = n. Then, for g1(X), g2(X) ∈ E,

g1(X)g2(X) = r(X) ∈ E,

where r(X) is defined as above.
In particular, multiplication of polynomials g1(X), g2(X) ∈ E is the usual

multiplication of polynomials if deg g1(X) + deg g2(X) < n, while

Xn−1 · X = (−1/an)(an−1 Xn−1 + · · · + a0) ∈ E. �
As we have remarked, we regard F ⊂ F[X ] by identifying the element a

of F with the constant polynomial f (X) = a. If π : F[X ] → F[X ]/〈 f (X)〉
is the canonical projection, then π | F is an injection, and using this we also
regard F ⊆ F[X ]/〈 f (X)〉.

In the proof of Proposition 2.2.4, we were careful to distinguish between
f (X) ∈ F[X ] and f̄ (X) = π( f (X)) ∈ F[X ]/〈 f (X)〉. But henceforth we
shall follow the common practice of writing f (X) for π( f (X)) and relying on
the context to distinguish the two.

We now put these observations together to arrive at an important result.

Theorem 2.2.6 (Kronecker). Let f (X) ∈ F[X ] be any nonconstant polyno-
mial. Then there is an extension field E ⊇ F in which f (X) has a root.
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Proof. Without loss of generality, we may assume that f (X) is irreducible.
Set E = F[X ]/〈 f (X)〉. Then E is a field, E ⊇ F, and f (X) = 0 in E, so X is
a root of f (X) in E. ��

Our last result in this section is a technical lemma that turns out to play an
important role in our development of Galois theory.

Lemma 2.2.7 (Invariance of GCD Under Field Extensions). Let E be an
extension of F and let f (X) and g(X) be nonzero polynomials in F[X ]. Then
the gcd of f (X) and g(X) as polynomials in E[X ] is equal to the gcd of f (X)

and g(X) as polynomials in F[X ]. In particular:
(1) f (X) divides g(X) in F[X ] if and only if f (X) divides g(X) in E[X ].
(2) f (X) and g(X) are relatively prime in F[X ] if and only if f (X) and

g(X) are relatively prime in E[X ].
Proof. Let d(X) be the gcd of f (X) and g(X) in F[X ] and let d̃(X) be the
gcd of F(X) and g(X) in E[X ]. Since d(X) is a polynomial in E[X ] dividing
both f (X) and g(X), d̃(X) divides d(X). On the other hand, since d̃(X) is the
gcd of f (X) and g(X) in E[X ], there are polynomials ã(X) and b̃(X) in E[X ]
with

d̃(X) = f (X)ã(X) + g(X)b̃(X).

Since d(X) divides both f (X) and g(X), d(X) divides d̃(X) as well.
Hence d(X) and d̃(X) are two monic polynomials, each of which divides

the other, and so they are equal. ��
(Actually, Lemma 2.2.7 (1) follows directly from our observation that the

quotient and remainder are independent of the field, and then Lemma 2.2.7 (1)
can be used to prove the general case of Lemma 2.2.7 by considering Euclid’s
algorithm.)

Remark 2.2.8. We have chosen to present a concrete proof of Proposition 2.2.4
earlier in this section. But Proposition 2.2.4 is in fact a special case of a more
general result: If R is a PID and r ∈ R is an irreducible element, then R/〈r〉 is
a field. This general result is proved in Appendix B. �

2.3 Extension Fields

In this section we study basic properties of field extensions.
Let F, B, and E be fields with F ⊆ B ⊆ E. Then, as F-vector spaces, B is

a subspace of E, so (B/F) ≤ (E/F). But in this situation we can say more.



16 2 Field Theory and Galois Theory

Lemma 2.3.1. Let F, B, and E be fields with F ⊆ B ⊆ E. Then

(E/F) = (E/B)(B/F).

Proof. Let {ε1, . . . , εm} be a basis for E as a B-vector space and {β1, . . . , βn}
be a basis for B as an F-vector space. We claim that {εiβ j | i = 1, . . . , m, j =
1, . . . , n} is a basis for E as an F-vector space, yielding the lemma.

First, we show that this set spans E. Let α ∈ E. Then α = �m
i=1xiεi with

xi ∈ B. But for each i, xi = �n
j=1 yi jβ j and so α = �m

i=1(�
n
j=1 yi jβ j )εi =

�yi j (εiβ j ).
Next we show this set is linearly independent. Suppose �yi j (εiβ j ) = 0.

Then 0 = �yi j (εiβ j ) = �m
i=1(�

n
j=1 yi jβ j )εi . Since {εi } are linearly indepen-

dent, we have that, for each fixed i , �n
i=1 yi jβ j = 0. Since {β j } are linearly

independent, we have that yi j = 0 for each j , completing the proof. ��
Let E be an extension of F, and let B and D be subfields of E, both of which

are extensions of F. Then B ∩ D is a subfield of E which is also an extension
of F. Going in the opposite direction, we have the following definition.

Definition 2.3.2. Let E be an extension of F and let B and D be subfields of E,
both of which are extensions of F. Then BD, the composite of B and D, is the
smallest subfield of E that contains both B and D, and is an extension of F. �
Remark 2.3.3. (1) There is a smallest subfield as BD is the intersection of all
subfields of E that contain both B and D.
(2) Clearly BD consists precisely of those elements of E of the form

(�m
i=1bi di )(�

n
j=1b′

j d
′
j )

−1

with bi , b′
j ∈ B and di , d ′

j ∈ D. �
There is an important case for which we do not need the denominators in

Remark 2.3.3 (2).

Lemma 2.3.4. Let E be an extension of F and let B and D be subfields of E,
both of which are extensions of F. Suppose (D/F) is finite. Then (BD/B) ≤
(D/F) and BD = {�m

i=1bi di | bi ∈ B, di ∈ D}. Furthermore, (BD/F) ≤
(B/F)(D/F).

Proof. Let (BD)0 = {�m
i=1bi di }. If {δi } is a basis for D as an F-vector space,

then {δi } spans (BD)0 as a B-vector space, so dimB(BD)0 ≤ dimF D. In par-
ticular, if dimF D is finite, then dimB(BD)0 is finite, so (BD)0 is a field by
Lemma 2.2.3, and hence BD = (BD)0.
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Then, by Lemma 2.3.1,

(BD/F) = (BD/B)(B/F) ≤ (D/F)(B/F),

as claimed. ��
One of the most common, and important, ways of obtaining field exten-

sions is by “adjoining” elements.

Definition 2.3.5. Let E be an extension of F, and let {αi } be a set of elements
of E. Then F({αi }) is the smallest subfield of E containing F and {αi }, and is
the field obtained by adjoining (or by the adjunction of) {αi }. �
Remark 2.3.6. (1) Clearly F({αi }) is the set of elements of E that can be ex-
pressed as rational functions of the elements of {αi } with coefficients in F.

(2) Suppose that {αi } = {α1, . . . , αn} is finite. Then

F(α1, . . . , αn) = F(α1)F(α2) · · · F(αn).

(3) Suppose that {αi } = {α1, . . . , αn} is finite. Then

F(α1, . . . , αn) = F(α1, . . . , αn−1)(αn). �
Note that Remark 2.3.6 (3) says that in case {αi } is finite, we may obtain

F(α1, . . . , αn) by adjoining the elements of {αi } one at a time, and Remark
2.3.6 (2) says that the order in which we adjoin them does not matter.

Note also that F(α) = F if (and only if) α ∈ F. Thus we think of obtaining
F(α) by “adding in” α to F, and if α /∈ F, then this indeed gives us something
new, but if α ∈ F this does nothing.

Now that we know how to adjoin elements, let us give a concrete example
of Lemma 2.3.4.

Example 2.3.7. (1) Let F = Q, B = Q(
√

2), D = Q(
√

3), and E = BD =
Q(

√
2,

√
3). Then (BD/B) = 2 = (D/F) and (BD/F) = 4 = (B/F)(D/F).

(2) Let F = Q, B = Q(
3
√

2), D = Q(ω
3
√

2), and E = BD = Q(ω,
3
√

2).
Here ω = (−1 + i

√
3)/2 is a primitive cube root of 1. Note that ω is a root

of the quadratic polynomial X2 + X + 1. Observe that BD = B(ω). Then
(BD/B) = 2 < (D/F) = 3 and (BD/F) = 6 < (B/F)(D/F) = 9.

Note that in both parts of this example B ∩ D = F. �
Remark 2.3.8. From Lemma 2.3.4 we have that, since B and D are both exten-
sions of B ∩ D, (BD/B ∩ D) ≤ (D/B ∩ D). Hence if B ∩ D ⊃ F, we certainly
have that (BD/B ∩ D) < (D/F), and also that (BD/F) < (B/F)(D/F).

However, if B∩D = F, we may or may not have equality in Lemma 2.3.4,
as Example 2.3.7 shows. There are many important cases in which we in-
deed do have equality. We will investigate this question further in Section 3.4
below. �
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2.4 Algebraic Elements and Algebraic Extensions

Definition 2.4.1. (1) Let E be an extension of F. Then α ∈ E is algebraic over
F if α is a root of some polynomial f (X) ∈ F[X ].

(2) E is an algebraic extension of F (or E/F is algebraic) if every α ∈ E is
algebraic over F. �

A complex number that is algebraic over Q is an algebraic number.

Lemma 2.4.2. The following are equivalent:
(1) α is algebraic over F.
(2) F(α)/F is finite.
(3) F(α) = {polynomials in α with coefficients in F}.
(4) α ∈ B for some finite extension B of F.

Proof. Note that in general F(α) = {rational functions in α with coefficients
in F}. If we let R = {polynomials in α with coefficients in F}, then R ⊆ F(α).

First, suppose (2) is true. Then R is a finite-dimensional vector space over
F, so by Lemma 2.2.3, R is a field and R = F(α), proving (3). If (3) is true,
then α−1 = f (α) is a polynomial in α, so α f (α) = 1. Then g(α) = 0 where
g(X) = X f (X)−1, and α is algebraic, proving (1). If (1) is true, then f (α) =
0 for some polynomial f (X), so if f (X) has degree d, then {1, α, . . . , αd−1}
spans R (as for any polynomial g(X), g(X) = f (X)q(X) + r(X) with
deg r(X) < d , and hence g(α) = f (α)q(α) + r(α) = r(α) = �d−1

i=0 ciα
i );

so again R is a field, F(α) = R and (F(α)/F) ≤ d is finite, proving (2). Thus
we see that (1), (2), and (3) are equivalent. Also, (2) implies (4) since we may
choose B = F(α), and (4) implies (2) since if α ∈ B, then F(α) ⊆ B, so B/F
finite implies F(α)/F finite. ��
Lemma 2.4.3. Let α ∈ E be algebraic. Let

f1(X) be the monic generator of the ideal { f (X) ∈ F[X ] | f (α) = 0}
f2(X) be the monic polynomial of lowest degree with f2(α) = 0.
f3(X) be the monic irreducible polynomial with f3(α) = 0.

Then f1(X), f2(X), and f3(X) are well defined and f1(X) = f2(X) =
f3(X). ��

The polynomial satisfying the equivalent conditions of this lemma plays a
vital role, and we give it a name.

Definition 2.4.4. Let α ∈ E be algebraic. The minimum polynomial mα(X) is
the polynomial satisfying the equivalent conditions of Lemma 2.4.3. �
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Remark 2.4.5. (1) Note that mα(X) depends on the field F, but in order to keep
the notation simple, we suppress that dependence.
(2) Note that mα(X) is linear, in which case mα(X) = X − α, if and only if
α ∈ F. �

We have the following very important properties of mα(X):

Proposition 2.4.6. Let α be algebraic over F. Then
(1) {1, α, α2, . . . , αd−1} is a basis for F(α) as a vector space over F, where

d = deg mα(X).
(2) (F(α)/F) = deg mα(X).
(3) Let T : F(α) → F(α) be multiplication by α, i.e., T (β) = αβ. Then

T is a linear transformation of F-vector spaces, and its minimum polynomial
mT (X) = mα(X).

Proof. Let d = deg mα(X). Since mα(α) = 0, the set {1, α, . . . , αd−1} spans
F(α), as in the proof of Lemma 2.4.2. We claim this set is linearly independent.
Suppose not. Then �d−1

i=0 ciα
i = 0 with not all ci = 0, i.e., f (α) = 0 where

0 �= f (X) = �d−1
i=0 ci Xi ∈ F[X ]. But deg f (X) < deg mα(X), a contradiction

by Lemma 2.4.3. Hence {1, α, . . . , αd−1} is a basis for F(α), yielding (1), and
this basis has d elements, so (F(α)/F) = d, yielding (2).

(3) Let mα(X) = �d
i=0ci Xi . By definition, mα(X) is monic, so cd = 1.

Then 0 = �d
i=0ciα

i , so αd = �d−1
i=0 (−ci )α

i .
Now consider the matrix of T in the basis {1, α, . . . , αd−1} of F(α). Since

T (αi ) = αi+1, we see T has matrix⎡
⎢⎢⎢⎢⎢⎣

0 0 ··· 0 −c0

1 0 ··· 0 −c1

0 1 ··· 0 −c2

...
...

...
...

0 0 ··· 1 −cd−1

⎤
⎥⎥⎥⎥⎥⎦

which we recognize as the companion matrix C(mα(X)) of the polynomial
mα(X). But for any polynomial f (X), C( f (X)) has minimum polynomial
(and characteristic polynomial) f (X) (see [AW, Theorem 4.4.14]). ��
Lemma 2.4.7. Let F ⊆ B ⊆ E and let α ∈ E. Then (B(α)/B) ≤ (F(α)/F).

Proof. If (F(α)/F) is infinite there is nothing to prove, so suppose (F(α)/F)

is finite. Then this follows immediately from Lemma 2.3.4. ��
Corollary 2.4.8. Let α1, . . . , αn ∈ E with F(αi )/F finite for each i . Then
F(α1, . . . , αn)/F is finite.
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Proof. Trivial for n = 1. For n = 2,

(F(α1, α2)/F(α1)) = ((F(α1)(α2)/F(α1)) ≤ (F(α2)/F)

by Lemma 2.3.4. Then proceed by induction. ��
Corollary 2.4.9. (1) If E/F is finite, then E/F is algebraic.

(2) If E = F({αi }) with each αi algebraic over F, then E/F is algebraic.

Proof. (1) For any α ∈ E, F(α) ⊆ E, so (F(α)/F) ≤ (E/F) is finite, and so,
by Lemma 2.4.2, E/F is algebraic.

(2) Let α ∈ E. Then α is a rational function of {αi }, so in particular α ∈
F(α1, . . . , αn) for some n.

But, by Corollary 2.4.8, F(α1, . . . , αn)/F is finite, so, by part (1) and
Lemma 2.4.2, α is algebraic over F. Since α is arbitrary, E/F is algebraic. ��
Remark 2.4.10. (1) It follows from Lemma 2.4.2 and Corollary 2.4.8 that if
E is an algebraic extension of F obtained by adjoining finitely many al-
gebraic elements to F, then E is a finite extension of F. But not every
algebraic extension E of F is a finite extension of F. For example, if
E = Q(

√
2,

√
3,

√
5,

√
7, . . . ), then E/Q is infinite. As a second example, if

E = Q(
√

2,
3
√

2,
4
√

2,
5
√

2, . . . ), then E/Q is infinite. (While these two claims
are quite plausible, they of course require proof, but we shall not prove them
now.)

(2) We also remark that a complex number that is algebraic over Q is
known as an algebraic number, and that a subfield E of the field of com-
plex numbers C that is obtained by adjoining finitely many algebraic num-
bers to Q is known as an algebraic number field. We then immediately see
that E ⊆ C is an algebraic number field if and only if E is a finite extension
of Q. �

The next two results illustrate a theme which we will often see repeated.
Let us consider fields F, B, and E with F ⊆ B ⊆ E. Thus B is an extension
of F and E is an extension of B. Also, E is an extension of F and B is a
subextension. We have some “nice” property of extensions (in this case, being
algebraic). We ask if a “nice” extension of a “nice” extension is necessarily a
“nice” extension, and also if a subextension of a “nice” extension is necessarily
“nice”. We will see that for some properties (e.g., being algebraic) the answers
to both questions are yes, but for others (e.g., being Galois) they are not.

Proposition 2.4.11. Let E be an algebraic extension of F and let B be any field
intermediate between F and E. Then B is an algebraic extension of F and E is
an algebraic extension of B.
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Proof. Since E is an algebraic extension of F, every element of E is algebraic
over F, and B ⊆ E, so certainly every element of B is algebraic over F, and so
B is an algebraic extension of F.

Now let α ∈ E. Then α is a root of some polynomial f (X) ∈ F[X ], and
F[X ] ⊆ B[X ], so α is certainly a root of some polynomial in B[X ], and so α

is algebraic over B. Since α is arbitrary, E is algebraic over B. ��
Theorem 2.4.12. Let B be an algebraic extension of F and let E be an alge-
braic extension of B. Then E is an algebraic extension of F.

Proof. Let α ∈ E. Then α is a root of some polynomial f (X) ∈ B[X ]. Let
B0 ⊆ B be the field obtained from F by adjoining the finitely many coeffi-
cients of f (X), each of which is algebraic over F. Then (B0/F) is finite and
(B0(α)/B0) is finite, so (B0(α)/F) = (B0(α)/B0)(B0/F) is finite as well.
But α ∈ B0(α), so α is an element of a finite extension of F and hence,
by Lemma 2.4.2, α is algebraic over F. Since α is arbitrary, E is algebraic
over F. ��

For any fixed element α ∈ E, we may define a ring homomorphism
ϕ : F[X ] → E by ϕ | F = id and ϕ(X) = α (so that ϕ( f (X)) = f (α)

for every f (X) ∈ F[X ]).
Lemma 2.4.13. Let α ∈ E be algebraic over F. Then ϕ induces

ϕ̄ : F[X ]/〈mα(X)〉 → F(α)

an isomorphism of fields and of F-vector spaces.

Proof. Let π : F[X ] → F[X ]/〈mα(X)〉 be the canonical projection and set
π( f (X)) = f̄ (X).

First, we show that ϕ̄ is well defined. Let f̄ (X) ∈ F[X ]/〈mα(X)〉 and
suppose that π( f (X)) = f̄ (X) = π(g(X)). Then g(X)− f (X) is divisible by
mα(X), so g(X) = f (X) + mα(X)q(X) for some polynomial q(X) ∈ F[X ],
and then ϕ(g(X)) = g(α) = f (α) + mα(α)q(α) = f (α) = ϕ( f (X)), as
required.

Now it is easy to check that ϕ̄ is a homomorphism of rings and a linear
map of F-vector spaces, so to complete the proof of the lemma we need only
show that it is both one-to-one and onto.

Since ϕ(1) = 1, we see, by Lemma 2.1.3, that ϕ is injective.
Now, by Proposition 2.2.4 and Proposition 2.4.6 (2), F[X ]/〈mα(X)〉 and

F(α) are both F-vector spaces of the same finite dimension, and hence, since
ϕ is injective, it is surjective as well. ��
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Remark 2.4.14. We have chosen to present a direct proof of Lemma 2.4.13, but
it is a special case of a more general algebraic result: Let ϕ : R → S be a map
of rings. Then ϕ induces an isomorphism ϕ̄ : R/ Ker(ϕ) → Im(ϕ). �
Remark 2.4.15. Let f (X) ∈ F[X ] be a monic irreducible polynomial, and let
E be an extension field in which f (X) has a root α. Then f (X) = mα(X) is
the minimum polynomial of α. Of course, F(α) ⊆ E, and F(α) = E if and
only if (E/F) = deg mα(X), by Proposition 2.4.6 (2). �

2.5 Splitting Fields

Definition 2.5.1. (1) Let f (X) ∈ F[X ] be a nonconstant polynomial. If E ⊇ F
is such that f (X) factors into (possibly repeated) linear factors in E[X ], then
f (X) splits in E[X ].

(2) If f (X) splits in E[X ] but not in B[X ] for any proper subfield B of E,
then E is a splitting field of f (X). �

Note that X − α is a factor of f (X) if and only if f (α) = 0, i.e., if and
only if α is a root of f (X). Thus, we regard f (X) as splitting in E if “all” the
roots of f (X) are in E, and we regard E as a splitting field if “all” the roots of
f (X) lie in E but not in any proper subfield of E.

Lemma 2.5.2. Let f (X) ∈ F[X ] be a nonconstant polynomial. Then f (X)

has a splitting field.

Proof. By induction on deg f (X), and all fields simultaneously. Without loss
of generality we may assume that f (X) is monic. If deg f (X) = 1, then
f (X) = X − a ∈ F[X ] and F is a splitting field for f (X).

Assume the lemma holds for all polynomials of degree less than d, and all
fields, and let f (X) ∈ F[X ] have degree d.

By Theorem 2.2.6, there is an extension field B of F in which f (X) has a
root α1, and moreover B = F(α1). Then f (X) = (X − α1)g(X) ∈ B[X ]. By
induction, g(X) has a splitting field E over B. Hence g(X) = (X−α2) · · · (X−
αd) ∈ E[X ] and f (X) = (X − α1) · · · (X − αd) ∈ E[X ] splits.

Clearly E ⊇ B(α2, . . . , αn), and then E = B(α2, . . . , αn), since certainly
g(X) does not split over any field not containing each of α2, . . . , αn . Then
E = F(α1)(α2, . . . , αn) = F(α1, . . . , αn), and f (X) does not split in any
proper subfield of E, by the same logic, so E is a splitting field for f (X). ��

Note that in general it may well be the case that an extension B of F con-
tains a root of an irreducible polynomial f (X) ∈ F[X ] but that polynomial
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does not split in B[X ], i.e., that “some” but not “all” of the roots of f (X) are
in B. As an example of this, we may take B = Q(

4
√

2). Then the polynomial
X4 − 2 is irreducible in Q[X ] with roots 4

√
2, i 4

√
2,− 4

√
2, and −i 4

√
2, and B

contains just two of these four roots ( 4
√

2 and − 4
√

2).
We shall soon see that any two splitting fields of f (X) ∈ F[X ] are isomor-

phic. Granting that, for the moment, we have the following result.

Lemma 2.5.3. Let f (X) ∈ F[X ] be a nonconstant polynomial, with deg f (X)

= d. Let E be a splitting field of f (X). If f (X) is irreducible, (E/F) is divisi-
ble by d. In any case, (E/F) ≤ d!.
Proof. Without loss of generality we may assume that f (X) is monic.

Suppose that f (X) is irreducible, and let α ∈ E be a root of f (X). Then
f (X) = mα(X), by Lemma 2.4.3, and d = deg mα(X) = (F(α)/F), by
Proposition 2.4.6 (2). But F(α) ⊆ E, and so (F(α)/F) divides (E/F).

For the upper bound, we proceed by induction on d, and all fields simul-
taneously. If d = 1, E = F and (E/F) = 1. Suppose the lemma holds for
all polynomials of degree less than d, and all fields, and let f (X) ∈ F[X ]
have degree d. Let α be a root of f (X), set B = F(α), and write f (X) =
(X − α)g(X) with g(X) ∈ B[X ]. Since f (α) = 0, mα(X) divides f (X), so
(B/F) = deg mα(X) ≤ deg f (X) = d .

Let E be a splitting field of g(X), a polynomial of degree d − 1, over B.
Then, by induction, (E/B) ≤ (d − 1)!, and then (E/F) = (E/B)(B/F) ≤ d!.

��
Example 2.5.4. (1) Let F = Q and let E be the splitting field of the irreducible
polynomial X3 − 2 ∈ F[X ]. Then E = F(ω,

3
√

2) where ω2 + ω + 1 = 0, and
(E/F) = 6 = 3!.

(2) Let F = Q(ω) and let E be the splitting field of the irreducible polyno-
mial X3 − 2 ∈ F[X ]. Then E = F(

3
√

2), and (E/F) = 3 < 3!. �
Corollary 2.5.5. Let E be a splitting field of a nonconstant polynomial f (X) ∈
F[X ]. Then E/F is algebraic.

Proof. E/F is finite. ��
Remark 2.5.6. Suppose that f (X) ∈ F[X ] splits in some extension A of F, and
let α1, . . . , αk be the roots of f (X) in A (so that f (X) = (X − α1)

d1 · · · (X −
αk)

dk ∈ A[X ]). Then E = F(α1, . . . , αk) is a splitting field for f (X), as
f (X) visibly splits over E, and any field over which f (X) splits must contain
α1, . . . , αk , and hence must contain E. �
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2.6 Extending Isomorphisms

We now prove two results about extensions of field isomorphisms that will be
key technical tools.

Lemma 2.6.1. Let σ0 : F1 → F2 be an isomorphism of fields. Let f1(X) ∈
F1[X ] be irreducible and let E1 = F1(β1) where f1(β1) = 0. Let f2(X) =
σ0( f1(X)) and let E2 = F2(β2) where f2(β2) = 0. Then σ0 extends to a
unique isomorphism σ : E1 → E2 with σ(β1) = β2.

Proof. Clearly σ0 gives an isomorphism σ0 : F1[X ] → F2[X ] and f2(X) is
irreducible if and only if f1(X) is. Now, by Lemma 2.4.13, we have isomor-
phisms

ϕ̄i : Fi [X ]/〈 fi (X)〉 → Fi (βi ) = Ei , i = 1, 2,

and we let

σ = ϕ̄2σ0ϕ̄
−1
1 . ��

Corollary 2.6.2. Let f (X) ∈ F[X ] be irreducible. Suppose β1 and β2 are
both roots of f (X) and let Ei = F(β), i = 1, 2. Then there is a unique
isomorphism σ : E1 → E2 with σ | F = id and σ(β1) = β2. In particular, if
E = F(β1) = F(β2), there is a unique automorphism σ of E with σ | F = id
and σ̃ (β1) = β2. ��

This corollary says that, algebraically, there is no distinction between roots
of the same irreducible polynomial — choosing any two roots gives us isomor-
phic extensions.

Lemma 2.6.3. Let σ0 : F1 → F2 be an isomorphism of fields. Let f1(X) ∈
F1[X ] and let f2(X) = σ0( f1(X)) ∈ F2[X ]. Let E1 be a splitting field of f1(X)

and let E2 be a splitting field of f2(X). Then σ0 extends to an isomorphism
σ : E1 → E2.

Proof. Factor f1(X) into irreducibles in F[X ], and let there be k factors. Set
dF( f1) = deg( f1) − k. We prove the theorem by induction on dF( f1), and all
fields.

If dF( f1) = 0, then f1(X) is a product of linear factors, and E1 = F1,
E2 = F2, so σ = σ0.

Suppose dF( f1) > 0. Then f1(X) has an irreducible factor g1(X) of de-
gree greater than 1. Let α1 be a root of g1(X) in E1 and let α2 be a root of
σ0(g1(X)) in E2. Then E1 ⊇ F(α1) and E2 ⊇ F(α2). By Lemma 2.6.1, there
is an isomorphism σ1 : F(σ1) → F(σ2) with σ1 | F = σ0 and σ1(α1) = α2.
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Set B = F(α1), and consider f1(X) ∈ B[X ]. Now g1(X) ∈ B[X ] has the
factor X − α1, so f1(X) has at least k + 1 irreducible factors in B[X ] and
hence dB( f1) < dF( f1). Since E1 was a splitting field of f1(X), regarded as
polynomial in F1[X ], and B ⊆ E1, then, by Remark 2.5.6, E1 is still a splitting
field of f1(X) regarded as a polynomial in B[X ], and similarly for E2, so by
induction σ1 extends to σ , as claimed. ��
Corollary 2.6.4. Let f (X) ∈ F[X ]. Then any two splitting fields of f (X) are
isomorphic. ��

Note that we are certainly not claiming that the isomorphism σ̃ of Lemma
2.6.3 is unique! In fact, studying automorphisms E that fix F is what Galois
theory is all about. To give a simple example of this, let F = Q and E =
Q(

√
D). Then E has an automorphism σ given by σ(a + b

√
D) = a − b

√
D.

2.7 Normal, Separable, and Galois Extensions

We begin by defining two (independent) properties of field extensions.

Definition 2.7.1. An algebraic extension E of F is a normal extension if every
irreducible polynomial f (X) ∈ F[X ] with f (α) = 0 for some α ∈ E splits in
E[X ]. �
Remark 2.7.2. Observe that Definition 2.7.1 is equivalent to: An algebraic ex-
tension E of F is normal if mα(X) splits in E[X ] for every α ∈ E. �
Definition 2.7.3. (1) If the irreducible factors of f (X) ∈ F[X ] split into a
product of distinct linear factors in some (hence in any) splitting field for
f (X), then f (X) is a separable polynomial. Otherwise, it is an inseparable
polynomial.

(2) Let E be an algebraic extension of F. Then α ∈ E is a separable el-
ement if mα(X) is a separable polynomial. Otherwise, α is an inseparable
element.

(3) Let E be an algebraic extension of F. Then E is a separable extension
of F if every α ∈ E is a separable element. Otherwise, it is an inseparable
extension. �
Remark 2.7.4. We are most interested in extensions that are both normal and
separable, as these have the closest connection with Galois theory, so we will
defer our consideration of extensions that satisfy only one of these two prop-
erties until later. However, some discussion of both of these properties is in
order now.
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First, we might observe that the definitions of normal and separable are
rather discouraging on the face of it, as they each require us to verify a condi-
tion on mα(X) for each α ∈ E. But, as we will soon see (in Theorem 2.7.14),
we have an easy criterion for extensions to be both normal and separable.

Even if we are interested in extensions that are normal or separable, the
situation is not so bad. We note some results that we shall prove later on.

Theorem 5.2.1. E is a finite normal extension of F if and only if E is
the splitting field of a polynomial f (X) ∈ F[X ].
Theorem 5.1.9. E is a finite separable extension of F if and only if
E is obtained from F by adjoining root(s) of a separable polynomial
f (X) ∈ F[X ].

Actually, sometimes separability is automatic. There are some fields F all
of whose algebraic extensions are separable. Such a field F is called perfect,
and we will show below that the following is true.

Theorem 3.2.6. F is a perfect field if and only if
(1) char(F) = 0, or
(2) char(F) = p and F = Fp.

Corollary 3.2.7. Every finite field is perfect. �
We now define one of the most important objects in mathematics.

Definition 2.7.5. Let E be an algebraic extension of F. The Galois group
Gal(E/F) is the group of all automorphisms of E that restrict to the identity
on F,

Gal(E/F) = {σ : E → E automorphism | σ | F = id}. �
(Strictly speaking, we should have defined Gal(E/F) to be the set of these

automorphisms, but it is easy to verify that this set is indeed a group under
composition.)

Lemma 2.7.6. Let E be an algebraic extension of F and let B be a field with
F ⊆ B ⊆ E. Then Gal(E/B) is a subgroup of Gal(E/F).

Proof. Any automorphism σ : E → E with σ | B = id certainly satisfies
σ | F = id. ��
Definition 2.7.7. Let G be a group of automorphisms of a field E. Then the
fixed field Fix(G) = {α ∈ E | σ(α) = α for all σ ∈ G}. �
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Lemma 2.7.8. Let G be a group of automorphisms of a field E. Then Fix(G)

is a subfield of E. ��
Note that, by definition, F ⊆ Fix(Gal(E/F)).

Definition 2.7.9. Let E be an algebraic extension of F. Then E is a Galois
extension of F if Fix(Gal(E/F)) = F. �

Our first main goal is the Fundamental Theorem of Galois Theory (FTGT),
which, for a finite Galois extension E of F, establishes a one-to-one correspon-
dence between intermediate fields B (i.e., fields B with F ⊆ B ⊆ E) and sub-
groups H of G = Gal(E/F). On the way there, we need to obtain a criterion
for E to be a Galois extension of F, an important result in its own right.

Definition 2.7.10. Let E be an algebraic extension of F and let α ∈ E. Then
{σ(α) | σ ∈ Gal(E/F)} is the set of (Galois) conjugates of α in E. �
Lemma 2.7.11. Let H = {σ ∈ Gal(E/F) | σ(α) = α}. Then H is a subgroup
of G = Gal(E/F) and the number of conjugates of α in E is equal to the index
[G : H ]. ��

The following lemma is particularly useful.

Lemma 2.7.12. Let E be a Galois extension of F and let α ∈ E. Then α has
finitely many conjugates in E. If {αi }i=1,...,r is the set of conjugates of α = α1,
then

mα(X) =
r∏

i=1

(X − αi ).

Proof. Since mα(X) ∈ F[X ], for each σ ∈ G = Gal(E/F), σ(α) is a root
of σ(mα(X)) = mα(X). Since mα(X) has only finitely many roots, {σ(α)}
must be a finite set. Now let nα(X) = ∏r

i=1(X − αi ). Since σ ∈ G permutes
{αi }, σ(nα(X)) = nα(X). In other words, every σ ∈ G fixes each coefficient
of nα(X). Since E is a Galois extension of F, this implies that each of these
coefficients is in F, i.e., that nα(X) ∈ F[X ]. As we have observed, mα(αi ) = 0
for each i , so X−αi divides mα(X) for each i , and hence nα(X) divides mα(X)

in E[X ], and hence in F[X ], by Lemma 2.2.7. But mα(X) is irreducible in
F[X ], so mα(X) = nα(X). ��
Corollary 2.7.13. Let E be a Galois extension of F and let α ∈ E. Then
(F(α)/F) is equal to the number of conjugates of α in E.

Proof. (F(α)/F) = deg mα(X) by Proposition 2.4.6 (2) and deg mα(X) is
equal to the number of conjugates of α in E by Lemma 2.7.12. ��
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The following theorem is a key result.

Theorem 2.7.14. Let E be a finite extension of F. The following are equiva-
lent:

(1) E is a Galois extension of F.
(2) E is a normal and separable extension of F.
(3) E is the splitting field of a separable polynomial f (X) ∈ F[X ].

Proof. (1) ⇒ (2): Let E be a Galois extension of F and let α ∈ E. Let {αi } be
the set of conjugates of α in E. By Lemma 2.7.12, mα(X) = ∏r

i=1(X − αi ),
and this is a separable polynomial (as its roots are distinct) that splits in E.

(2) ⇒ (3): Let {εi } be a basis for E over F, and let f (X) be the product
of the distinct elements of {mεi (X)}. Then f (X) is separable, as each mεi (X)

has distinct roots, and f (X) certainly splits in E. Moreover, any field in which
f (X) splits must contain each εi , so E is the splitting field of f (X).

(3) ⇒ (1): We prove this by induction on (E/F) and all fields simultane-
ously. Let E be the splitting field of the separable polynomial f (X).

If (E/F) = 1, then E = F, Gal(E/F) = {id}, and we are done.
Suppose now that the theorem is true for all extensions of degree less than

n and let (E/F) = n > 1.
Factor f (X) into irreducibles f (X) = f1(X) · · · fk(X) in F[X ]. Some

fi (X) has degree greater than one, as otherwise f (X) would split in F[X ]
and so E = F. Renumbering if necessary, we may suppose that this factor is
f1(X). Let it have degree r . Let α = α1 be a root of f1(X), α ∈ E. Then
f1(X) = mα(X), since f1(X) is irreducible. Of course, α /∈ F.

By assumption, mα(X) is separable, so has distinct roots α1, . . . , αr . Now
αi is a root of the irreducible polynomial mα(X) by assumption, and αi is a
root of the irreducible polynomial mαi (X) by definition, so, by Lemma 2.4.3,
mαi (X) = mα(X), for each i . Furthermore, by Corollary 2.6.2, there are iso-
morphisms σi : F(α1) → F(αi ) with σi | F = id and σi (α1) = αi , i =
1, . . . , r .

Consider E ⊇ F(αi ) ⊃ F. Then E is the splitting field of mα(X) ∈
F(αi )[X ], so, by Lemma 2.6.3, there is an automorphism of E extending the
isomorphism σi . Denote this extension by σi as well. Then σi | F = id, so
σi ∈ Gal(E/F). Note that σi (F(α j )) = F(αk) for some k, as the automor-
phism σi of E must permute the roots of the irreducible polynomial mα(X).

Now consider E as an extension of F(α). Then (E/F(α)) < (E/F), and
E is the splitting field of the separable polynomial mα(X) ∈ F(α)[X ], so
by induction E is a Galois extension of F(α), i.e., F(α) is the fixed field of
Gal(E/F(α)). By Lemma 2.7.6, Gal(E/F(α)) is a subgroup of Gal(E/F), so
this implies that B = Fix(Gal(E/F)) ⊆ F(α). We wish to show that B = F.
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Let m̃α(X) ∈ B[X ] be the minimum polynomial of α regarded as an ele-
ment of B. Since B ⊆ F(α), we see that B(α) = F(α), and then

deg m̃α(X) = (B(α)/B) = (F(α)/B) ≤ (F(α)/F) = deg mα(X)

with equality if and only if B = F. Thus it remains to show that deg m̃α(X) =
deg mα(X). In fact we show that m̃α(X) = mα(X).

Now m̃α(X) divides mα(X) and mα(X) = ∏r
i=1(X − αi ) by Lemma

2.7.12.
Consider αi . We have constructed an element σi ∈ Gal(E/F) with σi (α) =

αi , i.e., there is an automorphism σi of E with σi (α) = αi and σi | F = id.
But B = Fix(Gal(E/F)) so σi | B = id, and hence σi ∈ Gal(E/B). Then
σi (m̃α(X)) = m̃α(X), as σi (m̃α(X)) ∈ B[X ]; thus

m̃α(αi ) = m̃α(σi (α)) = σi (m̃α(α)) = σi (0) = 0,

so αi is a root of m̃α(X) for each i , i.e., X − αi is a factor of m̃α(X) for each
i , and so m̃α(X) = mα(X), as required. ��

2.8 The Fundamental Theorem of Galois Theory

In this section we reach our first main goal. Before we get there, we have some
work to do.

We let F∗ denote the set of nonzero elements of F, and recall that F∗ is a
group under multiplication.

Definition 2.8.1. A character of a group G in a field F is a homomorphism
σ : G → F∗. �
Example 2.8.2. (1) Let G = F∗. Then id : G → F∗ is a character.

(2) Let G = F∗. For any automorphism σ of F, σ : G → F∗ is a character.
(3) Let G = F∗. For any map of fields σ : F → E, σ : G → E∗ is a

character. �
Definition 2.8.3. A set of characters {σi }i=1,...,n is dependent if there is a set of
elements {ai }i=1,...,n of F, not all zero, with a1σ1 + · · · + anσn = 0 (i.e., with
(a1σ1 +· · ·+ anσn)(x) = 0 for every x ∈ G). Otherwise it is independent. �
Theorem 2.8.4 (Dirichlet). Let {σi }i=1,...,n be a set of mutually distinct char-
acters of G in F. Then {σi } is independent.
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Proof (Artin). By induction on n.
Suppose n = 1. Then a1σ1 = 0 implies a1 = 0 (as σ(1) = 1).
Suppose now that the theorem is true for any set of fewer than n characters

and consider {σi }i=1,...,n . Suppose a1σ1 + · · · + anσn = 0. Some ai is nonzero.
Let that be a1. Since σ1 and σn are distinct, there is an x ∈ G with σ1(x) �=
σn(x). Now by hypothesis, for every y ∈ G,

a1σ1(y) + · · · + anσn(y) = 0,

so, multiplying by σn(x),

(∗) a1σn(x)σ1(y) + · · · + anσn(x)σn(y) = 0.

On the other hand, for every y ∈ G,

a1σ1(xy) + · · · + anσn(xy) = 0;
using the fact that σi (xy) = σi (x)σi (y),

(∗∗) a1σ1(x)σ1(y) + · · · + anσn(x)σn(y) = 0,

and then, subtracting (∗) from (∗∗),

a1(σ1(x) − σn(x))σ1(y) + · · · + an−1(σn−1(x) − σn(x))σn−1(y) = 0

for every y ∈ G. By induction, each coefficient is zero, so in particular σ1(x) =
σn(x), a contradiction. ��
Theorem 2.8.5. Let � = {σi , i = 1, . . . , n} be a group of mutually distinct
automorphisms of a field E, and let F be the fixed field of �. Then (E/F) = n.

Proof. (Artin) First we show n ≤ (E/F) (which only uses the fact that � is a
set) and then we show n ≥ (E/F) (which uses the fact that � is a group). We
prove both inequalities by contradiction. Let r = (E/F).

For the first step, suppose r < n. Let {ε1, . . . , εr } be a basis for E over F.
Consider the system of equations in E:

⎡
⎢⎣

σ1(ε1) · · · σn(ε1)
...

σ1(εr ) · · · σn(εr )

⎤
⎥⎦

⎡
⎢⎣

α1
...

αn

⎤
⎥⎦ = 0.

This system has more unknowns than equations, so it has a nontrivial solution
which we still denote by α1, . . . , αn . Then
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n∑
i=1

αiσi (εk) = 0 for each k = 1, . . . , r.

Let ε ∈ E be arbitrary. Since {εk} is a basis, we have that ε = ∑r
k=1 fkεk with

fk ∈ F, and since F is the fixed field of �, σi ( fk) = fk for each i, k. Then
n∑

i=1

αiσi (ε) =
n∑

i=1

αiσi (

r∑
k=1

fkεk) =
∑
i,k

αiσi ( fkεk) =
∑
i,k

αi fkσi (εk)

=
r∑

k=1

fk(

n∑
i=1

αiσi (εk)) =
r∑

k=1

fk(0) = 0,

so
∑n

i=1 αiσi = 0, contradicting Theorem 2.8.4.

For the second step, suppose r > n. Since � is a group, some σi is the
identity. Let it be σ1. Let {ε1, . . . , εn+1} be a set of F-linearly independent
elements of E. Consider the system of equations in E:⎡

⎢⎣
σ1(ε1) · · · σ1(εn+1)

...

σn(ε1) · · · σn(εn+1)

⎤
⎥⎦

⎡
⎢⎣

β1
...

βn+1

⎤
⎥⎦ = 0.

This system has more unknowns than equations, so it has a nontrivial solu-
tion which we still denote by β1, . . . , βn+1. Among all such solutions choose
one with the smallest number s of nonzero values. By permuting the subscripts,
we may assume this solution is β1, . . . , βs, 0, . . . , 0. Note that s > 1, since if
s = 1, 0 = β1σ1(ε1) = β1ε1 implies β1 = 0 as ε1 �= 0. Then we may fur-
ther assume (multiplying by β−1

s if necessary) that βs = 1. Finally, not all βi

are in F, since if they were, we would have 0 = β1σ1(ε1) + · · · + βsσ1(εs) =
β1ε1 +· · ·+βsεs , an F-linear dependence of {ε1, . . . , εn}. Thus we may finally
assume that β1 /∈ F. Then we have

(∗i ) β1σi (ε1) + · · · + βs−1σi (εs−1) + σi (εs) = 0, i = 1, . . . , n.

Since β1 /∈ F = Fix(�), there is a σk ∈ � with σk(β1) �= β1. Since � is a
group, for any σi ∈ � there is a σ j ∈ � with σi = σkσ j . Then applying σk to
(∗ j ), we have

(∗∗i ) σk(β1)σi (ε1) + · · · + σk(βs−1)σi (εs−1) + σi (εs) = 0,

for i = 1, . . . , n. Subtracting (∗∗i ) from (∗i ) gives

(∗∗∗i ) (β1 − σk(β1))σi (ε1) + · · · + (βs−1 − σk(εs−1))σi (εs−1) = 0,

for i = 1, . . . , n. Now β1 − σk(β1) �= 0 and this equation has fewer than s
nonzero coefficients, a contradiction. ��
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Corollary 2.8.6. (1) Let G be a finite group of automorphisms of E and let
F = Fix(G). Then any automorphism of E fixing F must belong to G.

(2) Let G1 and G2 be two distinct finite groups of automorphisms of E, and
let F1 = Fix(G1), F2 = Fix(G2). Then F1 and F2 are distinct.

Proof. (1) (E/F) = |G| = n, say, by Theorem 2.8.5, so if there were some
automorphism σ of E fixing F that was not in G, then F would be fixed by at
least n + 1 > (E/F) automorphisms of E, a contradiction.

(2) We prove the contrapositive: If F1 = F2, then F1 is fixed by G2, so
G2 ⊆ G1 by part (1), and vice versa, so G1 = G2. ��
Lemma 2.8.7. Let G be a group of automorphisms of E fixing F and let H be
a subgroup of G. Let B = Fix(H). Then for any σ ∈ G, σ(B) = Fix(σ Hσ−1).

Proof. Let β ∈ B and τ ∈ H . Then στσ−1(σ (β)) = στ(β) = σ(β), so
σ(B) ⊆ Fix(σ Hσ−1). On the other hand, if στσ−1(β ′) = β ′ for some β ′ ∈ E
and all τ ∈ H , then τσ−1(β ′) = σ−1(β ′); so σ−1(β ′) = β ∈ Fix(H) = B and
β ′ = σ(β), so Fix(σ Hσ−1) ⊆ σ(B). ��

Here is the most important theorem in this book, and one of the fundamen-
tal theorems in all of mathematics.

Theorem 2.8.8 (Fundamental Theorem of Galois Theory = FTGT). Let E
be a finite Galois extension of F and let G = Gal(E/F).

(1) There is a one-to-one correspondence between intermediate fields
E ⊇ B ⊇ F and subgroups {1} ⊆ GB ⊆ G given by

B = Fix(GB).

(2) B is a normal extension of F if and only if GB is a normal subgroup of
G. This is the case if and only if B is a Galois extension of F. In this case

Gal(B/F) ∼= G/GB.

(3) For each E ⊇ B ⊇ F, (B/F) = [G : GB] and (E/B) = |GB|.
We say that the intermediate field B and the subgroup GB “belong” to each

other.
Before proving this theorem, we make some observations.

Remark 2.8.9. (1) If B1 ⊆ B2, then GB1 ⊇ GB2 , so the correspondence is
“inclusion-reversing”.

(2) E is always a Galois extension of B and GB = Gal(E/B), both claims
being true by the definition of a Galois extension (Definition 2.7.9).
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(3) Since E/F is separable, B/F is separable for any B intermediate be-
tween F and E (recall Definition 2.8.3 (3)), so, by Theorem 2.7.14, B/F is
normal if and only if B/F is Galois. This justifies the second sentence of
Theorem 2.8.8 (2).

(4) As we shall see from the proof, in case B is a Galois extension of
F, the quotient map Gal(E/F) → Gal(B/F) is simply given by restriction,
σ �→ σ | B. �
Proof. (1) For each subgroup H and G, let

BH = Fix(H).

This gives a map

� : {subgroups of G} → {fields intermediate between F and E}.
We show � is a one-to-one correspondence.
� is one-to-one: If H1 �= H2, then Fix(H1) �= Fix(H2) by Corollary

2.8.6 (2).
� is onto: Let F ⊆ B ⊆ E and let

H = {σ ∈ G | σ | B = id} = Gal(E/B) ⊆ Gal(E/F).

Since E/F is Galois, it is the splitting field of a separable polynomial
f (X) ∈ F[X ] by Theorem 2.7.14. But F ⊆ B so f (X) ∈ B[X ]. Then E
is the splitting field of the separable polynomial f (X) ∈ B[X ], so E/B is
Galois, again by Theorem 2.7.14, and hence B = Fix(Gal(E/B)) = Fix(H).

Thus � is one-to-one and onto, and if �−1(B) = GB, then B = Fix(GB).

(3) Since E/B is Galois, we know that (E/B) = | Gal(E/B)| = |GB|, by
Theorem 2.8.5, and (E/F) = (E/B)(B/F), while |G| = |GB|[G : GB], so
(B/F) = [G : GB].

(2) Suppose that GB is a normal subgroup of G. For any σ ∈ Gal(E/F),
σ(B) = Fix(σ GBσ−1) = Fix(GB) = B, by Lemma 2.8.7. Hence we have
the restriction map R : Gal(E/F) → Gal(B/F) given by σ �→ σ | B,
and Ker(R) = {σ ∈ G | σ | B = id} = GB by definition. Thus
Im(R) ∼= Gal(E/F)/ Ker(R) = G/GB. But let σ0 ∈ Gal(B/F). Then E/B
is Galois, so E is the splitting field of a (separable) polynomial f (X). Then
σ0 : B → B extends to σ : E → E by Lemma 2.6.3, and σ | F = id, so
σ ∈ Gal(E/F). Then R(σ ) = σ0, so R : Gal(E/F) → Gal(B/F) is onto and
hence Gal(B/F) ∼= G/GB.
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Conversely, suppose that B/F is Galois. Then B is the splitting field of a
separable polynomial f (X). Let f (X) have roots β1, . . . , βr in B, and note,
by Remark 2.5.6, that B = F(β1, . . . , βr ). Let σ ∈ G = Gal(E/F).

Now f (X) ∈ F[X ], so σ( f (X)) = f (X) and hence σ permutes the
roots of f (X), i.e., for every i , σ(βi ) = β j for some j . In particular this
implies that σ(B) = B. But now, by Lemma 2.8.7, Fix(GB) = B = σ(B) =
Fix(σ GBσ−1), so, by part (1), GB = σ GBσ−1. Since σ is arbitrary, GB is a
normal subgroup of G. ��

In the next section, we shall give a number of examples of the FTGT, but
first we continue here with our theoretical development.

Definition 2.8.10. Two fields B1 and B2 intermediate between E and B are
conjugate if there is a σ ∈ Gal(E/F) with σ(B1) = B2. �
Corollary 2.8.11. (1) Two intermediate fields B1 and B2 are conjugate if and
only if GB1 and GB2 are conjugate subgroups of Gal(E/F).

(2) B is its only conjugate if and only if GB is a normal subgroup of
Gal(E/F).

Proof. Immediate from Lemma 2.8.7 and Theorem 2.8.8. ��
Returning to the situation of the Fundamental Theorem of Galois Theory,

let E be a finite Galois extension of F, and let B be an intermediate field be-
tween E and F.

Definition 2.8.12. Let

QB = {σ0 : B → B′ an isomorphism | F ⊆ B′ ⊆ E, σ0 | F = id}.
Let � : QB → {left cosets of GB in G} be defined as follows:
Let σ0 ∈ QB. Since E is a splitting field, σ0 extends to σ ∈ Gal(E/F) by

Lemma 2.6.3. Then set

�(σ0) = [σ ] ∈ G/GB. �
Proposition 2.8.13. (1) � is well defined.

(2) � is one-to-one and onto.
(3) Gal(B/F) ⊆ QB with equality if and only if GB is normal, or equivalent

if and only if B/F is Galois. In this case, � is an isomorphism of groups,
� : QB → G/GB.

Proof. (1) We need to check that �(σ0) is independent of the choice of exten-
sion σ . Let σ ′ be another extension of σ0. Then σ ′ | B = σ0 = σ | B, i.e.,
σ ′(β) = σ(β) for all β ∈ B, so (σ−1σ ′)(β) = β for all β ∈ B, and hence
σ−1σ ′ ∈ GB, so σ ′ ∈ σ GB and [σ ′] = [σ ].
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(2) Suppose �(σ0) = [σ ] and �(τ0) = [τ ] with [σ ] = [τ ]. Then τ = σρ

for some ρ ∈ GB, so τ | B = σρ | B. But ρ ∈ GB so ρ | B = id; hence
τ | B = σ | B, i.e., τ0 = σ0, and � is one-to-one. Also, let σ GB be a left
coset of GB in G, and let σ0 = σ | B, σ0 : B → B′ = σ0(B) ⊆ E. Then
�(σ) = [σ0], so � is onto.

(3) Clearly Gal(B/F) ⊆ QB as Gal(B/F) = {σ0 ∈ QB | B′ = B}.
The first sentence then follows directly from Corollary 2.8.11. As for the sec-
ond, if �(σ) = [σ0] and �(τ) = τ0, then σ | B = σ0 and τ | B = τ0,
so στ | B = σ0τ0 and hence �(στ) = [σ0τ0]. But if GB is normal,
(σ0GB)(τ0GB) = σ0τ0GB, i.e., [σ0τ0] = [σ0][σ0], so �(στ) = �(σ)�(τ).
Thus � is a group homomorphism that is one-to-one and onto as a map of
sets, so � is an isomorphism. ��
Proposition 2.8.14. Let E be a finite Galois extension of F and let B1 and B2

be intermediate fields with B1 = Fix(H1) and B2 = Fix(H2).
Then:
(1) B1B2 = Fix(H1 ∩ H2)

(2) B1 ∩B2 = Fix(H3) where H3 is the subgroup generated by H1 and H2.

Proof. (1) If σ ∈ H1 ∩ H2, then σ ∈ H1, so σ fixes B1, and σ ∈ H2, so σ fixes
B2; hence σ fixes B1B2. On the other hand, if σ fixes B1B2, then σ fixes B1,
so σ ∈ H1, and σ fixes B2, so σ ∈ H2; hence σ ∈ H1 ∩ H2.

(2) If σ(β) = β for every σ ∈ H3, then σ(β) = β for every σ ∈ H1, so
β ∈ B1, and σ(β) = β for every σ ∈ H2, so β ∈ B2; hence β ∈ B1 ∩ B2. On
the other hand, if β ∈ B1 ∩ B2, then b ∈ B1, so σ(β) = β for every σ ∈ H1,
and b ∈ B2, so σ(β) = β for every σ ∈ H2; hence σ(β) = β for every
σ ∈ H3. ��

In the original development of group theory, and in particular in the work
of Galois, groups were not regarded as abstract groups, but rather as groups
of symmetries, and in particular as groups of permutations of the roots of a
polynomial. This viewpoint, still a most useful one, is encapsulated in the fol-
lowing result. In order to state it, we first recall that an action of a group G on
a set S = {si } is transitive if for any two elements si and s j of S, there is an
element σ of G with σ(si ) = s j .

Proposition 2.8.15. Let E be a finite Galois extension of F, so E is the splitting
field of a separable polynomial f (X) ∈ F[X ]. Then G = Gal(E/F) is isomor-
phic to a permutation group on the roots of f (X). If f (X) is irreducible, then
G is isomorphic to a transitive permutation group on the roots of f (X).
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Proof. Let α1, . . . , αd be the roots of f (X) in E. For any σ ∈ Gal(E/F),
σ(αi ) is a root of σ( f (X)) = f (X), so Gal(E/F) permutes {αi }. Furthermore,
E = F(α1, . . . , αd) (Remark 2.5.6), so if σ(αi ) = αi for each i , then σ = id.

Now if f (X) is irreducible, and αi and α j are any two roots of f (X),
there is isomorphism σ0 : F(αi ) → F(α j ) with σ | F = id and σ0(αi ) = α j

(Lemma 2.6.1), and σ0 extends to σ : E → E (Lemma 2.6.3). ��
Remark 2.8.16. Note Proposition 2.8.15 implies Lemma 2.5.3 in case f (X) is
separable. �
Remark 2.8.17. Note that Proposition 2.8.15 is about how the Galois group is
realized, not about its structure as an abstract group. For example, consider
E = Q(

√
2,

√
3) and F = Q. Then G = Gal(E/F) ∼= (Z/2Z) ⊕ (Z/2Z),

and E is the splitting field of the polynomial (X2 − 2)(X2 − 3), which is not
irreducible, so G does not act transitively on {√2, −√

2,
√

3, −√
3}. On the

other hand E = Q(
√

2 + √
3) and E is the splitting field of the polynomial

(X − (
√

2 +√
3))(X − (

√
2 −√

3))(X − (−√
2 +√

3))(X − (−√
2 −√

3)) =
X4 − 10X2 + 1, which is irreducible, and G does indeed act transitively on
{√2 + √

3,
√

2 − √
3, −√

2 + √
3, −√

2 − √
3}. �

Corollary 2.8.18. Let f (X) ∈ F[X ] be a separable polynomial and write
f (X) = f1(X)e1 · · · fk(X)ek , a factorization into irreducibles in F[X ]. Let
fi (X) have degree di . Let E be the splitting field of f (X) ∈ F[X ]. Then
Gal(E/F) is isomorphic to a subgroup of Sd1 × · · · × Sdk (where Sd denotes
the symmetric group on d elements). In particular, if f (X) ∈ F[X ] is a sepa-
rable polynomial of degree d, and E is the splitting field of f (X) ∈ F[X ], then
Gal(E/F) is isomorphic to a subgroup of Sd . ��
Theorem 2.8.19. Let E be a finite Galois extension of F of degree d. Then
G = Gal(E/F) is isomorphic to a transitive subgroup of Sd , the symmetric
group on d elements. Also, G has a subgroup H of index d.

Proof. Since E is a Galois extension of F, it is certainly a separable extension
of F (Proposition 2.8.14).We now apply a result we shall prove later (Corollary
3.5.3) to conclude that E = F(α) for some α ∈ E. Then d = (E/F) =
(F(α)/F) = deg mα(X) (Proposition 2.4.6 (2)), so the theorem follows from
Proposition 2.8.15 and the following general fact: If G acts transitively on
S = {si }, a set of cardinality d, then H = {σ ∈ G | σ(s1) = s1} is a subgroup
of index d. ��



2.9 Examples 37

2.9 Examples

In this section we give a number of examples of the Fundamental Theorem of
Galois Theory, and compute a number of Galois groups.

Example 2.9.1. See Example 1.1.1. �
Example 2.9.2. See Example 1.1.2. �
Example 2.9.3. See Example 1.1.3. �
Example 2.9.4. See Example 1.1.4. �
Example 2.9.5. Let Ea be the splitting field of f (X) = X3 − a over Q, where
for simplicity we take a to be an integer. There are several cases.

a = 0: Then f (X) = (X)(X)(X) is a product of linear factors, so Ea =
Q. (Ea is obtained from Q by adjoining 0 three times, but adjoining 0 does
nothing.) Note (Ea/Q) = 1.

a �= 0 a perfect cube: Let a = b3. Then f (X) = X3−b3 = b3((X/b)3−1)

so Ea = E1. Thus we need only find the splitting field of f (X) = X3 −1. This
we have done already. E1 = Q(ω) where ω = (−1 + i

√
3)/2 is a primitive

cube root of 1. Note (Ea/Q) = 2 and Gal(Ea/Q) ∼= Z/2Z.

a �= 0 not a perfect cube: This situation is entirely analogous to Exam-
ple 1.1.3. Ea = Q(ω, 3

√
a) and (Ea/Q) = 6. Also, G = Gal(Ea/Q) ∼= D6, the

dihedral group of order 6. Note that we can determine G without doing any
computation. We know that |G| = (Ea/Q) = 6, and there are only two groups
of order 6, Z/6Z, which is abelian, and D6, which is not. Now Ea ⊃ Q( 3

√
a)

and Q( 3
√

a) is not a normal extension of Q, so G has a subgroup that is not
normal and hence G is nonabelian. �
Example 2.9.6. E is the splitting field of f (X) = X6 − 3 over Q. Then E =
Q(ζ,

6
√

3) where ζ is a primitive sixth root of 1 and (E/Q) = 12. We may
choose ζ = (1 + i

√
3)/2. Then ω = ζ 2 and −1 = ζ 3. But then notice also

that ζ = 1 + ω so in particular Q(ζ ) = Q(ω). An element σ of Gal(E/Q) is
determined by its effect on ζ and on 6

√
3. One can check that G = Gal(E/Q)

has elements σ and τ with:

σ(ζ ) = ζ−1 τ(ζ ) = ζ

σ (
6
√

3) = 6
√

3 τ(
6
√

3) = ζ
6
√

3.

Clearly σ 2 = 1 and τ 6 = 1. Also στ(ζ ) = ζ 5 = τ−1σ(ζ ) and στ(
6
√

3) =
ζ−1 6

√
3 = τ−1σ(

6
√

3). Since any element of G must take ζ to ζ or ζ−1, and
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must take 3
√

6 to ζ i 3
√

6 for some i , we see that σ and τ generate G. Thus we
conclude that

G = 〈σ, τ | σ 2 = 1, τ 6 = 1, i στ = τ−1σ 〉
is isomorphic to the dihedral group D12. It is then routine but lengthy to check
that G has 15 subgroups, which we list below, where subgroups denoted by the
some letter are mutually conjugate (so in particular A1, D1, E1, G1, H1 and I1

are normal):
A1 = {1}
B1 = {1, σ }, B2 = {1, τ 2σ }, B3 = {1, τ 4σ }
C1 = {1, τσ }, C2 = {1, τ 3σ }, C3 = {1, τ 5σ }
D1 = {1, τ 3}
E1 = {1, τ 2, τ 4}
F1 = 1, σ, τ 3, τ 3σ }, F2 = {1, τσ, τ 3, τ 4σ }, F3 = {1, τ 2σ, τ 3, τ 5σ }
G1 = {1, τ 2, τ 4, σ, τ 2σ, τ 4σ }
H1 = {1, τ, τ 2, τ 3, τ 4, τ 5}
I1 = G

These subgroups have the following fixed fields:
Fix(A1) = E
Fix(B1) = Q(

6
√

3), Fix(B2) = Q(ζ
6
√

3), Fix(B3) = Q(ω
6
√

3)

Fix(C1) = Q((1 + ζ )
6
√

3), Fix(C2) = Q(i 6
√

3),
Fix(C3) = Q((1 + ζ−1)

6
√

3)

Fix(D1) = Q(ζ,
3
√

3)

Fix(E1) = Q(ζ,
√

3)

Fix(F1) = Q(
3
√

3), Fix(F2) = Q(ζ
3
√

3), Fix(F3) = Q(ω
3
√

3)

Fix(G1) = Q(
√

3)

Fix(H1) = Q(ζ )

Fix(I1) = Q

The 6 subfields fixed by normal subgroups are Galois extensions of Q, so are
splitting fields of separable polynomials:

Fix(A1) = splitting field of X6 − 3
Fix(D1) = splitting field of X3 − 3
Fix(E1) = splitting field of (X2 − X + 1)(X2 − 3)

Fix(G1) = splitting field of X2 − 3
Fix(H1) = splitting field of X2 − X + 1
Fix(I1) = splitting field of 1

Note here there are also interesting relationships between the fields interme-
diate between E and Q. For example, let F = Fix(F1) = Q(

3
√

3). Then B1,
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C2, and D1 are all normal subgroups of F1 (although B1 and C2 are not nor-
mal subgroups of G). Hence Fix(B1)/F1, Fix(C2)/F1, and Fix(D1)/F1 are all
Galois extensions, all of degree two, hence with Galois groups isomorphic to
Z/2Z, and they are the splitting fields of the polynomials X2 − 3

√
3, X2 + 3

√
3,

and X2 + X + 1 ∈ Q(
3
√

3)[X ], respectively. �
Example 2.9.7. E is the splitting field of X6 + 3 over Q. Again E =
Q(ζ,

6
√−3) where ζ is a primitive sixth root of 1. However, (

6
√−3)3 = i

√
3,

so ζ ∈ Q(
6
√−3) and E = Q(

6
√−3). Thus in this case (E/Q) = 6, and here

Gal(E/Q) = D6 by an argument as in Example 2.9.5.
Let us examine this example more closely. Let α = 6

√−3. Then E = Q(α),
so λ ∈ G = Gal(E/Q) is determined by λ(α). Since λ(α) must be a root of
X6 + 3, we must have λ(α) = ζ kα, for some k, where ζ = (1 + i

√
3)/2 is

a primitive sixth root of 1, and all possible values of k, 0 ≤ k ≤ 5 occur. If
λ(α) = ζ kα, with 0 ≤ k ≤ 5, set λ = λk . Thus G = {id, λ1, . . . , λ5}. This
makes G “look” abelian, but we can see by direct calculation that it is not.

Note that ζ = (1 + α3)/2, so

λ j (ζ ) = (1 + λ j (α
3))/2 = (1 + (λ j (α))3)/2 = (1 + (ζ jα)3)/2

= (1 + ζ 3 jα3)/2 = ζ for j even, ζ−1 for j odd.

In particular we see that

λ jλi (α) = λ j (λi (α)) = λ j (ζ
iα) = λ j (ζ

i )λ j (α) = λ j (ζ )iζ jα

= ζ kα where k = (−1) j i + j,

directly exhibiting the noncommutativity of G.
In fact, we may obtain more precise information on the structure of G,

again by direct computation. Note that ζ 2 = ω = (−1 + i
√

3)/2, so, setting
γ = i

√
3 = √−3, we see that Q(ζ ) = Q(ω) = Q(γ ). Note also that α =

γ /β. Then E = Q(α) = (Q(β))(γ ) = (Q(γ ))(β). Hence there is an element
ϕ of G with ϕ(γ ) = −γ, ϕ(β) = β, and an element ψ of G with ψ(γ ) =
γ, ψ(β) = ωβ. Then

ϕ(α) = ϕ(γ /β) = ϕ(γ )/ϕ(β) = −γ /β = ζ 3(γ /β) = ζ 3α so ϕ = λ3,

ψ(α) = ψ(γ/β) = ψ(γ )/ψ(β) = γ /(ωβ) = ζ 4(γ /β) = ζ 4α so ψ = λ4.

Observe that ϕ2 = id, ψ2 = λ2, and ψ3 = id. Furthermore

ϕ−1ψϕ(α) = ϕ−1ψϕ(γ /β) = ϕ−1ψ(−γ /β)

= ϕ−1(−γ /(ωβ)) = γ /(ω2β) = ωα = ζ 2α,
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so we conclude λ−1
3 λ4λ3 = λ2

4, giving an explicit presentation of G as the
dihedral group D6. �
Example 2.9.8. If E is the splitting field of an irreducible cubic polynomial
over Q, then, by Theorem 2.8.19, Gal(E/Q) is a subgroup of S3 whose or-
der is divisible by 3, so it is either S3 or Z/3Z. The construction in Exam-
ple 2.9.5 always gave S3. Here is a case where the Galois group is Z/3Z.
Let ζ be a primitive ninth root of 1 and consider the polynomial f (X) =
(X − (ζ + ζ−1))(X − (ζ 2 + ζ−2))(X − (ζ 4 + ζ−4)) = X3 − 3X + 1 ∈ Q[X ].
This polynomial is irreducible over Q (as otherwise it would have a linear
factor, i.e., a root in Q, and it does not). Let λ0, λ1, and λ2 be the roots of
this polynomial, in the order written, and let E = F(λ0, λ1, λ2) be its splitting
field.

Then (E/Q) = deg f (X) = 3, and since | Gal(E/Q)| = (E/Q), the Ga-
lois group must be isomorphic to Z/3Z. We can see this concretely as follows:
Note that λ2

0 = λ1 + 2 and λ2
1 = λ2 + 2 (and also λ2

2 = λ0 + 2), so in fact E =
F(λ0), and σ ∈ Gal(E/Q) is determined by σ(λ0). Since f (X) is irreducible,
there is an element σi ∈ Gal(E/Q) with σi (λ0) = λi , i = 0, 1, 2. Clearly σ0 =
id. If σ1(λ0) = λ1, then σ1(λ1) = σ1(λ

2
0 −2) = σ1(λ0)

2 −σ1(2) = λ2
1 −2 = λ2

and similarly σ1(λ2) = λ0. Then σ 2
1 (λ0) = σ1(σ1(λ0)) = σ1(λ1) = λ2, so

σ 2
1 = σ2; similarly σ 3

1 (λ0) = λ0, so σ 3
1 = σ0, and we see explicitly that

Gal(E/Q) = {1, σ1, σ 2
1 }. �

2.10 Exercises

Exercise 2.10.1. In each case, find a polynomial in Q[X ] that has α as a root.
Then find all complex roots of this polynomial.

(a) α = 1 + √
2.

(b) α = √
2 + √

3.

(c) α =
√

1 + √
2.

(d) α =
√

3 − 2
√

2.

(e) α = 3
√

1 + √−3.

(f) α = 3
√

1 + √
2.

(g) α =
√

1 + 3
√

2.

(h) α =
√

6 + √
3 +

√
6 − √

3.

(i) α =
√

4 + √
7 +

√
4 − √

7.
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Exercise 2.10.2. Let f (X) = X3 + 7X + 1 ∈ Q[X ]. This polynomial is ir-
reducible. Let E = Q[α] for some root α of f (X). Consider the following
elements of E: β1 = α + 3, β2 = α2 + 1, β3 = α2 − 2α + 3.
(a) Express each of the following in the form g(α) for some polynomial
g(X) ∈ Q[X ]: β−1

1 , β−1
2 , β−1

3 , β1β2, β1β3, β2β3.
(b) Find mβ1(X), mβ2(X), mβ3(X) ∈ Q[X ].
Exercise 2.10.3. Let f (X) = X3 + X2 + 2 ∈ F5[X ]. This polynomial is ir-
reducible. Let E = F5[α] for some root α of f (X). Consider the following
elements of E: β1 = 2α + 1, β2 = α2 − 1, β3 = α2 − α + 2.
(a) Express each of the following in the form g(α) for some polynomial
g(X) ∈ F5[X ]: β−1

1 , β−1
2 , β−1

3 , β1β2, β1β3, β2β3.
(b) Find mβ1(X), mβ2(X), mβ3(X) ∈ F5[X ].
Exercise 2.10.4. As we shall see in Section 3.3, for every prime power q = pr ,
there is a unique (up to isomorphism) field Fq with q elements.
(a) Write down an explicit addition and multiplication table for F2, F3, and F5.
(b) Write down an explicit addition and multiplication table for F4 and F9.
(c) For each element α ∈ F4, find its minimum polynomial mα(X) ∈ F2[X ],
and for each element α ∈ F9, find its minimum polynomial mα(X) ∈ F3[X ].
(d) Explicitly compute the Frobenius endomorphism 
 on F4 and F9.
(e) Write down an explicit addition and multiplication table for F8.
(f) For each element α ∈ F8, find its minimum polynomial mα(X) ∈ F2[X ].
(g) Explicitly compute the Frobenius endomorphism 
 on F8.

Exercise 2.10.5. (a) Find all irreducible quadratic, cubic, and quartic polyno-
mials f (X) ∈ F2[X ].
(b) Find all irreducible quadratic, and cubic polynomials f (X) ∈ F3[X ].
(c) Find all irreducible quadratic polynomials f (X) ∈ F5[X ].
(d) Find all irreducible quadratic polynomials f (X) ∈ F4[X ].
Exercise 2.10.6. Let f (X) = an Xn + · · · + a0 ∈ F[X ] split in E. Assume that
char(F) �= 2. Show that (1) implies (2):
(1) For every α ∈ E, if α is a root of f (X), then −α ∈ E is also a root of f (X)

of the same multiplicity.
(2) an−k = 0 for all odd k.

Exercise 2.10.7. Let f (X) = an Xn + · · · + a0 ∈ F[X ] split in E. Assume that
a0 �= 0. Show that (1) implies (2):
(1) For every α �= 0 ∈ E, if α is a root of f (X), then 1/α ∈ E is also a root of
f (X) of the same multiplicity.
(2) For e = ±1, an−k = eak for all k.
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Exercise 2.10.8. (a) Let f (X) ∈ Z[X ] be a monic polynomial. Show that if
its mod p reduction f̄ (X) ∈ Fp[X ] is irreducible for some p, then f (X) is
irreducible.
(b) Use this to show that f (X) = X3 − 5X + 36 is irreducible.

Exercise 2.10.9. A priori, there is a distinction between polynomial expres-
sions and polynomial functions, i.e., between f (X) regarded as an element of
F[X ] and f (X) as defining a function on F. Clearly, if f (X) = g(X) as ele-
ments of F[X ], then f (X) = g(X) as functions on F[X ] (i.e., f (a) = g(a)

for every a ∈ F).
(a) Show that, if F is infinite, the converse is true: If f (a) = g(a) for every
a ∈ F, then f (X) = g(X) ∈ F[X ].
(b) Find a counterexample to the converse if F is finite. That is, if F is finite,
find polynomials f (X) �= g(X) ∈ F[X ] but with f (a) = g(a) for every
a ∈ F.
(c) Use the result of (b) to show that no finite field is algebraically closed, i.e.,
that if F is any finite field, there is a nonconstant polynomial f (X) ∈ F[X ]
that does not have a root in F.

Exercise 2.10.10. (a) Let f (X) ∈ F[X ] have roots α1, . . . , αn in some split-
ting field E. Show that f (X) is irreducible in F[X ] if and only if∏

αi ∈T

(X − αi ) /∈ F[X ]

for any nonempty proper subset T of S = {α1, . . . , αn}.
(b) Observe that E = Q[√3,

√
5] is the splitting field of f1(X) = X4−46X2+

289, with roots
√

3 + 2
√

5,
√

3 − 2
√

5, −√
3 + 2

√
5, and −√

3 − 2
√

5, and
also of f2(X) = X4 − 6X3 + 5X2 + 10X + 2, with roots 1 + √

3, 1 − √
3,

2 + √
5, and 2 − √

5. Use part (a) to show that f1(X) is irreducible in Q[X ]
but f2(X) is not.

Exercise 2.10.11. Let f (X), g(X) ∈ F[X ] be monic irreducible polynomials.
Show that if f (X) and g(X) have a common root in some extension E of F,
then f (X) = g(X).

Exercise 2.10.12. Let E ⊇ F and let α �= 0 ∈ E. Show that α is algebraic over
F if and only if 1/α = f (α) for some polynomial f (X) ∈ F[X ].
Exercise 2.10.13. Let R be a subring of F and let E be an extension of F. Let
α ∈ E be algebraic over F. If mα(X) ∈ R[X ], then α is called integral over
R. In case R = Z and F = Q, show that α ∈ E is integral over R if and
only if f (α) = 0 for some monic polynomial f (X) ∈ Z[X ]. (Such a complex
number is called an algebraic integer.)
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Exercise 2.10.14. Suppose that R = Z and F = Q. Show that, for any α ∈ E,
there is an integer n �= 0 ∈ Z such that nα is an algebraic integer.

Exercise 2.10.15. Let E be a field and let R be a subring of E. If every element
of E is integral over R, show that R is a field.

Exercise 2.10.16. Let E be an extension of F and let f (X) ∈ F[X ] be an ir-
reducible polynomial. Let f (X) = f1(X) f2(X) · · · ft (X) ∈ E[X ] be factored
as a product of irreducible polynomials.
(a) If E is a Galois extension of F, show that { f1(X), f2(X), . . . , ft (X)} are
mutually conjugate in E[X ]. (Two polynomials f1(X), f2(X) ∈ E[X ] are mu-
tually conjugate if there exists an element σ ∈ Gal(E/F) with σ( f1(X)) =
f2(X).)
(b) Give a counterexample to this if E is not a Galois extension of F.

Exercise 2.10.17. Let E be a splitting field of the separable irreducible poly-
nomial f (X) ∈ F[X ].
(a) For a root α ∈ E of f (X), let r(α) be the number of roots of f (X) in F(α).
Show that r(α) is independent of the choice of α. Call this common value r .
(b) Let d be the number of distinct fields {F(α) | α ∈ E a root of f (X)}. Show
that dr = deg f (X).
(c) Give examples where r = 1, 1 < r < deg f (X), and r = deg f (X).

Exercise 2.10.18. Let E be the splitting field of the separable irreducible poly-
nomial f (X) ∈ F[X ] and let B be a Galois extension of F with F ⊆ B ⊆ E.
Let f (X) = f1(X) · · · fk(X) ∈ B[X ] be a factorization into irreducible poly-
nomials. Show that each fi (X) has the same degree d. Furthermore, if α ∈ E
is any root of f (X), show that d = (B(α)/B) and that k = (B ∩ F(α)/F).

Exercise 2.10.19. Let f (X) ∈ Q[X ] be an irreducible cubic with roots α, β, γ

in some splitting field E. Show that one of the following two alternatives holds:
(1) Gal(E/Q) ∼= Z/3Z, and there is no field B with Q ⊂ B ⊂ E.
(2) Gal(E/Q) ∼= S3, and there are exactly four fields B with Q ⊂ B ⊂ E,
these fields being Q(α), Q(β), Q(γ ), and Q(

√
D) for some D ∈ Q that is not

a perfect square.
(In fact, it is possible to decide between these two alternatives, and to find D,
without finding the roots of f (X). See Section 4.8.)

Exercise 2.10.20. Let f (X) = Xn − p ∈ Q[X ]. By Proposition 4.1.7 below,
f (X) is irreducible. Let E be a splitting field of f (X). Show that for every
n ≥ 3, the Galois group G = Gal(E/Q) is not abelian.
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Exercise 2.10.21. Let E be a splitting field of the separable irreducible polyno-
mial f (X) ∈ F[X ]. Let α be any root of f (X) in E. Let p be a prime dividing
(E/F). Show there is a field F ⊆ B ⊆ E with E = B(α) and with (E/B) = p.

Exercise 2.10.22. Let F be an arbitrary field. Let m and n be positive integers
and let d = gcd(m, n). Let f (X) = Xm − 1, g(X) = Xn − 1 ∈ F[X ]. Show
that gcd( f (X), g(X)) = h(X) where h(X) = Xd − 1 ∈ F[X ].
Exercise 2.10.23. Let f (X) ∈ Q[X ]. If f (X) ∈ Z[X ], then certainly
f (n) ∈ Z for every n ∈ Z. The converse of this is false, as the example
f (X) = X (X + 1)/2 shows. Let c0(X) = 1 and let ck(X) = X (X − 1) · · ·
(X −(k−1))/k! for k > 0. Show that any f (X) ∈ Q[X ] with the property that
f (n) ∈ Z for every n ∈ Z can be written a linear combination of {ck(X)} with
integer coefficients. (This remains true if Q is replaced by any field of charac-
teristic 0.) Note this implies that if f (n) is a polynomial of degree at most k
with f (n) an integer divisible by k! for every integer n, then f (X) ∈ Z[X ].
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Development and Applications of Galois Theory

3.1 Symmetric Functions and the Symmetric Group

We now apply our general theory to the case of symmetric functions. We let
D be an arbitrary field and set E = D(X1, . . . , Xd), the field of rational func-
tions in the variables X1, . . . , Xd . Then the symmetric group Sd acts on E by
permuting {X1, . . . , Xd}.
Definition 3.1.1. The subfield F of E fixed under the action of Sd is the
field of symmetric functions in X1, . . . , Xd . (F = { f (X1, . . . , Xd) ∈ E |
f (Xσ(1), . . . , Xσ(d)) = f (X1, . . . , Xd) for every σ ∈ Sd}.) A polynomial
f (X1, . . . , Xd) ∈ F is a symmetric polynomial. �

Since F = Fix(Sd), by definition E is a Galois extension of F with Galois
group Sd . We may use this observation to easily show that any finite group is
the Galois group of some field extension.

Lemma 3.1.2. (1) Let G be a finite group. Then there is a Galois extension
E/B with Gal(E/B) ∼= G.

(2)There is a Galois extension E/B with Gal(E/B) ∼= G and with E (and
hence B) a subfield of the complex numbers C.

Proof. (1) Any finite group G is isomorphic to a subgroup of some sym-
metric group Sd . Identify G with its image under this isomorphism. Let
E = D(X1, . . . , Xd), as above, and set B = Fix(G). Then E/B is Galois
with Galois group isomorphic to G.

(2) Let D = Q. Then we need only show there is subfield of C
isomorphic to Q(X1, . . . , Xd). Let t1, . . . , td be algebraically independent
elements of C, i.e., elements that do not satisfy any polynomial equation.

S.H. Weintraub, Galois Theory, DOI 10.1007/978-0-387- _3,  
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Let ϕ : Q(X1, . . . , Xd) → Q(t1, . . . , td) be defined by ϕ(Xi ) = ti . If
r(X1, . . . , Xd) = f (X1, . . . , Xd)/g(X1, . . . , Xd) ∈ Q(X1, . . . , Xd), then
ϕ(r(X1, . . . , Xd)) = f (t1, . . . , td)/g(t1, . . . , td) = r(t1, . . . , td). Then ϕ is
well defined as the denominator g(t1, . . . , td) is never zero. It is obviously
onto and it is 1–1 as the numerator f (t1, . . . , td) is never zero, so ϕ is an iso-
morphism. Then set E = Q(t1, . . . , td) and let B be the fixed field of G acting
by permuting t1, . . . , td .

It remains only to show that we can indeed find algebraically indepen-
dent elements t1, . . . , td of Q. Let E0 = Q and consider the extension field
F1 = {z ∈ C | z is algebraic over E0}. E0 is countable; so there are only count-
ably many polynomials in E0[X1], each of which has only finitely many roots.
Hence F1 is countable. But C is uncountable. Thus we may choose any t1 /∈ F1

and let E1 = E0(t1). Then X1 �→ t1 induces an isomorphism E0(X1) → E1.
But again E0(X1) has only countably many elements, so E1 is countable and
we may iterate this process. ��

We now return to the study of symmetric functions.

Definition 3.1.3. The elementary symmetric polynomials s1, . . . , sd are

sk =
∑

1≤i1<...<ik≤d

Xi1 Xi2 · · · Xik , k = 1, . . . , d. �

For example, if d = 4:

s1 = X1 + X2 + X3 + X4,

s2 = X1 X2 + X1 X3 + X1 X4 + X2 X3 + X2 X4 + X3 X4,

s3 = X1 X2 X3 + X1 X2 X4 + X1 X3 X4 + X2 X3 X4,

s4 = X1 X2 X3 X4.

Lemma 3.1.4. The field of symmetric functions F = D(s1, . . . , sd).

Proof. Let B = D(s1, . . . , sd). Clearly F ⊇ B, as each si is fixed by Sd .
Now (E/F) = |Sd | = d!, so (E/B) ≥ d!. We will show that F is the

splitting field of a separable polynomial f (X) ∈ B[X ] of degree d. Then, by
Lemma 2.8.18, (E/B) = | Gal(E/B)| ≤ d!. Hence (E/B) = d! and F = B.

Now f (X) is simply the polynomial

f (X) = (X − X1)(X − X2) · · · (X − Xd),

which obviously has splitting field E, as its roots are X1, . . . , Xd . ��
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Remark 3.1.5. (1) Note in particular that we have constructed an explicit poly-
nomial f (X) of degree d whose Galois group is Sd . Explicit computation
shows that

f (X) = Xd +
d∑

i=1

(−1)i si Xd−i .

(2) Let us write f (X) = Xd + ad−1 Xd−1 +· · ·+ a0. Then we see from the
above expression that the coefficients of f (X) are, up to sign, the elementary
symmetric functions of its roots,

ad−i = (−1)i si , i = 1, . . . , d,

and, in fact, this is true for any polynomial f (X). �
Lemma 3.1.6. Let Y be the monomial

Y = X1
2 X2

3 · · · Xd−1
d (= X0

1 X1
2 · · · Xd−1

d ).

Then E = F(Y ).

Proof. Obviously, the only element of Sd that fixes Y is the identity, so Y
has d! conjugates. Then, by Corollary 2.7.13, (F(Y )/F) = d! = (E/F), so
E = F(Y ). ��
Corollary 3.1.7. Any element f (X1, . . . , Xd) of E can be written uniquely as

f (X1, . . . , Xd) =
d!−1∑
i=0

gi (si , . . . , sd)Y
i

where gi (s1, . . . , sd) is a rational function in s1, . . . , sd .

Proof. By Lemma 3.1.6 and Proposition 2.4.6 (1), {1, Y, . . . , Y d!−1} is a vec-
tor space basis for E over F, and any element of F is a rational function of
s1, . . . , sd , by Lemma 3.1.4. ��
Remark 3.1.8. In the language of Section 3.5, Lemma 3.1.6 shows that E is a
simple extension of F and that Y is a primitive element of E. �
Lemma 3.1.9. Let Y be the monomial Y = X1

2 · · · Xd−1
d (as in Lemma 3.1.6)

and for σ ∈ Sd , let Yσ be the monomial

Yσ = X1
σ(2) · · · Xd−1

σ(d).

Then {Yσ | σ ∈ Sd} is a (vector space) basis for E over F.
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Proof. We prove the claim by induction on d.
For d = 1 this is simply the claim that Y = 1 is a basis for E over E, which

is trivial.
Now assume the result is true for d − 1, and suppose that

∑
σ∈Sd

cσ (X1, . . . , Xd)Xσ(2) · · · Xd−1
σ(d) = 0,

with cσ (X1, . . . , Xd) ∈ F. We wish to show that cσ (X1, . . . , Xd) = 0
for each σ . Assume not. By “clearing denominators” we may assume that
{cσ (X1, . . . , Xd)} are polynomials in F with no common polynomial factor.

For convenience, write the above sum as
∑

. Let Hi = {σ ∈ Sd | σ(i) =
1}, i = 1, . . . , d . Then

∑ = ∑
1 + · · · + ∑

d , where
∑

i

=
∑
σ∈Hi

cσ (X1, . . . , Xd)Xσ(2) · · · Xd−1
σ(d).

We may further write
∑

i = ∑′
i + ∑′′

i , i = 1, . . . , d, where
∑′

i is
taken over those σ ∈ Hi with cσ (X1, . . . , Xd) not divisible by Xi , and

∑′′
i

is taken over those σ ∈ Hi with cσ (X1, . . . , Xd) divisible by Xi . Call these
two subsets H ′

i and H ′′
i , respectively.

Let us consider the equation
∑ = 0. Note that the exponent of X1 is at

least one for each term in
∑

i , i �= 1 (as if σ(i) �= 1, then σ( j) = 1 for some
j with 2 ≤ j ≤ d), and also for each term in

∑′′
1. Thus, considering the terms

in
∑

that are not divisible by X1, we thus see that we must have
∑′

1 = 0, i.e.,
that

∑
σ∈H ′

1

cσ (X1, . . . , Xd)Xσ(2) · · · Xd−1
σ(d) = 0.

Observe that H1 is isomorphic to Sd−1, permuting the subset {2, . . . , d} of
{1, . . . , d} (and each Hi is a left coset of H1).

Let us set X1 = 0 in
∑′

1, thereby obtaining

0 =
∑
σ∈H ′

1

cσ (0, X2, . . . , Xd)Xσ(2) . . . Xd−1
σ(d)

=
( ∑

σ∈H ′
1

cσ (0, X2, . . . , Xd)Xσ(3) · · · Xd−2
σ(d)

)
X2 · · · Xd .

Now we apply the inductive hypothesis. {Xσ(3) · · · Xd−2
σ(d)} is a basis for

D(X2, . . . , Xd) over the subfield of symmetric functions in X2, . . . , Xd , so in
particular they are linearly independent. Hence we have that each coefficient
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cσ (0, X2, . . . , Xd) = 0. In other words, each cσ (X1, . . . , Xd) is a polynomial
that vanishes when we set X1 = 0, so it must have X1 as a factor, contra-
dicting the definition of H ′

1. Hence we see that H ′
1 = ∅, and so H ′′

1 = H1.
In other words, cσ (X1, . . . , Xd) is divisible by X1 for every σ ∈ H1. But
cσ (X1, . . . , Xd) ∈ F is a symmetric polynomial in X1, . . . , Xd , so this implies
that cσ (X1, . . . , Xd) is also divisible by X2, . . . , Xd , and hence by the product
X1 · · · Xd , for each σ ∈ H1.

Similarly, we see, for each i = 1, . . . , d, that H ′
i = ∅, H ′′

i = Hi ,
so cσ (X1, . . . , Xd) is divisible by Xi , and thus by X1 · · · Xd , for each
σ ∈ Hi . Thus {cσ (X1, . . . , Xd) | σ ∈ Sd} have the common polyno-
mial factor X1 · · · Xd , contradicting our choice of {cσ (X1, . . . , Xd)}. Thus,
{Xσ(2) · · · Xd−1

σ(d)} is linearly independent, and thus is a vector space basis for
E over F (as it has d! = (E/F) elements), completing the inductive step. ��
Corollary 3.1.10. Any element f (X1, . . . , Xd) of E can be written uniquely
as

f (X1, . . . , Xd) =
∑
σ∈Sd

hσ (s1, . . . , sd)Xσ(2) · · · Xd−1
σ(d)

where hσ (s1, . . . , sd) is a rational function of s1, . . . , sd .

Proof. Lemma 3.1.4 and Lemma 3.1.9. ��
Remark 3.1.11. In the language of Section 3.6, Lemma 3.1.9 shows that
{Xσ(2) · · · Xd−1

σ(d) | σ ∈ Sd} is a normal basis of E over F. �
Our discussion here is not yet complete. Corollaries 3.1.7 and 3.1.10 show

how to write rational functions uniquely in terms of symmetric functions. What
we have not yet shown is that symmetric functions can be written uniquely in
terms of the elementary symmetric functions. We do that now.

Lemma 3.1.12. Let f (X1, . . . , Xd) ∈ F be a symmetric function. Then
f (X1, . . . , Xd) may be written uniquely as a rational function e(s1, . . . , sd)

of the elementary symmetric functions s1, . . . , sd .

Proof. We prove this by induction on d. In case d = 1, s1 = X1 and e(s1) =
f (X1) is the unique expression. Now suppose the result is true for d − 1.

We first need to make an observation about the elementary symmetric func-
tions. We really should have written sk as sk,d , as the expressions in Defini-
tion 3.1.4 depended on d , but for simplicity we did not. We do that now. We
then observe that if we let s̄k,d be the expression obtained from sk,d by setting
Xd = 0, then
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s̄k,d = sk,d−1 for k ≤ d − 1 and s̄d,d = 0.

By equating different expressions for f (X1, . . . , Xd) and “clearing de-
nominators”, it is easy to see that to prove the lemma it suffices to show
that the only polynomial e(s1,d , . . . , sd,d) that is identically zero is the zero
polynomial. Thus suppose e(s1,d , . . . , sd,d) = 0 but e(s1,d , . . . , sd,d) is not
the zero polynomial. Since F is a field and sd,d is a nonzero element of F,
e(s1,d , . . . , sd,d) = 0 if and only if (sd,d)

−ke(s1,d , . . . , sd,d) = 0 for any k.
Hence, factoring out by a power of sd,d if necessary, we may assume, expand-
ing e(s1,d , . . . , sd,d) in powers of sd,d , that the constant term is nonzero. In
other words, we have that

0 = e(s1,d , . . . , sd,d) =
n∑

i=0

ei (s1,d , . . . , sd−1,d)s
i
d,d

with ei (s1,d , . . . , sd−1,d) polynomials in s1,d , . . . , sd−1,d , and furthermore
e0(s1,d , . . . , sd−1,d) not the zero polynomial. Now set Xd = 0. Then the above
expressions become

0 = e(s̄1,d , . . . , s̄d−1,d , 0)

= e0(s̄1,d , . . . , s̄d−1,d)

= e0(s1,d−1, . . . , sd−1,d−1),

contradicting the d − 1 case. ��
Remark 3.1.13. We have just shown that the only polynomial in s1, . . . , sd

that vanishes is the zero polynomial. This is usually phrased as saying that
s1, . . . , sd are “algebraically independent” over D. �

We can also strengthen Lemma 3.1.12 as follows.

Lemma 3.1.14. Let f (X1, . . . , Xd) ∈ F be a symmetric polynomial. Then
f (X1, . . . , Xd) may be written uniquely as a polynomial e(s1, . . . , sd) in the
elementary symmetric functions s1, . . . , sd .

Proof. Uniqueness follows from Lemma 3.1.12 so we must show existence.
We do so by induction on d. We include in our inductive hypothesis that ev-
ery term in e(s1, . . . , sd), when regarded as a polynomial in X1, . . . , Xd , has
degree at most the degree of f (X1, . . . , Xd).

For d = 1, s1 = X1, and the result is trivial.
Assume the result is true for d − 1. We proceed by induction on the degree

k of the symmetric polynomial. If k = 0 the result is trivial. Assume it is true
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for all symmetric polynomials in X1, . . . , Xd of degree less than k, and let
f (X1, . . . , Xd) have degree k.

Now f (X1, . . . , Xd−1, 0) is a symmetric polynomial in X1, . . . , Xd−1 so
by induction f (X1, . . . , Xd−1) = g(s1,d−1, . . . , sd−1,d−1) for some polyno-
mial g (where we use the notation of the proof of Lemma 3.1.12).

Then f (X1, . . . , Xd) − g(s1, . . . , sd−1) = f1(X1, . . . , Xd) is a sym-
metric polynomial in X1, . . . , Xd with f1(X1, . . . , Xd−1, 0) = 0. Hence
f1(X1, . . . , Xd) is divisible by Xd in D[X1, . . . , Xd ], and hence, since this
polynomial is symmetric, it is divisible by the product X1 . . . Xd as well.
Hence f1(X1, . . . , Xd) = (X1 · · · Xd) f2(X1, . . . , Xd) with f2(X1, . . . , Xd)

a polynomial of lower degree. By induction f2(X1, . . . , Xd) = h(s1, . . . , sd)

for some symmetric polynomial h(s1, . . . , sd) satisfying our inductive hypoth-
esis, and of course X1 · · · Xd = sd is a symmetric polynomial satisfying our
hypothesis as well.

Then

f (X1, . . . , Xd) = g(s1, . . . , sd−1) + sd h(s1, . . . , sd)

= e(s1, . . . , sd)

is a polynomial in s1, . . . , sd , as required. ��
We have been considering polynomials with coefficients in a field. But, in

fact, we also have a result valid for polynomials with integer coefficients.

Lemma 3.1.15. Let f (X1, . . . , Xd) be a symmetric polynomial with integer
coefficients. Then f (X1, . . . , Xd) may be written uniquely as e(s1, . . . , sd)

where e(s1, . . . , sd) is a polynomial in the elementary symmetric functions
s1, . . . , sd with integer coefficients.

Proof. The proof of Lemma 3.1.14 goes through unchanged to prove this
result. ��

In addition to the elementary symmetric functions, there is another set of
symmetric functions that readily (perhaps even more readily) appears, namely
sums of powers. The relationship between these is classical.

Theorem 3.1.16 (Newton’s Identities). Let {si }i=1,...,d be the elementary
symmetric polynomials in X1, . . . , Xd. Let ti = Xi

1 + · · · + Xi
d for i > 0.

Then:
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t1 − s1 = 0

t2 − s1t1 + 2s2 = 0

t3 − s1t2 + s2t1 − 3s3 = 0

...

td − s1td−1 + · · · + (−1)d−1sd−1t1 + (−1)ddsd = 0

and

td+1 − s1td + · · · + (−1)dsd t1 = 0

td+2 − s1td+1 + · · · + (−1)dsd t2 = 0

...

Proof. Throughout this proof, we shall abbreviate
∑d

j=1 by
∑

.
Let us set f (X) = (X − X1)(X − X2) · · · (X − Xd) = Xd + ad−1 Xd−1 +

· · · + a0. We know from Remark 3.1.5 that ad−i = (−1)i si , i = 1, . . . , d.
From the division algorithm for polynomials we know that for any Y ∈ E,
f (X) = (X − Y )q(X) + f (Y ) for a unique polynomial q(X) ∈ E of degree
d −1. Let q(X) = bd−1 Xd−1 +bd−2 Xd−2 +· · ·+b0. Then long division shows
that

bd−1 = 1

bd−2 = Y + ad−1

bd−3 = Y 2 + ad−1Y + ad−2

...

(Of course, each bk is a function of Y , but we write bk instead of bk(Y ) for
simplicity. However, we need to keep this dependence in mind below.)

We now successively set Y = X1, . . . , Xd and form the sum

(∗)
∑

q(X j ) =
(∑

bd−1

)
Xd−1 +

(∑
bd−2

)
Xd−2 + · · · .

On the one hand, we see from f (X) = (X − X1)(X − X2) · · · (X − Xd)

that
∑

q(X j ) = f ′(X)

= d Xd−1 + (d − 1)ad−1 Xd−2 + (d − 2)ad−2 Xd−3 + · · · .
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On the other hand, adding the expressions on the right-hand side of (∗),
we obtain

∑
q(X j ) = d Xd−1 +

(∑
(X j + ad−1)

)
Xd−2

+
(∑

(X2
j + ad−1 X j + ad−2)

)
Xd−3 + · · · .

Comparing coefficients, we see

t1 + dad−1 = (d − 1)ad−1

t2 + ad−1t1 + dad−2 = (d − 2)ad−2

t3 + ad−1t2 + ad−2t1 + dad−3 = (d − 3)ad−3

which yields

t1 − s1 = 0

t2 − s1t1 + 2s2 = 0

t3 − s1t2 + s2t1 − 3s3 = 0

...

which are the first d − 1 Newton’s Identities. The remaining Newton’s Identi-
ties comes from considering coefficients in

0 =
∑

Xm f (X j )

for m = 0, 1, 2, . . . . ��
Corollary 3.1.17. Let {si }, {ti }, and d be as in Theorem 3.1.16.

(1) For every k > 0, tk is a polynomial in s1, . . . , s j with integer coeffi-
cients, where j = min(k, d).

(2) Let f (X1, . . . , Xd) ∈ F be a symmetric polynomial of degree at most
k, and let j = min(k, d). If char(D) = 0 or char(D) > j , then f (X) may be
written uniquely as a polynomial in t1, . . . , tk .

(3) In particular, if char(D) = 0 or char(D) > d, then every symmetric
polynomial f (X1, . . . , Xd) ∈ F may be written uniquely as a polynomial in
t1, . . . , td .

Proof. Newton’s identities always give a “triangular” system for {ti }i=1,...,d in
terms of {si }i=1,...,d . They give a “triangular” system for {si }i=1,...,d in terms of
{ti }i=1,...,d as long as the coefficient of si is nonzero for i = 1, . . . , d. ��
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3.2 Separable Extensions

In this section we develop criteria for polynomials and extensions to be separa-
ble. Recall that an irreducible polynomial f (X) ∈ F[X ] is separable if f (X)

splits into a product of distinct linear factors over a splitting field E. Recall
that a root α of a polynomial f (X) is called simple if X − α divides f (X) but
(X − α)2 does not, (otherwise α is called multiple) so an irreducible polyno-
mial f (X) is separable if and only if all of its roots in a splitting field E are
simple.

For a polynomial f (X) = ∑n
i=0 ci Xi , we let f ′(X) be its derivative

f ′(X) = ∑n
i=1 ici X i−1.

Lemma 3.2.1. Let E be an extension of F, let α be an algebraic element of E,
and let f (X) ∈ F[X ] a nonzero polynomial with f (α) = 0. Then α is a simple
root of f (X) if and only if f ′(α) �= 0.

Proof. Write f (X) = (X − α)g(X), a factorization in E[X ]. Then, by the
usual rules for derivatives, f ′(X) = (X − α)g′(X) + g(X) so f ′(α) = g(α).

By the division algorithm, we may write g(X) = (X − α)h(X) + g(α),
so here g(X) = (X − α)h(X) + f ′(α) and then f (X) = (X − α)g(X) =
(X − α)2h(X) + (X − α) f ′(α). Thus (X − α)2 divides f (X) if and only if
f ′(α) = 0. ��
Proposition 3.2.2. Let f (X) ∈ F[X ] be irreducible. If f ′(X) �= 0, then f (X)

is separable. In particular:
(1) If char(F) = 0, then f (X) is separable.
(2) If char(F) = p, then f (X) is separable or f (X) is of the form

f (X) =
k∑

i=0

ci Xip.

Proof. Let α be any root of f (X) in an extension field E of F. Since f (X)

is irreducible, f (X) is the unique monic polynomial in F[X ] of lowest degree
with f (α) = 0 (and indeed, f (X) = mα(X)). Thus, if f ′(X) �= 0, then f ′(X)

is a polynomial of lower degree, so f ′(α) �= 0 and α is a simple root of f (X)

by Lemma 3.2.1. Hence every root of f (X) in a splitting field is simple and
f (X) is separable.

Now if f (X) is a nonconstant polynomial and char F = 0, then f ′(X) �= 0.
If char F = p, then f ′(X) �= 0 unless the exponent of every power of X
appearing in f (X) is a multiple of p, proving the proposition. ��

Recall that an algebraic extension E of F is separable if mα(X) ∈ E[X ] is
a separable polynomial for every α ∈ E. Thus we see:
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Corollary 3.2.3. If char F = 0, every algebraic extension of F is separable. ��
Example 3.2.4. Here is an example of an inseparable polynomial and, cor-
respondingly, an inseparable extension. Let F = Fp(t), the field of rational
functions in the variable t with coefficients in Fp. Let E be the field obtained
by adjoining a root of the polynomial X p − t , E = F(s) with s p = t . Then, in
E[X ], X p − t = X p − s p = (X − s)p, so s is not a simple root of X p − t . Note
that E is in fact a splitting field for this polynomial. To complete this example
we need to show that X p − t is an irreducible polynomial in F[X ], and this
follows immediately from Lemma 3.2.8 below. �
Definition 3.2.5. A field F is a perfect field if every algebraic extension of F
is separable. �

We have a simple criterion for a field to be perfect. In order to state it, recall
that for a field F of characteristic p, we have the Frobenius map 
 : F → F
defined by 
(a) = a p. We let Fp = Im(
) and note that, since 
 is an
endomorphism, Fp is a subfield of F. (This is easy to verify directly: 1 = 1p,
if c = a p and d = bp, then c + d = (a + b)p and cd = (ab)p, and if
c �= 0, c−1 = (a−1)p.)

Theorem 3.2.6. F is a perfect field if and only if:
(1) char(F) = 0, or
(2) char(F) = p and F = Fp.

Proof. By Corollary 3.2.3, if char(F) = 0, then F is perfect. Let char(F) = p.
First assume F = Fp. Let α ∈ E be inseparable and consider mα(X). By

Proposition 3.2.2 (2), mα(X) must be of the form
∑k

i=0 ci Xip.
Since F = Fp, for each ci there is a di ∈ F with d p

i = ci . Then

mα(X) =
k∑

i=0

ci Xip =
k∑

i=0

d p
i Xip =

( k∑
i=0

di Xi
)p

contradicting the irreducibility of mα(X). Hence α is separable and F is per-
fect.

Next assume F is perfect. (The argument here parallels Example 3.2.4.)
Let a ∈ F, a /∈ Fp and consider f (X) = X p − a ∈ F[X ]. By Lemma 3.2.8
below, f (X) is irreducible. Let E = F(α) where α is a root of f (X). Then, in
E, α p = a so X p − a = X p − α p = (X − α)p and so α ∈ E is an inseparable
element, contradicting the fact that F is perfect. Hence F = Fp. ��
Corollary 3.2.7. Every finite field is perfect.
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Proof. Immediate from Corollary 2.1.11 and Theorem 3.2.6. ��
Lemma 3.2.8. Let char(F) = p, and let a ∈ F, a /∈ Fp. Then f (X) =
X pt − a ∈ F[X ] is irreducible for every t ≥ 1.

Proof. Factor f (X) into monic irreducible polynomials in F[X ], f (X) =
g1(X) · · · gk(X). Let E = F(α) with g1(α) = 0. Then g1(X) = mα(X) ∈
F[X ] as g1(X) is irreducible.

Now 0 = g1(α) implies 0 = f (α) = α pt − a so a = α pt
and

f (X) = X pt − a = X pt − α pt = (X − α)pt ∈ E[X ].
For any i , gi (X) divides f (X) in F[X ], and hence gi (X) divides f (X) in
E[X ] by Lemma 2.2.7, i.e., gi (X) divides (X − α)pt

in E[X ], so gi (X) is a
power of X − α and hence gi (α) = 0. Since gi (α) = 0, gi (X) is divisible by
mα(X) = g1(X), for every i . Since the choice of g1(X) was arbitrary, we see
that g1(X) = g2(X) = · · · = gk(X) and further that f (X) = g(X)k where
g(X) = (X − α) j for some j .

Thus X pt − a = ((X − α) j )k ∈ E[X ] so j = ps and k = pt−s for some
s ≤ t . Suppose s ≤ t − 1. Then g(X) = (X − α)ps ∈ F[X ], so g(X)pt−s−1 ∈
F[X ] as well. But g(X)pt−s−1 = (X − α)pt−1 = X pt−1 − b with b = α pt−1

and
hence b ∈ F. But then bp = (α pt−1

)p = α p = a, so a ∈ Fp, a contradiction.
Hence s = t , k = 1, and f (X) = g(X) is irreducible in F[X ]. ��

3.3 Finite Fields

Let us use the Fundamental Theorem of Galois Theory to completely deter-
mine the structure of finite fields. Recall we defined the Frobenius map 
 in
Definition 2.1.10: Let F be a field of characteristic p. Then 
 : F → F is the
map defined by 
(a) = a p.

Theorem 3.3.1. Let p be a prime and r a positive integer.
(1) There is a field Fpr of pr elements, unique up to isomorphism.
(2) Let s divide r . Then Fpr contains a unique subfield of ps elements. If s

does not divide r , then Fpr does not contain such a field.
(3) If E = Fpr and F = Fps for s dividing r, then Gal(E/F) is cyclic of

order r/s, generated by � = 
s , 
 the Frobenius map. (Then �(α) = α ps
.)

In particular, if E = Fpr and F = Fp, then Gal(E/F) is cyclic of order r ,
generated by the Frobenius map 
.
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Proof. (1) Set q = pr . Let f (X) = Xq − X ∈ Fp[X ], and let F be the splitting
field of this polynomial. We know that a splitting field exists and is unique up
to isomorphism (Lemma 2.5.2 and Corollary 2.6.4). Let g(X) = Xq−1 − 1, so
f (X) = Xg(X). Now f ′(X) = −1 so, by Lemma 3.2.1, the roots of f (X) are
all simple. Thus f (X) has deg f (X) = q distinct roots in F, so in particular
F must have at least q elements. Now let D ⊆ F be the subset of F consisting
of the roots of f (X) and note that |D| = deg f (X) = q. Now we have that
D = {a ∈ F | aq = a} and we observe that D is a field: 1q = 1, if aq = a and
bq = b, then (ab)q = ab and (a + b)q = aq + bq = a + b, and for a �= 0,
(a−1)q = a−1. Thus f (X) splits in D and since F is a splitting field, F ⊆ D,
and so F = D. Hence F = D = Fq is a field of q elements.

On the other hand, if B is any field of q elements, then the multiplicative
group of B has order q − 1, so every nonzero element of B is a root of g(X) =
Xq−1 − 1; hence every element of B is a root of f (X), so B is a splitting field
of f (X) (again as f (X) cannot split in any proper subfield of D) and hence B
is isomorphic to F.

We have observed that the roots of f (X) are all simple, and hence f (X) is
separable. (Alternatively, this follows from from Proposition 3.2.2 (2).) Now
Fq is the splitting field of the separable polynomial f (X) ∈ Fp[X ], so Fq is
a Galois extension of Fp (Theorem 2.7.14) and | Gal(Fq/Fp)| = (Fq/Fp) =
dimFp Fq = r . Now 
 : Fq → Fq and 
 | Fp = id as a p = a for every a ∈ Fp

(by Fermat’s Little Theorem, see Corollary 2.1.12). Hence 
 ∈ Gal(Fq/Fp).

Also, 
r (α) = α pr = α for every α ∈ F, as every α ∈ Fq is a root of
f (X), i.e., 
r = id : Fq → Fq . On the other hand, 
s �= id for s < r as

s(α) = α ps = α if and only if α is a root of the polynomial X ps − X , and this
polynomial cannot have pr roots by Lemma 2.2.1. Hence {1, 
, . . . , 
r−1} is a
subgroup of Gal(Fq/Fp). Since this subgroup has r = | Gal(Fq/Fp)| elements,
it must be the entire Galois group.

Now we may prove (2) and (3) by a direct application of the Fundamental
Theorem of Galois Theory. The subfields of Fq are in 1 − 1 correspondence
with the subgroups of the cyclic group {1, 
, . . . , 
r−1} and each subgroup is
a cyclic group, of order r/s, generated by � = 
s for some divisor s of r .
Thus these subfields are the fixed fields of the cyclic subgroups generated by
�, i.e., the fixed fields of �. But �(α) = α is the equation α ps = α, whose
solutions are the roots of X ps − X , and these are the fields Fps as in (1). ��
Remark 3.3.2. Theorem 3.3.1 (2) has an alternate, more elementary proof.
Consider the multiplicative group G of Fpr , a group of order pr − 1. Sup-
pose Fpr contains a subfield isomorphic to Fps , and let H be the multiplicative
group of that field, of order ps −1. Now, by elementary number theory, ps −1
divides pr − 1 if and only if s divides r . Hence if s does not divide r , |H |
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does not divide |G|, so no subgroup H , and hence no such subfield Fps can
exist. On the other hand, we also know, by Corollary 2.2.2, that G is cyclic,
so if s divides r , and hence ps − 1 divides pr − 1, there is a unique subgroup
H of order ps − 1, and then H ∪ {0} is the unique subfield of Fpr with ps

elements. �
Corollary 3.3.3. Let F = Fps and let f (X) ∈ F[X ] be an irreducible poly-
nomial of degree n. Let r = ns. Then E = Fpr is a splitting field for f (X).
Furthermore, Gal(E/F) = Z/nZ generated by � = 
s .

Proof. Let E0 = F(α) be the field obtained by adjoining a single root α of
f (X) to F. Then, since deg f (X) = n, (E0/F) = n, and E0 = Fpr .

Let E ⊇ E0 be a splitting field for f (X). We claim that E = E0.
On the one hand, this claim follows from Theorem 3.3.1. By Theorem

3.3.1, E0 is a Galois extension of F, so by Theorem 2.7.14, it is in particular a
normal extension of F. But f (X) has a root in E0; by the definition of a normal
extension this implies that f (X) splits in E0.

On the other hand, we can verify this claim directly here. � is an automor-
phism of E0 = F(α) of order n, and that implies that α, �(α), . . . , �n−1(α)

are all distinct. But for any k, 0 = �k(0) = �k( f (α)) = f (�k(α)), so
f (X) has the n distinct roots α, �(α), . . . , �n−1(α) in E0; therefore f (X) =∏n−1

k=0(X − �k(α)) ∈ E0[X ] is a product of linear factors, i.e., f (X) splits in
E0.

The last sentence in the statement of the corollary is then simply a restate-
ment of Theorem 3.3.1 (3). ��
Corollary 3.3.4. (1) For any p, s, and n, there is an irreducible monic poly-
nomial f (X) ∈ Fps [X ] of degree n.

(2) Let k(ps, n) be the cardinality of the set

K = {1 ≤ k ≤ pns − 1 | (pns − 1)/ gcd(k, pns − 1) does not divide

pms − 1 for any proper divisor m of n}.
Then the number of distinct irreducible monic polynomials in Fps [X ] of

degree n is k(ps, n)/n.

Proof. (1) By Corollary 2.2.2, the multiplicative group G of Fpns is cyclic. Let
α0 be a generator of G, so Fpns = Fps (α0). Then f (X) = mα0(X) ∈ Fps [X ] is
an irreducible monic polynomial of degree n.

(2) First we claim that k(ps, n) is the cardinality of the set

K′ = {α ∈ Fpns | α /∈ any proper subfield of Fpns containing Fps }.
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To see this, consider a nonzero element α ∈ Fpns . Then, as an element of
G, α has order dividing pns − 1. By Theorem 3.3.1, the proper subfields of
Fpns containing Fps are the fields Fpms with m a proper divisor of n, and α is
in such a subfield if and only if its order, as an element of G, divides pms − 1.
Now α = αk

0 for some k, and then α has order (pns −1)/ gcd(k, pns −1). Thus
we see that K′ = {αk

0 | k ∈ K}.
Now observe that Fps (α) = Fpns if and only if α ∈ K′, and also that

Fps (α) = Fpns if and only if deg mα(X) = n. In this case f (X) = mα(X)

is an irreducible monic polynomial of degree n, and every irreducible monic
polynomial of degree n arises in this way. Also, every such polynomial has
distinct roots (as it divides X pns − X , which has distinct roots), and no two dis-
tinct such polynomials have a root in common (since if f1(α) = f2(α) = 0,
then f1(X) = mα(X) = f2(X)). Since each such polynomial has n distinct
roots in K′, and K′ has k(ps, n) elements, there are k(ps, n)/n such polyno-
mials. ��

Now let us investigate k(ps, n) a bit further.

Lemma 3.3.5. (1) k(ps, n) ≥ ϕ(pns − 1), where ϕ denotes the Euler totient
function.

(2) If n is prime, k(ps, n) = pns − ps.
(3) For any positive integer n,

k(ps, n) =
∑
d|n

μ(n/d)psd ,

where μ is the Möbius μ function, defined by μ( j) = 0 if j is divisible by
the square of a prime, and otherwise μ( j) = (−1)i where i is the number of
distinct prime factors of j .

Proof. (1) Observe that k ∈ K for any 1 ≤ k ≤ pns −1 with gcd(k, pns −1) =
1, and by definition ϕ(pns − 1) is the number of such integers.

(2) If n is a prime, the only fields intermediate between Fps and Fpns are
these two fields themselves, so in this case K′ = {α ∈ Fpns , α /∈ Fps } and
there are pns − ps such elements.

(3) Let f (ps, n) = pns denote the cardinality of the field Fpns . Then

f (ps, n) =
∑
d|n

k(ps, d)

as any element α of Fpns generates Fpds for exactly one value of d dividing n.
(This is the value of d for which α ∈ Fpds but α /∈ Fpcs for any proper divisor c
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of d.) But then the Möbius Inversion Formula from elementary number theory
shows that

k(ps, n) =
∑
d|n

μ(n/d) f (ps, d),

as claimed. ��

3.4 Disjoint Extensions

In this section, we assume that all fields are subfields of some field A.

Definition 3.4.1. Let B1 and B2 be extensions of F. Then B1 and B2 are dis-
joint extensions of F if B1 ∩ B2 = F. �

Of course, B1 and B2 are always disjoint extensions of B1 ∩ B2.
We first note the following case, which is very special, but easy and useful.

Note also that in this case we can strengthen Lemma 2.3.4.

Lemma 3.4.2. Let B1 and B2 be finite extensions of F, with di = (Bi/F), i =
1, 2. If d1 and d2 are relatively prime, then B1 and B2 are disjoint extensions
of F, and, furthermore,

(B1B2/F) = d1d2, (B1B2/B2) = d1, and (B1B2/B1) = d2.

Proof. Let B0 = B1 ∩ B2 and d0 = (B0/F). Then (Bi/F) = (Bi/B0)(B0/F),
for i = 1, 2, so d0 divides both d1 and d2, so d0 = 1 and B0 = F.

Now let d = (B1B2/F). We observe that d = (B1B2/Bi )(Bi/F) for
i = 1, 2. From this we immediately see that d is divisible by both d1 and
d2, and from Lemma 2.3.4 we see that d ≤ d1d2, so d = d1d2 from which the
remaining two equalities immediately follow. ��

As we shall now see, we can say quite a bit about the composite of disjoint
extensions when at least one of the extensions is finite Galois, and even more
when both are.

Theorem 3.4.3. Suppose that B2 is a finite Galois extension of B1 ∩ B2. Then
B1B2 is a finite Galois extension of B1, and

Gal(B1B2/B1) ∼= Gal(B2/B1 ∩ B2),

with the isomorphism given by σ �→ σ | B2.
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Proof. Let B0 = B1∩B2. Since B2 is a Galois extension of B0, it is the splitting
field of a separable polynomial f (X) ∈ B0[X ]. If f (X) has roots α1, . . . , αk ,
then B2 = B0(α1, . . . , αk) (Remark 2.5.6), and so B1B2 = B1(α1, . . . , αk).
Then B1B2 is the splitting field of the separable polynomial f (X) ∈ B1[X ], so
B1B2 is a finite Galois extension of B1.

Let σ ∈ Gal(B1B2/B1). Then σ | B1 = id, so certainly σ | B0 = id,
and hence σ( f (X)) = f (X). In particular, σ permutes the roots α1, . . . , αk

of f (X), so σ(B2) = B0(σ (α1) . . . , σ (αk)) = B0(α
′
1, . . . , α

′
k) = B2, where

{α′
1, . . . , α

′
k} is a permutation of {α1, . . . , αk}. Thus σ | B2 : B2 → B2, and

σ | B0 = id, so σ | B2 ∈ Gal(B2/B0).
We claim that the map σ �→ σ | B2 is an isomorphism.
First, suppose that σ | B2 = id. Then σ(αi ) = αi for each i . Also, since

σ ∈ Gal(B1B2/B1), σ | B1 = id by definition. But we have observed that
B1B2 = B1(α1, . . . , αk), so σ = id.

Next, let τ ∈ Gal(B2/B0). Then B1B2 = B1(α1, . . . , αk) is the splitting
field of f (X) ∈ B1[X ], so, by Lemma 2.6.3, τ extends to σ : B1B2 → B1B2,
and then σ | B2 = τ . ��

Under our hypothesis we may strengthen Lemma 2.3.4.

Corollary 3.4.4. Suppose that B2 is a finite Galois extension of B1 ∩ B2. Then

(B1B2/B1) = (B2/B1 ∩ B2),

(B1B2/B2) = (B1/B1 ∩ B2),

and

(B1B2/B1 ∩ B2) = (B1/B1 ∩ B2)(B2/B1 ∩ B2).

Proof. The first equality is immediate from Theorem 3.4.3 and then the second
and third follow as

(B1B2/B1 ∩ B2) = (B1B2/B1)(B1/B1 ∩ B2)

= (B1B2/B2)(B2/B1 ∩ B2). ��
We also make the following observations.

Corollary 3.4.5. Let B1 and B2 be finite extensions of F and suppose that B2

is a Galois extension of F. Then

(B1B2/F) = (B1/F)(B2/F)

if and only if B1 and B2 are disjoint extensions of F.
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Proof. By Corollary 3.4.4,

(B1/F)(B2/F) = (B1/B1 ∩ B2)(B1 ∩ B2/F)(B2/B1 ∩ B2)(B1 ∩ B2/F)

= (B1B2/B1 ∩ B2)(B1 ∩ B2/F)2

= (B1B2/F)(B1 ∩ B2/F)

so we have the equality in the statement of the corollary if and only if
(B1 ∩ B2/F) = 1, i.e., if and only if B1 ∩ B2 = F. ��
Corollary 3.4.6 (Theorem on Natural Irrationalities). Let f (X) ∈ F[X ] be
a separable polynomial and let B ⊇ F. Let E be a splitting field for f (X) over
F. Then BE is a splitting field for f (X) over B and Gal(BE/B) is isomorphic
to Gal(E/E ∩ B), a subgroup of Gal(E/F), with the isomorphism given by
σ �→ σ | E.

Proof. Let f (X) have roots α1, . . . , αk , so E = F(α1, . . . , αk) (Remark 2.5.6);
then BE = B(α1, . . . , αk) is a splitting field for f (X) ∈ B[X ]. Now BE is a
Galois extension of B as it is the splitting field of a separable polynomial, and
E is a Galois extension of F for the same reason. Then, setting D = B ∩ E,
F ⊆ D ⊆ E, E = D(α1, . . . , αk), and so E is a Galois extension of D, also for
the same reason. Then, by Theorem 3.4.3, Gal(BE/B) is isomorphic, via the
restriction map, to Gal(E/D), which is a subgroup of Gal(E/F). ��
Theorem 3.4.7. (1) Let B1 and B2 be disjoint Galois extensions of F. Then
E = B1B2 is a Galois extension of F with Gal(E/F) = Gal(B1/F) ×
Gal(B2/F).

(2) Let E be a Galois extension of F and suppose that Gal(E/F) = G1 ×
G2. Let B1 = Fix(G1) and B2 = Fix(G2). Then B1 and B2 are disjoint Galois
extensions of F and E = B1B2.

Proof. (1) By Theorem 3.4.3, we have isomorphisms

Gal(E/Bi ) → Gal(B j/F)

given by σ �→ σ | B j , for i = 1 and j = 2, and vice versa. In other words, any
σ j ∈ Gal(B j/F) has a unique extension to σ̃ j ∈ Gal(E/Bi ) ⊆ Gal(E/F), j =
1, 2. Now any e ∈ E may be written as e = ∑

b1
i b2

i with b1
i ∈ B1 and b2

i ∈ B2.
Then σ̃1σ̃2(e) = ∑

σ̃1σ̃2(b1
i b2

i ) = ∑
σ̃1σ̃2(b1

i )σ̃1σ̃2(b2
i ) = ∑

σ̃1(b1
i )σ̃2(b2

i ) =∑
σ̃2σ̃1(b1

i )σ̃2σ̃1(b2
i ) = ∑

σ̃2σ̃1(b1
i b2

i ) = σ̃2σ̃1(e), so σ̃1 and σ̃2 commute and
we have a map

Gal(B1/F) × Gal(B2/F) �→ Gal(E/F)
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defined by

(σ1, σ2) �→ σ̃1σ̃2.

Next, this map is an injection: Suppose σ̃1σ̃2 = id : E → E. Then in
particular σ̃1σ̃2 | B2 = id, but σ̃2 | B2 = id by definition, so σ1 = σ̃1 | B1 = id,
and similarly σ2 = σ̃2 | B2 = id.

Finally, on the one hand, as Gal(E/F) contains Gal(B1/F) × Gal(B2/F),

| Gal(E/F)| ≥ | Gal(B1/F) × Gal(B2/F)|
= | Gal(B1/F)| | Gal(B2/F) |
= (B1/F)(B2/F)

= (B1/F)(E/B1)

= (E/F),

and, on the other hand, | Gal(E/F)| = (E/D) ≤ (E/F), where D ⊇ F is the
fixed field of Gal(E/F), so | Gal(E/F)| = (E/F). Thus this map is an injection
from one group to another group of the same order, and hence an isomorphism;
furthermore E is a Galois extension of F.

(2) Since G = G1G2 and {1} = G1 ∩ G2, this follows directly from
Proposition 2.8.14. ��
Corollary 3.4.8. Let B1 and B2 be finite Galois extensions of F and let E =
B1B2, B0 = B1 ∩ B2. Then E is a Galois extension of F and Gal(E/F) =
{(σ1, σ2) ∈ Gal(B1/F) × Gal(B2/F) | σ1 | B0 = σ2 | B0}.
Proof. Since B1 is a Galois extension of F, it is the splitting field of a sep-
arable polynomial f1(X) ∈ F[X ], by Theorem 2.7.14. Similarly, B2 is the
splitting field of a separable polynomial f2(X) ∈ F[X ]. Then E is the split-
ting field of the separable polynomial f (X) = f1(X) f2(X) ∈ F[X ], so, by
Theorem 2.7.14, it is a Galois extension of F.

As in the proof of Theorem 3.4.3, σ(Bi ) = Bi for each σ ∈ Gal(E/F),
i = 1, 2 (as Bi is the splitting field of a separable polynomial whose roots are
permuted by σ ). Thus we have a map σ �→ (σ1, σ2) = (σ | B1, σ | B2).
Again this map is an injection, as E = B1B2, and clearly any (σ1, σ2) in image
of this map satisfies σ1 | B0 = σ2 | B0. Then

(E/F) = (E/B0)(B0/F) = (E/B2)(B2/B0)(B0/F)

= (B1/B0)(B2/B0)(B0/F)

= (B1/F)(B2/F)/(B0/F),

and these are the orders of the groups in the statement of the corollary. ��
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Corollary 3.4.9. Let B and E be disjoint extensions of F, with E a finite Galois
extension of F. Let r : Gal(BE/B) → Gal(E/F) be the restriction isomor-
phism, r(σ ) = σ | E. Let H ⊆ Gal(BE/B) be a subgroup. Then, for the fixed
fields, we have

Fix(H) = B Fix(r(H)).

Proof. First observe that r is an isomorphism by Theorem 3.4.3. Now let K =
r(H) and D = Fix(K ). Then certainly Fix(H) ⊇ BD. Now

(BE/B) = (BE/BD)(BD/B)

and

(E/F) = (E/D)(D/F).

Now (BE/B) = (E/F) as the Galois groups of these two extensions are
isomorphic, again by Theorem 3.4.3. On the other hand, by Lemma 2.3.4,

(BE/BD) ≤ (E/D) and (BD/B) ≤ (D/F),

so both inequalities must be equalities. But, since r is an isomorphism between
the groups H and K ,

(BE/ Fix(H)) = |H | = |K | = (E/ Fix(K )) = (E/D)

so (BE/ Fix(H)) = (BE/BD) and hence Fix(H) = BD. ��
Theorem 3.4.10. Let B and E be disjoint extensions of F.

(1) Assume that both B and E are finite Galois extensions of F. Let N1 =
Gal(BE/B) and N2 = Gal(BE/E). Then BE is a Galois extension of F, and
N1 and N2 are normal subgroups of Gal(BE/F). Furthermore, Gal(BE/F) is
the direct product N1 × N2 of the subgroups N1 and N2.

(2) Assume that E is a finite Galois extension of F. Let H = Gal(BE/B)

and N = Gal(BE/E). Then BE is a Galois extension of F and N is a normal
subgroup of Gal(BE/F). Furthermore, Gal(BE/F) is the semidirect product
H N of the subgroups H and N.

Proof. (1) This follows immediately from Theorem 3.4.3 and Corollary 3.4.6.
(2) E is a Galois extension of F, by hypothesis, so N = Gal(BE/E) is a

normal subgroup of Gal(BE/F), with quotient H0 = Gal(E/F). By Theorem
3.4.3 the subgroup H = Gal(BE/B) maps isomorphically onto H0 under the
projection G → G/N . But then G = H N . ��
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Lemma 3.4.11. Let α ∈ A with separable minimum polynomial mα(X) ∈
F[X ]. Let E be a splitting field of mα(X). If B is an extension of F such that B
and E are disjoint, then mα(X) is irreducible in B[X ].
Proof. Let m̃α(X) be the minimum polynomial of α over B. Of course, m̃α(X)

is irreducible in B[X ] (as is mα(X) in F[X ]). Let {α1, . . . , αd} be the roots of
mα(X) in E. E is a Galois extension of F by Theorem 2.7.14. Now Gal(E/F)

acts transitively on {αi }, by Proposition 2.8.15, and every σ0 ∈ Gal(E/F) ex-
tends to σ ∈ Gal(EB/B), by Theorem 3.4.3, so Gal(EB/B) acts transitively
on {αi }. Then, by Lemma 2.7.12, m̃α(X) = ∏d

i=1(X − αi ) = mα(X). ��
Remark 3.4.12. The converse of Lemma 3.4.11 is false in general. Here is an
example. Let F = Q and A = Q(ω,

3
√

2) (ω a primitive cube root of 1).
Let α = 3

√
2, so mα(X) = X3 − 2 ∈ F[X ] with splitting field E = A. Let

B = Q(ω). Then mα(X) is irreducible in B[X ], but B ∩ E = B ⊃ F. �
However, we do have the following partial converse.

Lemma 3.4.13. Let α ∈ A with separable minimum polynomial mα(X) ∈
F[X ] and suppose that E = F(α) is a splitting field of mα(X). If B is an ex-
tension of F such that mα(X) is irreducible in B[X ], then B and E are disjoint
extensions of F.

Proof. Since mα(X) is irreducible in B[X ], m̃α(X) = mα(X). By Corollary
3.4.4, (B(α)/B) = (BF(α)/B) = (F(α)/B ∩ F(α)) = (E/B ∩ E). But

(B(α)/B) = deg m̃α(X) = deg mα(X) = (F(α)/F) = (E/F),

so B ∩ E = F. ��
Let B1 and B2 be extensions of F. In Lemma 2.3.4 we showed that

(B1B2/F) ≤ (B1/F)(B2/F). In Example 2.3.7 we gave an example with
B1 and B2 disjoint extensions of F where we had strict inequality. We now
formulate a condition that ensures that we will have equality. Note that in
Lemma 3.4.14 and Definition 3.4.15 we do not restrict ourselves to finite ex-
tensions.

Lemma 3.4.14. Let B1 and B2 be extensions of F. The following are equiva-
lent:

(a) If S1 = {s ′
i } is a subset of B1 that is F-linearly independent, then S1 is

B2-linearly independent.
(b) If S2 = {s ′′

j } is a subset of B2 that is F-linearly independent, then S2 is
B1-linearly independent.

(c) If S1 = {s ′
i } is a subset of B1 that is F-linearly independent, and S2 =

{s ′′
j } is a subset of B2 that is F-linearly independent, then S1S2 = {s ′

i s
′′
j } is

F-linearly independent.
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Proof. We show that (a) and (c) are equivalent. Then (b) and (c) are equivalent
simply by interchanging the roles of B1 and B2, so all three are equivalent.

(a) implies (c): Suppose
∑

i, j ai j s ′
i s

′′
j = 0 with ai j ∈ F. Then(∑

i s ′
i (

∑
j ai j s ′′

j )
) = 0. As S1 is B2-linearly independent, each inner sum is

zero; as S2 is F-linearly independent, each ai j is zero.
(c) implies (a): Suppose

∑
i βi s ′

i = 0 with βi ∈ B2. Choose S2 = {s ′′
j } to

be a basis of B2 as an F-vector space. Then, for each i , we have βi = ∑
j ai j s ′′

j
with ai j ∈ F. Then 0 = ∑

i βi s ′
i = ∑

i s ′
i (

∑
j ai j s ′′

j ) = ∑
i, j ai j s ′

i s
′′
j . As

S1S2 = {s ′
i s

′′
j } is F-linearly independent, each ai j is zero, and hence each βi is

zero. ��
Definition 3.4.15. Let B1 and B2 be extensions of F. If B1 and B2 satisfy the
equivalent conditions of Lemma 3.4.14, then B1 and B2 are linearly disjoint
extensions of F. �
Lemma 3.4.16. Let B1 and B2 be finite extensions of F. Then (B1B2/F) =
(B1/F)(B2/F) if and only if B1 and B2 are linearly disjoint extensions of F.

Proof. Let S1 be a basis for B1 and S2 be a basis for B1. Then S1S2 spans
B1B2 as an F-vector space. If B1 and B2 are linearly disjoint then S1S2 is
linearly independent and hence a basis for B1B2 over F. Thus in this case
(B1B2/F) = (B1/F)(B2/F). If B1 and B2 are not linearly disjoint then S1S2 is
not linearly independent and hence some proper subset of S1S2 is a basis for
B1B2 over F. Thus in this case (B1B2/F) < (B1/F)(B2/F). ��
Corollary 3.4.17. Let B1 and B2 be disjoint finite extensions of F and sup-
pose that B2 is a Galois extension of F. Then B1 and B2 are linearly disjoint
extensions of F.

Proof. Immediate from Corollary 3.4.5 and Lemma 3.4.16. ��

3.5 Simple Extensions

Let E be a finite extension of F. Then, choosing a basis {α1, . . . , αk} for E as
an F-vector space, E = F(α1, . . . , αk). We may think of E as obtained from F
in (at most) k steps, successively adjoining α1, then α2, . . . , and finally αk . It
is natural to ask when we can obtain E in one step.

Definition 3.5.1. Let E be an algebraic extension of F such that E = F(α) for
some α in E. Then E is a simple extension of F and α is a primitive element
of E. �
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We derive a criterion for E to be a simple extension of F.

Theorem 3.5.2. Let E be a finite extension of F. Then E is a simple extension
of F if and only if there are a finite number of intermediate fields F ⊆ B ⊆ E.

Proof. First, we consider the case when F is finite. Then E is finite, so on the
one hand there are (trivially) only finitely many intermediate fields, and on
the other hand, the multiplicative group of E is cyclic (Corollary 2.2.2), so it
consists of the powers of some α ∈ E, and then E = F(α).

Now we consider the case when F is infinite. First, assume that E is simple,
E = F(α). Then α has minimum polynomial mα(X) ∈ F[X ]. Let F ⊆ B ⊆ E
and consider m̃α(X) ∈ B[X ], the minimum polynomial of α over B. Then E =
B(α), so (E/B) = deg m̃α(X). Let D be the field obtained from F by adjoining
the coefficients of m̃α(X). Then F ⊆ D ⊆ B. As m̃α(X) is irreducible in B[X ],
it is certainly irreducible in D[X ], so m̃α(X) is the minimum polynomial of α

over D, and E = D(α), so (E/D) = deg m̃α(X) = (E/B) and hence B = D.
Thus the intermediate field B is determined by the polynomial m̃α(X). But
m̃α(X) divides mα(X) in B[X ] (as mα(α) = 0) and hence m̃α(X) divides
mα(X) in E[X ]. But mα(X) has only finitely many factors in E[X ], so there
are only finitely many possibilities for m̃α(X) and hence for B.

Conversely, suppose there are only finitely many fields between F and E.
We show that given any α and β in E there is a γ1 in E with F(α, β) = F(γ1).
Since E is a finite extension of F, it is obtained by adjoining a finite number k
of elements, and then the theorem follows by induction on k.

Consider the fields F(α + aβ) for a ∈ F. Since there are infinitely many
elements of F and only finitely many intermediate fields, there must exist dis-
tinct elements a1 and a2 of F with F(α+a1β) = F(α+a2β). Set γ1 = α+a1β,
γ2 = α+a2β. Then F(γ1) = F(γ2), so γ2 ∈ F(γ1), and certainly γ1 ∈ F(γ1), so
γ2−γ1 = (a2−a1)β ∈ F(γ1), and hence β ∈ F(γ1) and γ1−a1β = α ∈ F(γ1).
Thus F(γ1) ⊆ F(α, β) ⊆ F(γ1) and they are equal. ��

While Theorem 3.5.2 does not look easy to apply, in fact it readily gives a
strong general result.

Corollary 3.5.3. If E is a finite separable extension of F, then E is a simple
extension of F.

Proof. Let E = F(α1, . . . , αk). By the definition of a separable extension
(Definition 2.7.3) each mαi (X) is a separable polynomial and hence (also by
Definition 2.7.3) the product f (X) = mα1(X) · · · mαk (X) is also a separable
polynomial. Let E′ ⊇ E be an extension of F that is a splitting field of the
polynomial f (X). Then E′ is a Galois extension of F (Theorem 2.7.14), so by
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the Fundamental Theorem of Galois Theory there are only finitely many fields
intermediate between F and E′ (corresponding to the subgroups of Gal(E′/F)),
and hence there are certainly only finitely many fields between F and E. Then,
by Theorem 3.5.2, E is a simple extension of F. ��

In case E is a Galois extension of F, we have the following criterion for an
element of E to be primitive.

Lemma 3.5.4. Let E be a finite Galois extension of F and let α ∈ E. Then α

is primitive, i.e., E = F(α), if and only if σ(α) �= α for every σ ∈ Gal(E/F),
σ �= id.

First proof. Let d = (F(α)/F) and n = (E/F), so E = F(α) if and only
if d = n. Now n = | Gal(E/F)| (Theorem 2.8.5) and d = deg mα(X)

(Lemma 2.4.6 (2)). But, by Lemma 2.7.12, mα(X) = ∏d
i=1(X − αi ) where

α1 = α, α2, . . . , αd are the Galois conjugates of α in E. Hence E = F(α)

if and only if α has n conjugates, and this is true if and only if σ(α) = α,
σ ∈ Gal(E/F), implies σ = id.

Second Proof. Let B = F(α) so B is intermediate between F and E. By the
FTGT, F = Fix(H) for H a subgroup of Gal(E/F), and furthermore H =
{σ ∈ Gal(E/F) | σ | B = id} = {σ ∈ Gal(E/F) | σ(α) = α}. Then, also by
the FTGT, B = E if and only if H = {id}. ��

The following proposition is very useful in constructing primitive ele-
ments.

Proposition 3.5.5. Let F be a field of characteristic 0 and let B1 and B2 be
disjoint finite Galois extensions of F. Set B = B1B2. Let α1 be a primitive
element of B1 and let α2 be a primitive element of B2. Then α = α1 + α2 is a
primitive element of B.

Proof. We first observe that B is a Galois extension of F (Theorem 3.4.7), so,
by Lemma 3.5.4, it suffices to show that the Galois conjugates of α are all
distinct. In order to show this, we need only show that if σ(α) = α for some
σ ∈ G = Gal(B/F), then σ = id.

Thus, let σ ∈ G with σ(α) = α. By Theorem 3.4.7, σ = (σ1, σ2) with
σi ∈ Gal(Bi/F), i = 1, 2. Then

α1 + α2 = α = σ(α) = σ1(α1) + σ2(α2),

so we see that σ1(α1) − α1 = σ2(α2) − α2. But σi (αi ) − αi ∈ Bi , i = 1, 2, and
B1 and B2 are disjoint extensions of F, so σ1(α1)−α1 = σ2(α2)−α2 = a ∈ F.
Thus σ1(α) = α + a, from which we see that σ k

1 (α) = α + ka for every k.
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But σ1 has finite order m, so α = σ m
1 (α) = α + ma, so ma = 0 and hence

a = 0. Thus σ1(α1) = α1, and then σ2(α2) = α2 as well. But α1 is a primitive
element of B1, so σ1(α1) = α1 implies σ1 = id on B1; similarly σ2 = id on B2

as well, so σ = id on B as required. ��
Remark 3.5.6. In order to effectively apply Proposition 3.5.5 we need to de-
velop some more background, which we do in the next chapter. But to show
its applicability, as well as to provide some interesting examples of primitive
elements, we shall quote an example from the next chapter here.

Example 4.6.21. (1) Let E = Q(
√

2,
3
√

2,
5
√

2,
7
√

2). Then E is an ex-
tension of Q of degree 210 with primitive element

√
2+ 3

√
2+ 5

√
2+ 7

√
2.

(2) Let E = Q(
√

2,
√

3,
√

5,
√

7). Then E is an extension of Q of
degree 16 with primitive element

√
2 + √

3 + √
5 + √

7. Similarly, if
E = Q(

3
√

2,
3
√

3,
3
√

5,
3
√

7), then E is an extension of Q of degree 81
with primitive element 3

√
2 + 3

√
3 + 3

√
5 + 3

√
7.

(3) Let E = Q(
√

2,
3
√

2,
√

3,
3
√

3). Then E is an extension of Q of
degree 36 with primitive element

√
2 + 3

√
2 + √

3 + 3
√

3. �
Example 3.5.7. Here is an example that shows that the conclusion of Proposi-
tion 3.5.5 may be false if B1 and B2 are not Galois extensions of F. Let F = Q,
B1 = Q(

3
√

2), and B2 = Q(ω
3
√

2). Then B = Q(ω,
3
√

2). Let α1 = − 3
√

2, a
primitive element of B1, and let α2 = −ω

3
√

2, a primitive element of B2. Then
α = α1 + α2 = ω2 3

√
2 is not a primitive element of B. �

Example 3.5.8. Here is an example of an extension that is not simple. Let
F = Fp(s, t), the field of rational functions in the variables s and t over Fp.
Let E be the splitting field of the polynomial (X p − s)(X p − t). More simply,
E = F(β, γ ) where β p = s and γ p = t . Then [E/F] = p2. On the other hand,
it is easy to check that for any α ∈ E, α p ∈ F, so [F(α) : F] = 1 or p, and in
particular F(α) ⊂ E. �

3.6 The Normal Basis Theorem

Let E be a Galois extension of F of degree n. Then, as an F-vector space,
E has a basis of n elements. On the other hand, Gal(E/F) has n elements,
and so it natural to ask if there is some element α of E whose conjugates
{σ(α) | σ ∈ Gal(E/F)} form a basis for E over F. In fact, this is always the
case, as we shall show in this section.

Definition 3.6.1. Let E be a Galois extension of F. A basis {αi }i=1,...,n of E as
a vector space over F is a normal basis for E over F if {αi } = {σi (α)} for some
α ∈ E, where {σi }i=1,...,n = Gal(E/F). �
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There is one case of this theorem that follows directly from linear algebra.

Theorem 3.6.2. Let E be a finite Galois extension of F. Suppose Gal(E/F) is
cyclic. Then E has a normal basis.

Proof. Let σ be a generator of Gal(E/F) and let T : E → E be given by
T (α) = σ(α). Then T is a linear transformation that satisfies T n − I = 0. We
claim the minimum polynomial mT (X) = Xn − 1. Certainly mT (X) divides
Xn − 1. Suppose mT (X) �= Xn − 1. Then mT (X) = ∑d

i=0 ai Xi with d < n.
In other words,

a0 id + · · · + ad−1σ
d−1 = 0

as a map from E to E, and hence as a map from E∗ to E.
But {id, σ, . . . , σ d−1} are a set of distinct characters of E∗ in E, so by

Theorem 2.8.4 are linearly independent, so ai = 0 for each i , a contradiction.
Now order the elements of Gal(E/F) as {id, σ, . . . , σ d−1}.
Then (by [AW, Theorem 3.7.1]) there is an element α of E with Ann(α) =

〈mT (X)〉 (i.e., where the annihilator ideal of α in F[X ] is the ideal generated
by mT (X)). Then, since deg mT (X) = n, {α, T (α), . . . , T n−1(α)} =
{α, σ (α), . . . , σ n−1(α)} are linearly independent, hence form a basis, and this
is a normal basis.

(Alternatively phrased, mT (X) = mα(X), by Proposition 2.4.6 (3). But E
has a basis over F in which the matrix of T is the companion matrix of mT (X).
But then if α1 is the first element of the basis, σ j (α1) = T j (α1) = α1+ j for
j = 0, . . . , n − 1 ([AW, Corollary IV.4.15]), so {αi } is a normal basis.) ��

The argument for the general case also uses linear algebra, but is more
involved.

Lemma 3.6.3. Let E be a Galois extension of F of degree n, and let σi , i =
1, . . . , n, be the elements of Gal(E/F). Let α1, . . . , αn be elements of E. Then
{α1, . . . , αn} is a basis for E over F if and only if the matrix A = (αi j ), αi j =
σi (α j ), is nonsingular.

Proof. Let {α1, . . . , αn} be a basis for E over F, and suppose some linear
combination of the rows of A is zero, say

∑n
i=1 ciαi j = 0 for each j , i.e.,∑n

i=1 ciσi (α) = 0, α = α1, . . . , α j . But each σi is an F-linear map, so∑n
i=1 ciσi (α) = 0 for every α ∈ E. But the σi are distinct characters of E∗

in E, so by Theorem 2.8.4 are linearly independent; so c1 = · · · = cn = 0.
Thus the rows of A are linearly independent and A is nonsingular.

On the other, suppose {α1, . . . , αn} is not a basis. Then it is not linearly
independent, so there is a nontrivial linear combination

∑n
j=1 d jα j = 0. Then
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∑n
j=1 d jαi j = ∑n

j=1 d jσi (α j ) = σi (
∑n

j=1 d jα j ) = σi (0) = 0 for each i , so
the columns of A are linearly dependent, and A is singular. ��
Lemma 3.6.4. Let F be an infinite field, let E be an extension of F, and let
f (X1, . . . , Xk) ∈ E[X1, . . . , Xk] be a polynomial. If f (a1, . . . , ak) = 0 for
every (a1, . . . , ak) ∈ Fk , then f (X1, . . . , Xk) is the zero polynomial.

Proof. By induction on k. For k = 1, let f (X1) ∈ E[X1] be a nonzero polyno-
mial with f (a1) = 0 for every a1 ∈ F. Then f (X1) has more than deg f (X1)

roots, contradicting Lemma 2.2.1. Now assume the lemma is true for k −1 and
consider f (X1, . . . , Xk). Regard this as a polynomial in Xk with coefficients
in X1, . . . , Xk−1, so

f (X1, . . . , Xk) =
n∑

i=0

gi (X1, . . . , Xk−1)Xi
k .

For any fixed elements a1, . . . , ak−1 of F, f̄ (Xk) = f (a1, . . . , ak−1, Xk)

has more than d roots, so is identically zero by the k = 1 case, so each coef-
ficient gi (X1, . . . , Xk−1) is zero for every (a1, . . . , ak−1), and hence is identi-
cally zero by the k − 1 case. ��

Theorem 2.8.4 gives us linear independence of characters. In fact, when
F is infinite and E is a finite Galois extension of F, we may derive a stronger
kind of independence, algebraic independence.

Theorem 3.6.5. Let F be an infinite field and let Gal(E/F) = {σi }, i =
1, . . . , n. Then {σi } are algebraically independent, i.e., if f (X1, . . . , Xk) ∈
E[X1, . . . , Xk] is a polynomial with f (σ1(α), . . . , σk(α)) = 0 for every
α ∈ E, then f (X1, . . . , Xk) is the zero polynomial.

Proof. Fix a basis {α1, . . . , αn} for E over F. By Lemma 3.6.3, the matrix
A = A(α1, . . . , αn) is nonsingular, where A = (αi j ) = (σi (α j )).

In this proof we shall identify an n-tuple (β1, . . . , βn) of elements of E
with the column vector [β1, . . . , βn]t . (Purely for typographical convenience,
we write this column vector [β1, . . . , βn]t as the transpose of the row vector
[β1, . . . , βn].)

For an arbitrary n-tuple (c1, . . . , cn) of elements of F, let α = ∑n
j=1 c jα j .

Then σi (α) = ∑n
j=1 c jσi (α j ) = ∑n

j=1 αi j c j for each i = 1, . . . , n, i.e.,

[σ1(α), . . . , σn(α)]t = A[c1, . . . , cn]t .

Now suppose that f (σ1(α), . . . , σn(α)) = 0 for every α ∈ E. Then, in our
notation,
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0 = f ([σ1(α), . . . , σn(α)]t ) = f (A[c1, . . . , cn]t )

for every (c1, . . . , cn) ∈ Fn . Thus the polynomial

g(X1, . . . , Xn) = f (A[X1, . . . , Xn]t )

is zero for every (c1, . . . , cn) ∈ Fn , so, by Lemma 3.6.4, it must be the zero
polynomial in E[X1, . . . , Xn], and g(γ1, . . . , γn) = 0 for every (γ1, . . . , γn) ∈
En . We claim also that f (X1, . . . , Xn) is the zero polynomial, and, again
by Lemma 3.6.4, that will follow if we show f (b1, . . . , bn) = 0 for ev-
ery (b1, . . . , bn) ∈ Fn . Thus, let (b1, . . . , bn) ∈ Fn . Since A is invertible,
we may define (γ1, . . . , γn) by [γ1, . . . , γn]t = A−1[b1, . . . , bn]t , and then
f (b1, . . . , bn) = f ([b1, . . . , bn]t ) = f (A[γ1, . . . , γn]t ) = g(γ1, . . . , γn) = 0,
as claimed. ��
Remark 3.6.6. Theorem 3.6.5 is false for finite fields. Here is a counterexam-
ple. Let F = F2 = {0, 1} and E = F4 = {0, 1, α0, α0 + 1} with α2

0 = α0 + 1.
Let Gal(E/F) = {σ1, σ2} with σ1 = id and σ2 given by σ2(α0) = α + 1.
Let f (X1, X2) be the polynomial f (X1, X2) = (X2 − X1)(X2 − X1 − 1).
Then p(σ1(α)σ2(α)) = (σ2(α) − σ1(α))(σ2(α) − σ1(α) − 1) = 0 for every
α ∈ E. �
Theorem 3.6.7. Let E be a finite Galois extension of F. Then E has a normal
basis.

Proof. If F is finite, then E is a cyclic extension of F (Theorem 3.3.1) so the
result is a special case of Theorem 3.6.2.

Assume henceforth that F is infinite. Let Gal(E/F) = {σ1, . . . , σn}. Let
B = B(X1, . . . , Xn) be the matrix whose entries are indeterminates Xk , with
bi j = Xk if σiσ j = σk . Then det(B) is a polynomial in X1, . . . , Xk , det(B) =
d(X1, . . . , Xk). Note each Xi appears exactly once in every row and column.
Thus, setting X1 = 1 and Xi = 0 for i > 1, we see det(B) = ±1, i.e.,
d(1, 0, . . . , 0) = ±1. Thus d is not the zero polynomial. Hence by Theorem
3.6.5 there is an α ∈ E with d(σ1(α), . . . , σn(α)) �= 0. Let α j = σ j (α),
j = 1, . . . , n. Now let A = B(σ1(α), . . . , σn(α)). If A = (ai j ), then ai j = αk

where σiσ j (α) = σk(α), or, in other words, ai j = σiσ j (α) = σi (α j ). Thus A
is a matrix as in Lemma 3.6.3, and det(A) = d(σ1(α), . . . , σn(α)) �= 0, so A
is nonsingular, and then, by Lemma 3.6.3, {α1, . . . , αn} = {σ1(α), . . . , σn(α)}
is a basis for E over F. ��
Remark 3.6.8. Let E be a Galois extension of F and let α ∈ E. Then α is a
primitive element if the conjugates of α are all distinct (Lemma 3.5.4), but
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for α to be part of a normal basis, the conjugates of α must be linearly inde-
pendent. This latter is definitely a stronger condition, as the following simple
example shows. Let F = Q and E = Q(

√
2). Let α = √

2. Then the conju-
gates of α are α and −α, so the conjugates are distinct (and E = F(α)) but
they are certainly not linearly independent (so {α, −α} is not a normal basis
for E over F). �

3.7 Abelian Extensions and Kummer Fields

Let E be a Galois extension of F. Then E is called an abelian extension of
F if the Galois group Gal(E/F) is abelian. Since abelian groups are easier
to understand than arbitrary groups, we may hope that abelian extensions are
easier to understand than arbitrary Galois extensions. As we shall see in this
section, under the appropriate conditions on F, we can indeed describe abelian
extensions very concretely.

Recall that for a field F, F0 denotes the prime field: F0 = Q if char(F) = 0
and F0 = Fp if char(F) = p.

Definition 3.7.1. An element ζ ∈ F is a primitive nth root of 1 in F if ζ n = 1,
but ζ m �= 1 for any 1 ≤ m < n. �
Lemma 3.7.2. (1) If F has a primitive nth root of 1, then char(F) = 0 or is
prime to n.

(2) The following are equivalent:
(a) F has a primitive nth root of 1.
(b) F has n distinct nth roots of 1.

Proof. (1) Suppose char(F) = p and p divides n. Let ζ n = 1. Then ζ is a root
of Xn −1. But Xn −1 = (Xn/p)p −1 = (Xn/p −1)p so ζ is a root of Xn/p −1,
i.e., ζ n/p = 1 and ζ is not primitive.

(2) If ζ is a primitive nth root of 1, then 1, ζ, . . . , ζ n−1 are distinct and
are all nth roots of 1. On the other hand, the group of nth roots of 1 in F is a
subgroup of the multiplicative group of F, so is cyclic (Corollary 2.2.2). Thus
if F has n distinct nth roots of 1, a generator of this group is a primitive nth root
of 1. ��

Henceforth we assume that char(F) = 0 or that p = char(F) is relatively
prime to n and we let ζn denote an arbitrary but fixed primitive nth root of 1.
Observe that ζn = exp(2π i/n) is a primitive nth root of 1 in C.

Lemma 3.7.3. F0(ζn) is a Galois extension of F0, and Gal(F0(ζn)/F0) is iso-
morphic to a subgroup of (Z/nZ)∗. In particular this group is abelian.
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Proof. F(ζn) is the splitting field of the separable polynomial Xn − 1, so it is
a Galois extension of F0.

If σ1 ∈ Gal(F0(ζn)/F0), then σ1(ζn) is a primitive nth root of 1, so σ1(ζn) =
ζ k1

n for some k1 with (k1, n) = 1.
Similarly, σ2 ∈ Gal(F(ζ0)/F) satisfies σ2(ζn) = ζ k2

n where (k2, n) = 1.
Then σ1σ2(ζn) = ζ k1k2

n = σ2σ1(ζn), and σ ∈ Gal(F0(ζn)/F0) is determined by
σ(ζn); so we see that we have an injection σi �→ ki from Gal(F0(ζn)/F0) into
(Z/nZ)∗. ��
Remark 3.7.4. We will see in Corollary 4.2.7 below that if F0 = Q, then
Gal(F0(ζn)/F0) = (Z/nZ)∗. This is false in general. In the most extreme
case, if p−1 is a multiple of n, then ζn ∈ F0, so in this case Gal(F0(ζn)/F0) =
{id}. �

We now introduce some nonstandard but very useful language.

Definition 3.7.5. Let α ∈ F. Then α is n-powerless in F if α is not an m th

power in F for any m dividing n, m > 1. �
Proposition 3.7.6. Let F ⊇ F0(ζn). Let E be the splitting field of Xn − a ∈
F[X ]. Then Gal(E/F) is isomorphic to a subgroup of Z/nZ. In particular, this
group is cyclic. Furthermore, the following are equivalent:

(1) a is n-powerless in F.
(2) Gal(E/F) ∼= Z/nZ.
(3) Xn − a is irreducible in F[X ].

Proof. Let α be a root of Xn −a in E. Then Xn −a = ∏n−1
i=0 (X − ζ i

nα) so E =
F(α), and mα(X) divides Xn − a in F[X ] and hence in E[X ] (Lemma 2.2.7)
so mα(X) = ∏m−1

k=0 (X − ζ ik
n α) for some subset {ik} of {0, . . . , n − 1}.

Since ζ ik
n α and α are both roots of the irreducible polynomial mα(X), by

Lemma 2.6.1 there is an element σk ∈ Gal(E/F) with σk(α) = ζ ik
n α, and

this equation determines σk uniquely. Furthermore, if σ�(α) = ζ i�
n α, then

σkσ�(α) = ζ ik+i�
n α, so we see that {ik} form a subgroup of Z/nZ isomorphic

to Gal(E/F).

Now to the second part of the proposition. Since | Gal(E/F)| = (E/F) =
(F(α)/F) = deg mα(X),

Gal(E/F) = Z/nZ ⇔ | Gal(E/F)| = n

⇔ deg mα(X) = n

⇔ mα(X) = Xn − a

⇔ Xn − a is irreducible,

showing that (2) ⇔ (3).
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Suppose that (1) is false, so a = bm for some b ∈ F. Let n = jm. Then
Xn − a = X jm − bm has X j − b as a proper factor, so it is not irreducible.

On the other hand, suppose that (3) is false. Then, as we have observed,
mα(X) = ∏m−1

k=0 (X − ζ ik
n α) and {ζ ik } form a group of order m isomorphic

to a subgroup of Z/nZ, so it must be {ζ k
m | k = 0, . . . , m − 1}, and then

mα(X) = ∏m−1
k=0 (X − ζ k

mα) = X − αm = X − b ∈ F[X ]. But if n = mj , then
a = αn = αmj = (αm) j = b j , b ∈ F, so α is not n-powerless in F. ��

This proposition has a partial converse.

Proposition 3.7.7. Let F ⊇ F0(ζn). Let E be an extension of F. The following
are equivalent:

(1) E is the splitting field of Xn −a ∈ F[X ], for some a that is n-powerless
in F.

(2) E is a Galois extension of F with Gal(E/F) ∼= Z/nZ.

Proof. (1) implies (2) is (1) implies (2) of Proposition 3.7.6.
Now suppose (2) is true. Let σ be a generator of Gal(E/F). By Theorem

3.6.2, E has a normal basis {σ i (α) | i = 0, . . . , n − 1} for some α ∈ E. Let

β = α + ζ−1
n σ(α) + · · · + ζ−(n−1)

n σ n−1(α).

Since {σ i (α)} are independent, β �= 0; then direct calculation shows

σ(β) = σ(α) + ζ−1
n σ 2(α) + · · · + ζ−(n−1)

n α = ζnβ,

and so σ i (β) = ζ i
nβ for each i . Thus {σ i (β)} are all distinct, so E = F(β) by

Lemma 3.5.4. Furthermore,

mβ(X) =
n−1∏
i=0

(X − ζ i
nβ) = Xn − βn ∈ F[X ].

Thus, if a = βn , a ∈ F[X ] and E is the splitting field of Xn − a. Finally,
a is n-powerless in F as in the proof of Proposition 3.7.6: If a = bm , n = mj ,
then mβ(X) would have X j − b as a factor, and mβ(X) is irreducible so j = n
and m = 1. ��
Remark 3.7.8. Consider the case F0 = Q. In order to apply Propositions 3.7.6
and 3.7.7, we must do arithmetic in the field Q(ζn), which may not be so easy.
It would be a lot simpler if we only had to do arithmetic in Q, which is easy.
Fortunately, this is often, and indeed usually, the case. We have the following
results, which we shall prove later on.
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Lemma 4.6.5. (1) Let n be an odd integer, and let a be n-powerless
in Q. Then a is a n-powerless in Q(ζN ) for every N.
(2) Let n be an even integer, and let a be n-powerless in Q. If a is
negative, assume also that −a is not a square in Q. Then one of the
following two alternatives holds:
(a) a is n-powerless in Q(ζN ) for every N.
(b) a = b2 for some b ∈ Q(ζN ), for some N, and b is n/2-powerless
in Q(ζN ′) for every multiple N ′ of N.
Corollary 4.5.5. Let a be a square-free integer. If a is positive and
odd, set a′ = a. Otherwise set a′ = 4|a|. Then a = b2 for some
b ∈ Q(ζn) if and only if a′ divides n. �

Definition 3.7.9. Let F ⊇ F0(ζn). A Kummer field E is the splitting field of a
polynomial of the form

f (X) = (Xn − a1)(Xn − a2) · · · (Xn − at ), ai ∈ F, i = 1, . . . , t. �
Recall that the exponent e of a finite group G is the smallest positive integer

with the property that ge = 1 for every g ∈ G, and that the exponent of a group
divides its order.

Theorem 3.7.10. Let F ⊇ F0(ζn), and let E be an extension of F. Then E is a
Kummer field if and only if:

(1) E is a Galois extension of F.
(2) Gal(E/F) is abelian.
(3) exponent (Gal(E/F)) divides n.

Proof. First suppose that E is a Kummer field, the splitting field of f (X) =
(Xn − a1) · · · (Xn − at ). Let αi ∈ E with αn

i = ai for each i . Then Xn − ai =∏n
j=1(X − ζ

j
n αi ), so Xn − ai splits into a product of distinct linear factors and

is separable; then f (X), the product of separable polynomials, is separable as
well. Thus E is the splitting field of a separable polynomial in F[X ], so E is a
Galois extension of F, proving (1). We prove (2) and (3) by induction on t . The
t = 1 case follows immediately from Proposition 3.7.6. Assume the theorem is
true for t −1. Let B1 ⊆ E be the splitting field of f1(X) = (Xn −a1) · · · (Xn −
at−1) over F and let B2 ⊆ E be the splitting field of f2(X) = Xn − at over
F. Then E = B1B2. Then, by Corollary 3.4.7, Gal(E/F) is a subgroup of
Gal(B1/F) × Gal(B2/F), so by the inductive hypothesis (for f1(X)) and the
t = 1 case (for f2(X)) Gal(E/F) is a subgroup of an abelian group of exponent
dividing n, so Gal(E/F) is itself an abelian group of exponent dividing n, and
by induction the result follows.
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Conversely, suppose G = Gal(E/F) is as claimed. Write G as a direct sum
of cyclic groups G = H1 ⊕ · · · ⊕ Hs . Since the exponent of G divides n, for
each i the order mi of Hi divides n.

We prove the theorem by induction on s. If s = 1, then G = H1 is
cyclic of order m, so, by Proposition 3.7.7, E is the splitting field of Xm − b1

for some b1 ∈ F or equivalently (since F ⊇ F0(ζn)) of Xn − a1 where
a1 = bn/m

1 ∈ F. Now suppose the theorem is true for s − 1 and let G be
written as above. Set B1 = Fix(H1 ⊕ · · · ⊕ Hs−1) and B2 = Fix(Hs). Then,
by the inductive hypothesis, B1 is the splitting field of a polynomial g1(X) of
the form g1(X) = (Xn − a1)(Xn − a2) · · · (Xn − ar ) and, by the s = 1 case,
B2 is the splitting field of a polynomial g2(X) of the form g2(X) = Xn −
ar+1. Then, by Proposition 2.8.14 (1), B1B2 = Fix((H1 ⊕ · · · ⊕ Hs−1) ∩
Hs) = Fix({1}) = E and E = B1B2 is the splitting field of g1(X)g2(X) =
(Xn − a1)(Xn − a2) · · · (Xn − ar+1), and by induction the result follows. ��

Let us now explicitly determine the Galois group of a Kummer extension.
For a field F, recall that F∗ denotes the group (under multiplication) of nonzero
elements of n. We let (F∗)n denote those elements that are nth powers, and
observe that (F∗)n is a subgroup of F∗.

Theorem 3.7.11. Let F ⊇ F0(ζn) and let E be the splitting field of

f (X) = (Xn − a1) · · · (Xn − at )

with each ai �= 0. Then Gal(E/F) is isomorphic to 〈a1, . . . , at 〉 ⊆ F∗/(F∗)n

(i.e., to the subgroup of F∗/(F∗)n generated by a1, . . . , at ).

Proof. Let αi ∈ E∗ with αn
i = ai , i = 1, . . . , n. Let G = 〈α1, . . . , αt 〉 ⊂

E∗/F∗ and let G ′ = 〈a1, . . . , at 〉 ⊆ F∗/(F∗)n . Let ϕ : G → G ′ by ϕ(α) = αn .
We claim ϕ is an isomorphism. Clearly, ϕ is an epimorphism, so we need only
show it is a monomorphism. Suppose ϕ(α) = 1. Then αn ∈ (F∗)n , so αn = f n

for some f ∈ F∗; then α = ζ k
n f ∈ F∗ for some k (as ζn ∈ F by hypothesis).

Thus instead of considering G ′ we may consider G.
Now write G as a direct sum of cyclic subgroups G = H1 ⊕ · · · ⊕ Hs and

let βi ∈ E be a generator of Hi . Let Hi have order mi dividing n. Set bi = β
mi
i ,

so bi ∈ F and bi is mi -powerless in F. (Then also G ′ = H ′
1 ⊕ · · · ⊕ H ′

s with
H ′

i the subgroup generated by bi .)
We prove the corollary by induction on s. We include in the inductive

hypothesis that Gal(E/F) is generated by elements ηi with ηi (βi ) = ζmi βi and
ηi (β j ) = β j for j �= i . If s = 1, this hypothesis is just the conclusion of
Proposition 3.7.7.

Now assume the hypothesis is true for s − 1. Let B = F(β1, . . . , βs−1) and
D = F(βs).
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Claim: B and D are disjoint extensions of F with composite BD = E.

Assuming this claim, the inductive step, and hence the corollary then fol-
lows immediately from Theorem 3.4.7.

Proof of claim: E = F(α1, . . . , αt ) and 〈α1, . . . , αt 〉 = 〈β1, . . . , βs〉 ⊂
E∗/F∗, so certainly BD = E.

Let D0 = B ∩ D. By the FTGT, B0 = Fix(K ) for some subgroup K of
Gal(B/F), which is a cyclic group of order ms . From this we see that D0 =
F((βs)

m ′
) = F( m

√
bs), where mm ′ = ms , for some m dividing ms . We want to

show m = 1.
Let us set β = m

√
bs = (βs)

m ′
. Then β ∈ B, so by the inductive hypothesis

we may write uniquely

β = (βs)
m ′ =

∑
i1,...,is−1

ci1,...,is−1β
i1
1 · · · β is−1

s−1

with i j = 0, . . . , m j − 1, for each j = 1, . . . , s − 1, and with each ci1,...,is−1

∈ F.
Now let σ ∈ Gal(B/F). Then σ(β) = ζβ for some root of unity ζ , and,

similarly, σ(β
i1
1 · · · β is−1

s−1) = ζ ′β i1
1 · · · β is−1

s−1 for some root of unity ζ ′. Thus we
see that we must have ζ ′ = ζ for every term with ci1,...,is−1 �= 0. But, by the
inductive hypothesis, we may choose σ with σ(β j ) = ζ jβ j where each ζ j is
an arbitrary m th

j root of 1. Hence, if this summation has more than one nonzero
term, we may find a σ which has the effect of multiplying one term by ζ and
another term by ζ ′ with ζ ′ �= ζ , which is impossible. Hence we can conclude
there is only one term in the summation, and that

β = (βs)
m ′ = ci1,...,is−1β

i1
1 · · · β is−1

s−1;

so we see that (βs)
m ′ ∈ H1 ⊕ . . . ⊕ Hs−1 ⊂ E∗/F∗. But by assumption G =

H1 ⊕· · ·⊕ Hs ; in particular (H1 ⊕ . . .⊕ Hs−1)∩ Hs = {1}, and hence we must
have m ′ = ms and hence m = 1, as claimed. ��
Corollary 3.7.12. In the situation of, and in notation of the proof of Theorem
3.7.11, the isomorphism ⊕s

i=1(Z/mi Z) → Gal(E/F) is given by

( j1, . . . , js) �→ σ where σ(βi ) = ζ ji n/mi
n βi ( = ζ ji

mi
βi ), i = 1, . . . , s.

Proof. This follows directly from the proof of Theorem 3.7.11. ��
Example 3.7.13. (1) Let E be the splitting field of (X2 − 2)(X2 − 3)(X2 − 5)

over Q. Then Gal(E/Q) ∼= (Z/2Z)3 as 〈2, 3, 5〉 ⊆ Q∗/(Q∗)2 is isomorphic to
(Z/2Z)3.
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(2) Let E be the splitting field of (X2 − 2)(X2 − 3)(X2 − 6) over Q. Then
Gal(E/Q) ∼= (Z/2Z)2 as 〈2, 3, 6〉 ⊆ Q∗/(Q∗)2 is isomorphic to (Z/2Z)2.

(3) Let E be the splitting field of X12 −5 over Q(ζ12). Then Gal(E/Q(ζ12))∼= Z/12Z as 〈5〉 ⊆ Q(ζ12)
∗/(Q(ζ12)

∗)12 is isomorphic to Z/12Z. The polyno-
mial X12 − 5 is irreducible over Q and also over Q(ζ12).

(4) Let E be the splitting field of X12 −3 over Q(ζ12). Then Gal(E/Q(ζ12))∼= Z/6Z as 〈3〉 ⊆ Q(ζ ∗
12)/(Q(ζ12)

∗)12 is isomorphic to Z/6Z. Note
√

3 ∈
Q(ζ12). The polynomial X12 − 3 is irreducible over Q. Over Q(ζ12), it factors
as the product of two irreducible factors (X6 − √

3)(X6 + √
3).

(5) Let E be the splitting field of X4 + 1 over Q(ζ4). Then E = Q(ζ8),
Gal(E/Q(ζ4)) ∼= Z/2Z, and 〈−1〉 ⊆ Q(ζ4)

∗/(Q(ζ4)
∗)4 ∼= Z/2Z as −1 is a

square but not a 4th power in Q(ζ4). The polynomial X4 + 1 is irreducible
over Q. Over Q(ζ4), it factors as the product of two irreducible polynomials
(X2 + i)(X2 − i).

(6) Let E be the splitting field of X4 + 4 over Q(ζ4). In fact E = Q(ζ4) as
X4 + 4 = (X − (1 + i))(X − (1 − i))(X − (−1 + i))(X − (−1 − i)); thus
Gal(E/Q) = {id}, and 〈−4〉 ⊆ Q(ζ4)

∗/(Q(ζ4)
∗)4 ∼= {id} as −4 = (1 + i)4, an

equation in Q(ζ4).
In this example we have made a number of claims about arithmetic in

cyclotomic fields (i.e., in fields Q(ζn)). They will be verified in Section 4.2. �

3.8 The Norm and Trace

Let E be a finite extension of F. We shall define two important functions from
E to F, the norm and the trace. We shall begin by defining them in case E is a
Galois extension of F, which is the most important case, and the case to which
we denote most of our attention. At the end, we will show how to generalize
the definition.

Definition 3.8.1. Let E be a finite Galois extension of F with Galois group
G = Gal(E/F). For α ∈ E, the norm (from E to F) of α is

NE/F(α) =
∏
σ∈G

σ(α)

and the trace (from E to F) of α is

TrE/F(α) =
∑
σ∈G

σ(α). �

Lemma 3.8.2. For any α ∈ E, NE/F(α) and TrE/F(α) are elements of F.
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Proof. NE/F(α) and TrE/F(α) are obviously invariant under G. ��
Lemma 3.8.3. Let α ∈ E with deg mα(X) = r , and write mα(X) =∑r

i=0 ci Xi . Let (E/F) = n. Then

NE/F(α) = (−1)ncn/r
0 and TrE/F(α) = −(n/r)cr−1.

Proof. If α has distinct conjugates α1, . . . , αr (with α1 = α), then mα(X) =∏r
i=1(X − αi ) by Lemma 2.7.12, so

c0 = (−1)rα1 · · · αr and cr−1 = −(α1 + · · · + αr ). ��
Lemma 3.8.4. For α ∈ E, let Tα : E → E be the linear transformation of
F-vector spaces given by Tα(β) = αβ. Then

NE/F(α) = Det(Tα) and TrE/F(α) = Trace(Tα).

Proof. Let B = F(α). Then B has F-basis B = {1, α, . . . , αr−1} where
r = deg mα(X). If (E/F) = n, then (E/B) = n/r . Choose a B-basis
{1 = ε1, . . . , εn/r } for E over B.

Then

C = {1, α, . . . , αr−1, . . . , εn/r , εn/rα, . . . , εn/rα
r−1}

is a basis for E over F.
Let Sα = Tα | F(α). Now Sα : F(α) → F(α) and the matrix of Sα in

the basis B is just C(mα(X)), the companion matrix of the polynomial mα(X)

(see the proof of Proposition 2.4.6(3)). Then the matrix of Tα in the basis C
is a block diagonal matrix consisting of n/r diagonal blocks, each equal to
C(mα(X)), and the result then follows from Lemma 3.8.3. ��
Theorem 3.8.5. Let E be a finite Galois extension of F of degree n. Let B be
a field intermediate between F and E. (Then E is a Galois extension of B.)
Assume further that B is a Galois extension of F. Then for any element a of F
and any elements α, β of E:

(1) NE/F(a) = an and TrE/F(a) = na.
(2) NE/F(αβ) = NE/F(α) NE/F(β) and TrE/F(α + β) = TrE/F(α) +

TrE/F(β).
(3) NE/F(α) = NB/F(NE/B(α)) and TrE/F(α) = TrB/F(TrE/B(α)).

Proof. (1) and (2) are clear. We prove (3). Let H = Gal(E/B) = {τi }
have left coset representatives {ρ j }. Then we may identify G/H with {ρ j }.
Then NB/F(NE/B(α)) = ∏

j ρ j (
∏

i τi (α)) = ∏
i, j ρ jτi (α) = ∏

σ∈G σ(α) =
NE/F(α), and similarly for TrE/F(α). ��
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Lemma 3.8.6. There is an element α ∈ E with TrE/F(α) �= 0.

Proof. If char(F) = 0 or n = (E/F) is relatively prime to p = char(F), this is
completely trivial, as we may simply choose α = 1.

In any case, for each σ ∈ Gal(E/F), σ : E∗ → E∗ is a character of
the group E∗ in E in the sense of Definition 2.8.1, so the result follows im-
mediately from Dirichlet’s theorem on the independence of characters (Theo-
rem 2.8.4). ��
Theorem 3.8.7 (Hilbert’s Theorem 90). Let E be a cyclic extension of F of
degree n and let σ be a generator of G = Gal(E/F).

(1) If β is any element of E with NE/F(β) = 1, then β = α/σ(α) for some
α ∈ E.

(2) If β is any element of E with TrE/F(β) = 0, then β = α − σ(α) for
some α ∈ E.

Proof. (1) By Theorem 2.8.4, {1, σ, . . . , σ n−1} are independent characters of
E∗ in E, so for any elements ε0, . . . , εn−1 of E, there is an element δ of E with
α = ∑n−1

i=0 εiσ
i (δ) �= 0. Now let

εi = σ o(β)σ 1(β) · · · σ i−1(β), i = 1, . . . , n − 1.

Note that βσ(εi ) = εi+1 for i = 1, . . . , n − 2, and εn−1 = NE/F(β) = 1
so also βσ(εn−1) = β = σ o(β) = ε1. Let α be as above and note then that
βσ(α) = α so β = α/σ(α).

(2) By Lemma 3.8.6, there is an element of γ of E with TrE/F(γ ) �= 0. Set
δ = βσ(γ ) + (β + σ(β))σ 2(γ ) + · · · + (β + · · · + σ n−2(β))σ n−1(γ ).

Then, by direct calculation,

δ − σ(γ ) = β(σ(γ ) + · · · + σ n−1(γ )) − (σ (β) + · · · + σ n−1(β))γ

= β TrE/F(γ ) − γ TrE/F(β) = βT rE/F(γ ),

so if α = δ/ TrE/F(γ ), we have that β = α − σ(α). ��
Now we extend the definitions of norm and trace. First we consider sep-

arable extensions. Here we assume familiarity with Section 5.2 below.

Definition 3.8.8. Let E be a finite separable extension of F. Then

NE/F = ND/F and TrE/F = TrD/F

where D is any normal closure of E. �
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Remark 3.8.9. (1) It is easy to see that NE/F and TrE/F are well defined, i.e.,
independent of the choice of D.

(2) The results of this section through Theorem 3.8.5 go through un-
changed in this more general situation. �

Now we consider arbitrary finite extensions. Here we further assume fa-
miliarity with Section 5.1 below.

Definition 3.8.10. Let E be a finite extension of F. Then

NE/F = (ND/F)d and Tr E/F = d TrD/F,

where D is any normal closure of E and d = (Fix(Gal(D/F))/F). �
Remark 3.8.11. (1) Let Fi = Fix(Gal(D/F)). Then D is a Galois extension of
Fi and Fi is a purely inseparable extension of F. If E is a separable extension
of F, then D is a Galois extension of F, Fi = F, and d = 1. In particular this
is always the case for a perfect field F.

(2) If char(F) = p and E is not a separable extension of F, then d is a
power of p and so in this case TrE/F = 0.

(3) Again the results of this section through Theorem 3.8.5 continue to
hold. �

3.9 Exercises

Exercise 3.9.1. Give an example of an extension E of F of degree n and a
divisor d of n for which there does not exist a field B intermediate between F
and E with (B/F) = d.

Exercise 3.9.2. Let F be a field with char(F) �= 2. Call a rational func-
tion f (X1, . . . , Xn) ∈ F(X1, . . . , Xn) alternating if f (σ (X1), . . . , σ (Xn)) =
sign(σ ) f (X1, . . . , Xn) for every σ ∈ Sn . Let s1, . . . , sn denote (as usual) the
elementary symmetric functions in X1, . . . , Xn . Let δ be as in Definition 4.8.1.
(a) Show that every alternating rational function f (X1, . . . , Xn) can be written
as a rational function in s1, . . . , sn and δ in a unique way.
(b) Show that in fact every alternating rational function f (X1, . . . , Xn) can
be written as f (X1, . . . , Xn) = g(s1, . . . , sn)δ for some rational function
g(s1, . . . , sn) of s1, . . . , sn .
(c) Show that every alternating polynomial f (X1, . . . , Xn) can be written as a
polynomial in s1, . . . , sn and δ in a unique way.
(d) Show that in fact every alternating polynomial f (X1, . . . , Xn) can be
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written as f (X1, . . . , Xn) = g(s1, . . . , sn)δ for some polynomial function
g(s1, . . . , sn) in s1, . . . , sn .
(e) Show that every rational function f (X1, . . . , Xn) invariant under the ac-
tion of An (i.e., every rational function f (X1, . . . , Xn) with f (σ (X1), . . . ,

σ (Xn)) = f (X1, . . . , Xn) for every σ ∈ An) can be written in a unique way as
f (X1, . . . , Xn) = fs(X1, . . . , Xn) + fa(X1, . . . , Xn) where fs(X1, . . . , Xn)

is symmetric and fa(X1, . . . , Xn) is alternating. Furthermore, if f (X1, . . . ,

Xn) is a polynomial, then so are fs(X1, . . . , Xn) and fa(X1, . . . , Xn).

Exercise 3.9.3. Show that (2) implies (1) in Exercise 2.10.6.

Exercise 3.9.4. Show that (2) implies (1) in Exercise 2.10.7.

Exercise 3.9.5. Interpret α in Exercise 2.10.1 as being in an extension of F5,
find an irreducible polynomial in F5[X ] that has α as a root, and find all roots
of that polynomial in a splitting field E. Also, find G = Gal(E/F). (In the
definition of α, there may be an ambiguity because of the roots. Handle all
cases.)

Exercise 3.9.6. Interpret α in Exercise 2.10.1 as being in an extension of F7,
find an irreducible polynomial in F7[X ] that has α as a root, and find all roots
of that polynomial in a splitting field E. Also, find G = Gal(E/F). (In the
definition of α, there may be an ambiguity because of the roots. Handle all
cases.)

Exercise 3.9.7. In this exercise, let E be a splitting field of the polynomial
f (X) ∈ F[X ] and let G = Gal(E/F). Find (E/F) and find G.

(a) f (X) = X3 − 1 ∈ F3[X ].
(b) f (X) = X3 − 1 ∈ F5[X ].
(c) f (X) = X3 − 1 ∈ F7[X ].
(d) f (X) = X3 − 3 ∈ F5[X ].
(e) f (X) = X3 + 4X + 2 ∈ F5[X ].
(f) f (X) = X4 + 2X3 + 3X2 + 3X + 4 ∈ F5[X ].
(g) f (X) = X4 + 3X2 + 4 ∈ F5[X ].
(h) f (X) = X4 + 3X2 + 3 ∈ F5[X ].

Exercise 3.9.8. Let F = Fp and let f (X) = X p − X − a for some a �= 0 ∈ F.
Let E be the splitting field of F and let α be a root of f (X) in E. Show that
α, α + 1, . . . , α + (p − 1) are the roots of f (X) in E. Conclude that f (X) ∈
F[X ] is irreducible and that Gal(E/F) is cyclic of order p with generator σ the
automorphism of E given by σ(α) = α+1. Then the Frobenius automorphism

 of F must be given by 
(α) = α + k for some k �= 0 ∈ F. Show that a
can be chosen so that 
(α) = α + 1. (E is called an Artin–Schreier extension
of F.)
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Exercise 3.9.9. Let f (X) ∈ Z[X ] be a monic polynomial and let f̄ (X) be
its image in Fp[X ] (identifying Fp with Z/pZ). Let E be a splitting field for
f (X) and let Ē be a splitting field for f̄ (X). Show that if, for some p, all the
roots of f̄ (X) in Ē are simple, then all the roots of f (X) in E are simple.

Exercise 3.9.10. Let B1 and B2 be Galois extensions of F, both contained in
some field A. Let E be the composite E = B1B2.
(a) Show that every σ ∈ Gal(B1/F) extends to a (not necessarily unique)
automorphism σ̃ ∈ Gal(E/F).
(b) Show that B1 and B2 are disjoint extensions of F if and only if every σ ∈
Gal(B1/F) extends to an automorphism σ̃ ∈ Gal(E/F) with σ̃ | B2 = id.

Exercise 3.9.11. Find an example of a field F and pairwise disjoint Galois
extensions B0, B1, B2, of F with B0 and B1B2 not disjoint extensions of F.

Exercise 3.9.12. Let D be a Galois extension of F and let B be an extension of
F. Suppose that D and B are disjoint extensions of F.
(a) Show that D and B′ are disjoint extensions of F for any Galois conjugate
B′ of B.
(b) Let B̃ be the Galois closure of B. Give an example to show that D and B̃
need not be disjoint.

Exercise 3.9.13. Let B1 and B2 be finite Galois extensions of F. Show that
B1 ∩ B2 is a Galois extension of F.

Exercise 3.9.14. (a) Let a ∈ F and suppose that a is not a pth power in F. Let
B be an extension of F of degree m, and suppose that m and p are relatively
prime. Show that a is not a pth power in B.
(b) More generally, let a ∈ F and suppose that a is n-powerless in F. Let B be
an extension of F of degree m, and suppose that m and n are relatively prime.
Show that a is n-powerless in B.

Exercise 3.9.15. Suppose that Xm − a and Xn − a are both irreducible poly-
nomials in F[X ].
(a) Suppose that m and n are relatively prime. Show that Xmn − a is an irre-
ducible polynomial in F[X ].
(b) More generally, let � = lcm(m, n). Show that X � − a is an irreducible
polynomial in F[X ].
Exercise 3.9.16. (a) Let E = Q(

√
2,

√
3,

√
5,

√
7, . . . ). Show that E/Q is

infinite.
(b) Let E = Q(

√
2,

3
√

2,
4
√

2,
5
√

2, . . . ). Show that E/Q is infinite.
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Exercise 3.9.17. (a) Let F ⊇ F0(ζ2) (and consequently char(F) �= 2) and let
f (X) = X2 − a ∈ F[X ] be irreducible. Let E = F(α) where α2 = a. Let
β = b0 + b1α with b0, b1 ∈ F. Show that the conjugates of β form a normal
basis for E if and only if b0b1 �= 0.
(b) Let F ⊇ F0(ζ3) (and consequently char(F) �= 3) and let f (X) = X3 − a ∈
F[X ] be irreducible. Let E = F(α) where α3 = a. Let β = b0 + b1α + b2α

2

with b0, b1, b2 ∈ F. Show that the conjugates of β form a normal basis for E
if and only if b0b1b2 �= 0.

Exercise 3.9.18. Let F ⊆ B ⊆ E with E/F Galois. Show that there exist
irreducible polynomials f (X) ∈ F[X ] and g(X) ∈ B[X ] such that E is a
splitting field of f (X), and E is also a splitting field of g(X), and g(X) divides
f (X) in B[X ].
Exercise 3.9.19. (a) Let E be a separable extension of F and suppose there is
an integer n such that deg mα(X) ≤ n for every α ∈ E. Show that E is a finite
extension of F. Furthermore, show that (E/F) ≤ n.
(b) Give an explicit counterexample to (a) in case E is not a separable extension
of F.

Exercise 3.9.20. Let E be an extension of F of degree 2, where F = Fq is
a finite field, with q odd. Let E = F(α), where α2 ∈ F. Show that, for any
a, b ∈ F,

(a + bα)q = a − bα or, equivalently, NE/F(α) = (a + bα)q+1.

Exercise 3.9.21. Let E be an extension of F of degree 2, where char(F) �= 2.
Let E = F(δ), where δ2 = d ∈ F. Let T : E → E be an F-linear transforma-
tion. Let α = T (1) and β = T (δ)/δ. (Note α, β ∈ E.)
(a) If α = ±β, show that there exists an f ∈ F with

NE/F(T (ε)) = f NE/F(ε) for all ε ∈ E

and in fact f = NE/F(α) = NE/F(β).
(b) If α �= ±β, show there does not exist such an f .

Exercise 3.9.22. Let E be an extension of F of degree 2, where char(F) �= 2.
Let E = F(δ), where δ2 = d ∈ F, and let σ be the nontrivial element of
Gal(E/F). Prove Hilbert’s Theorem 90 (Theorem 3.8.7 (1)) directly in this
case. That is, if γ = a + bδ ∈ E with NE/F(γ ) = a2 − b2d = 1, then there is
an element θ = x + yδ ∈ E with

γ = θ

σ (θ)
= x + yδ

x − yδ
.
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Exercise 3.9.23. Let F = Fps and let E = Fpr for some multiple r of s. Set
m = (pr − 1)/(ps − 1). Recall that Gal(E/F) is cyclic of order r/s with
generator � given by �(α) = α ps

.
(a) Show that NE/F(α) = αm for every α ∈ E.
(b) Show that NE/F : E → F is an epimorphism.
(c) Prove Hilbert’s Theorem 90 (Theorem 3.8.7 (1)) directly in this case: If
β ∈ E with NE/F(β) = 1, then β = (α)(α−ps

) for some α ∈ E.

Exercise 3.9.24. (a) Fix a polynomial k(Y ) ∈ F[Y ]. Let f (X) ∈ F[X ] be
any separable polynomial. Let f (X) split in E with roots α1, . . . , αm . Let
Qk(Y )( f (X)) be the polynomial

Qk(Y )( f (X)) =
∏

i

(X − k(αi )).

Evidently Qk(Y )( f (X)) ∈ E[X ]. Show that in fact Qk(Y )( f (X)) ∈ F[X ].
(b) Fix a polynomial k(Y, Z) ∈ F[Y, Z ]. Let f (X), g(X) ∈ F[X ] be any
separable polynomials. Let f (X) and g(X) split in E with roots α1, . . . , αm

and β1, . . . , βn , respectively. Let Qk(Y,Z)( f (X), g(X)) be the polynomial

Qk(Y,Z)( f (X), g(X)) =
∏
i, j

(X − k(αi , β j )).

Evidently Qk(Y,Z)( f (X), g(X)) ∈ E[X ]. Show that in fact

Qk(Y,Z)( f (X), g(X)) ∈ F[X ].
(This generalizes to arbitrarily many polynomials.)

Exercise 3.9.25. (a) Let {si } be the elementary symmetric polynomials in {αi }.
Show that for any k(Y ) ∈ F[Y ], Qk(Y )( f (X)) is a polynomial whose coeffi-
cients are polynomials in {si }, and hence polynomials in the coefficients of
f (X).
(b) Let {si } be the elementary symmetric polynomials in {αi } and let {s ′

j } be
the elementary symmetric polynomials in {β j }. Show that for any k(Y, Z) ∈
F[Y, Z ], Qk(Y,Z)( f (X), g(X)) is a polynomial whose coefficients are polyno-
mials in {si } and {s ′

j }, and hence polynomials in the coefficients of f (X) and
g(X). (This generalizes to arbitrarily many polynomials.)

Exercise 3.9.26. (a) Show that if k(Y ) ∈ Z[Y ] and f (X) ∈ Z[X ], then
Qk(Y )( f (X)) ∈ Z[X ].
(b) Show that if k(Y, Z) ∈ Z[Y, Z ] and f (X), g(X) ∈ Z[X ], then
Qk(Y,Z)( f (X), g(X)) ∈ Z[X ]. (This generalizes to arbitrarily many polyno-
mials.)
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Exercise 3.9.27. Let f (X) = X2 + aX + b, g(X) = X2 + cX + d, and
h(X) = X3 + eX2 + f X + g be polynomials in F[X ]. Without finding the
roots of these polynomials:
(a) Find QY+1( f (X)), Q2Y ( f (X)), QY 2( f (X)), and QY 3( f (X)).
(b) Find QY+1(h(X)), Q2Y (h(X)), and QY 2(h(X)).
(c) Find QY+Z ( f (X), g(X)) and QY Z ( f (X), g(X)).
(d) Find QY+Z ( f (X), h(X)) and QY Z ( f (X), h(X)).

Exercise 3.9.28. Let R be a subring of F and let E be an extension of F. Let
S = {α ∈ E | α is integral over R}. Show that S is a subring of E.

Exercise 3.9.29. Let E be a field and let R ⊆ E. Suppose that E = R[α] for
some α ∈ E. Show that there is a nonzero element s ∈ R such that R[1/s] is a
field.
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Extensions of the Field of Rational Numbers

In this chapter, we assume that all fields we consider are of characteristic 0.

4.1 Polynomials in Q[X]
In this section we deal with a number of questions about polynomials in Q[X ]
related to factorization and irreducibility.

We begin with a couple of elementary results.

Lemma 4.1.1. Let F ⊆ R and let f (X) ∈ F[X ]. If γ ∈ C is a root of f (X),
then its complex conjugate γ̄ is also a root of f (X). Consequently, if f (X) has
odd degree, then it has an odd number of real roots, counted with multiplicity,
and if f (X) has even degree, then it has an even number of real roots, counted
with multiplicity.

Proof. f (γ̄ ) = f̄ (γ̄ ) = f (γ ) = 0̄ = 0. ��
Lemma 4.1.2. Let f (X) ∈ Z[X ], f (X) = ∑n

i=0 ai Xi . Suppose that r ∈ Q is
a root of f (X) (or equivalently, that X − r is a factor of f (X)). If r = s/t ,
with s and t relatively prime, then s divides a0 and t divides an. In particular,
if f (X) is monic, then r is an integer dividing a0.

Proof. 0 = f (s/t) = tn f (s/t) = ∑n
i=1 ai si tn−i . Now 0 is divisible by s, and

every term of this summation except possibly a0tn is divisible by s, so that
term must be divisible by s as well, and since t is relatively prime to s, this
implies that a0 is divisible by s. By the same logic applied to the term ansn , an

is divisible by t . ��
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Note that this lemma, used recursively, provides an effective method for
finding all linear factors of f (X) in Q[X ].

Corollary 4.1.6 below is a standard result, but one we shall use repeatedly.
First, some preliminaries.

Definition 4.1.3. A polynomial f (X) = an Xn + · · · + a0 ∈ Z[X ] is primitive
if gcd(an, . . . , a0) = 1. �
Lemma 4.1.4 (Gauss’s Lemma). If g(X) and h(X) are primitive polynomials
in Z[X ], and f (X) = g(X)h(X), then f (X) is a primitive polynomial in
Z[X ].
Proof. Write g(X) = bm Xm + · · · + b0 and h(X) = ck Xk + · · · + c0. Let
f (X) = g(X)h(X) = an Xn + · · · + a0. Suppose f (X) is not primitive and
let d = gcd(an, . . . , a0). Pick a prime p dividing d. By hypothesis, p does not
divide all of the coefficients of g(X), so let i be the smallest index with bi not
divisible by p. Similarly, p does not divide all of the coefficients of h(X), so
let j be the smallest index with c j not divisible by p.

Consider ai+ j , the coefficient of Xi+ j in f (X). Then

ai+ j = bi c j + (bi+1c j−1 + bi+2c j−2 + · · · )
+ (bi−1c j+1 + bi−2c j+2 + · · · ).

By hypothesis, p divides ai+ j , and by construction p divides each of the terms
in the two parenthesized expressions, so p divides bi c j as well, and hence p
divides bi or p divides c j , a contradiction. ��
Proposition 4.1.5. Let f (X) be a polynomial in Z[X ] and suppose f (X) =
g(X)h(X) with g(X), h(X) ∈ Q[X ]. Then f (X) = g1(X)h1(X) with g1(X),
h1(X) ∈ Z[X ], where g1(X) is a constant multiple of g(X), and h1(X) is a
constant multiple of h(X).

Proof. We may write f (X) = e f0(X) where f0(X) ∈ Z[X ] is primitive and
e ∈ Z. We may write g(X) = cg0(X) where g0(X) ∈ Z[X ] is primitive and
c ∈ Q. Similarly we may write h(X) = dh0(X) where h0(X) ∈ Z[X ] is prim-
itive and d ∈ Q. Then e f0(X) = f (X) = g(X)h(X) = cdg0(X)h0(X).
By Lemma 4.1.4, g0(X)h0(X) is primitive so we must have e = ±cd,
so f0(X) = ±g0(X)h0(X) and f (X) = g1(X)h1(X) where g1(X) =
±eg0(X) = (±e/c)g(X) and h1(X) = h0(X) = (1/d)h(X). ��
Corollary 4.1.6. Let f (X) be a monic polynomial in Z[X ] and suppose
f (X) = g(X)h(X) with g(X), h(X) ∈ Q[X ] monic polynomials. Then
g(X), h(X) ∈ Z[X ]. Consequently, if f (X) is irreducible in Z[X ], then f (X)

is irreducible in Q[X ].
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Proof. Apply Proposition 4.1.5, and note that we must have g1(X) = g(X)

and h1(X) = h(X) (up to a common sign) as f (X), g(X), and h(X) are
monic. The second claim follows by contraposition. ��

We have the following useful criterion for a polynomial to be irreducible
over Q.

Proposition 4.1.7 (Eisenstein’s Criterion). Let f (X) be a polynomial with
integer coefficients, f (X) = an Xn + an−1 Xn−1 + · · · + a0. Suppose there is a
prime p with p not dividing an, p dividing a0, . . . , an−1, and p2 not dividing
a0. Then f (X) is irreducible in Q[X ].
Proof. By Corollary 4.1.6, it suffices to show that f (X) is irreducible in Z[X ].
Suppose f (X) = g(X)h(X) with g(X) = bm Xm + bm−1 Xm−1 + · · · + b0 and
h(X) = ck Xk +ck−1 Xk−1+· · ·+c0. Then bmck = an , so neither is divisible by
p. Since p divides a0 = b0c0 but p2 does not divide a0, by hypothesis, p must
divide exactly one of b0 and c0. Let that one be b0. Now a1 = b1c0+b0c1. Since
p divides a1 and b0 but not c0, p must divide b1. Then a2 = b2c0 +b1c1 +b0c2,
so by similar logic p must divide b2. Proceeding inductively, we find that p
divides bm , contradicting bm = 1. ��
Example 4.1.8. We will use Eisenstein’s Criterion to show that for a prime
p the polynomial 
p(X) = X p−1 + · · · + X + 1 = (X p − 1)/(X − 1)

is irreducible. Of course, Eisenstein’s Criterion does not apply directly. But
observe that 
p(X) is irreducible if and only if 
p(X + 1) is irreducible,

p(X + 1) = ((X + 1)p − 1)/X . Expanding by the Binomial Theorem, we
see that 
p(X + 1) = ∑p

i=1

(p
i

)
Xi−1 is a monic polynomial of degree p − 1

with the coefficient of every power of X other than X p−1 divisible by p, and
with constant term p divisible by p but not p2, so is irreducible. (
p(X) is
the pth cyclotomic polynomial. For n composite, 
n(X) is not defined by the
above formula. We deal with cyclotomic polynomials in Section 4.2.) �

Let a be an integer of the form a = pq, where p is a prime and p and
q are relatively prime. Then, by Eisenstein’s Criterion (Proposition 4.1.7), the
polynomial Xn −a is irreducible over Q for any n. Thus, for example, X3−2 is
irreducible over Q. However, Eisenstein’s Criterion does not apply to X3 − 4,
which is also irreducible. Let us develop a criterion that does.

Lemma 4.1.9. Let a be an integer of the form a = pmq, where p is a prime
and p and q are relatively prime. Let n be any integer that is relatively prime
to m. Then the polynomial Xn − a is irreducible over Q.
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Proof. Let α = n
√

a and E = Q(α). Then (E/Q) = deg mα(X) by Proposition
2.4.6 (2). Thus (E/Q) = n if and only deg mα(X) = n. Now mα(X) divides
Xn − a (as α is a root of this polynomial), so deg mα(X) = n if and only if
Xn − a is irreducible. Thus, putting these together, we see that (E/Q) = n if
and only if Xn − a is irreducible.

Let j be an integer with jm ≡ 1(mod n), so jm = nk + 1 for some k.
Clearly Q(α) ⊇ Q(α j ) (and in fact they are equal). Now (α j )n = αnj =
a j = pmj q j = pnk+1q j so β = α j/pk satisfies βn = pq j . In other words,
β is a root of the polynomial Xn − pq j , and this polynomial is irreducible by
Eisenstein’s Criterion. Thus (Q(α j )/Q) = (Q(β)/Q) = n so (E/Q) = n as
required. ��
Corollary 4.1.10. (1) Let p be an odd prime. If a ∈ Z is not a pth power, then
X pt − a is irreducible for every t ≥ 0.

(2) If a ∈ Z is positive and not a square, then X2t − a is irreducible for
every t ≥ 0.

Proof. In these cases a satisfies the hypotheses of Lemma 4.1.9 (changing
notation so that n = p in case (1) and n = 2 in case (2).) ��
Remark 4.1.11. In the excluded case, X2t − a may not be irreducible. For ex-
ample, X4 + 4 = (X2 + 2X + 2)(X2 − 2X + 2). �

Lemma 4.1.9 and Corollary 4.1.10 do not apply to the polynomial
X6 − 72. This polynomial is also irreducible, but it will require considerably
more work to show this. We do this in Section 4.6, where we show that Xn −a
is irreducible in considerable generality.

Remark 4.1.12. There is an algorithm, due to Kronecker, for factoring polyno-
mials f (X) ∈ Q[X ].

It clearly suffices to consider the case that f (X) ∈ Z[X ] is a primitive
polynomial. Then, by Corollary 4.1.6, it suffices to factor f (X) in Z[X ]. Let
f (X) have degree n.

We begin by recalling the Lagrange Interpolation Formula. If a1, . . . , am

are distinct, and b1, . . . , bm are arbitrary, there is a unique polynomial g(X) of
degree at most m − 1 with g(ai ) = bi for each i , given by

g(X) =
m∑

i=1

bi

∏
j �=i

(X − a j )

(ai − a j )
.

Using this we proceed as follows, looking for a factor g(X) of f (X). If
there is no such factor, then f (X) is irreducible. If there is such a factor, write
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f (X) = g(X) f1(X) and proceed recursively (next factoring f1(X), . . . ). To
find such a factor, let m = 2, . . . , [m/2]+ 1. Pick distinct integers a1, . . . , am .
If f (ai ) = 0 for some i , then we have found a linear factor X − ai . Assume
not and let Bi = {bi } be the finite set of divisors of f (ai ), for each i . For each
choice of elements bi ∈ Bi , let g(X) be the polynomial given by the Lagrange
Interpolation Formula with g(ai ) = bi . If g(X) has degree less than m − 1,
or does not have integer coefficients, there is nothing to check. If g(X) is a
polynomial of degree m − 1 with integer coefficients, test whether f (X) is
divisible by g(X). �
Remark 4.1.13. For future reference, we record an extension of this algorithm.
Let R be the polynomial ring R = Z[X1, . . . , Xn] and let F be its quotient
field, the field of rational functions in X1, . . . , Xn with coefficients in Q. Let
f (Xn+1) ∈ F[Xn+1] be a polynomial. Then there is an algorithm for factoring
f (Xn+1).

We proceed by induction. For n = 0 this is just the algorithm of Remark
4.1.12. Assume we have an algorithm for n = k and consider n = k + 1.
Now R is a UFD (a Unique Factorization Domain), so the analogs of Gauss’s
Lemma (Lemma 4.1.4), Proposition 4.1.5, and Corollary 4.1.6 continue to hold
for R. Thus we may, as in Remark 4.1.12, assume that f (Xn+1) is a primitive
polynomial in R[Xn+1]. Then proceed as in Remark 4.1.12. The only thing we
need to see is that there is an algorithm for finding each of the sets Bi . But that
follows by induction, since in factoring f (ai ), we are in the case n = k. �

4.2 Cyclotomic Fields

In this section we study the splitting fields of the polynomials Xn − 1 over Q.
Recall that ζn is a primitive nth root of 1 in a field E if ζ n

n = 1 but ζ m
n �= 1

for any 1 ≤ m < n. If E is the splitting field of Xn −1 over Q, then E = Q(ζn).
In this case, we may simply take ζn = exp(2π i/n), and we do this henceforth.

Definition 4.2.1. 
n(X) = ∏
(X − ζ ) where the product is taken over all

primitive nth roots of 1.

n(X) is the nth cyclotomic polynomial and E = Q(ζn) is the nth cyclo-

tomic field. �
Remark 4.2.2. Observe that 
n(X) and Xn − 1 = ∏n−1

i=0 (X − ζ i
n) are both

products of distinct linear factors in E[X ], and that 
n(X) divides Xn − 1 in
E[X ]. �

We let ϕ(n) (as usual) denote the Euler totient function, ϕ(n) being the
number of integers between 1 and n that are relatively prime to n.
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Lemma 4.2.3. deg 
n(X) = ϕ(n).

Proof. We observe that ζ is a primitive nth root of 1 if and only if ζ = ζ k
n for

some k relatively prime to n, so {primitive nth roots of 1} = {ζ k | 1 ≤ k ≤
n, (k, n) = 1} and the cardinality of this set, which by Definition 4.2.1 is the
degree of mζ (X), is ϕ(n). ��
Lemma 4.2.4. (1) 
n(X) ∈ Q[X ] for every n.

(2) If n1 �= n2, then 
n1(X) and 
n2(X) are relatively prime in Q[X ].
(3) Xn − 1 = ∏

d|n 
d(X).

Proof. (1) Let E = Q(ζn). By Remark 4.2.2, E is the splitting field of the
separable polynomial Xn−1. Thus, by Theorem 2.7.14, E is a Galois extension
of Q. If ζ is a primitive nth root of 1 in E, then σ(ζ ) is also a primitive nth root
of 1 for any σ ∈ Gal(E/Q), so 
n(X) is invariant under Gal(E/Q), and hence

n(X) ∈ Q[X ].

(2) Let E = Q(ζn1n2). From Definition 4.2.1 we see that 
n1(X) and

n2(X) are relatively prime in E[X ], and hence also in Q[X ] by Lemma 2.2.7.

(3) Every nth root of 1 is a primitive d th root of 1 for a unique d
dividing n. ��
Corollary 4.2.5. 
n(X) ∈ Z[X ].
Proof. From Lemma 4.1.4 we see that 
n(X) divides Xn − 1 in Q[X ], and
hence, since 
n(X) is monic, 
n(X) ∈ Z[X ] by Corollary 4.1.6. ��
Theorem 4.2.6. 
n(X) is irreducible for every n.

First Proof. Suppose 
n(X) is not irreducible, and consider a monic irre-
ducible factor f (X) of 
n(X) that has ζn as a root. Then f (X) does not
have every primitive nth root of unity as a root, so there is some k > 1
with f (ζ k

n ) �= 0. Choose the smallest such k, and let p be any prime factor
of k. Since k is relatively prime to n, p is relatively prime to n as well. Set
ζ = ζ

k/p
n . Then, by the minimality of k, f (ζ ) = 0 but f (ζ p) �= 0. Now

f (X) is irreducible and monic, and f (X) divides Xn − 1 in Q[X ], so in fact
Xn − 1 = f (X)g(X) where both f (X) and g(X) are in Z[X ], by Corollary
4.1.6. Then

0 = (ζ p)n − 1 = f (ζ p)g(ζ p) and f (ζ p) �= 0, so g(ζ p) = 0.

Writing g(X) = ∑
ci Xi , ci ∈ Z, we see that 0 = ∑

ciζ
pi = ∑

ci (ζ
p)i , so

h(ζ ) = 0 where h(X) = g(X p). Since f (ζ ) = 0 and f (X) is irreducible
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and monic, f (X) divides h(X) in Q[X ] and hence in Z[X ], again by Corol-
lary 4.1.6. Now let π : Z[X ] → (Z/pZ)[X ] be the map induced by reduc-
ing the coefficients mod p. Then π( f (X)) divides π(h(X)) = π(g(X p)) =
π(g(X))p in (Z/pZ)[X ], so π( f (X)) and π(g(X)) have an irreducible factor
q̄(X) in common. But

Xn − 1 = π(Xn − 1) = π( f (X))π(g(X)).

This would imply that Xn − 1 is divisible by q̄(X)2 in (Z/pZ)[X ], and hence
that Xn − 1 has a repeated linear factor in Ep, its splitting field over Z/pZ =
Fp. However, Xn − 1 has distinct roots in Ep, a contradiction. (This follows
immediately from Lemma 3.2.1, but is easy to see directly.)

Second Proof (Landau). Let mζn (X) have degree d. Since mζn (X) is monic and
divides Xn −1 in Q[X ], mζn (X) ∈ Z[X ], by Corollary 4.1.6. We claim that, for
any k, ζ k

n = rk(ζ ) for a unique polynomial rk(X) ∈ Z[X ] of degree less than
d . To see this, note that, by the division algorithm, Xk = mζn (X)qk(X)+rk(X)

with qk(X), rk(X) ∈ Z[X ] unique polynomials with deg rk(X) < d, and then
set X = ζn . It follows immediately that for any polynomial h(X) ∈ Z[X ],
h(ζ k

n ) can be written as a unique polynomial in ζn of degree less than d with
integer coefficients. In particular, we may write mζn (ζ

k) = gk(ζ ) with gk(X)

a polynomial of this form. Since ζ n+k
n = ζ k

n , we see that gn+k(X) = gk(X).
Now it follows immediately from the Multinomial Theorem and Fermat’s

Little Theorem (a p ≡ a(mod p) for every a ∈ Z, for p a prime) that for any
prime p and for any polynomial f (X) ∈ Z[X ], f (X p) − f (X)p has all of
its coefficients divisible by p. In particular this is true for f (X) = mζn (X),
so mζn (X p) − mζn (X)p = pe(X) for some polynomial e(X) ∈ Z[X ]. Setting
X = ζ , we see that gp(ζ ) = mζn (ζ

p) = pe(ζ p). Now e(ζ p) can be written
as a polynomial in ζ of degree less than d with integer coefficients in a unique
way, and gp(ζ ) is also such a polynomial, so gp(ζ ) = pe(ζ p). Thus we see
that the coefficients of gp(X) are all divisible by p.

There are only finitely many distinct gk(X), so there is an upper bound A
for the absolute values of all of their coefficients. Let p be any prime with p >

A. Then we see that gp(X) is the zero polynomial, so 0 = gp(ζ ) = mζn (ζ
p

n ),
and hence ζn and ζ

p
n have the same minimum polynomial mζn (X) (as mζn (X)

is irreducible). We may iterate this argument to conclude that mζ (ζ
s) = 0 for

any s not divisible by any prime p ≤ A.
Let r be any integer relatively prime to n. Let p1, . . . , pt be the primes

less than or equal to A that do not divide r , and set s = r + np1 · · · pt . Then
s is such an integer. (If p ≤ A is a prime, then either p is equal to pi for
some i , in which case p divides the second term but not the first, or it is not, in
which case p divides the first term but not the second.) Then s ≡ r(mod n), so
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mζn (ζ
r ) = mζn (ζ

s) = 0. Thus every primitive nth root of 1 is a root of mζn (X)

and hence 
n(X) = mζn (X) is irreducible. ��
Corollary 4.2.7. (1) mζn (X) = 
n(X) and (Q(ζn)/Q) = ϕ(n).

(2) Gal(Q(ζn)/Q) ∼= (Z/nZ)∗. In particular, Gal(Q(ζn)/Q) is abelian.

Proof. (1) Since 
n(ζn) = 0, mζn (X) divides 
n(X). But 
n(X) is irreducible
by Theorem 4.2.6 so they are equal. Then (Q(ζn)/Q) = deg mζn (X) = ϕ(n)

where the first equality is Proposition 2.4.6 (2) and the second is Lemma 4.2.3.
(2) For any k with (k, n) = 1, ζ k

n is also a primitive nth root of 1, i.e, a
root of mζn (X), so by Lemma 2.6.1 there is a map σk : Q(ζn) → Q(ζn) with
σk(ζn) = ζ k

n and σ | Q = id, and σk is determined by its value on ζn . ��
Corollary 4.2.8. Let m and n be positive integers and set d = gcd(m, n) and
� = lcm(m, n). Then Q(ζm)Q(ζn) = Q(ζ�) and Q(ζm) ∩ Q(ζn) = Q(ζd).

In particular, if m and n are relatively prime, Q(ζm)Q(ζn) = Q(ζmn) and
Q(ζm) ∩ Q(ζn) = Q, i.e., Q(ζm) and Q(ζn) are disjoint extensions of Q.

Proof. As ζm = ζ
�/m
� and ζn = ζ

�/n
� , clearly Q(ζ�) ⊇ Q(ζm)Q(ζn). Now

�/m and �/n are relatively prime, so let s and t be integers with s(�/m) +
t (�/n) = 1, so 1/� = s/m + t/n. Then ζ� = ζ s

mζ t
n so ζ� ∈ Q(ζm)Q(ζn) and

Q(ζ�) = Q(ζm)Q(ζn).
Observe that, for any integers r and s with r dividing s, Q(ζr ) ⊆ Q(ζs), so

(Q(ζs)/Q(ζr ))(Q(ζr )/Q) = (Q(ζs)/Q), and hence, by Corollary 4.2.7,

(Q(ζs)/Q(ζr )) = ϕ(s)/ϕ(r).

As ζd = ζ
m/d
m and ζd = ζ

n/d
n , clearly Q(ζd) ⊆ Q(ζm) ∩ Q(ζn). Now, by

Corollary 3.4.3 and the above observation,

(Q(ζn)/(Q(ζm) ∩ Q(ζn))) = (Q(ζm)Q(ζn)/Q(ζm))

= (Q(ζ�)/Q(ζm))

= ϕ(�)/ϕ(m).

Furthermore, again using the above observation,

(Q(ζn)/(Q(ζm) ∩ Q(ζn)))((Q(ζm) ∩ Q(ζn))/Q(ζd)) = (Q(ζn)/Q(ζd))

= ϕ(n)/ϕ(d),

so

((Q(ζm) ∩ Q(ζn))/Q(ζd)) = (ϕ(n)/ϕ(d))/(ϕ(�))/ϕ(m))

= (ϕ(m)ϕ(n))/(ϕ(d))ϕ(�)).
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But it is a fact from elementary number theory that for any two positive
integers m and n, ϕ(m)ϕ(n) = ϕ(d)ϕ(�), so Q(ζm) ∩ Q(ζn) = Q(ζd), as
claimed. ��

We conclude this section by giving a formula for 
n(X).

Proposition 4.2.9. For any positive integer n, the n-th cyclotomic polynomial

n(X) is given by


n(X) =
∏
d|n

(Xd − 1)μ(n/d),

where μ is the Möbius μ function, defined by μ( j) = 0 if j is divisible by
the square of a prime, and otherwise μ( j) = (−1)i where i is the number of
distinct prime factors of j .

Proof. Since, by Lemma 4.2.4 (3), Xn − 1 = ∏
d|n 
d(X), the result fol-

lows immediately from the multiplicative version of the Möbius Inversion
Formula. ��

4.3 Solvable Extensions and Solvable Groups

In this section, we show that an equation is solvable by radicals if and only
if its group is a solvable group. Of course, we must begin by defining these
terms. We are most interested in the case F = Q, but the proofs apply more
generally.

We develop the necessary field theory and the connections between field
theory and group theory here. We refer the reader to Section A.1 where we
develop the necessary group theory.

Definition 4.3.1. (1) A polynomial f (X) ∈ F[X ] is a radical polynomial if
f (X) = Xn − a for some positive integer n and element a of F. An extension
E of F is a radical extension (or an extension by radicals) if E = F(α) for α a
root of a radical polynomial.

(2) An equation f (X) = 0, f (X) ∈ F[X ], is solvable by radicals if there
is a sequence of extensions E0 = F ⊆ E1 ⊆ · · · ⊆ Ek with Ei the splitting
field of a radical polynomial fi (X) ∈ Ei−1(X) and with Ek ⊇ E, a splitting
field of f (X). �

(Radical polynomial is not a standard term, but radical extension is.)
Before proving our main theorem, Theorem 4.3.4, let us observe a special

case.
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Lemma 4.3.2. Let f (X) = Xn −a ∈ F[X ], let E be the splitting field of f (X),
and let G = Gal(E/F). Then G is a solvable group.

Proof. E = F(ζn,
n
√

a). Let B = F(ζn). Then F ⊆ B ⊆ E. Let G1 =
Gal(E/B). Now B is a Galois extension of F, so G1 is a normal subgroup of G,
and G/G1 is isomorphic to Gal(B/F) by the FTGT. But G/G1 is abelian, by
Lemma 3.7.3 if F = Q, and by Lemma 3.7.3 and Corollary 3.4.6 in general,
and G1 is abelian by Proposition 3.7.6. Then G is solvable, as we see immedi-
ately from Definition A.1.1. ��

Let us record a generalization of Lemma 4.3.2 that will help us in the proof
of Theorem 4.3.4.

Lemma 4.3.3. Let f (X) = ∏t
j=1(Xn j − a j ) with a1, . . . , a j ∈ F, let E be the

splitting field of f (X) over F, and let G = Gal(E/F). Then G is a solvable
group.

Proof. Define a sequence of fields D0 ⊆ · · · ⊆ Dt inductively, as follows. Let
D0 = F and, if D j−1 is defined, let D j be the splitting field of (Xn j − a j ) ∈
D j−1[X ]. Note that Dt = E. Let G j = Gal(Dt− j/D0) for j = 0, . . . , t . Then
G = G0 ⊇ · · · ⊇ Gt = {1}. Also, G j−1/G j = Gal(Dt− j+1/Dt− j ). But this
group is solvable by Lemma 4.3.2, so, by Lemma A.1.3, G is solvable. ��

Now for our main theorem.

Theorem 4.3.4. Let f (X) ∈ F[X ] and let E be a splitting field of f (X). Then
f (X) = 0 is solvable by radicals if and only if G = Gal(E/F) is a solvable
group.

Proof. First, assume G = Gal(E/F) is solvable. Let deg f (X) = m and set
n = m!.

Case I: F ⊇ Q(ζn). Let G = G0 ⊇ · · · ⊇ Gk = {1} with Gi a normal
subgroup of Gi−1 and Gi−1/Gi cyclic (see Lemma A.1.3), say of order mi .
Note mi ≤ m so in particular mi divides n. Let Bi = Fix(Gi ), and note that
B0 = F and Bk = E. Then Bi is a cyclic extension of Bi−1 of degree mi , and
Bi−1 ⊇ Q(ζn) ⊇ Q(ζmi ), so Bi is the splitting field of Xmi − ai , for some
ai ∈ Bi−1, by Proposition 3.7.7.

Case II: The general case. The equation Xn − 1 is obviously solvable by
radicals. Let B = F(ζn), the splitting field of this polynomial. Let EB be the
splitting field of f (X) ∈ B[X ]. By Corollary 3.4.6, Gal(EB/B) is isomorphic
to a subgroup of Gal(E/F). But, by Lemma A.1.4 (1), a subgroup of a solvable
group is solvable, so we are reduced to case I.
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Conversely, assume that f (X) = 0 is solvable by radicals. Then there is
a sequence of fields F = B0 ⊆ B1 ⊆ · · · ⊆ Bk with Bi the splitting field of
Xmi −ai , ai ∈ Bi−1, and with Bk ⊇ E. Then Gal(Bi/Bi−1) is a solvable group,
by Lemma 4.3.2.

Suppose for the moment that k = 2. Then we have that Gal(B2/B1) and
Gal(B1/B0) are solvable groups, and that B2/B1 and B1/B0 are Galois exten-
sions. If we knew that B2/B0 was a Galois extension, we could apply Lemma
A.1.4 (3) to conclude that G = Gal(B2/B0) was a solvable group. However,
a sequence of Galois extensions may not be Galois (and indeed, one can con-
struct such an example precisely in this case). Thus in order to proceed we
must enlarge the fields we are dealing with.

We proceed inductively. We begin by setting B′
0 = B0 = F and B′

1 =
B1, and observe that B′

1 is a Galois extension of F. Suppose B′
i−1 is de-

fined and is a Galois extension of F. We let B′
i be the splitting field of∏

σ∈Gal(B′
i−1/B′

0)
(Xmi − σ(ai )) ∈ B′

i−1[X ]. Observe that this polynomial is in-
variant under Gal(B′

i−1/B′
0) so it is in fact in B′

0[X ] = F[X ]. Thus B′
i is the

splitting field of a separable polynomial in F[X ] so it is a Galois extension of
F. Thus we obtain a sequence of fields F = B′

0 ⊆ B′
1 ⊆ · · · ⊆ B′

k with each
B′

i a Galois extension of F and with B′
k ⊇ Bk ⊇ E.

Let G = Gal(B′
k/F) and let Gi = Gal(B′

k−i/B′
0) for i = 0, . . . , k. Then

G = G0 ⊇ · · · ⊃ Gk = {1}. Also, Gi−1/Gi = Gal(B′
k−i+1/B′

k−i ). By Lemma
4.3.3, Gi−1/Gi is solvable for each i = 1, . . . , k. Then, by Lemma A.1.3,
G = Gal(B′

k/F) is solvable. Now F ⊆ E ⊆ B′
k and E is a Galois extension

of F, so Gal(E/F) = Gal(B′
k/F)/ Gal(B′

k/E) is a quotient of a solvable group
and hence is solvable, by Lemma A.1.4 (2). ��
Corollary 4.3.5 (Abel). The general equation of degree n is not solvable by
radicals for n ≥ 5.

Proof. Let fn(X) ∈ F[X ] be a polynomial with splitting field E, where
Gal(E/F) = Sn , the symmetric group on n elements. Such a polynomial exists
by Lemma 3.1.2, and in fact we have explicitly exhibited one in Remark 3.1.5.
Now, by Corollary A.3.6, Sn is not solvable for n ≥ 5. Thus, for n ≥ 5, fn(X)

is not solvable by radicals, by Theorem 4.3.4. ��
While we credit Theorem 4.3.4 to Galois, in fact he did not state it that

way. We shall now derive Galois’s original result. One the one hand, this is of
historical interest, but on the other hand, it provides an easy way of exhibiting
a polynomial in Q[X ] whose Galois group is not solvable.

Theorem 4.3.6 (Galois). Let f (X) ∈ F[X ] be an irreducible polynomial of
prime degree p. Then f (X) = 0 is solvable by radicals if and only if all of its
roots are rational functions of any two of them.



100 4 Extensions of the Field of Rational Numbers

Proof. By Theorem 4.3.4 we know that f (X) = 0 is solvable by radicals if
and only if G = Gal(E/F) is a solvable group, where E is a splitting field of
f (X). Since f (X) is irreducible, G acts transitively on the roots of f (X).

First, suppose that all of the roots of f (X) are rational functions of any
two of them. Regard G as a subgroup of the symmetric group Sp by its action
permuting the roots of f (X), and let σ ∈ G. If α1 �= α2 are roots, then for any
ε ∈ E, σ(ε) is determined by σ(α1) and σ(α2). There are at most p(p − 1)

choices for σ(α1) and σ(α2), so G has order at most p(p − 1), and so by
Corollary A.1.9 G is solvable.

Conversely, suppose that G is solvable. Let α1 and α2 be any two distinct
roots of f (X), and let B = F(α1, α2) ⊆ E. We need to show that B = E.

We apply the Fundamental Theorem of Galois Theory (FTGT), Theorem
2.8.8. B is a field intermediate between F and E, so G ′ = Gal(E/B) ⊆ G =
Gal(E/F). By definition, Gal(E/B) = {σ ∈ G | σ(β) = β for every β ∈ B}.
But the FTGT establishes a 1−1 correspondence between subgroups of G and
fields intermediate between F and E, so B = E if and only if G ′ = {id}. We
proceed to show this.

Let σ ∈ G. Note that σ ∈ G ′ if and only if σ(α1) = α1 and σ(α2) = α2.
By Proposition A.1.7 (and using the notation there), we may identify G

with G H for some subgroup H of F∗
p, and α1 and α2 with

[
i1
1

]
and

[
i2
1

]
for

some i1 �= i2.
Let σ = [

h n
0 1

] ∈ G H with σ(α1) = α1 and σ(α2) = α2. Then
[

i1

1

]
=

[
h n
0 1

] [
i1

1

]
=

[
hi1 + n

1

]
,

[
i2

1

]
=

[
h n
0 1

] [
i2

1

]
=

[
hi2 + n

1

]
,

and these two equations readily imply h = 1, n = 0, i.e., σ = id. Thus we see
that G ′ = {id}, completing the proof. ��
Corollary 4.3.7. Let F ⊆ R and let f (X) ∈ F[X ] be an irreducible polyno-
mial of prime degree p with k real roots, 1 < k < p. Then f (X) = 0 is not
solvable by radicals.

Proof. Suppose f (X) has real roots α1 �= α2 and a nonreal root β. Then β is
not a rational function of α1 and α2, so, by Theorem 4.3.6, f (X) = 0 is not
solvable by radicals. ��
Remark 4.3.8. In Example 4.7.5 we will see that, for each odd prime p, there
is an irreducible polynomial f p(X) ∈ Q[X ] with p − 2 real roots. Thus, by
Corollary 4.3.7, f p(X) is not solvable by radicals for p ≥ 5. But in fact we
will show the stronger result that the Galois group of f p(X) over Q is iso-
morphic to Sp, thus providing an example of Corollary 4.3.5 over Q. We will
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further provide an example of such a polynomial fn(X) over Q for every n ≥ 5
in Proposition 4.7.10, but the construction there is considerably more compli-
cated. �

4.4 Geometric Constructions

In this section we will investigate the question of constructibility by straight-
edge and compass. We will see that the three classical questions of Greek
antiquity (trisecting the angle, duplicating the cube, and squaring the circle)
are unsolvable by these methods. We will also see when it is possible to con-
struct a regular n-gon by these methods, a result originally due to Gauss. In
particular, we will show how to construct a regular 17-gon.

We begin by drawing an arbitrary line L , and choose two distinct points O
and A on it. We normalize coordinates by letting O be the origin and A be the
point (1, 0), so in particular the line segment O A has length 1. Thus the line
L is the x-axis.

We recall that, using straightedge and compass, it is possible to construct a
line through a given point parallel to, or perpendicular to, a given line. Thus, in
particular, we may construct the y-axis and hence we have the usual Cartesian
coordinates in the plane.

There are two ways to regard points in the plane. We may consider that a
point P has coordinates (x, y), or that P is represented by the complex number
z = x + iy. If we have constructed the point P represented by z = x + iy, then
we may drop perpendiculars to obtain the real and imaginary parts x and y of
P; conversely, given real numbers x and y we may certainly obtain the point
(x, y) corresponding to z = x + iy. Also, all arithmetic operations on complex
numbers (addition, subtraction, multiplication, division) may be performed by
doing arithmetic operations on their real and imaginary parts. Thus we shall
pass freely between these two different descriptions.

Our first main result is the following:

Theorem 4.4.1. The complex number z can be constructed by straightedge
and compass if and only if z is algebraic over Q and there is a sequence of
fields

F0 = Q ⊂ F1 ⊂ · · · ⊂ Fk

with Q(z) ⊆ Fk and with (Fi/Fi−1) = 2 for each i = 1, . . . , k.

Proof. First, we observe that we may perform all arithmetic operations with
straightedge and compass. Clearly we can add and subtract (positive) real num-
bers x and y. We may multiply them as follows: Let the line segment AB have



102 4 Extensions of the Field of Rational Numbers

length x and extend AB to a line L . Let M be another line through A and let
C and D be points on the same side of A with the line segments AC and AD
having lengths 1 and y, respectively. Construct the line N through D paral-
lel to the line segment C B and let this line intersect the line L in the point
E . Then, by similar triangles, the line segment AE has length xy. To divide
we perform a similar construction, this time letting N be the line through C
parallel to the line segment DB, and then AE has length x/y.

We also observe that we may take the square root of a (positive) real num-
ber x using straightedge and compass. To do so, let line segment AB have
length x and extend AB to a line L . Let C be a point on the opposite side of A
from B with the length of the line segment AC equal to 1. Construct a semi-
circle with diameter C B, and a line M perpendicular to C B at A. Let D be the
point at which the line M intersects this semicircle. Then, by similar triangles,
AD has length

√
x .

With this in hand, we turn to the proof of the theorem.
First, suppose there is a sequence of fields as indicated. By our first obser-

vation, every x ∈ Q = F0 can be constructed. Since (F/F0) = 2, F1 = F0(α1)

where α1 is a root of an irreducible quadratic equation with coefficients in F0.
Then, by the quadratic formula, F0(α1) = F0(

√
a1) for some a1 ∈ F0, and by

our second observation,
√

a1 can be constructed, and hence every x ∈ F1 can
be constructed. Then proceed by induction.

Conversely, suppose a point can be constructed with a straightedge and
compass. Then it is obtained by a succession of the following operations:

(1) Finding the intersection of two lines.
(2) Finding the intersection of a circle and a line.
(3) Finding the intersection of two circles.
In case of operation (1), let the two lines be given by the equations

a1x + b1 y = c1 and a2x + b2 y = c2 with a1, a2, b1, b2, c1, c2 ∈ F for some
field F. Then the solution (x, y) has x ∈ F and y ∈ F. In case of operation
(2), let the circle be given by (x − a1)

2 + (y − b1)
2 = c2

1 and the line be
given by a2x + b2 y = c2 with a1, a2, b1, b2, c1, c2 ∈ F. Solving for y in terms
of x (or vice versa) in the linear equation, substituting in the quadratic equa-
tion, and solving, shows x ∈ F(d) and y ∈ F(d) where (F(d)/F) = 1 or 2.
In case of operation (3), let the two circles have equations (x − a1)

2 +
(y − b1)

2 = c2
1 and (x − a2)

2 + (y − b2)
2 = c2

2 with a1, a2, b1, b2, c1, c2 ∈ F.
Subtracting the second equation from the first gives a linear equation a3x +
b3 y = c3 for some a3, b3, c3 ∈ F, so combining the equation of the first circle
(say) with this linear equation, we are reduced to operation (2). This yields the
theorem. ��
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Corollary 4.4.2. It is impossible to perform the following constructions using
straightedge and compass:

(1) (Trisecting the angle) Trisecting an arbitrary angle.
(2) (Duplicating the cube) Constructing a cube with volume twice that of

a given cube.
(3) (Squaring the circle) Constructing a square with area that of a given

circle.

Proof. (1) Given an angle θ , let one side of the angle be the x-axis and let the
other side of the angle intersect the unit circle at P . Then P has coordinates
(cos θ, sin θ). Thus we may construct the angle θ/3 if and only if we may
construct the real number cos θ/3. Recall the formula cos 3ϕ = 4 cos4 ϕ −
3 cos ϕ. Letting ϕ = θ/3 and x = cos ϕ, we see that x satisfies the cubic
equation 4x3 − 3x = cos θ . We may certainly construct an angle θ = π/3 (=
60◦), and cos(π/3) = 1

2 . Thus x is a root of the polynomial f (X) = 8X3 −
6X − 1. Using Lemma 4.1.2, it is easy to check that f (X) has no linear factor
in Q(X), and hence is irreducible, so (Q(x)/Q) = 3. But then we cannot have
Q(x) ⊆ Fk with Fk as in Theorem 4.4.1, as (Fk/Q) is a power of 2 and hence
not divisible by 3.

(2) Trivially, we may construct a segment of length the side of a cube of
volume 1. But then to construct a segment of length the side of a cube of
volume 2 would be to construct x = 3

√
2. But (Q(

3
√

2)/Q) = 3 does not divide
any power of 2, so this is impossible as in part (1).

(3) Trivially, we may construct a segment of length the radius of a circle of
area π . But then to construct a segment of length the side of a square of area π

would be to construct x = √
π . But it is a famous theorem of Lindemann that

π is transcendental (i.e., not algebraic, or equivalently that π and hence
√

π

does not satisfy any algebraic equation) so (Q(
√

π)/Q) is infinite and hence√
π is not an element of any finite extension of Q (regardless of degree). ��

We have an equivalent formulation of the condition in Theorem 4.4.1.

Lemma 4.4.3. For a complex number z, the following are equivalent:
(1) There is a sequence of fields F0 = Q ⊂ F1 ⊂ · · · ⊂ Fk with Q(z) ⊆ Fk

and with (Fi/Fi−1) = 2 for each i = 1, . . . , k.
(2) If E is a splitting field of mz(X), then (E/Q) is a power of 2.

Proof. (2) implies (1): Let G = Gal(E/Q) and let G have order 2k . By Corol-
lary A.2.3 there is a sequence of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = {1}
with [G : Gi ] = 2i . Let Fi = Fix(Gi ). Then {Fi } is as required.

(1) implies (2): We prove this by induction on k. For k = 0 it is triv-
ial and for k = 1 it is immediate, as every quadratic extension is a split-
ting field. Let (Fk/Fk−1) = 2. Then Fk = Fk−1(αk) for some αk ∈ Fk with
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deg mαk (X) = 2. In the course of the proof we shall have occasion to replace
the field Fk−1 by another field Ek−1. Observe that for any field Ek−1 ⊇ Fk−1,
(Ek−1(αk)/Ek−1) = 1 or 2 by Lemma 2.4.7.

Let E0 = F0 and E1 = F1. If αk ∈ Ek−1, then Ek = Ek−1(αk) = Ek−1 and
there is nothing to do. Otherwise, let G = Gal(Ek−1/E0) and let

f (X) =
∏
σ∈G

σ(mαk (X)).

Then f (X) is invariant under G, so f (X) ∈ E0[X ]. Let Ek be a splitting
field of f (X) containing Fk . Then f (X) has roots β1 = αk, . . . , βm . Now
mαk (X) has degree 2, so σ(mα(X)) has degree 2 for each σ ∈ G, and hence
(Ek−1(βi )/Ek−1) = 2 for each i . Now consider

Ek−1 ⊆ Ek−1(β1) ⊆ Ek−1(β1, β2) ⊆ · · · ⊆ Ek−1(β1, . . . , βm) = Ek .

Set E′
k−1 = Ek−1(β1, . . . , βi−1). By Remark 2.3.6, Ek−1(β1, . . . , βi ) =

Ek−1(β1, . . . , βi−1)(βi ) = E′
k−1(βi ) is the composite E′

k−1Ek−1(βi ), so, by
Lemma 2.3.8,

(Ek−1(β1, . . . , βi )/Ek−1(β1, . . . , βi−1)) = (E′
k−1(βi )/E′

k−1)

≤ (Ek−1(βi )/Ek−1) = 2,

so each successive extension is of degree 1 (i.e., is trivial) or of degree 2.
Thus (Ek/Q) is of degree a power of 2, and is a splitting field, hence a Galois
extension of Q. Now z ∈ Ek , so mz(X) splits in Ek and hence mz(X) has a
splitting field E with Q ⊆ E ⊆ Ek . Then (E/Q) divides (Ek/Q), so (E/Q) is
a power of 2. ��
Remark 4.4.4. For an arbitrary prime p, the implication (2) implies (1) of
Lemma 4.4.3 holds, with the identical proof, but the implication (1) implies
(2) does not. The proof breaks down as Lemma 2.3.8 merely guarantees a
degree between 1 and p, but it may be strictly between 1 and p. A counter-
example to the implication (1) implies (2) of Lemma 4.4.3 is given by z = 3

√
2.

Then (Q(z)/Q) = 3 but mz(X) = X3 − 2, whose splitting field E over Q has
(E/Q) = 6, which is not a power of 3. (Compare Example 2.3.7.) �

We now do a bit of elementary number theory. Let n = 2t + 1 for some
positive integer t . If t has an odd factor r > 1, then, writing t = rs, n is
divisible by 2s + 1 (as we see by substituting X = 2s in the algebraic identity
Xr +1 = (X +1)(Xr−1 − Xr−2 +· · ·+1), valid for any odd r ). Thus the only
possible primes of this form are when t = 2k for some k. Set Fk = 22k + 1.
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If Fk is prime, it is called a Fermat prime. This terminology is due to the
fact that Fermat claimed Fk is prime for every k. Now F0 = 3, F1 = 5,
F2 = 17, F3 = 257, and F4 = 65537 are indeed prime, but Euler discovered
that F5 = 4294967297 is divisible by 641 and hence is composite. In fact,
there is no known value of k > 4 for which Fk is prime.

Here is our second main result:

Theorem 4.4.5 (Gauss). A regular n-gon is constructible by straightedge and
compass if and only if n is of the form

n = 2k p1 · · · p j

with {pi } distinct Fermat primes.

Proof. Clearly a regular n-gon is constructible if and only if a regular n-gon
inscribed in a circle of radius 1 is constructible, and this is true if and only if
its vertices are constructible, and this is true if and only if ζn = exp(2π i/n) is
constructible.

By Theorem 4.4.1 and Lemma 4.4.3, this is true if and only if the split-
ting field of mζn (X) has degree a power of 2. But this splitting field is simply
Q(exp(2π i(n)), the nth cyclotomic field, which has degree ϕ(n) by Corollary
4.2.7.

If n = 2a pb
1 pc

2 · · · , then ϕ(n) = 2a−1(p1 − 1)pb−1
1 (p2 − 1)pc−1

2 · · · , so we
see that ϕ(n) can be a power of 2 if and only if b = c = · · · = 1 and each of
p1, p2, . . . is more than a power of 2, and hence a Fermat prime. ��
Example 4.4.6. (1) Everyone knows how to construct an equilateral triangle.
But in any case, ζ3 satisfies the equation X2 + X + 1 = 0. In fact, construct-
ing ζ3 = (−1 + i

√
3)/2 gives a construction of an equilateral triangle that

is different from the usual one. It is the following (using the notation at the
beginning of this section): Extend the line segment AO so that it intersects the
unit circle at the point D. Construct the midpoint E of the line segment O D,
and then construct the line M perpendicular to the segment O D at E . Let this
line intersect the unit circle at the points B and C . Then ABC is an equilateral
triangle.

(2) We essentially showed how to construct a regular pentagon in Example
1.1.4. To review that, let θ = ζ5 + ζ 4

5 = ζ5 + ζ−1
5 . Then θ satisfies the equation

X2 − X − 1 = 0 and ζ5 satisfies the equation X2 − θ X + 1 = 0.
(3) We show how to construct a regular 17-gon. Let ζ = ζ17 =

exp(2π i/17). Let G = G0 = Gal(Q(ζ )/Q). Then we know that G is cyclic
of order 16. Write G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ G4 = {1} where
[G : Gi ] = 2i , and note that Gi is cyclic of order 24−i . Let Fi = Fix(Gi )
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so F0 = Q and F4 = Q(ζ ). G is isomorphic to F∗
17, and direct calcula-

tion shows that 3 is a generator of this group. (In general, a generator of
F∗

p is called a primitive root mod p.) Let σi (ζ ) = ζ 3i
, i = 0, . . . , 15. Then

G0 = {σ0, σ1, . . . , σ15}, G1 = {σ0, σ2, . . . , σ14}, G2 = {σ0, σ4, σ8, σ12},
G3 = {σ0, σ8}, and G4 = {σ0}. Also, (Fi/Fi−1) = 2 for i = 1, . . . , 4. Write
E = F4 = Q(ζ ).

In order to simplify our computations, we recall the following elementary
fact: If r and s are the roots of the quadratic equation X2 − aX + b = 0, then
r + s = −a and rs = b. (Proof: (X − r)(X − s) = X2 − (r + s)X + rs.)

We work from the bottom up. (F1/F0) = 2 so F1 = F0(α) for any α ∈ E
fixed under G1 but not under G0, i.e., any α with σ2(α) = α but σ1(α) �= α.
Let

α0 = ∑7
i=0 ζ 32i = ζ + ζ 9 + ζ 13 + ζ 15 + ζ 16 + ζ 8 + ζ 4 + ζ 2,

α1 = ∑7
i=0 ζ 32i+1 = ζ 3 + ζ 10 + ζ 5 + ζ 11 + ζ 14 + ζ 7 + ζ 12 + ζ 6.

If α = α0 or α1, then σ2(α) = α but σ1(α) �= α. Direct calculation shows
α0 + α1 = −1 and α0α1 = −4, so α0 and α1 are the roots of X2 + X − 4 = 0.

Now (F2/F1) = 2 so F2 = F1(β) for any β ∈ E fixed under G2 but not
G1, i.e., any β with σ4(β) = β but σ2(β) �= β. Let

β0 = ζ + ζ 13 + ζ 16 + ζ 4,
β1 = ζ 3 + ζ 5 + ζ 14 + ζ 12,
β2 = ζ 9 + ζ 15 + ζ 8 + ζ 2,
β3 = ζ 10 + ζ 11 + ζ 7 + ζ 6.

If β = β0, β1, β2, or β3, then σ4(β) = β but σ2(β) �= β. Then β0 +β2 =
α0, β0β2 = −1, and β1β3 = α1, β1β3 = −1, so β0 and β2 are the roots of
X2 − α0 X − 1 = 0 and β1 and β3 are the roots of X2 − α1 X − 1 = 0.

Next (F3/F2) = 2 and F3 = F2(γ ). Let

γ0 = ζ + ζ 16,
γ4 = ζ 13 + ζ 4.

If γ = γ0 or γ4, then σ8(γ ) = γ but σ4(γ ) �= γ . Then γ0 + γ4 = β0,
γ0γ4 = β1, so γ0 and γ4 are the roots of X2 − β0 X + β1 = 0.

Finally, let δ0 = ζ and δ8 = ζ 16. If δ = δ0 or δ8, then σ8(δ) �= δ. Set
F4 = F3(δ0) = F3(ζ ). Note that ζ satisfies ζ + ζ 16 = γ0, ζ ζ 16 = 1, so ζ is a
root of X2 − γ0 X + 1 = 0.

Summarizing, we construct ζ = ζ17 as follows:

(1) Solve the quadratic X2 + X − 4 = 0; call the roots α0 and α1.



4.5 Quadratic Extensions of Q 107

(2a) Solve the quadratic X2 − α0 X − 1 = 0; call the roots β0 and β2.
(2b) Solve the quadratic X2 − α1 X − 1 = 0; call the roots β1 and β3.

(3) Solve the quadratic X2 − β0 X + β1 = 0; call the roots γ0 and γ4.
(4) Solve the quadratic X2 −γ0 X +γ4 = 0; its roots are ζ = δ0 and ζ 16 = δ8.

With enough patience (and careful attention to sign) the reader may ob-
tain an explicit formula for ζ which involves square roots nested four deep.
(To start off, α0 = (−1 + √

17)/2 and α1 = (−1 − √
17)/2, showing that

Q(
√

17) ⊂ Q(ζ17). Compare Corollary 4.5.2.) �

4.5 Quadratic Extensions of Q

We recall a bit of elementary number theory. Let p be a prime. Identifying Fp

with Z/pZ, we know that G = F∗
p = {1, . . . , p − 1} is a cyclic group, and

a generator r of this group is called a primitive root mod p. For example, 3 is
a primitive root mod 7 as 31 ≡ 3 (mod 7), 32 ≡ 2 (mod 7), 33 ≡ 6 (mod 7),
34 ≡ 4 (mod 7), 35 ≡ 5 (mod 7), and 36 ≡ 1 (mod 7). On the other hand,
2 is not a primitive root mod 7 as 23 ≡ 1 (mod 7). (We must be careful not
to confuse a primitive root mod p with a primitive pth root of 1. Observe that
ζ k

p is a primitive pth root of 1 for any k not divisible by p.) Observe also that
(Z/4Z)∗ = {1, 3}, so 3 is a primitive root mod 4.

If p is an odd prime, then G is cyclic of even order p − 1, so it has a
unique subgroup H of index 2. Let π : G → G/H ∼= Z/2Z = {0, 1} be
the quotient map. For an integer k relatively prime to p, we regard k as an
element of Z/pZ. Then χp, the quadratic residue character mod p, is defined
by χp(k) = (−1)π(k). (For fixed p, we shall write χ for χp.)

There is a more traditional definition of the quadratic residue character.
Recalling that G is a multiplicative group, the subgroup H consists of the
(quadratic) residues, i.e., of those elements of G that are squares, and its com-
plement consists of the (quadratic) nonresidues, i.e., of those elements of G
that are nonsquares. Then χ(k) = 1 if k is a residue and χ(k) = −1 if k is a
nonresidue.

Furthermore, if r is a generator of G, i.e., a primitive root mod p, then
χ(k) = 1 if k is an even power of r and χ(k) = −1 if k is an odd power of r
(and this is independent of the choice of r ).

For example, if p = 7, 1 = (±1)2, 4 = (±2)2, and 2 = (±3)2 are the
residues and 3, 5, and 6 are the nonresidues. Choosing the primitive root 3, we
see that 1 = 30, 2 = 32, and 4 = 34, while 3 = 31, 5 = 35, and 6 = 33.

It is then easy to see that the quadratic residue character has the following
properties:
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(1) χ( jk) = χ( j)χ(k). (χ is a homomorphism to the multiplicative
group {±1}.)

(2)
∑p−1

k=1 χ(k) = 0. (There are (p − 1)/2 residues and (p − 1)/2 non-
residues.)

(3) χ(−1) = (−1)(p−1)/2 = 1 if p ≡ 1 (mod 4) and = −1 if p ≡
3 (mod 4). (If r is a primitive root mod p, let a = r (p−1)/2. Then a �= 1 but
a2 = 1. On the other hand, the equation X2 − 1 = 0 has only two solutions in
Fp, X = ±1. Hence a = −1. Thus if p ≡ 1 (mod 4), (p − 1)/2 is even, a is
an even power of r , and χ(a) = 1, while if p ≡ 3 (mod 4), (p − 1)/2 is odd,
a is an odd power of r , and χ(a) = −1.)

Theorem 4.5.1. Let E be a quadratic extension of Q. Then E is intermediate
between Q and some cyclotomic field. In particular:

(1) Q(
√−1) = Q(ζ4).

(2) Q(
√

2) ⊂ Q(ζ8) and Q(
√−2) ⊂ Q(ζ8).

(3) If p is a prime congruent to 1 modulo 4, then Q(
√

p) ⊆ Q(ζp).
(4) If p is a prime congruent to 3 modulo 4, then Q(

√−p) ⊆ Q(ζp).

Proof. Observe that if Q(
√

a) ⊆ Q(ζm) and Q(
√

b) ⊆ Q(ζn), then Q(
√

ab) ⊆
Q(

√
a,

√
b) ⊆ Q(ζm, ζn) ⊆ Q(ζmn), so in order to prove the general statement

it suffices to prove the particular statements (1), (2), (3), and (4).
(1) is obvious.
(2) is direct calculation: ζ8 = (1 + i)/

√
2.

We prove (3) and (4) simultaneously. Actually, we present two proofs.
Let p be an odd prime and let

Sp =
p−1∑
k=1

χ(k)ζ k
p .

Then

S2
p =

p−1∑
k=1

p−1∑
j=1

χ(k)ζ k
pχ( j)ζ j

p =
p−1∑
k=1

p−1∑
j=1

χ(k j)ζ k+ j
p .

Set j ≡ km (mod p) and notice that as j runs over the nonzero congruence
classes mod p, so does m. Also, χ(k j) = χ(k2m) = χ(m). Thus

S2
p =

p−1∑
k=1

p−1∑
m=1

χ(m)ζ k+km
p

=
p−1∑
m=1

χ(m)

p−1∑
k=1

(ζ 1+m
p )k .
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Now 1 + ζp + · · · + ζ
p−1
p = 0, so as long as m �= p − 1, the inner sum is

−1. If m = p − 1, then the inner sum is of course p − 1.
Thus

S2
p =

(
−

p−2∑
m=1

χ(m)

)
+ (p − 1)χ(p − 1).

But
∑p−1

m=1 χ(m) = 0, so the first term is +χ(−1) and we see

S2
p = pχ(−1),

as required.

Our second proof uses more theory and a minimum of calculation. Let
G = Gal(Q(ζp)/Q) and recall that G is generated by σ0, where σ0(ζp) = ζ r

p
with r a primitive root mod p. Since Q(ζp) is a Galois extension of Q, any
α ∈ Q(ζp) with σ0(α) = α (and hence with σ(α) = α for every σ ∈ G) is in
fact an element of Q.

Now (Q(ζp)/Q) = p − 1 and Q(ζp) is certainly spanned by {1, ζp, . . . ,

ζ
p−1
p }. We know one relation among these p elements: 1 + ζp + · · · + ζ

p−1
p =

0. Hence {ζp, . . . , ζ
p−1
p } form a basis for Q(ζp), so in particular this set is

Q-linearly independent. Thus if α ∈ Q(ζp) with σ0(α) = α, then, writing
α = ∑p−1

i=1 aiζ
i
p with ai ∈ Q, we must have a1 = · · · = ap−1 = a, for some a.

(Of course, in this case α = −a ∈ Q.)
With these observations in mind, let us set

α0 = α0(p) =
(p−1)/2∑

i=1

ζ r2i−2

p ,

α1 = α1(p) =
(p−1)/2∑

i=1

ζ r2i−1

p .

Observe that the exponents in α0 are all quadratic residues mod p, and that
the exponents in α1 are all quadratic nonresidues mod p. Then

α0 + α1 = ζp + · · · ζ p−1
p = −1 and σ(α0) = α1, σ (α1) = α0.

Let b = α0α1. Then

σ0(b) = σ0(α0α1) = σ0(α0)σ0(α1) = α1α0 = b,

so b ∈ Q. We now compute b.
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First, suppose p ≡ 1 (mod 4). There are (p−1)/2 terms in α0 and (p−1)/2
terms in α1, so there are (p − 1)2/4 terms in the product. Each term is of
the form ζ

j
p ζ k

p with j a quadratic residue and k a quadratic nonresidue. Since
p ≡ 1 (mod 4), χ(− j) = χ(−1)χ( j) = χ( j), so j and − j are always either
both residues or both nonresidues, thus ζ k

p �= (ζ
j
p )−1 and hence no term ζ

j
p ζ k

p

is equal to 1. Then, writing b = ∑p−1
i=1 aiζ

i
p, we see that

∑
ai = (p − 1)2/4

and that a1 = · · · = ap−1 = a, for some a, so
∑

ai = (p − 1)a = (p − 1)2/4
and hence a = (p − 1)/4. Then

b = a
p−1∑
i=1

ζ i = ((p − 1)/4)

p−1∑
i=1

ζ i = ((p − 1)/4)(−1) = −(p − 1)/4.

Now suppose p ≡ 3 (mod 4). Then χ(− j) = −χ( j), so one of j and − j
is always a quadratic residue and the other is a quadratic nonresidue. Hence
each term in α0 “pairs up” with one of the terms in α1 to give a product of
1. This takes care of (p − 1)/2 of the (p − 1)2/4 terms. Thus we may write
b = (p − 1)/2 + b′ where b′ is the sum of the remaining (p − 1)2/4 −
(p − 1)/2 = (p − 1)(p − 3)/4 terms. We now apply the same logic to b′.
Writing b′ = ∑p−1

i=1 a′
iζ

i
p, we see that

∑
a′

i = (p − 1)(p − 3)/4 and that
a′

1 = · · · = a′
p−1 = a′, for some a′, so

∑
a′

i = (p − 1)a′ = (p − 1)(p − 3)/4,
and hence a′ = (p − 3)/4. Then

b′ = a′
p−1∑
i=1

ζ i = ((p − 3)/4)

p−1∑
i=1

ζ i = ((p − 3)/4)(−1) = −(p − 3)/4,

and then

b = (p − 1)/2 + b′ = (p − 1)/2 − (p − 3)/4 = (p + 1)/4.

Now

(X − α0)(X − α1) = X2 − (α0 + α1)X + α0α1

= X2 + X + b,

so

(X − α0)(X − α1) = X2 + X − (p − 1)/4 if p ≡ 1 (mod 4),

(X − α0)(X − α1) = X2 + X + (p + 1)/4 if p ≡ 3 (mod 4).
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In other words, α0 and α1 are the roots of this quadratic equation. But we
may find these roots by the quadratic formula, and we obtain

{α0, α1} = {(−1 ± √
p)/2} if p ≡ 1 (mod 4),

{α0, α1} = {(−1 ± √−p)/2} if p ≡ 3 (mod 4). ��
Corollary 4.5.2. For p an odd prime, Q(

√
χp(−1)p) is the unique quadratic

field intermediate between Q and Q(ζp).

Proof. Gal(Q/ζp)/Q) ∼= Z/(p − 1)Z contains a unique subgroup of index
two, so there is a unique quadratic field intermediate between Q and Q(ζp),
and we have just identified that field. ��
Remark 4.5.3. Let us cite some results from number theory that will enable us
to extend Corollary 4.5.2. They are:

(1) If m1 and m2 are relatively prime, then (Z/(m1m2)Z)∗ ∼= (Z/m1Z)∗ ⊕
(Z/m2Z)∗. (This follows easily from the Chinese Remainder Theorem.)

(2) For p an odd prime and k a positive integer, (Z/pkZ)∗, a group of order
ϕ(pk) = (p − 1)pk−1, is cyclic. (This is usually phrased as saying there is a
primitive root mod pk .)

(3) (Z/4Z)∗ ∼= Z/2Z and for k > 2, (Z/2kZ)∗, a group of order ϕ(2k) =
2k−1, is isomorphic to the direct sum of a cyclic group of order 2 and a cyclic
group of order 2k−2. �
Corollary 4.5.4. Let n > 2 be an integer. Define a set A = {ai }i=1,...,t as
follows: If p is an odd prime factor of n, then χp(−1)p ∈ A. If n is divisible
by 4, then −1 ∈ A. If n is divisible by 8, then 2 ∈ A. Then Q(ζn) contains
2t − 1 quadratic extensions of Q, and they are Q(

√
m) for m any nontrivial

product of distinct elements of A.

Proof. By the Fundamental Theorem of Galois Theory, the quadratic exten-
sions of Q contained in Q(ζn) are in 1 − 1 correspondence with the subgroups
of index 2 of Gal(Q(ζn)/Q ∼= (Z/nZ)∗. Now if n = 2e2 3e3 5e5 . . . , (Z/nZ)∗ ∼=
(Z/2e2Z)∗ × (Z/3e3Z)∗ × (Z/5e5Z)∗ × · · · . For p odd and k ≥ 1, (Z/pkZ)∗
is a cyclic group of even order. Also, (Z/2)∗ is trivial, (Z/4)∗ ∼= Z/2Z, and
(Z/2kZ)∗ ∼= (Z/2Z) ⊕ (Z/2k−2Z). Thus (Z/nZ)∗ contains 2t − 1 subgroups
of index 2, where t is as in the statement of the corollary. (A subgroup of in-
dex 2 is the kernel of an epimorphism ψ : Gal(Q(ζn)/Q) → Z/2Z and since
Gal(Q(ζn)/Q) is isomorphic to the direct sum of t cyclic groups of even order,
there are 2t homomorphisms from Gal(Q(ζn)/Q) to Z/2Z, one of which is
the trivial one.) Since Q(

√
m) ⊆ Q(ζn) for each of the 2t − 1 values of m in

the statement of the corollary, by Theorem 4.5.3, we see that these are all the
quadratic subfields of Q(ζn). ��
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Corollary 4.5.5. Let m be a square-free integer. If m ≡ 1 (mod 4), set m ′ =
|m|. Otherwise set m ′ = 4|m|. Then Q(

√
m) ⊆ Q(ζn) if and only if n is a

multiple of m ′.

Proof. Corollary 4.5.4 gives all the quadratic subfields of Q(ζn). ��
Remark 4.5.6. We have shown in the proof of Theorem 4.5.1 that for an odd
prime p, Sp = ±√

χp(−1)p. It is a famous theorem of Gauss that in every
case the sign is positive. It is easy to check that Sp = 2α0(p) + 1, so we see
that α0(p) = (−1 + √

χp(−1)p)/2 in every case as well. �

4.6 Radical Polynomials and Related Topics

In this section we investigate radical polynomials f (X) ∈ Q[X ], i.e., poly-
nomials of the form Xn − a, their associated radical extensions Q( n

√
a), and

their splitting fields Q( n
√

a, ζn). The results we obtain are interesting in their
own right, and, as we shall see, also have applications to cyclotomic fields and
Kummer fields.

First we determine the Galois groups of their splitting fields. We remind
the reader of our discussion of primitive roots at the beginning of Section 4.5.

Lemma 4.6.1. Let p be an odd prime. Let a ∈ Q with a not a pth power in Q,
and let E be the splitting field of X p − a. Let G = Gal(E/Q). Then

G = 〈σ, τ | σ p = 1, τ p−1 = 1, τστ−1 = σ r 〉
for some primitive root r mod p.

Proof. Certainly E = Q(α, ζp) where α ∈ E, α p = a. We claim that Q(α) ∩
Q(ζp) = Q. To see this, let B = Q(α) ∩ Q(ζp). Then Q ⊆ B ⊆ Q(ζp), so
(B/Q) divides (Q(ζp)/Q) = p − 1, and Q ⊆ B ⊆ Q(α), so (B/Q) divides
(Q(α)/Q) = p. Thus (B/Q) = 1, i.e., B = Q. In particular, α /∈ Q(ζp) and
(E/Q(ζp)) = p. Thus, if m̃α(X) denotes the minimum polynomial of α over
Q(ζp), and mα(X) denotes the minimum polynomial of α over Q, we see that

m̃α(X) = mα(X) =
p−1∏
i=0

(X − ζ i
pα) ∈ E[X ].

Then, by either Lemma 2.6.1 or Lemma 2.6.3, there is an automorphism σ of
E with

σ(α) = ζpα, σ (ζp) = ζp.
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On the other hand, consider a generator τ0 of Gal(Q(ζp)/Q). This is given
by τ0(ζp) = ζ r

p for r a primitive root mod p. Again, by either Lemma 2.6.1 or
Lemma 2.6.3, there is an automorphism τ0 of E extending τ0. Then τ0(α) =
ζ k

pα for some k. Set τ = σ−kτ0. Then τ is an automorphism of E with

τ(α) = α, τ(ζp) = ζ r
p.

Then direct calculation shows

σ rτ(α) = σ r (τ (α)) = σ r (α) = ζ r
pα

σ rτ(ζp) = σ r (τ (ζp)) = σ r (ζ r
p) = ζ r

p ,

while

τσ (α) = τ(σ (α)) = τ(ζpα) = ζ r
pα

τσ(ζp) = τ(σ (ζp)) = τ(ζp) = ζ r
p ,

so σ rτ = τσ ∈ Gal(E/Q), i.e., τστ−1 = σ r , as claimed. ��
Remark 4.6.2. (1) We see that, in the situation of Lemma 4.6.1, G = H N is
the semidirect product of the normal subgroup N = 〈σ | σ p = 1〉, isomorphic
to Z/pZ, and the subgroup H = 〈τ | τ p−1 = 1〉, isomorphic to Z/(p − 1)Z.

(2) The structure of G is independent of the primitive root r . (There is a
choice involved in the generators of G. Varying this choice varies r among all
the primitive roots.)

(3) Note that G is nonabelian. Note also that Lemma 4.6.1 also holds for
p = 2, when it recovers the much easier fact that in this case G ∼= Z/2Z. �
Lemma 4.6.3. Let a ∈ Q with a �= ±b2 for any b ∈ Q, and let E be the
splitting field of X4 − a. Let G = Gal(E/Q). Then

G = 〈σ, τ | σ 4 = 1, τ 2 = 1, τστ−1 = σ 3〉.
Proof. Let α ∈ E with α4 = a. Then E = Q(α, ζ4). First we must show
that Q(α) ∩ Q(ζ4) = Q. Assume Q(α) ∩ Q(ζ4) ⊃ Q. Since (Q(ζ4)/Q) = 2,
this implies that Q(α) ⊇ Q(ζ4) and hence that E = Q(α). Then (E/Q) = 4
and (Q(ζ4)/Q) = 2, and so Q(ζ4) is the fixed field of a subgroup {id, σ } of
Gal(E/Q). Since α is a root of the polynomial X4−a, σ(α) must also be a root
of this polynomial, so σ(α) = ζ k

4 α for some k. But σ(ζ4) = ζ4 and σ �= id
but σ 2 = id, so ζ k

4 α �= α but ζ 2k
4 α = α. Hence k = 2 and σ(α) = −α. Now

E = {c0 + c1α + c2α
2 + c3α

3 | ci ∈ Q} and Fix(σ ) = {c0 + c2α
2 | ci ∈ Q}.

We claim that i = ζ4 /∈ Fix(σ ).
Suppose i = c0 + c2α

2. Then −1 = i2 = (c0 + c2α
2)2 = (c2

0 + c2
2a) +

2c0c2α
2. Since a is not a square, α2 /∈ Q, so c0c2 = 0 and either c0 = 0,
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c2
2 = −1/a, which is impossible since −a is not a square, or c2 = 0, c2

0 = −1,
which is certainly impossible. Thus Q(α) ∩ Q(ζ4) = Q.

The rest of the proof entirely parallels the proof of Lemma 4.6.1. ��
Lemma 4.6.1 and 4.6.3 have a considerable generalization in Theorem

4.6.6.
We have seen in Section 4.5 that every quadratic field Q(

√
a) is contained

in some cyclotomic field. We now use the theory we have developed to show
that no cubic, quartic, . . . field is contained in a cyclotomic field.

Corollary 4.6.4. Let a ∈ Q and let n > 2 be an integer. Suppose that a is not
a pth power for some odd prime p dividing n or that ±a is not a square if n is
divisible by 4. Then Q( n

√
a) is not contained in any cyclotomic field.

Proof. Let k = p or k = 4 according as n is divisible by the odd prime p or
by 4.

Suppose that Q( n
√

a) ⊆ Q(ζm). Since k
√

a = ( n
√

a)n/k , Q( k
√

a) ⊆ Q( n
√

a).
Then E = Q( k

√
a, ζk) ⊆ Q(ζm, ζk) ⊆ Q(ζmk). Now E is the splitting field of

Xk − a, so is a Galois extension of Q. Then, by the Fundamental Theorem of
Galois Theory,

Gal(E/Q) = Gal(Q(ζmk)/Q)/ Gal(Q(ζmk)/E).

In particular, Gal(E/Q) is a quotient of Gal(Q(ζmk)/Q). But we have that
Gal(Q(ζmk)/Q) is abelian, by Corollary 4.2.7, while under our hypothesis
Gal(E/Q) is nonabelian, by Lemma 4.6.1 or Lemma 4.6.3, which is impos-
sible. ��

We now prove a result which allows us to weaken the hypothesis of Lemma
3.7.7 in our discussion of Kummer fields, as well as to further investigate the
Galois groups of splitting fields of radical polynomials.

Lemma 4.6.5. (1) Let n be an odd integer, and let a be n-powerless in Q. Then
a is n-powerless in Q(ζN ) for every N.

(2) Let n be an even integer, and let a be n-powerless in Q. If a is negative,
assume also that −a is not a square in Q. Then one of the following two
alternatives holds:

(a) a is n-powerless in Q(ζN ) for every N.
(b) a = b2 for some b ∈ Q(ζN ), for some N, and b is n/2-powerless in

Q(ζN ′) for every multiple N ′ of N.

Proof. If a is n-powerless in Q(ζN ), there is nothing to prove. Otherwise, a is
an m th power in Q(ζN ) for some m dividing n, m > 1. We shall show that the
only possibility is m = 2, from which the lemma follows.
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Suppose m > 2. Then m is divisible by k, where k is either an odd prime
or 4. Write a = bk where b ∈ Q(ζN ). Then we see that Q( k

√
a) is contained in

some cyclotomic field. But, under our hypothesis on a, this is impossible, by
Corollary 4.6.4. ��
Theorem 4.6.6. Let n be an integer and let a be n-powerless in Q. Let E be
the splitting field of Xn − a over Q, and let G = Gal(E/Q).

(1) If a is n-powerless in Q(ζn), then G = H N, the semidirect product of
a normal subgroup N isomorphic to Z/nZ and a subgroup H isomorphic to
(Z/nZ)∗.

(2) If a = b2 with b n/2-powerless in Q(ζn), then G = H N, the semidirect
product of a normal subgroup N isomorphic to Z/(n/2)Z and a subgroup H
isomorphic to (Z/nZ)∗.

Proof. (1) We have that E = Q(ζn, α), where αn = a. Let B = Q(ζn). Then
Xn − a is irreducible over B, so by Proposition 3.7.6 the Galois group N =
Gal(E/B) is isomorphic to Z/nZ. Now N is a subgroup of G and is normal
as B is a Galois extension of Q. Also, H = Gal(E/Q(α)) is isomorphic to
Gal(B/Q) which is isomorphic to (Z/nZ)∗. Also, (E/Q) = (E/B)(B/Q) =
(Q(α)/Q)(B/Q) so Q(α) and B are disjoint extensions of Q by Corollary
3.4.5, so G = H N by Theorem 3.4.10.

(2) Let F = Q(b) ⊆ Q(ζn). Then (F/Q) = 2, and so G ′ = Gal(E/F) is a
subgroup of index 2 of G. The proof of part (1) goes through with Q replaced
by F and n replaced by m to give that G ′ = H ′N with H ′ = Gal(Q(ζn)/Q(b))

a subgroup of H = Gal(Q(ζn)/Q) of index 2. Now [G : G ′] = [H : H ′] = 2.
To show G = H N it suffices to show that σ /∈ N where σ is any element of H
not in H ′. But for any σ ∈ H , except σ = id, σ is non-trivial on B = Q(ζn),
while every element of N acts trivially on B as N = Gal(E/B), so σ /∈ N , as
required. ��
Remark 4.6.7. As we have seen in our discussion of quadratic fields, both cases
in Lemma 4.6.5 (2) may indeed arise. For example, 5 is 6-powerless in Q and√

5 /∈ Q(ζ6), so we are in case (a) for n = 6, while 5 is 10-powerless in Q but√
5 ∈ Q(ζ10), so we are in case (b) for n = 10. �

We now wish to determine when the polynomial Xn − a is irreducible.
Clearly if a is not n-powerless it is not, so we need only consider the case
when a is n-powerless. Recall that in Corollary 4.1.10 we showed that Xn − a
is irreducible if a is p-powerless for p an odd prime, or if a is positive and a
is 2-powerless.

We shall generalize this result in several stages.
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Corollary 4.6.8. Let a be n-powerless in Q. If n is odd, then the polynomial
Xn − a is irreducible in Q[X ].
Proof. Since a is n-powerless in Q, and n is odd, we have, by Lemma 4.6.5,
that a is n-powerless in Q(ζn). Then, by Proposition 3.7.6, Xn−a is irreducible
in Q(ζn)[X ], and hence Xn − a is certainly irreducible in Q[X ]. ��
Lemma 4.6.9. Let n = 2t , and assume that a is not a square in Q. If t ≥ 2,
assume also that −4a is not a 4th power in Q. Then the polynomial Xn − a is
irreducible in Q[X ].
Proof. Clearly the lemma holds when t = 1; so suppose t ≥ 2.

Let α be a root of X2t − a in some extension E of Q. Consider

Q = Q(a) = Q(α2t
) ⊆ Q(α2t−1

) ⊆ · · · ⊆ Q(α).

Claim: (Q(α2k−1
)/Q(α2k

)) = 2 for k = 1, . . . , t .
Assuming this claim, we then immediately have that (Q(α)/Q) = 2t , and

hence that mα(X) is a polynomial of degree 2t . But α is a root of X2t − a, so
mα(X) = X2t − a and hence X2t − a is irreducible.

Proof of claim: We prove this by downward induction on k.
If k = t , then α2k−1

is a root of X2−a, and a is not a square in Q = Q(α2k
),

so (Q(α2k−1
)/Q(α2k

)) = 2.
Now suppose the claim is true for all integers between k and t and consider

k − 1. We wish to show (Q(α2k−2
)/Q(α2k−1

)) = 2. We prove this by contradic-
tion. Assume it is not the case. Then Q(α2k−2

) = Q(α2k−1
). For simplicity, set

β = α2k−2
, γ = α2k−1

, and δ = α2k
. Now (Q(γ )/Q(δ)) = 2 by the inductive

hypothesis, so Q(γ ) has basis {1, γ } as a Q(δ)-vector space. Hence we may
write β = c + dγ uniquely with c, d ∈ Q(δ). Then γ = β2 = (c + dγ )2 =
(c2 + d2δ) + 2cdγ , so (c2 + d2δ) = 0 and 2cd = 1. Solving for δ yields
δ = −4c4 with c ∈ Q(δ). We claim this is impossible.

If k − 1 = t − 1, then k = t and Q(δ) = Q. But then δ = −4c4 implies
−4δ = 16c4 = (2c)4, contradicting the hypotheses of the lemma.

If k −1 < t −1, then k < t and (Q(δ)/Q(ε)) = 2 by the inductive hypoth-
esis, where ε = α2k+1

. Thus, if ϕ is the nontrivial element of Gal(Q(δ)/Q(ε)),
ϕ(δ) = −δ. Then −δ = ϕ(δ) = ϕ(−4c4) = −ϕ(4c4) = −ϕ((2c)2) =
−(ϕ(2c))2, so δ = (ϕ(2c))2 with 2c ∈ Q(δ). But δ = γ 2, so γ = ±ϕ(2c) ∈
Q(δ), contradicting the inductive hypothesis. ��
Theorem 4.6.10. Let n be an integer and let a be n-powerless in Q. If n is di-
visible by 4, assume also that −4a is not a 4th power in Q. Then the polynomial
Xn − a is irreducible in Q[X ].
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Proof. Let n = n1n2 where n1 is odd and n2 is a power of 2. Let α be a root
of Xn − a in some extension field E of Q. Then αn2 is a root of Xn1 − a,
which is irreducible by Lemma 4.6.9, so (Q(αn2)/Q) = n1 divides (Q(α)/Q).
Similarly, αn1 is a root of Xn2 − a, which is irreducible by Lemma 4.6.10, so
(Q(αn1)/Q) = n2 divides (Q(α)/Q). But n1 and n2 are relatively prime, so
n = n1n2 divides (Q(α)/Q). But certainly (Q(α)/Q) ≤ n, so (Q(α)/Q) = n,
and Xn − a = mα(X) is irreducible. ��
Remark 4.6.11. Theorem 4.6.10 is sharp. If n = 4m and −4a = b4, then
b = 2c and

Xn − a = (X2m + 2cXm + 2c2)(X2m − 2cXm + 2c2),

so Xn − a is not irreducible in this case. �
Remark 4.6.12. (1) Theorem 4.6.10 and its proof show that the hypothesis in
Lemma 4.6.5 (2) may be weakened to: If a is a negative integer, assume also
that −4a is not a 4th power in Z. However, it may not be weakened further. For
example, let n = 4 and a = −4. Then a = (2i)2 in Q(ζ4) and 2i = (1 + i)2 in
Q(ζ4).

(2) A similar observation applies to Theorem 4.6.6. If E is the splitting
field of X4 + 5, then | Gal(E/Q)| = 8 and we are in case (1) of that theorem.
If E is the splitting field of X4 + 9, then | Gal(E/Q)| = 4 and we are in case
(2) of that theorem. On the other hand, the roots of X4 + 4 are ±(1 ± i), so if
E is the splitting field of X4 + 4, then | Gal(E/Q)| = 2. �

We conclude this section by considering multiple radical extensions. First
we show they have the degrees we expect, and then we find primitive elements.
Again we proceed in stages.

Theorem 4.6.13. Let {ni }, i = 1, . . . , t , be pairwise relatively prime inte-
gers and let {ai }, i = 1, . . . , t be integers with ai ni -powerless for each i .
If some ni is divisible by 4, assume that −4ai is not a 4th power in Z. Then
Q( n1

√
a1, . . . , nt

√
at ) is an extension of Q of degree n1 · · · nt .

Proof. Immediate from Theorem 4.6.12 and Lemma 3.4.2. ��
Lemma 4.6.14. Let A = {a1, . . . , at } be a set of integers with the property
that no product of the elements of any nonempty subset of A is a square.
(In particular, this holds if a1, . . . , at are pairwise relatively prime, none of
which is a square, and at most one of which is the negative of a square.) Then
Gal(Q(

√
a1, . . . ,

√
at )/Q) ∼= (Z/2Z)t . In particular, (Q(

√
a1, . . . ,

√
at )/Q)

= 2t .

First proof. This is a special case of Theorem 3.7.11.
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Second proof. We proceed by induction on t . For t = 0 there is noth-
ing to prove, and for t = 1 the result is obvious. By induction, it suffices
to prove that Q(

√
a1, . . . ,

√
at−1) and Q(

√
at ) are disjoint extensions of Q.

Since (Q(
√

at )/Q) = 2, to show this it suffices to show that Q(
√

at ) �
Q(

√
a1, . . . ,

√
at−1). Suppose

√
at = x ∈ Q(

√
a1, . . . ,

√
at−1). Write x =

y + z
√

at−1 with y, z ∈ Q(
√

a1, . . . ,
√

at−2). Squaring, at = (y2 + z2at−1) +
2yz

√
at−1. Since every term but the last is contained in Q(

√
a1, . . . ,

√
at−2),

by induction the last term must be zero, so either z = 0, in which case
x ∈ Q(

√
a1, . . . ,

√
at−1), contradicting the inductive hypothesis, or y = 0,

in which case x = z
√

at−1 and at = x2 = z2at−1 with z ∈ Q, which is cer-
tainly impossible. ��

Theorem 4.6.15. Let n1, . . . , nt be integers and let a1, . . . , at be pairwise rel-
atively prime integers with ai ni -powerless, i = 1, . . . , t . If some ni is even,
assume that no ai is the negative of a square. Then

(Q( n1
√

a1, . . . ,
nt
√

at )/Q) = n1 · · · nt

with basis {∏t
i=1 aki /ni

i | 0 ≤ ki < ni }.
Proof. Let n = lcm(n1, . . . , nt ). By hypothesis, each ai is ni -powerless. We
will first prove the theorem under the stronger hypothesis that each ai is n-
powerless, and then show how to remove this stronger hypothesis.

Thus, assume that each ai is n-powerless. Observe that in this case it suf-
fices to prove the theorem for n1 = · · · = nt = n as clearly

(Q( n1
√

a1, . . . ,
nt
√

at )/Q) ≤ n1 · · · nt

and

(Q( n
√

a1, . . . ,
n
√

at )/Q( n1
√

a1, . . . ,
nt
√

at )) ≤ (n/n1) · · · (n/nt ),

so

(Q( n
√

a1, . . . ,
n
√

at )/Q) = nt

forces both inequalities to be equalities.

First, suppose n is odd. We prove the theorem by induction on n. It is
trivially true for n = 1, so assume it is true for n′ < n and consider the case
n′ = n.

Let F = Q(ζN ) where N is any multiple of n and let E = F( n
√

a1, . . . ,
n
√

at ). (We need to consider not only N = n but also N a multiple of n for
the inductive step below.) Then, by Theorem 3.7.11, Gal(E/F) is isomorphic
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to 〈a1, . . . , at 〉 ⊂ F∗/(F∗)n . Suppose a = ai1
1 · · · ait

t ∈ (F∗)n , i.e., a = αn for
some α ∈ F. In other words, a is not n-powerless in F, so, by the contraposi-
tive of Lemma 4.6.5, a is not n-powerless in Q, and under our hypothesis on
a1, . . . , at this is true if and only if each of i1, . . . , it is a multiple of n′′ for
some n′′ dividing n, n′′ > 1.

We claim that each i1, . . . , it is a multiple of n. If n′′ = n we are done, so
suppose not. Set n′ = n/n′′. Let a′ = ai1/n′′

1 · · · ait /n′′
t . Then (a′)n′′ = a = αn =

(αn/n′′
)n′′

, so a′ = ζ k
n′′αn/n′′

for some k, i.e., a′ = (ζ
n/n′′
n )kαn′

for α′ = ζ k
n α, so

a′ ∈ (F∗)n′
. Now n′ < n, so by induction each ik/n′′ is a multiple of n′ = n/n′′,

i.e., each ik is a multiple of n, as claimed.
Since, by Lemma 2.3.4,

nt = | Gal(E/F)| = (E/F) ≤ (Q n
√

a1, . . . ,
n
√

at )/Q) ≤ nt ,

we must have equality.

Next, suppose that n is even and let m = n/2. Choose N such that
Q(ζN ) ⊇ Q(ζn,

√
a1, . . . ,

√
at ), which is possible by Theorem 4.5.1, and set

F = Q(ζN ), E = F( n
√

a1, . . . , n
√

at ). Again, by Theorem 3.7.11, Gal(E/F) is
isomorphic to 〈a1, . . . , at 〉 ⊂ F∗/(F∗)n , and now by the same argument as in
the case n odd,

mt = | Gal(E/F)| = (E/F) ≤ (Q( n
√

a1 . . . , n
√

at )/Q(
√

a1, . . . ,
√

at )) ≤ mt ,

and we have equality. But (Q(
√

a1, . . . ,
√

at )/Q) = 2t , by Lemma 4.6.14, so
(Q( n

√
a1 . . . , n

√
at )/Q) = 2t mt = nt , completing the proof in this case.

Now let us see that we may in fact assume that the ai are all n-powerless.
To do so we must use an argument from elementary number theory. First
let i = 1, and let a1 have prime factorization a1 = pe1

1 · · · pek
k , and let

d1 = gcd(e1, . . . , ek). Since a1 is n1-powerless, gcd(d1, n1) = 1. Let n̄1 be
the product of the primes p that divide n but that do not divide n1. By the
Chinese Remainder Theorem, for each i there is an integer e′

i satisfying the
congruences

e′
i ≡ ei (mod n1), e′

i ≡ 1(mod n̄1).

Let d = gcd(e′
1, . . . , e′

k). We claim that gcd(d, n) = 1. To see this, con-
sider a prime p dividing n. If p divides n1, then, since gcd(d1, n1) = 1, p
does not divide ei for some i . But e′

i ≡ ei (mod n1) implies e′
i ≡ ei (mod p),

so p does not divide e′
i . If p does not divide n1, then p divides n̄1. But

e′
i ≡ 1(mod n̄1) for every i , and e′

i ≡ 1(mod n̄1) implies e′
i ≡ 1(mod p),

so p does not divide e′
i .
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Now let a′
1 = p

e′
1

1 · · · p
e′

k
k . Then a′

1 is n-powerless. Also, writing e′
i = ei +

xi n1, note that

n1

√
a′

1 = n1

√
pe1+x1n1

1 · · · pet +xt n1
t

= n1

√
(pe1

1 · · · pek
k )(px1

1 · · · pxt
t )n1

= (px1
1 · · · pxt

t )
n1

√
(pe1

1 · · · pek
k ) = r1

n1
√

a1

where r1 = (px1
1 · · · pxt

t ) ∈ Q.
Proceeding in exactly the same fashion, we may obtain a′

1, . . . , a′
t with

each a′
i n-powerless, and with ni

√
a′

i = ri
ni
√

ai with ri ∈ Q for each i . But
then Q( n1

√
a′

1, . . . ,
nt
√

a′
t ) = Q( n

√
a1, . . . , n

√
at ), so we may replace ai by a′

i and
argue as above. ��
Remark 4.6.16. (1) To illustrate a point in the proof of Theorem 4.6.15, let
a1 = 8 = 23, n1 = 5, a2 = 3, n2 = 3. Then n = 15 and a1 is not 15-powerless,
but we may rechoose a1 = 256 = 28 = 23+5 which is 15-powerless.

(2) Clearly Theorem 4.6.15 is true somewhat more generally, but the best
result is clumsy to state. Our hypothesis were chosen so that we could directly
appeal to Lemma 4.6.5. �
Corollary 4.6.17. Let n be an integer and let a1, . . . , at be pairwise relatively
prime n-powerless integers. If n is even, suppose that no ai is the negative of
a square and that n is relatively prime to each ai . Let E be the splitting field of
f (X) = ∏t

i=1(Xn −ai ) over Q. Then Gal(E/Q) is the semidirect product of a
group isomorphic to (Z/nZ)t and a normal subgroup isomorphic to (Z/nZ)∗.

Proof. Let B = Q( n
√

a1, . . . , n
√

at ) and let D = Q(ζn). Under our hypothe-
ses, B and D are disjoint extensions of Q, by Corollary 4.6.4 or Corol-
lary 4.5.5. Now E = BD and, by Theorem 4.6.15 and Corollary 3.4.4,
| Gal(E/D)| = (E/D) = (BD/D) = (B/B ∩ D) = (B/Q) = nt . Clearly
Gal(E/D) ⊆ (Z/nZ)t , as any automorphism must take n

√
ai to ζ n

√
ai for

some ζ with ζ n = 1, so these two groups are equal. Now Gal(D/Q) =
Gal(Q(ζn)/Q) ∼= (Z/nZ)∗, so the result follows from Theorem 3.4.10. ��
Lemma 4.6.18. Let {ni }, i = 1, . . . , t , be pairwise relatively prime integers
and let {ai }, i = 1, . . . , t , be integers with ai ni -powerless for each i . If some
ni is divisible by 4, assume that −4ai is not a 4th power in Z. Then α =

n1
√

a1 + · · · + nt
√

at is a primitive element of Q( n1
√

a1, . . . , nt
√

at ).

Proof. Let N = n1 · · · nt and let Bi = Q( ni
√

ai ), for each i . By Theorem
4.6.13, (Bi/Q) = ni . Let B = B1 · · · Bt = Q( n1

√
a1, . . . , nt

√
at ). Let F =

Q(ζN ), let Di = FBi = F( ni
√

ai ), for each i , and let D = D1 · · · Dt .
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First, suppose each ni is odd. Then Bi and F are disjoint extensions of Q
by Corollary 4.6.4, and F is a Galois extension of Q, so, by Corollary 3.4.4,
(Di/F) = ni . Since the {ni } are pairwise relatively prime, we have, applying
Lemma 3.4.2 successively, that D2 is disjoint from D1 (as extensions of F), and
then that D3 is disjoint from D1D2, . . . . Consequently, (D/F) = N . Clearly
αi = ni

√
ai is a primitive element of Di as an extension of F. Then, applying

Proposition 3.5.5 successively, we have that α1 + α2 is a primitive element of
D1D2, . . . , and finally that α is a primitive element of D as an extension of F.
It remains to show that α is a primitive element of B as an extension of Q. Let
B′ = Q(α). Then, by Lemma 2.3.4,

N = (D/F) = (FB′/F) ≤ (B′/Q) ≤ (B/Q) = N ,

so we must have equality and B′ = B.
Now suppose some ni , say n1, is even. The same argument as above

applies, except that (D1/F) = n1 or n1/2, enabling us to conclude that
(D/F) = N or N/2 and hence that B = B′ or that (B/B′) = 2. But in the
latter case we must have B′ = Q( n1/2

√
a1, n2

√
a2, . . . , nt

√
at ), which is impossi-

ble as α is not an element of this field. ��
Lemma 4.6.19. Let n1, . . . , nt be integers and let a1, . . . , at be pairwise rel-
atively prime integers with ai ni -powerless, i = 1, . . . , t . If some ni is even,
assume that no ai is the negative of a square. Then α = n1

√
a1 + · · · + nt

√
at is

a primitive element of Q( n1
√

a1, . . . , nt
√

at ).

Proof. The proof proceeds along the same lines as the proof of Lemma 4.6.18.
We need to know, in the notation of that proof, that (D/F) = N . In the easy
case when n1 = · · · = nt = 2, F = Q and that follows immediately from
Lemma 4.6.14. In the general case, we have shown that in the proof of The-
orem 4.6.15. We then apply that fact to conclude that D2 is disjoint from D1

(as extensions of F), and then that D3 is disjoint from D1D2 . . . , (as otherwise
(D/F) < N ). The remainder of the argument is the same. ��

We assemble these last two results into one theorem.

Theorem 4.6.20. Let n1, . . . , nt be integers and let a1, . . . , at be positive in-
tegers with ai ni -powerless, i = 1, . . . , t . If ni and n j are not relatively prime,
assume that ai and a j are relatively prime. Then α = n1

√
a1 + · · · + nt

√
at is a

primitive element of Q( n1
√

a1, . . . , nt
√

at ).

Proof. We proceed by induction on t . The t = 1 case is trivial.
Now assume the theorem is true for all positive integers at most t . Consider

the case t+1. Let A = {ni | i = 1, . . . , t}, let A1 ={ni ∈ A | gcd(ni , nt ) = 1},



122 4 Extensions of the Field of Rational Numbers

and let A2 = {ni ∈ A | gcd(ni , nt ) > 1}. If A1 = A, then this is just Lemma
4.6.18, and if A2 = A, this is just Lemma 4.6.19. Thus we must consider the
“mixed” case. Reordering if necessary, we may assume A1 = {n1, . . . , ns}
and A2 = {ns+1, . . . , nt } for some s with 1 ≤ s < t . Then, by Lemma 4.6.18,
α1 = n1

√
a1 + · · · + ns

√
as is a primitive element of B1 = Q( n1

√
a1, . . . , ns

√
as),

and, by Lemma 4.6.19, α2 = ns+1
√

as+1, . . . , nt+1
√

at+1 is a primitive element of
B2 = Q( ns+1

√
as+1, . . . , nt+1

√
at+1).

Furthermore, if F = Q(ζN ) for N = n1 · · · nt+1, B1F and B2F are dis-
joint Galois extensions of F, so we may apply Proposition 3.5.5 as above
to conclude that α = α1 + α2 is a primitive element of B1B2F; then we
continue to argue as above to conclude that α is a primitive element of
B1B2 = Q( n1

√
a1, . . . , nt+1

√
at+1), completing the inductive step. ��

We conclude this section with an example that illustrates these last several
results.

Example 4.6.21. (1) Let E = Q(
√

2,
3
√

2,
5
√

2,
7
√

2). Then E is an extension of
Q of degree 210 with primitive element

√
2 + 3

√
2 + 5

√
2 + 7

√
2.

(2) Let E = Q(
√

2,
√

3,
√

5,
√

7). Then E is an extension of Q of de-
gree 16 with primitive element

√
2 + √

3 + √
5 + √

7. Similarly, if E =
Q(

3
√

2,
3
√

3,
3
√

5,
3
√

7), then E is an extension of Q of degree 81 with primitive
element 3

√
2 + 3

√
3 + 3

√
5 + 3

√
7.

(3) Let E = Q(
√

2,
3
√

2,
√

3,
3
√

3). Then E is an extension of Q of degree
36 with primitive element

√
2 + 3

√
2 + √

3 + 3
√

3. �

4.7 Galois Groups of Extensions of Q

We showed in Lemma 3.1.2 that every finite group is the Galois group of some
Galois extension. It is natural to ask whether every finite group is the Galois
group of some Galois extension of Q. The answer to this question is unknown.

In this section we shall investigate two special cases: abelian extensions,
i.e., extensions with abelian Galois group, and symmetric extensions, i.e., the
splitting fields of polynomials of degree n with Galois group the symmetric
group Sn . (Abelian extension is standard terminology but symmetric extension
is not.)

Theorem 4.7.1. Every finite abelian group is the Galois group of a Galois
extension E of Q.

Proof. Let H be an abelian group and write H as the direct sum of cyclic
groups of prime power order, H = H1 ⊕ · · · ⊕ Hs . Let Hi have order mi .
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Choose distinct primes {pi } with pi ≡ 1(mod mi ), i = 1, . . . , s. Such primes
pi exist by Lemma C.1.1.

Let n0 = 1 and ni = p1 · · · pi for i > 0. Then Q(ζni−1) and Q(ζpi ) are
disjoint extensions of Q for each i > 0, by Corollary 4.2.8, so by Theorem
3.4.7, applied inductively, we see that G = Gal(Q(ζns )/Q) = G1 ⊕ · · · ⊕ Gs

where Gi
∼= Z/(pi − 1)Z. Since the order of Hi divides the order of Gi for

each i , we see that H is a quotient of G, so by the Fundamental Theorem
of Galois Theory there is a field E intermediate between Q and Q(ζns ) with
Gal(E/Q) = H . ��
Remark 4.7.2. Instead of using Lemma C.1.1, we may use a deep and famous
theorem of Dirichlet: Every arithmetic progression ax + b with a and b rel-
atively prime contains infinitely many primes. However, we have chosen to
include Lemma C.1.1 in order to give a self-contained and elementary proof
of Theorem 4.7.1, rather than to simply quote this deep result. �
Remark 4.7.3. We can ask: When can a Galois extension E of Q be a subfield
of a cyclotomic field Q(ζn) for some n? Since Gal(Q(ζn)/Q) is abelian and
E ⊆ Q(ζn) implies Gal(E/Q) is a quotient of Gal(Q(ζn)/Q), an obvious nec-
essary condition is that E be an abelian extension of Q, i.e., that Gal(E/Q) be
abelian. This necessary condition turns out to be sufficient. This is the famous
Kronecker–Weber Theorem: Every abelian extension of Q is a subfield of a
cyclotomic field. The proof of this deep theorem is far beyond the confines of
this book. (Note that we proved a very special case by direct construction. We
showed in Theorem 4.5.1 that every quadratic extension of Q is a subfield of
a cyclotomic field. Of course, our construction in Theorem 4.7.1 produced a
subfield of a cyclotomic field as well.) �

Now we turn to the case of symmetric extensions. First, we treat the case
of a polynomial of prime degree, which is relatively simple. Then we handle
the case of a polynomial of arbitrary degree, using a construction of van der
Waerden.

Theorem 4.7.4. Let f (X) ∈ Q[X ] be an irreducible polynomial of degree p,
p a prime, with exactly p − 2 real roots. Let E be the splitting field of f (X).
Then Gal(E/Q) = Sp, the symmetric group on p elements.

Proof. Recall that since f (X) is irreducible and char(Q) = 0, f (X) must
have p distinct roots in C. Since f (X) ∈ R[X ], the two nonreal roots of f (X)

must be conjugates of each other.
Let the roots of f (X) in C be α1, . . . , αp with α1 and α2 nonreal. Let τ be

complex conjugation. Then τ(α1) = α2, τ(α2) = α1, τ(αi ) = αi for i > 2.
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We identify G = Gal(E/Q) with a subgroup of Sp by its action permuting
{α1, . . . , αp}. Under this identification, τ is the transposition (1 2).

Now, since f (X) is irreducible, G acts transitively on {α1, . . . , αp}. Thus
we see that G is a transitive subgroup of Sp, p a prime, that contains a trans-
position. Then, by Lemma A.3.1, G = Sp. ��
Example 4.7.5. We now show that there exists a polynomial satisfying the
hypotheses of Theorem 4.7.4, for each prime p. For p = 2 the result is trivial.
Suppose now that p is an odd prime. Fix p and let

f (X) = X (X − 2)(X − 2a)(X − 4a) · · · (X − 2(p − 2)a) − (b + 2).

We will show that with the proper choice of a and b, f (X) is irreducible
and has exactly p − 2 real roots.

Let g(X) = X (X − 2)(X − 2a)(X − 4a) · · · (X − 2(p − 2)a), so g(X)

is a polynomial of degree p with roots 0, 2, 2a, 4a, . . . , 2(p − 2)a. Then,
by elementary calculus, g′(X) = f ′(X), a polynomial of degree p − 1, has
roots s1, . . . , sp−1 with 0 < s1 < 2 < s2 < 2a < · · · < sp−1 < 2(p − 2)a.
Then we see that f (X) is increasing on the interval (−∞, s1), decreasing on
the interval (s1, s2), increasing on the interval (s2, s3), . . . , and increasing on
the interval (sp−1, ∞). We also see that the maximum value of f (X) on the
interval [0, 2] is at most (2)(2)(2a)(4a) · · · (2(p − 2)a) = 2pa p−2(p − 2)!,
and that g(3a) ≥ a p, g(7a) ≥ a p, g(11a) ≥ a p, and so forth. Thus we choose

a = 2p(p − 2)! and b = 2pa p−2(p − 2)!.
First, with this choice of a and b, f (X) is irreducible by Eisenstein’s Cri-

terion (Proposition 4.1.7).
Next, with this choice of a and b, f (X) < 0 for x ≤ 2, and f (3a) > 0,

f (7a) > 0, f (11a) > 0, and so forth. Now s1 < 2 < s2 < 2a < s3. Thus
f (X) is decreasing on the interval [2, s2], increasing on the interval [s2, 2a],
with f (2) < 0, f (2a) < 0, so f (X) has no roots on the interval [2, 2a].
Then s2 < 2a < s3 < 4a < s4. Thus f (X) is increasing on the interval
[2a, s3], decreasing on the interval [s3, 4a], with f (2a) < 0, f (4a) < 0, and
f (s3) ≥ f (3a) > 0, so f (X) has exactly two roots r1 and r2 on the interval
[2a, 4a]. By the same argument, f (X) has no roots on the interval [4a, 6a]
and exactly two roots r3 and r4 on the interval [6a, 8a]. Proceeding in this
fashion we find roots r1, r2, . . . , rp−3 of f (X) on the interval (−∞, 2(p −2)].
But sp−1 < 2(p − 2)a, so f (X) is increasing on the interval [2(p − 2)a, ∞),
and f (2(p − 2)a) < 0, so there is exactly one more root rp−2 of f (X) in that
interval, and lastly f (X) has a total of p − 2 real roots, as claimed. �
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Now we turn to the case of arbitrary degree, which is considerably harder.
Let f (X) ∈ F[X ] be a separable polynomial and let E be a splitting field
of f (X). Let G = Gal(E/F). If the irreducible factors of f (X) are all dis-
tinct, then f (X) has distinct roots, and eliminating repeated irreducible fac-
tors will not change E, so we assume f (X) has distinct roots {α1, . . . , αn}.
Then G permutes {α1, . . . , αn} (and this determines the action of G on E). Let
{Y1, . . . , Yn} be a set of indeterminates and observe that the symmetric group
Sn acts in a natural way as a group of permutations of this set. Then there
is an isomorphism G → G ′ ⊆ Sn given by σ �→ σ ′ where σ ′(Yi ) = Y j if
σ(αi ) = α j .

For brevity, let F̃ denote the field of rational functions F̃ = F(Y1, . . . , Yn)

and let Ẽ denote the field of rational functions Ẽ = E(Y1, . . . , Yn).

Definition 4.7.6. In the above situation, let

θ = α1Y1 + · · · + αnYn ∈ Ẽ

and let

F(Z) =
∏
τ ′∈Sn

(Z − τ ′(θ)) ∈ Ẽ[Z ]. �

The polynomial F(Z) is a symmetric function of its roots, so by Lemma
3.1.12 its coefficients are functions of the elementary symmetric functions of
its roots and hence of Y1, . . . , Yn and the coefficients of f (X). Thus, F(Z) ∈
F̃[Z ]. Now we may factor F(Z) into a product of irreducibles in F̃[Z ],

F(Z) = F1(Z) · · · Ft (Z).

One of these is divisible by Z − θ in Ẽ(Z). Renumbering if necessary we may
assume it is F1(Z). Since F(Z) is invariant under Sn , the action of Sn permutes
these factors.

Lemma 4.7.7. In the above situation, let H ′ ⊆ Sn be the subgroup leaving
F1(Z) invariant, i.e.,

H ′ = {τ ′ ∈ Sn | τ ′(F1(Z)) = F1(Z)}.
Then G ′ = H ′, and hence G is isomorphic to H ′.

Proof. We begin by making several observations.
Note that, for any τ ′ ∈ Sn , τ ′(Z − θ) divides τ ′(F1(Z)), so

H ′ = {τ ′ ∈ Sn | τ ′(Z − θ) divides F1(Z)}.
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Note also that G ×G ′ ⊆ G × Sn acts on Ẽ, and for any σ ∈ G, σσ ′(θ) = θ

(as σσ ′ simply permutes the terms of the sum α1Y1 + · · · + αnYn), and so
σ(θ) = (σ ′)−1(θ).

Consider

G1(Z) =
∏
σ∈G

(Z − σ(θ)).

This is obviously invariant under G. Since the fix set of G operating on E is
F, the fix set of G operating on Ẽ is F̃, by Corollary 3.4.9, so G1(Z) ∈ F̃[Z ].
Since {α1, . . . , αn} is distinct, {σ(θ) | σ ∈ G} is distinct. Hence, by Lemma
2.7.12, G1(Z) is irreducible in F̃[Z ]. Since G1(Z) has Z − θ as a factor in
F̃[Z ], we must have that G1(Z) = F1(Z). Also, by Lemma 3.5.4, Ẽ = F̃(θ).
Hence the action of Sn on Ẽ is determined by its action on θ .

Suppose τ ′ ∈ H ′. Then τ ′(Z − θ) is also a factor of F1[Z ] = G1[Z ], so it
must be Z −σ(θ) for some σ ∈ G. But τ ′(Z − θ) = Z − τ ′(θ) = Z −σ(θ) =
Z − (σ ′)−1(θ), so τ ′ = (σ ′)−1. But σ ′ ∈ G ′ so τ ′ ∈ G ′.

On the other hand, if τ ′ /∈ H ′, then τ ′(Z − θ) = Z − τ ′(θ) is not a factor
of F1(Z) = G1(Z), so it is not equal to Z − σ(θ) = Z − (σ ′)−1(θ) for any
σ ′ ∈ G ′. Thus τ ′ �= (σ ′)−1 for any σ ′ ∈ G ′ and τ ′ /∈ G ′. ��
Remark 4.7.8. From the proof of Lemma 4.7.7, we see that

F1(Z) =
∏

σ ′∈G ′
(Z − σ ′(θ)),

and in fact

Fi (Z) =
∏

τ ′∈τ ′
i G ′

(Z − τ ′(θ))

where the product is taken over a left coset of G ′. In particular, since {α1, . . . ,

αn} are distinct, {τ ′(θ) | τ ′ ∈ Sn} are also all distinct. We see from this that
each Fi (Z) has distinct roots and no two Fi (Z) and Fj (Z) have a root in
common, for i �= j . Furthermore, we also see from this that the action of Sn

permutes {Fi (Z)} transitively. �
Lemma 4.7.9. Let p be a prime. Let f (X) ∈ Z[X ] be a monic polynomial and
let f̄ (X) be its image in Fp[X ] (identifying Fp with Z/pZ). Let E be a splitting
field of f (X) over Q and let Ē be a splitting field of f̄ (X) over Fp. Suppose
that all roots of f̄ (X) in Ē are simple. Then K̄ = Gal(Ē/Fp) is isomorphic to
a subgroup of G = Gal(E/Q).
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Proof. Begin with the polynomial f (X) and form F(Z) as in Definition 4.7.6.
Since F(Z) is a polynomial in Y1, . . . , Yn, Z , its factorization in the rational
function field Q(Y1, . . . , Yn) is actually a factorization in the polynomial ring
Z[Y1, . . . , Yn]. This follows as the coefficients of F(Z) are in fact polynomials
in the coefficients of f (X) by Lemma 3.1.14, and by the fact that Corollary
4.3.8 generalizes from Z to Z[Y1, . . . , Yn] as Z[Y1, . . . , Yn] is a unique factor-
ization domain. Thus we have

F(Z) = F1(Z) · · · Ft (Z)

with each Fi (Z) irreducible. Then reducing mod p gives a factorization (where
the factors may not be irreducible)

F̄(Z) = F̄1(Z) · · · F̄t (Z).

Let {F̄i j (X)} be the irreducible factors of F̄i (X), for i = 1, . . . , t . Let K̄ ′
be the subgroup of Sn consisting of those permutations in Sn that preserve the
irreducible factor F̄11(X) of F̄1(X). Now the action of Sn permutes {Fi (X)}
and hence {Fi j (X)}. By Remark 4.7.8, applied to Ē, the F̄i (X) have no com-
mon root and hence no common irreducible factor, so if F̄11(X) is preserved,
F̄1(X) must be preserved. In other words, K̄ ′ = {τ ′ ∈ Sn | τ ′(F̄11(X)) =
F̄11(X)} ⊆ {τ ′ ∈ Sn | τ(F1(X)) = F1(X)} = H ′.

But by the same logic as before, K̄ ′ is isomorphic to K̄ = Gal(Ē/Fp). ��
Proposition 4.7.10. For every positive integer n there exists a polynomial
fn(X) ∈ Z[X ] of degree n whose splitting field E has Gal(E/Q) isomorphic
to Sn.

Proof. Choose a monic polynomial f2(X) ∈ Z[X ] of degree n whose mod 2
reduction f̄2(X) ∈ F2[X ] is irreducible, a monic polynomial f3(X) ∈ Z[X ]
of degree n whose mod 3 reduction f̄3(X) ∈ F3[X ] is the product of an irre-
ducible polynomial and a linear factor, and a monic polynomial f5(X) ∈ Z[X ]
whose mod 5 reduction f̄5(X) ∈ F5[X ] is the product of an irreducible
quadratic and other factors that are distinct irreducible polynomials of odd
degree. Let

f (X) = −15 f2(X) + 10 f3(X) + 6 f5(X).

Then f (X) is a monic polynomial that reduces mod p to f̄ p(X) for p =
2, 3, 5. Since f̄2(X) is irreducible, f (X) is irreducible, and hence its roots are
distinct.

Let G p be the Galois group of f̄ p(X) over Fp, p = 2, 3, 5. By Lemma
4.7.9, each G p is isomorphic to a subgroup of G = Gal(E/Q).
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Since f̄2(X) is irreducible, G2 operates transitively on its roots, so G is a
transitive subgroup of Sn .

Since f̄3(X) has an irreducible factor of degree n−1, and the Galois group
of a finite extension of a finite field is cyclic, G3 and hence G contains an
(n − 1)-cycle.

By the same logic, G5 and hence G contains an element that is the product
of a transposition and one or two cycles of odd order, so some (odd) power of
it is a transposition in G.

Hence, by Lemma A.3.2, G = Sn . ��
Remark 4.7.11. Our work actually gives an algorithm for computing Galois
groups of polynomials f (X) ∈ Q[X ]: Form the polynomial F(Z) as in Def-
inition 4.7.6. Note that we do not need to know the roots of f (X) to do so,
since, as we have observed, its coefficients are functions of Y1, . . . , Yn and
the coefficients of f (X). Then factor F(Z) into a product of irreducibles
F(Z) = F1(Z) · · · Ft (Z) in F̃[Z ]. Remark 4.1.13 gives an algorithm for doing
so. As in Lemma 4.7.7, let H ′

i be the stabilizer of Fi (Z) in Sn . Note that, by
Remark 4.7.8, the {H ′

i } are mutually conjugate subgroups of Sn so they are
all isomorphic as abstract groups. (This is a general fact. If a group H acts
transitively on a set S = {si } with Hi the stabilizer of si , then, if h ∈ H is
any element with h(si ) = s j , we have that Hj = h Hi h−1.) Thus we see from
Lemma 4.7.7 that, for any i , the Galois group of f (X) (i.e., the Galois group
Gal(E/Q), where E is a splitting field of f (X)) is isomorphic to H ′

i . Thus we
may simply pick any factor Fi (X), and go through all of the (finitely many)
elements of Sn , seeing which of them leave Fi (X) invariant, to obtain H ′

i and
hence the Galois group.

It is evident that this algorithm is wholly impractical. We include it to show
that the problem of computing Galois groups is algorithmically solvable (not
to give a practical method for their computation). �
Corollary 4.7.12. For any finite group G, there is a field E that is a finite
extension of Q, and a subfield B of E (necessarily also a finite extension of Q),
such that E is a Galois extension of B with Gal(E/B) ∼= G.

Proof. This follows immediately from Proposition 4.7.10 and the proof of
Lemma 3.1.2. ��

4.8 The Discriminant

Let f (X) ∈ F[X ] be a polynomial of degree n, with splitting field E. As we
have seen, the Galois group Gal(E/F) is a subgroup of the symmetric group
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Sn . In this section we develop a criterion for deciding whether G is a subgroup
of An , the alternating group.

Definition 4.8.1. Let f (X) ∈ F[X ] be a polynomial of degree n with roots
α1, . . . , αn in some splitting field E. Let

δ =
∏
i< j

(αi − α j )

and let

� = �( f (X)) = δ2.

� is the discriminant of f (X). �
Remark 4.8.2. (1) Note that δ depends on the order of the roots α1, . . . , αn but
�( f (X)) does not, so �( f (X)) is indeed an invariant of f (X).

(2) If f (X) is irreducible, then it has distinct roots, so in this case
�( f (X)) �= 0.

(3) �( f (X)) is a symmetric polynomial in the roots of f (X), so, by Re-
mark 3.1.5 and Lemma 3.1.14, it is a polynomial in the coefficients of f (X).
Thus �( f (X)) ∈ F (and it is independent of the choice of splitting field E).

(4) �( f (X)) is visibly a square in E, but may or may not be a square
in F. �
Lemma 4.8.3. Let f (X) ∈ F[X ] be an irreducible polynomial with splitting
field E and with Galois group G = Gal(E/F). Let � = �( f (X)) be the
discriminant of f (X).

(1) If � is a square in F, i.e., if δ ∈ F, then G ⊆ An.
(2) If � is not a square in F, i.e., if δ /∈ F, then G � An.

Proof. We observe that E is a Galois extension of F so Fix(G) = F.
Let σ ∈ Sn . Recall that σ ∈ An if and only if sign(σ ) = 1. Also,

sign(σ ) = (−1)i , where i is the number of inversions in σ , i.e., i is the number
of elements in the set I = {(i, j) | i < j but σ( j) < σ(i)}.

From this it follows immediately that σ(δ) = sign(σ )δ. Thus, if δ ∈ F,
then σ(δ) = δ for every σ ∈ G, so G ⊆ An . On the other hand, if δ /∈ F, then
σ0(δ) �= δ for some σ0 ∈ G, and σ0 /∈ An , so G � An . ��
Corollary 4.8.4. In the situation of Lemma 4.8.3, suppose δ /∈ F. Let B =
F(δ). Also, let H = G ∩ An. Then E is a Galois extension of B with Galois
group Gal(E/B) = H, and B is a Galois extension of F with Galois group
Gal(B/F) = G/H ∼= Z/2Z. ��
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Corollary 4.8.5. Let f (X) ∈ F[X ] be an irreducible cubic with splitting field
E, and let G = Gal(E/F). If �( f (X)) /∈ F, then G = S3, while if �( f (X)) ∈
F, then G = A3

∼= Z/3Z.

Proof. By Theorem 2.8.19, G must be either S3 or A3, and then Lemma 4.8.3
decides between the two. ��

In order to effectively use Lemma 4.8.3 we must be able to compute the
discriminant. We do that now, in low degrees.

Proposition 4.8.6. Let f (X) ∈ F[X ], and let � = �( f (X)).
(1) If f (X) = X2 + a X + b, then � = a2 − 4b.
(2a) If f (X) = X3 + bX + c, then � = −4b3 − 27c2.
(2b) If f (X) = X3 + aX2 + bX + c, then � = −4a3c + a2b2 + 18abc −

4b3 − 27c2.

Proof. By Remark 4.8.2 (3), � is a polynomial in the elementary symmetric
functions si of the roots of f (X), or, equivalently, in the coefficients of f (X).

(1) From Remark 3.1.5 we see that a = −s1 = −(α1 + α2) and that
b = s2 = α1α2. Directly from Definition 4.8.1 we see that � = (α1 − α2)

2 =
α2

1 − 2α1α2 + α2
2 = α2

1 + 2α1α2 + α2
2 − 4α1α2 = a2 − 4b.

(2) From Remark 3.1.5 we see that a = −s1 = −(α1 + α2 + α3), that
b = s2 = α1α2 + α2α3 + α1α3, and that c = −s3 = −(α1α2α3). In principle,
we can then simply find � by direct computation, but the computations get
very messy, so we look for a better way.

(2a) We observe that � is a homogenous polynomial of degree 6 in s1,
s2, and s3, where si has degree i , or, equivalently, that � is a homogenous
polynomial of degree 6 in a, b, and c, where a has degree 1, b has degree 2, and
a has degree 3. Since a = 0 in this case, � must be of the form � = sb3 + tc2

for some s and t . First, consider the polynomial f (X) = X3 − X with roots 1,
0, and −1. Direct computation shows 4 = � = s(−1)3 + t (0)2, so s = −4.
Next consider f (X) = X3 − 1 with roots 1, ω, and ω2. Direct computation
shows −27 = � = s(0)2 + t (−1)2, so t = −27.

(2b) Note that adding the same value to each root leaves � unchanged, as it
only depends on the difference between roots. If f (X) = X3 +aX2 +bX + c,
let X = Y − a/3. Then f (X) = g(Y ) = Y 3 + b′Y + c′ and so � = −4(b′)3 −
27(c′)2. But, by elementary algebra, b′ and c′ can be expressed in terms of a,
b and c, and doing so and substituting yields the result. ��
Example 4.8.7. (1) Let f (X) = X3 + X + 1 ∈ Q[X ] and let f (X) have split-
ting field E. Then f (X) is irreducible and �( f (X)) = −31 so Gal(E/Q) =
S3. On the other hand, if B = Q[√−31], then Gal(E/B) = A3.
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(2) Let f (X) = X3 − 3X + 1 ∈ Q[X ] and let f (X) have splitting field E.
Then f (X) is irreducible and �( f (X)) = 81, so Gal(E/Q) = A3

∼= Z/3Z.
Note we have already encountered this polynomial in Example 2.9.8. �

4.9 Practical Computation of Galois Groups

Our focus in this book has been the theoretical development of Galois theory,
rather than its computational aspects. However, in the course of this develop-
ment we have proved a number of results that are useful in (hand) computation
of Galois groups of polynomials f (X) ∈ F[X ]. By this (common) language
we mean the Galois groups Gal(E/F), where E is a splitting field of f (X).
For the convenience of the reader, we shall collect most of these results in this
section. We shall keep the original numbering to make it easy for the reader to
refer back to the place they originally appeared.

It is not only the individual results we have derived that are useful, but also
their interplay, and this better illustrated than summarized. Thus we conclude
this section by working out a specific example that illustrates the application
of many of these results together.

We begin by considering Galois groups of specific polynomials. Since we
are in characteristic 0, the prime field F0 = Q and we may choose as primitive
nth root of unity ζn = exp(2π i/n).

Recall we have the following definition:

Definition 3.7.5. Let α ∈ F. Then α is n-powerless in F if α is not an
m th power in F for any m dividing n, m > 1.

In determining whether an element of F is n-powerless, the following results
are useful:

Lemma 4.6.5. (1) Let n be an odd integer, and let a be n-powerless
in Q. Then a is a n-powerless in Q(ζN ) for every N.
(2) Let n be an even integer, and let a be n-powerless in Q. If a is
negative, assume also that −a is not a square in Q. Then one of the
following two alternatives holds:
(a) a is n-powerless in Q(ζN ) for every N.
(b) a = b2 for some b ∈ Q(ζN ), for some N, and b is n/2-powerless
in Q(ζN ′) for every multiple N ′ of N.

Corollary 4.5.5. Let a be a square-free integer. If a is positive and
odd, set a′ = a. Otherwise set a′ = 4|a|. Then a = b2 for some
b ∈ Q(ζn) if and only if a′ divides n.
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In terms of this definition, we have the following result:

Proposition 3.7.7. Let F ⊇ F0(ζn). Let E be an extension of F. The
following are equivalent:
(1) E is the splitting field of Xn − a ∈ F[X ], for some a that is n-
powerless in F.
(2) E is a Galois extension of F with Gal(E/F) ∼= Z/nZ.

This result has a generalization:

Theorem 3.7.11. Let F ⊇ F0(ζn) and let E be the splitting field of

f (X) = (Xn − a1) · · · (Xn − at )

with each ai �= 0. Then Gal(E/F) is isomorphic to 〈a1, . . . , at 〉 ⊆
F∗/(F∗)n (i.e., to the subgroup of F∗/(F∗)n generated by a1, . . . , at ).

Now we turn to Galois groups of polynomials over Q itself.
We observe that the nth cyclotomic polynomial 
n ∈ Q[X ], and the poly-

nomial Xn − 1 ∈ Q[X ], both have splitting field Q(ζn). Recall that (Z/nZ)∗
denotes the multiplicative group of units in (Z/nZ), of order ϕ(n). Then we
have:

Corollary 4.2.7. Gal(Q(ζn)/Q) ∼= (Z/nZ)∗.

Now we have some results on extensions whose Galois groups are non-
abelian.

Lemma 4.6.1. Let p be an odd prime. Let a ∈ Q with a not a
pth power in Q, and let E be the splitting field of X p − a. Let
G = Gal(E/Q). Then

G = 〈σ, τ | σ p = 1, τ p−1 = 1, τστ−1 = σ r 〉
for some primitive root r mod p.

Lemma 4.6.3. Let a ∈ Q with a �= ±b2 for any b ∈ Q, and let E be
the splitting field of X4 − a. Let G = Gal(E/Q). Then

G = 〈σ, τ | σ 4 = 1, τ 2 = 1, τστ−1 = σ 3〉.
These two results have a common generalization:

Corollary 4.6.17. Let n be an integer and let a1, . . . , at be pairwise
relatively prime n-powerless integers. If n is even, suppose that no ai

is the negative of a square and that n is relatively prime to each ai .
Let E be the splitting field of f (X) = ∏t

i=1(Xn − ai ) over Q. Then
Gal(E/Q) is the semidirect product of a group isomorphic to (Z/nZ)t

and a normal subgroup isomorphic to (Z/nZ)∗.
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Now we have two separate results that are useful in showing that Galois
groups are large:

Theorem 4.7.4. Let f (X) ∈ Q[X ] be an irreducible polynomial of
degree p, p a prime, with exactly p − 2 real roots. Let E be the split-
ting field of f (X). Then Gal(E/Q) = Sp, the symmetric group on p
elements.

Lemma 4.7.9. Let p be a prime. Let f (X) ∈ Z[X ] be a monic polyno-
mial and let f̄ (X) be its image in Fp[X ] (identifying Fp with Z/pZ).
Suppose that all roots of both f (X) and f̄ (X) are simple. Let E be
the splitting field of f (X) over Q and let Ē be the splitting field of
f̄ (X) over Fp. Then K̄ = Gal(Ē/Fp) is isomorphic to a subgroup of
G = Gal(E/Q).

We now return to general fields F.

For a polynomial f (X) ∈ F[X ] we defined the discriminant �( f (X)) in
Definition 4.8.1. We then have:

Lemma 4.8.3. Let f (X) ∈ F[X ] be an irreducible polynomial with
splitting field E and with Galois group G = Gal(E/F). Let � =
�( f (X)) be the discriminant of f (X).
(1) If � is a square in F, i.e., if δ ∈ F, then G ⊆ An.
(2) If � is not a square in F, i.e., if δ /∈ F, then G � An.

In low degrees we have the following computation:

Proposition 4.8.6. Let f (X) ∈ F[X ], and let � = �( f (X)).
(1) If f (X) = X2 + aX + b, then � = a2 − 4b.
(2a) If f (X) = X3 + bX + c, then � = −4b3 − 27c2.
(2b) If f (X) = X3 + aX2 + bX + c, then � = −4a3c + a2b2 +
18abc − 4b3 − 27c2.

For irreducible cubics (and for quadratics, too, but there the result is trivial),
the discriminant gives us the complete answer.

Corollary 4.8.5. Let f (X) ∈ F[X ] be an irreducible cubic with split-
ting field E, and let G = Gal(E/F). If �( f (X)) /∈ F then G = S3

while if �( f (X)) ∈ F then G = A3
∼= Z/3Z.

Now we turn to more general results which are useful in considering poly-
nomials that are not irreducible.

Let f (X) ∈ F[X ] with f (X) = f1(X) f2(X). Let Bi be a splitting field
of fi (X), i = 1, 2, with B1 and B2 both subfields of some field A. Let Gi =
Gal(Bi/F), i = 1, 2, and let G = Gal(E/F), where E = B1B2 is a splitting
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field of f (X). If B1 and B2 are disjoint extensions of F, we can apply the
following result.

Theorem 3.4.7. Let B1 and B2 be disjoint Galois extensions of F.
Then E = B1B2 is a Galois extension of F with Gal(E/F) =
Gal(B1/F) × Gal(B2/F).

In Section 3.4 we gave some criteria for determining when two extensions
are disjoint. But, in any case, we have the following generalization of Theorem
3.4.7.

Corollary 3.4.8. Let B1 and B2 be finite Galois extensions of F and
let E = B1B2, B0 = B1 ∩ B2. Then E is a Galois extension of F
and Gal(E/F) = {(σ1, σ2) ∈ Gal(B1/F) × Gal(B2/F) | σ1 | B0 =
σ2 | B0}.
Finally, we have a result that enables us to compare Galois groups over

different fields.

Corollary 3.4.6 (Theorem on Natural Irrationalities). Let f (X) ∈
F[X ] be a separable polynomial and let B ⊇ F. Let E be a splitting
field for f (X) over F. Then EB is a splitting field for f (X) over B and
Gal(BE/B) is isomorphic to Gal(E/E ∩ B), a subgroup of Gal(E/F),
with the isomorphism given by σ �→ σ | E.

We now present a single, rather elaborate, example, which shows how,
with cleverness, hard work, and the use of a number of the results we have
proved so far, we can determine the structure of a reasonably large Galois
group. (We advise the reader to write out the diagram of intermediate fields
and their inclusions in order to follow the argument here.)

Example 4.9.1. Let α = 3
√

1 + √
3 and let E be the splitting field of mα(X) ∈

Q[X ]. We determine G = Gal(E/Q).
We observe that α3 = 1 + √

3, so α3 − 1 = √
3 and (α3 − 1)2 = 3 and

hence α6 −2α3 −2 = 0. Thus α is a root of the polynomial X6 −2X3 −2 = 0.
This polynomial is irreducible by Eisenstein’s criterion, so we see mα(X) =
X6 − 2X3 − 2. We can readily find all the roots of this polynomial. Certainly
(ωα)3 = 1 + √

3 and (ω2α)3 = 1 + √
3, so ωα and ω2α are also roots.

But we can also see that if β3 − 1 = −√
3 then (β3 − 1)2 = 3 and hence

β6 − 2β3 − 2 = 0, so β is also a root of mα(X) then ωβ and ω2β are roots as
well. Thus

E = Q(α, ωα, ω2α, β, ωβ, ω2β) = Q(ω, α, β).
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Clearly E contains the fields Q(
√

3), Q(ω) = Q(
√−3), and Q(i) as well,

as i = (
√

3)(
√−3)/3. These are all extensions of Q of degree 2, and so we see

that G contains at least 3 subgroups of index 2. Since mα(X) is an irreducible
polynomial of degree 6, (Q(α)/Q) = 6, so (Q(α)/Q(

√
3)) = 3, and similarly

(Q(β)/Q(
√

3)) = 3. Since Q(ω) and Q(
√

3) are disjoint Galois extensions
of Q, both of degree 2, Q(ω,

√
3) is a Galois extension of Q of degree 4,

and Q(ω,
√

3) is a Galois extension of Q(
√

3) of degree 2. Since 2 and 3 are
relatively prime, Q(ω,

√
3) and Q(α) are disjoint extensions of Q(

√
3), and

so Q(ω, α) = Q(ω, α,
√

3) is an extension of Q(
√

3) of degree 6. In fact, it is
a Galois extension as it is the splitting field of the polynomial X3 − (1 + √

3).
Similarly Q(ω, β) is a Galois extension of Q(

√
3) of degree 6.

We now make an important observation. We have just noted that Q(ω,
√

3)

and Q(α) are disjoint extensions of Q(
√

3), so in particular ω /∈ Q(α). Thus
Q(α) contains the root α of mα(X) but does not contain the root ωα, so Q(α) is
not a normal extension of Q(

√
3). Hence we see that Gal(Q(ω, α)/(Q(

√
3))

is a nonabelian group of order 6, as is Gal(Q(ω, β)/(Q(
√

3)). Furthermore,
since these two Galois groups are quotients of subgroups of G, we conclude
that G is not abelian.

We claim β /∈ Q(ω, α). For if β ∈ Q(ω, α), we would have E = Q(ω, α)

and then (E/Q) = (Q(ω, α)/Q(
√

3))(Q(
√

3)/Q) = (6)(2) = 12, so G would
be a nonabelian group of order 12 with at least 3 subgroups of order 6, and no
such group exists. Similarly, α /∈ Q(ω, β).

Now 6 = (Q(ω, α)/Q(
√

3)) = (Q(ω, α)/Q(ω,
√

3))(Q(ω,
√

3)/Q(
√

3)),
so we see that (Q(ω, α)/Q(ω,

√
3)) = (Q(ω, α)/Q(ω)) = 3, and similarly

we see that (Q(ω, β)/Q(ω)) = 3.

We claim that Q(ω, α) and Q(ω, β) are disjoint extensions of Q(ω,
√

3).
For we have the inclusions Q(ω,

√
3) ⊆ Q(ω, α) ∩ Q(ω, β) ⊆ Q(ω, α), so

(Q(ω, α) ∩ Q(ω, β)/Q(ω,
√

3)) divides (Q(ω, α)/Q(ω,
√

3)) = 3, so it is
either 1 or 3, i.e., Q(ω, α)∩ Q(ω, β) = Q(ω, α) or Q(ω,

√
3). But Q(ω, α)∩

Q(ω, β) �= Q(ω, α) as α /∈ Q(ω, β).

Since Q(ω, α) and Q(ω, β) are disjoint Galois extensions of Q(ω,
√

3),
we have that

(Q(ω, α, β)/Q(ω,
√

3)) = 9 and hence (E/Q) = 36.

We also know that

9 = (Q(ω, α, β)/Q(ω,
√

3))

≤ (Q(α, β)/Q(
√

3))

≤ (Q(α)/Q(
√

3))(Q(β)/Q(
√

3)) = (3)(3) = 9,
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so we see that (Q(α, β)/Q(
√

3)) = 9. Hence (Q(α, β)/Q) = 18 and
(E/Q(α, β)) = 2. Since

36 = (E/Q) = (Q(ω, α, β)/Q)

= (Q(ω)/Q)(Q(α, β)/Q) = (2)(18),

we see that Q(ω) and Q(α, β) are disjoint extensions of Q.

We now assemble all of this information to find the structure of G. First,
since (E/Q) = 36, G is a group of order 36.

As we have observed, Gal(Q(ω, α)/Q(
√

3)) is a nonabelian group of order
6. By the Theorem on Natural Irrationalities, Gal(E/Q(β)) is isomorphic to a
subgroup of this group. But (E/Q(β)) = 6 so these two groups are isomor-
phic. In other words, every automorphism of Q(ω, α) fixing Q(

√
3) extends

to an automorphism of E fixing Q(β), and similarly every automorphism of
Q(ω, β) fixing Q(

√
3) extends to an automorphism of E fixing Q(α). Simi-

larly, since (E/Q(α, β)) = (Q(ω)/Q) = 2, we may again apply the Theorem
on Natural Irrationalities to extend the nontrivial element of Gal(Q(ω)/Q) to
an automorphism of E fixing Q(α, β).

The elements we have found so far generate a subgroup H of G of order
18. Finally, although Q(α, β) is not a Galois extension of Q, E is a splitting
field of mα(X), an irreducible polynomial two of whose roots are α and β, so
there is an automorphism of E taking α to β. This automorphism is not unique,
but if we choose one such, we may multiply it by any element of H . (Note
every element of H leaves each of the sets {α, ωα, ω2α} and {β, ωβ, ω2β}
invariant while this new automorphism interchanges these two sets.)

Thus, assembling all of this information, we find that G is a group of order
36, generated by an element ρ of order 2, two elements σ1 and σ2 of order 3,
and an element τ of order 2, whose actions on E are given by:

ρ(ω) = ω2, ρ(α) = α, ρ(β) = β

σ1(ω) = ω, σ1(α) = ωα, σ1(β) = β

σ2(ω) = ω, σ2(α) = α, σ2(β) = ωβ

τ(ω) = ω, τ(α) = β, τ(β) = α.

(Actually, H is generated by ρ, σ1, and σ2, and G is generated by ρ, σ1,
and τ , as σ2 = ρσ1ρ

−1, but the more symmetric set of generators better reveals
the structure of G.)

Finally, if we number the roots α, ωα, ω2α, β, ωβ, ω2β of mα(X) as 1, . . . ,
6, the generators of G are given by the permutations

ρ = (23)(56), σ1 = (123), σ2 = (456), and τ = (14)(25)(36). �
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4.10 Exercises

Exercise 4.10.1. Show, without using Dirichlet’s theorem about the existence
of infinitely many primes in arithmetic progressions, and without using Lemma
C.1.1, that:
(a) For any integer n, there exists a Galois extension E of Q of degree n.
(b) For any integer n, and any algebraic number field F, there exists a Galois
extension E of F of degree n.

Exercise 4.10.2. For a rational number x = r/s in lowest terms, say that p
divides x if p divides r . Show that Eisenstein’s Criterion (Proposition 4.1.7)
remains valid for polynomials in Q[X ] with this definition of divisibility.

Exercise 4.10.3. Let f (X) = an Xn + · · · + a0 ∈ Z[X ] and let r ∈ Q with
f (r) = 0. Show that each of the n rational numbers

anr, anr2 + an−1r, anr3 + an−1r2 + an−2r,

. . . , anrn + an−1rn−1 + · · · + a1r

is in fact an integer. (This exercise is taken from the 2004 Putnam competition.)

Exercise 4.10.4. Use Exercise 2.10.10 to show that the polynomial X6 − 72 is
irreducible in Q[X ].
Exercise 4.10.5. We might call an ordinary compass a 2-compass since, along
with a straightedge, it allows us to geometrically find square roots of complex
numbers. Suppose we also had a 3-compass, an instrument that allows us to
geometrically find cube roots of complex numbers. For what values of n <

1000 could we construct a regular n-gon with these instruments?

Exercise 4.10.6. (a) Let n be an integer and let k be the product of the distinct
prime factors of n. Show that 
n(X) = 
k(Xn/k).
(b) Let n be an integer not divisible by p. Show that


np(X) = 
n(X p)/
n(X).

Exercise 4.10.7. (a) Find the n-the cyclotomic polynomial 
n(X) for n = pk

a prime power.
(b) Find 
n(X) for 2 ≤ n ≤ 16.
(c) Examining 
n(X) for small values of n might lead one to conjecture that
the coefficients of 
n(X) are always 0, 1, or −1. Show, by hand computation,
that n = 105 is a counterexample to this conjecture. (This is known to be the
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smallest counterexample.) Note that 
105(X) is a polynomial of degree 48.
With enough patience, this entire polynomial can be computed by hand. But
only a partial, and much more manageable, computation is necessary to find a
coefficient that is not 0, 1, or −1.

Exercise 4.10.8. Fix n > 2 and let E = Q(ζn) be the n-th cyclotomic field.
Let B = E ∩ R.
(a) Show that (E/B) = 2 and that B = Q(ζn + ζ−1

n ).
(b) Show that B is the unique subfield of E with (E/B) = 2 if and only if
n = 4, pk, or 2pk for p an odd prime.
(c) Find 3 subfields B of E with (E/B) = 2 in case n = 8.
(d) Show that there are exactly 3 fields B with (E/B) = 2 if n = 2k for any
k ≥ 3.

Exercise 4.10.9. Let E = Q(ζp) be the p-th cyclotomic field. Let a, b ∈ Q be
arbitrary. Find NE/Q(a + bζp) and TrE/Q(a + bζp).

Exercise 4.10.10. (a) Of course, ζ1 = 1, ζ2 = −1, ζ3 = ω = (−1 + i
√

3)/2,
and ζ4 = i . Find ζ5, ζ6, ζ8, ζ10, ζ12, ζ15, and ζ16.
(b) Find ζ17. (This is an intricate computation. See Example 4.4.6 (3).)
(c) Find ζ7, ζ9, ζ13, and ζ14. (This uses the solution of the cubic in Exercise
4.10.25.)

Exercise 4.10.11. Throughout this exercise, we assume n > 2.
(a) Show that 
n(x) > 0 for all real numbers x .
(b) If n = pk for some k, show that 
n(1) = p.
(c) If n is not a prime power, show that 
n(1) = 1.
(d) If n = 2k for some k, show that 
n(−1) = 2.
(e) If n = 2pk for some odd prime p, show that 
n(−1) = p.
(f) If n is not a power of 2 and is not twice an odd prime power, show that

n(−1) = 1.
(g) Let E = Q(ζn). Show that the computations in (b) and (c) give the value
of NE/Q(1 − ζn) and that the computations in (d), (e), and (f) give the value of
NE/Q(−1 − ζn).

Exercise 4.10.12. (a) Let F = Fp be the field with p elements and let let m be
an integer relatively prime to p. Let 
̄m(X) ∈ F[X ] be the mod p reduction
of the cyclotomic polynomial 
m(X) and let g(X) = Xm − 1 ∈ F[X ]. Show
that 
̄m(X) and g(X) have the same splitting field E, and furthermore that
E = Fpr where r is the smallest positive integer such that pr ≡ 1(mod m).
(b) Let 
̄m(X) = f1(X) · · · fk(X) ∈ F[X ] be a factorization of 
̄m(X) into
a product of irreducible polynomials. Show that each fi (X) has degree r , and
hence that k = ϕ(m)/r .
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Exercise 4.10.13. Referring to Exercise 3.9.24 (b), let k(Y, Z) = Y Z . Let
m and n be arbitrary positive integers and let d = gcd(m, n) and � =
lcm(m, n). Show that QY Z (
m(X), 
n(X)) = QY Z (
�(X), 
d(X)). In par-
ticular, if m and n are relatively prime, show that QY Z (
m(X), 
n(X)) =
QY Z (
mn(X), 
1(X)) = 
mn(X).

Exercise 4.10.14. Factor each of the following polynomials into a product of
irreducible polynomials in Q[X ]. (This includes the possibility that the given
polynomial is irreducible.)
(a) f (X) = X3 − 7X2 + 36.
(b) f (X) = X3 + 5X2 − 10X − 8.
(c) f (X) = X3 − 4X2 − 5X + 6.
(d) f (X) = X4 + 2X2 + 9.
(e) f (X) = X4 + 7X3 + 17X2 + 18X + 6.
(f) f (X) = X4 − 8X2 + 15.
(g) f (X) = X4 − 4X2 + 16.
(h) f (X) = X4 + X3 + 7X2 + 15X + 15.
(i) f (X) = X5 + X4 + 4X3 + 4X2 + 4X + 4.
(j) f (X) = X6 − 2X3 − 1.
(k) f (X) = X7 − 7X6 + 6X + 30.

Exercise 4.10.15. For each α in Exercise 2.10.1, find mα(X) ∈ Q[X ]. (Con-
sider the polynomial you found in solving that problem. If it is irreducible, it is
mα(X). Thus, you must decide whether it is irreducible. If it is, you are done.
If not, you have more work to do.)

Exercise 4.10.16. For each α in Exercise 4.10.15, let E be a splitting field of
mα(X). Find (E/Q) and find G = Gal(E/Q).

Exercise 4.10.17. In this exercise, let E be a splitting field of the polynomial
f (X) ∈ Q[X ] and let G = Gal(E/Q).
(1) Find (E/Q) and find G.
(2) Find all subgroups H of G, and the fields B to which they belong.
(3) For each field B in (b), find a basis for E as a vector space over B and a
basis for B as a vector space over Q.
(4) Determine which subfields B in (b) are Galois extensions of Q. For each
of these fields B, find a polynomial g(X) ∈ Q[X ] with B a splitting field for
g(X), and find Gal(B/Q).
(a) f (X) = X4 − 2.
(b) f (X) = X5 − 2.
(c) f (X) = (X3 − 2)(X3 − 3).
(d) f (X) = (X2 − 3)(X3 − 1).
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(e) f (X) = (X2 + 3)(X3 − 1).
(f) f (X) = X6 + 3.
(g) f (X) = X6 + 5.
(h) f (X) = X8 − 2.
(i) f (X) = X8 − 3.

Exercise 4.10.18. (a) Let f (X) = X3 + bX + c ∈ Q[X ] be irreducible. Sup-
pose b > 0. Show that the Galois group of f (X) is isomorphic to S3.
(b) More generally, let f (X) = X3 + aX2 + bX + c ∈ Q[X ] be irreducible.
Suppose b > a2/3. Show that the Galois group of f (X) is isomorphic to S3.

Exercise 4.10.19. (a) Let p be an odd prime and let

f (X) = X2(X − 2)(X − 4) · · · (X − 2(p − 2)) − 2.

Show that, for k sufficiently large, f (X) is an irreducible polynomial with
p − 2 real roots.
(b) Let p be an odd prime and let

f (X) = (X2 + 2)(X)(X − 2) · · · (X − 2(p − 3)) + 2/(2k + 1).

Show that, for k sufficiently large, f (X) is an irreducible polynomial with
p − 2 real roots. (Then, choosing 2k + 1 to be a pth power, i.e., 2k + 1 = s p

for some integer s, we may make the substitution Y = s X to obtain a monic
irreducible polynomial with integer coefficients g(Y ) = (2k + 1) f (X) =
s p f (X).)
(c) Let p be an odd prime and let

f (X) = (X2 + 2k)(X)(X − 2) · · · (X − 2(p − 3)) + 2.

Show that, for k sufficiently large, f (X) is an irreducible polynomial with
p − 2 real roots.

Hence, in any of these three cases, f (X) has Galois group Sp. Compare
Theorem 4.7.4 and Example 4.7.5.

Exercise 4.10.20. Let f (X) ∈ Q[X ] be a reducible cubic. Show that f (X)

has splitting field Q(δ), where δ is as in Definition 4.8.1.

Exercise 4.10.21. Let α = 3
√

7 + 5
√

2. Then certainly (α3 − 7)2 = 50, so we
see that α is a root of f (X) = 0, where f (X) = X6 − 14X3 − 1 ∈ Q[X ]. Ob-
serve that α = β3, where β = 1+√

2. Use this observation to find all the roots
of f (X), the factorization of f (X) as a product of irreducible polynomials in
Q[X ], the splitting field of f (X), and the Galois group of f (X).
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Exercise 4.10.22. Let f (X) = X5 −75X4 +15X3 −9X2 −16X −56 ∈ Q[X ].
Show that the Galois group of f (X) is S5.

Exercise 4.10.23. Let f (X) = 4X5 − 105X4 + 840X3 − 2160X2 + 6000 ∈
Q[X ]. Show that the Galois group of f (X) is S5.

Exercise 4.10.24. Let G be a finite group of order n and suppose G can be
written as G = H1×· · ·×Hk with Hi a group of prime power order, for each i .
Such a group is called nilpotent. (This is not the definition of a nilpotent group
but rather a characterization of finite nilpotent groups.)
(a) Show that G is solvable.
(b) Let E be an extension of F with Gal(E/F) ∼= G. Show that, for every
divisor d of n, there is a field B with F ⊆ B ⊆ E and with (B/F) = d.
(c) Find a counterexample to (b) for G a solvable group.

Exercise 4.10.25. In this exercise we will show how to find the roots of a gen-
eral cubic polynomial f (X). Clearly it suffices to consider the case that f (X)

is monic, so let f (X) = X3 + aX2 + bX + c. By making the substitution
Y = X − a/3, we may transform f (X) to a cubic g(Y ) = Y 3 + b′Y + c′,
i.e., to one in which the quadratic term is absent. Thus it suffices to handle this
case, so we assume f (X) = X3 + bX + c. Recall from Section 4.8 that f (X)

has discriminant � = −4b3 − 27c2. Let E be the splitting field of f (X) and
let D = E(ω). Then (E/Q(

√
�)) = 1 or 3 so we see from Section 3.7 that

if B = Q(ω,
√

�), then either D = B or that D = B(ε) with ε3 = e ∈ B,
i.e., that D is the splitting field of the polynomial X3 − e ∈ B[X ]. We shall
not try to find ε or e directly, but these considerations guide the form of our
answer. Indeed, with these in mind, and the observation that e must be of the
form e = u + v

√
� for some u, v ∈ Q(ω), we look for roots of f (X) of the

form

α = 3

√
u + v

√
� + 3

√
u − v

√
�,

β = ω
3

√
u + v

√
� + ω2 3

√
u − v

√
�,

γ = ω2 3

√
u + v

√
� + ω

3

√
u − v

√
�.

(Observe that α, β, and γ are all fixed by Gal(B/Q), as we expect.) Now
recall that the coefficients of f (X) are, up to sign, the elementary symmetric
functions in the roots of f (X). Since 1+ω+ω2 = 0, we have that α+β+γ = 0,
which is consistent with the quadratic term of f (X) being absent. Examining
the linear and constant terms we obtain the equations

αβ + βγ + αγ = b, αβγ = −c.
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Show that these equations yield

u = −c/2, v = √−3/18.

and verify by direct substitution that, with these values of u and v, α, β, and γ

are roots of f (X) = X3 + aX + b.

Exercise 4.10.26. Use the formula in Exercise 4.10.25 to find the roots of the
following cubics:
(a) f (X) = X3 − 3X − 1.
(b) f (X) = X3 − 21X − 37.
(c) f (X) = X3 − 12X + 18.
(d) f (X) = X3 − 27X + 30.
(e) f (X) = X3 + 3X − 4.
(f) f (X) = X3 − 13X − 12.

Exercise 4.10.27. Observe that the polynomials in Exercise 4.10.26 parts (e)
and (f) are not irreducible. Find their roots directly. Compare your answers
here with your answers in Exercise 4.10.26. You may be surprised!

Exercise 4.10.28. (a) Let F ⊆ R and let E = F(α) where αn = a ∈ F
and α ∈ R. Let B be any Galois extension of F with B ⊆ E. Show that
(B/F) = 1 or 2.
(b) Use part (a) to show that the solution of a cubic must involve nonreal
radicals even when there are only real roots. (Examples of this are provided by
parts (a) and (d) of Exercise 4.10.26.)
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Further Topics in Field Theory

5.1 Separable and Inseparable Extensions

We now wish to further investigate questions related to separability and insep-
arability of algebraic extensions. Recall from Corollary 3.2.3 that every alge-
braic extension in characteristic 0 is separable, so in this case there is nothing
more to be said. Thus in this section we shall assume that char(F) = p > 0.

Recall we have the Frobenius endomorphism 
 : F → F given by 
(x) =
x p, and Fp = Im(
) = {y ∈ F | y = x p for some x ∈ F} is a subfield of F.
(See Definition 2.1.10 and Corollary 2.1.11.) If F is finite, then Fp = F, but in
this case, too, every algebraic extension of F is separable (Theorem 3.2.6), so
we will be interested in the case that F is infinite.

First, we shall deal with extensions that are separable, and then with ex-
tensions that are not.

We begin with a technical lemma.

Lemma 5.1.1. Let E be an extension of F and let α ∈ E, α /∈ F. Then α p /∈ Fp.

Proof. Suppose α p ∈ Fp, i.e., α p = β p for some β ∈ F. Then 0 = α p −β p =
(α − β)p so α = β. But α /∈ F and β ∈ F, so this is impossible. ��

We also remind the reader of the following result.

Lemma 5.1.2. Let a ∈ F, a /∈ Fp. Then f (X) = X pt −a ∈ F[X ] is irreducible
for every t ≥ 1.

Proof. Lemma 3.2.8. ��
Lemma 5.1.3. Let E be a finite extension of F. If FEp = E, then E is a sepa-
rable extension of F.

S.H. Weintraub, Galois Theory, DOI 10.1007/978-0-387-87575-0_5,  
© Springer Science+Business Media, LLC 2009 
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Proof. We claim that if {αi } is a set of elements of E that is linearly indepen-
dent over F, then {α p

i } is also linearly independent over F. To see this, note
that, extending {αi } if necessary, we may assume that {αi }i=1,...,d , d = (E/F),
is a basis for E over F. We will show that {α p

i }i=1,...,d spans E over F. Hence,
since (E/F) = d is finite, {α p

i }i=1,...,d is a basis for E over F and hence this set
is linearly independent.

Let γ ∈ E. Since E = FEp, we may write

γ = bα p for some b ∈ F, α ∈ E.

Since {αi } is a basis,

α = c1α1 + · · · + cdαd with c1, . . . , cd ∈ F,

and then

γ = bα p = b(c1α1 · · · + cdαd)
p = (bcp

1 )α
p
1 + · · · + (bcp

d )α
p
d ,

proving the claim.
Now suppose α ∈ E is not separable. Then, by Proposition 3.2.2, its mini-

mum polynomial mα(X) is of the form

mα(X) =
k∑

i=0

ci Xip for some k and {ci }, not all zero.

Thus

0 =
k∑

i=0

ciα
i p,

so 1 = α0, α p, . . . , αkp are linearly dependent and hence, by the contrapositive
of our claim, 1 = α0, α, . . . , αk are linearly dependent as well.

Thus

0 =
k∑

i=0

diα
i with not all di equal to zero,

so if

f (X) =
k∑

i=0

di Xi ,

then f (α) = 0. But deg f (X) < deg mα(X), which is impossible. ��
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Lemma 5.1.4. Let α ∈ E. Then α is separable over F if and only if F(α) =
F(α p).

Proof. Suppose that α is separable over F. Clearly F(α p) ⊆ F(α), so we
need only show the reverse inclusion. To show that, it suffices to show that
α ∈ F(α p).

Let mα(X) ∈ F[X ] be the minimum polynomial of α over F, and let
m̃α(X) ∈ F(α p)[X ] be the minimum polynomial of α over F(α p). Then
m̃α(X) divides mα(X) in F(α p)[X ].

Clearly α is a root of the polynomial f (X) = X p − α p ∈ F(α p)[X ].
Suppose α /∈ F(α p). Then α p /∈ (F(α p))p by Lemma 5.1.1, so f (X) = X p −
α p is irreducible in F(α p)[X ] by Lemma 5.1.2. Since f (X) is irreducible,
m̃α(X) = X p − α p. Since m̃α(X) divides mα(X) in F(α p)[X ], m̃α(X) divides
mα(X) in F(α)[X ]. Hence mα(X) is divisible by X p − α p = (X − α)p in
F(α)[X ], contradicting the separability of α.

Conversely, if F(α) = F(α p), then

F(α) = F(α p) = F(F(α))p

so, by Lemma 5.1.3, F(α) is a separable extension of F, i.e., α is a separable
element of E. ��
Corollary 5.1.5. If E is obtained from F by adjoining a root of a separable
polynomial, then E is a separable extension of F.

Proof. Let E = F(α) where α is a root of a separable polynomial. Then
F(α) = F(α p) by Lemma 5.1.4, and F(α p) = F(F(α))p, so F(α) = F(F(α))p

and F(α) is a separable extension of F by Lemma 5.1.3. ��
Lemma 5.1.6. Let B be a field intermediate between F and E. If E is a sepa-
rable extension of F, then B is a separable extension of F and E is a separable
extension of B.

Proof. As B ⊆ E, B is trivially a separable extension of F.
Let α ∈ E. Since E is a separable extension of F, α is a simple root of a

polynomial f (X) ∈ F[X ]. But F ⊆ B so f (X) ∈ B[X ] and α is separable
over B. ��

Lemma 5.1.3 has a converse (under weaker hypotheses, in fact).

Lemma 5.1.7. Let E be an extension of F. If E is a separable extension of F,
then FEp = E.
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Proof. Let B = FEp so that B is intermediate between F and E. By Lemma
5.1.6, E is a separable extension of B.

Suppose B ⊂ E, and let α ∈ E, α /∈ B. Then a = α p ∈ B so α is a root of
X p − a ∈ B[X ]. But, by Lemma 5.1.2, this polynomial is irreducible, so it is
equal to m̃α(X), the minimum polynomial of α over B. Then this polynomial
m̃α(X) = X p − a = X p − α p = (X − α)p has repeated roots, contradicting
the separability of E over B. ��
Theorem 5.1.8. Let B be a field intermediate between F and E. If E is separa-
ble extension of B and B is a separable extension of F, then E is a separable
extension of F.

Proof. First, assume both (E/B) and (B/F) are finite. Since B is a separable
extension of F, we have B = FBp, and since E is a separable extension of B,
we also have E = BEp, both by Lemma 5.1.7.

Then

E = BEp = FBp(BEp)p ⊆ FEp,

so E = FEp and (E/F) = (E/B)(B/F) is finite, and so E is a separable
extension of F by Lemma 5.1.3.

Now for the general case. Let α ∈ E, and let m̃α(X) ∈ B[X ] be the min-
imum polynomial of α over B. Let B0 be the subfield of B obtained by ad-
joining the coefficients of m̃α(X) to F. Then B0 is a finite extension of F and
F ⊆ B0 ⊆ B with B a separable extension of F, by hypothesis, so B0 is a
separable extension of F by Lemma 5.1.6. Let E0 = B0(α). Then E0 is a finite
extension of B0. Since E is a separable extension of B, by hypothesis, m̃α(X)

is a separable polynomial, so, by Corollary 5.1.5, E0 is a separable extension
of B0. Then, by the finite case, E0 is a separable extension of F. Since α is
arbitrary, E is separable. ��
Theorem 5.1.9. A finite extension E of F is separable if and only if E is ob-
tained from F by adjoining root(s) of a separable polynomial f (X) ∈ F[X ].
Proof. E is obtained from F by successively adjoining finitely many elements.
If one of them is not separable, then certainly E is not separable. If each of
them is a root of a separable polynomial, then the theorem follows immediately
from Corollary 5.1.5 and Theorem 5.1.8. ��
Lemma 5.1.10. Let E be an extension of F. Then

Fs = {α ∈ E | α is separable over F}
is a field intermediate between F and E.
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Proof. Let α, β ∈ Fs . Then α is a simple root of mα(X) ∈ F[X ] ⊆ F(β)[X ],
so F(β)(α) = F(α, β) is separable over F(β). Also, F(β) is separable over F.
Hence, by Theorem 5.1.8, F(α, β) is separable over F. Thus α + β ∈ Fs and
αβ ∈ Fs . Also, if α �= 0 then 1/α ∈ F(α) so 1/α ∈ Fs . Thus Fs is a field. ��
Definition 5.1.11. The field Fs of Lemma 5.1.10 is called the separable
closure of F in E. �

We now turn our attention to inseparable extensions.

Definition 5.1.12. Let E be an extension of F. An element α ∈ E is purely
inseparable over F if mα(X) = (X − α)m ∈ E[X ] for some m. The integer m
is called the degree of inseparability of α. �
Remark 5.1.13. If α ∈ E is both separable and purely inseparable over F, then
(m = 1 and) α ∈ F. �
Lemma 5.1.14. Let α ∈ E be purely inseparable over F with degree of insep-
arability m. Then m = pr for some r.

Proof. Write m = kpr with (k, p) = 1. Then, in E[X ],
mα(X) = (X − α)kpr = ((X − α)pr

)k = (X pr − α pr
)k

= (X pr
)k − kα pr

(X pr
)k−1 + · · · ∈ F[X ]

by the Binomial Theorem. Thus kα pr ∈ F and so α pr ∈ F. Thus f (X) =
X pr − α pr ∈ F[X ] and f (X) divides mα(X) in E[X ] and hence in F[X ],
by Lemma 2.2.7. Since mα(X) is irreducible in F[X ], mα(X) = f (X) and
k = 1. ��
Corollary 5.1.15. If α is purely inseparable over F, then (F(α)/F) = m = pr

for some r.

Proof. (F(α)/F) = deg mα(X). ��
Definition 5.1.16. An extension E of F is purely inseparable if every α ∈ E is
inseparable over F. �
Lemma 5.1.17. Let E be an extension of F. If α ∈ E is purely inseparable,
then F(α) is a purely inseparable extension of F.

Proof. First observe that mα(X) ∈ F[X ] factors as mα(X) = (X − α)pr
in

E[X ], by Lemma 5.1.14, so (X −α)pr = X pr −α pr ∈ F[X ] and a = α pr ∈ F.
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Now let β ∈ F(α). If β ∈ F, there is nothing to prove (as then mβ(X) =
X − β) so assume β /∈ F. Then β = ∑m−1

i=0 biα
i with bi ∈ F (and m = pr ), so

β pr =
( m−1∑

i=0

biα
i
)pr

=
m−1∑
i=0

bpr

i (α pr
)i =

m−1∑
i=0

bpr

i ai ∈ F,

so F = F(β pr
) and hence F(β pr

) ⊂ F(β). Then, by Lemma 5.1.4, β is insep-
arable over F. (If β were separable over F, we would have F(β) = F(β p) =
F((β p)p) = · · · = F(β pr

), a contradiction.) ��
Lemma 5.1.18. Let E be a purely inseparable extension of F. Then every α ∈
E is purely inseparable over F.

Proof. Let α ∈ E. If α ∈ F, there is nothing to prove, so let α /∈ F. Consider
its minimum polynomial mα(X) and let pe be the highest power of p dividing
all the exponents of the nonzero terms in mα(X). Then mα(X) = f (X pe

)

for some polynomial f (X), and f (X) is irreducible as mα(X) is. Note that
f ′(X) �= 0 as some term in f (X) has positive degree not divisible by p, so,
by Proposition 3.2.2, f (X) is separable. Now α pe

is a root of f (X), so α pe
is

a separable element of E. Hence a = α pe ∈ F, and α satisfies the polynomial
X pe − a. Let f be the smallest integer with a′ = α p f ∈ F. Then a′ /∈ Fp,
by Lemma 5.1.1, so, by Lemma 5.1.2, g(X) = X p f − a′ is irreducible, and
g(α) = 0. Hence mα(X) = g(X) = X p f − a′ = (X − α)p f

and α is purely
inseparable (and f = e). ��
Proposition 5.1.19. Let E be a purely inseparable extension of F and let B
be any field intermediate between F and E. Then B is a purely inseparable
extension of F and E is a purely inseparable extension of B.

Proof. Clearly B is a purely inseparable extension of F.
Let α ∈ F. Then α has minimum polynomial mα(X) ∈ F[X ] which factors

as (X − α)m ∈ E[X ]. Let m̃α(X) ∈ B[X ] be the minimum polynomial of α

over B. Then m̃α(X) divides mα(X) in E[X ], so m̃α(X) = (X − α)m ′
for

some m ′, and α is purely inseparable over B. Since α is arbitrary, E is purely
inseparable over B. ��
Corollary 5.1.20. Let E be a finite, purely inseparable extension of F. Then
(E/F) is a power of p.

Proof. Let {α1, . . . , αk} be a basis for E over F, so E = F(α1, . . . , αk). We
prove the corollary by induction on k.

If k = 1, then E = F(α1) and the result is immediate from Corollary
5.1.15.
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Assume the result is true for k − 1, and let B = F(α1, . . . , αk−1). Since E
is a purely inseparable extension of F, E is a purely inseparable extension of
B and B is a purely inseparable extension of F, by Proposition 5.1.19. Since
(E/F) = (E/B)(B/F), the result follows. ��
Lemma 5.1.21. Let E be an algebraic extension of F and let Fs be the sepa-
rable closure of F in E. Then E is a purely inseparable extension of Fs .

Proof. Suppose α ∈ E is separable over Fs . Then Fs(α) is a separable exten-
sion of Fs and Fs is a separable extension of F so, by Theorem 5.1.8, Fs(α) is
a separable extension of F, and then α ∈ Fs by the definition of Fs . ��
Corollary 5.1.22. Let E be an algebraic extension of F. Then there is a unique
field B intermediate between F and E with B a separable extension of F and E
a purely inseparable extension of B.

Proof. Take B = Fs . ��
Note that Corollary 5.1.22 says that any algebraic extension of F can be

obtained by first taking a separable extension, and then taking a purely insep-
arable extension.

Definition 5.1.23. Let E be an algebraic extension of F and let Fs be the sep-
arable closure of F in E. Then (Fs/F) is the separable degree of E over F and
(E/Fs) is the inseparable degree of E over F. �
Remark 5.1.24. (1) Of course, (E/F) = (E/Fs)(Fs/F).

(2) E is a separable extension of F if and only if E = Fs , or, equivalently,
if and only if (Fs/F) = (E/F).

(3) E is a purely inseparable extension of F if and only if Fs = F, or,
equivalently, if and only if (Fs/F) = 1.

(4) By Corollary 5.1.20, (E/Fs) is a power of p.
(5) If (E/F) is relatively prime to p, then E is a separable extension of F (as

in this case (E/Fs), which is a power of p, divides (E/F), which is relatively
prime to p, so we must have (E/Fs) = 1 and hence E = Fs). �
Remark 5.1.25. Observe that every purely inseparable extension of F is nor-
mal. (If α ∈ E is purely inseparable, then mα(X) = (X − α)m ∈ E[X ] is a
product of linear factors.) �
Theorem 5.1.26. Let B be a purely inseparable extension of F and let E be a
purely inseparable extension of B. Then E is a purely inseparable extension
of F.
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Proof. Let α ∈ E and let m̃α(X) ∈ B[X ] be the minimum polynomial of α

over B. Let B0 be the extension of F obtained by adjoining the coefficients
of m̃α(X) to F. Then F ⊆ B0 ⊆ B so B0 is purely inseparable over F by
Proposition 5.1.19, and B0 is certainly a finite extension of F. We now use
Theorem 5.2.1 below to conclude that B0 is the splitting field of a polynomial
f (X) ∈ F[X ]. Let {β1, . . . , βk} be the roots of f (X), so B0 = F(β1, . . . , βk).

Note also that m̃α(X) = (X − α)m ∈ E[X ], so α is purely inseparable
over B0.

Let E0 be a splitting field of mα(X) ∈ F[X ] with F(α) ⊆ E0. Let α′ ∈ E0

be any root of mα(X). Since mα(X) is irreducible, by Lemma 2.6.1 there is
a σ : F(α) → F(α′) with σ | F = id and σ(α) = α′. Since B0 is the split-
ting field of f (X), by Lemma 2.6.3 σ extends to σ : F(α)(β1, . . . , βk) →
F(α′, β1, . . . , βk). Now F(α)(β1, . . . , βk) = F(β1, . . . , βk)(α) = B0(α). Sim-
ilarly, F(α′, β1, . . . , βk) = B0(α

′). Now σ(βi ) = βi as σ must take a root
of mβi (X) to a root of mβi (X), and βi is the only root of mβi (X). Hence
σ | B0 = id. Thus σ : B0(α) → B0(α

′) with σ | B0 = id, σ(α) = α′.
Then 0 = σ(0) = σ(m̃α(α)) = m̃α(σ (α)) = m̃α(α′). But α is purely insepa-
rable over B0 so the only root of m̃α(X) is α. Hence α′ = σ(α) = α, and so α

is the only root of mα(X) and hence α is purely inseparable over F. Since α is
arbitrary, E is purely inseparable over F. ��

We now extend the second part of Definition 5.1.12.

Definition 5.1.27. Let E be an algebraic extension of F and let α ∈ E. The
degree of inseparability i(α) is the multiplicity of α as a root of mα(X). �
Lemma 5.1.28. (1) i(α) is independent of E.

(2) If α and α′ are two roots of the irreducible polynomial f (X) ∈ F[X ]
in E, then i(α) = i(α′).

Proof. (1) Let E′ ⊇ E, i = i(α) in E, i ′ = i(α) in E′. In E[X ], mα(X) =
(X −α)i g(X) with g(X) relatively prime to X −α, and then g(X) is relatively
prime to X − α in E′[X ] as well (Lemma 2.2.7), so i ′ = i .

(2) By Lemma 2.6.1, there is an isomorphism σ : F(α) → F(α′) with
σ | F = id and σ(α) = α′. Then σ( f (X)) = f (X), and also if we write
f (X) = (X − α)i g(X) ∈ F(α)[X ] with g(α) �= 0, then we see that f (X) =
(X − α′)i g(X) ∈ F(α′)[X ] with g(α′) �= 0. ��
Lemma 5.1.29. Let E be an algebraic extension of F and let α ∈ E. Then i(α)

is a power of p. More precisely, i(α) is the highest power of p dividing the
exponent of every nonzero term in mα(X).
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Proof. Let pr be the highest power of p such that f (X) = g(X pr
), g(X) ∈

F[X ]. Since mα(X) is irreducible, so is g(X), and g′(X) �= 0, so g(X) is
separable (Proposition 3.2.2) and hence α pr

is a simple root of g(X). Hence
g(X) = (X −α pr

)h(X) with h(α pr
) �= 0, i.e., with X −α pr

not dividing h(X).
Thus, one the one hand, X pr −α pr = (X −α)pr

divides f (X) and, on the other
hand, this is the highest power of X − α dividing f (X). ��
Corollary 5.1.30. Let E be an algebraic extension of F and let α ∈ E. If
mα(X) splits in E[X ], then

mα(X) = (X − α1)
pr · · · (X − αk)

pr

with αi = α for some i , pr = i(α), and kpr = deg mα(X). ��

5.2 Normal Extensions

In this section we investigate normal extensions.

Theorem 5.2.1. E is a finite normal extension of F if and only if E is the split-
ting field of a polynomial f (X) ∈ F[X ].
Proof. If E is normal and {ε1, . . . , εn} is a basis for E over F, then
mεi (X) ∈ F[X ] splits into a product of linear factors for each i , so f (X) =
mεi (X) · · · mεn (X) ∈ F[X ] splits into a product of linear factors, and then E
is the splitting field of f (X), as any field in which f (X) splits must contain
{ε1, . . . , εn}.

Suppose now that E is the splitting field of f (X) ∈ F[X ] and let α1, . . . , αk

be the roots of f (X) in E, so E = F(α1, . . . , αk). Let g(X) ∈ F[X ] have a root
β ∈ E. We need to show g(X) splits into a product of linear factors in E[X ].
Clearly it suffices to consider the case that g(X) is irreducible.

Let Ẽ ⊇ E be a splitting field of the irreducible polynomial g(X) and let
β̃ ∈ Ẽ be a root of g(X).

Then, by Lemma 2.6.1, there is a unique isomorphism σ : F(β) → F(β̃)

with σ(β) = β̃ and σ | F = id.
Now E is a splitting field for f (X) over F(β) and E(β̃) = F(α1, . . . , αk,

β̃) is a splitting field for f (X) over F(β̃) so by Lemma 2.6.3 there is an iso-
morphism τ : E = E(β) → E(β̃) extending σ , and hence with τ(β) = β̃.

Now τ extends σ , which is the identity on F, so τ is itself the identity on
F. Thus τ permutes {α1, . . . , αk}, as it must take any root of f (X) to a root of
f (X). Since β ∈ E = F(α1, . . . , αk), β = h(α1, . . . , αk) for some polynomial
h(X1, . . . , Xk) ∈ F[X1, . . . , Xk]. Then β̃ = τ(β) = τ(h(α1, . . . , αk)) =
h(τ (α1), . . . , τ (αk)) so β̃ ∈ E. ��
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Corollary 5.2.2. Let E be a normal extension of F and let σ : B → B′ be
any isomorphism of fields B and B′ intermediate between E and F such that
σ | F = id. Then σ extends to an automorphism σ̃ : E → E.

Proof. First, suppose that E is a finite extension of F. Then E is the splitting
field of a polynomial f (X) ∈ F[X ]. We may regard E as the splitting field
of f (X) ∈ B[X ] and note that σ( f (X)) = f (X). Then the corollary follows
immediately from Lemma 2.6.3.

The general case then follows by a Zorn’s Lemma argument. (See the proof
of Lemma 5.4.1 below.) ��
Definition 5.2.3. Let E be an algebraic extension of F. An extension D of E is
a normal closure of E if D is a normal extension of F but no field intermediate
between D and E is a normal extension of F. �
Lemma 5.2.4. Every algebraic extension E of F has a normal closure D, and
any two normal closures of E are isomorphic.

Proof. First, suppose E is a finite extension of F. Let E = F(α1, . . . , αk)

and let f (X) = mα1(X) · · · mαk (X). Let D ⊇ E be a splitting field of f (X).
Then D is a normal extension of F by Theorem 5.2.1, and f (X) does not
split in any proper subfield of D containing E, so D is a normal closure of
E. Furthermore, D is unique up to isomorphism as any two splitting fields of
f (X) are isomorphic (Lemma 2.6.4).

The general case then follows by a Zorn’s Lemma argument. ��
Corollary 5.2.5. Let E be a separable extension of F. Then the normal closure
D of E is a Galois extension of F.

Proof. First, suppose E is a finite extension of F. Then, following the proof of
Lemma 5.2.4, D is a splitting field of the separable polynomial f (X) and so,
by Theorem 2.7.14, D is a Galois extension of F.

The general case then follows from Corollary 5.4.3 below. ��
This corollary justifies the following definition.

Definition 5.2.6. Let E be a separable extension of F. A normal closure D of
E is called a Galois closure of E. �
Remark 5.2.7. (1) Note that if E is normal over F and B is an intermediate field
between F and E, then E is normal over B, but B need not be normal over F.
E is normal over B as for any α ∈ E, mα(X) splits into linear factors in E, and
hence m̃α(X), the minimum polynomial of α over B, which divides mα(X),
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also splits into linear factors in E. On the other hand, if E = Q(ω,
3
√

2) is the
splitting field of X3 − 2 ∈ Q[X ], and B = Q(

3
√

2), F = Q, then E is normal
over B but B is not normal over F.

(2) If B is a normal extension of F and E is a normal extension of B, then
E need not be a normal extension of F. Taking F = Q, B = Q(

√
2), and

E = Q(
4
√

2) provides an example of this. �
Now we turn to inseparable extensions. We first recall from Remark 5.1.25

that a purely inseparable extension is automatically normal.

Lemma 5.2.8. Let E be a normal extension of F. Then E is separable if
and only if Fix(Gal(E/F)) = F, and E is purely inseparable if and only if
Fix(Gal(E/F)) = E, or, equivalently, if and only if Gal(E/F) = {id}.
Proof. The first claim is immediate from the fact that E is a Galois extension
of F if and only if E is normal and separable (Theorem 2.7.14 in case (E/F)

is finite and Theorem 5.4.2 below in case (E/F) is infinite).
For the second claim, first suppose that (E/F) is finite. Suppose next that E

is a purely inseparable extension of F. Let α ∈ E. Then mα(X) = (X −α)m in
E[X ] for some m. Now for any σ ∈ Gal(E/F), σ(α) is also a root of mα(X).
But the only root of mα(X) is α, so σ(α) = α. Since α is arbitrary, σ = id.

The general case follows by a Zorn’s lemma argument.

Conversely, let E be normal and finite over F, and suppose that E is not
purely inseparable over F. Then there is an α ∈ E such that mα(X) has (at
least) two distinct roots α and α′. By Lemma 2.6.1 there is a σ : F(α) →
F(α′) with σ(α) = α′ and, by Corollary 5.2.2, σ extends to σ̃ : E → E with
σ̃ (α) = α′ and σ̃ | F = id, so σ̃ ∈ Gal(E/F) and σ̃ �= id. ��

We have seen in Section 5.1 that any algebraic extension may be obtained
by first taking a separable extension and then taking a purely inseparable ex-
tension. In the case of a normal extension, the order may be reversed.

Proposition 5.2.9. Let E be a normal extension of F. If Fi = Fix(Gal(E/F))

then Fi is a purely inseparable extension of F and E is a separable extension
of Fi . Furthermore, E is a Galois extension of Fi and Gal(E/Fi ) = Gal(E/F).

Proof. By definition, if G is a group of automorphisms of E, then E is a Galois
extension of Fix(G). Apply that here with G = Gal(E/F). Then E is a Galois
extension of Fi and hence E is a separable extension of F (Theorem 2.7.14 in
case (E/Fi ) is finite and Theorem 5.4.2 below in case (E/Fi ) is infinite).

Now we consider the extension Fi of F. If Fi is not purely inseparable then,
as in the proof of Lemma 5.2.8, there is an element α ∈ Fi and an isomorphism
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σ : F(α) → F(α′) with σ | F = id and σ(α) = α′ �= α. Then, by Corollary
5.2.2, σ extends to σ̃ : E → E with σ̃ | F = id, i.e., to σ̃ ∈ Gal(E/F) with
σ̃ (α) �= α, contradicting the definition of Fi . ��

In fact, in this situation we may say more. Recall that Fs was defined in
Definition 5.1.11 and characterized in Corollary 5.1.22.

Theorem 5.2.10. Let E be a normal extension of F. Then Fs and Fi are disjoint
extensions of F and E = FsFi . Furthermore, Fs is a Galois extension of F and
Gal(Fs/F) = Gal(E/Fi ). Also, (E/Fi ) = (Fs/F) and (E/Fs) = (Fi/F).

Proof. Let α ∈ Fs ∩ Fi . Then α is both separable and purely inseparable over
F, so, by Remark 5.1.13, α ∈ F. Thus Fs and Fi are disjoint extensions of F.

Let α ∈ Fs . Then α has separable minimum polynomial mα(X). Since
E is a normal extension of F, mα(X) splits into a product of linear factors
(X −α1) · · · (X −αt ) in E[X ]. But each αi is a root of a separable polynomial,
namely mα(X), so αi ∈ Fs for each i , and hence mα(X) splits into a product of
linear factors (X −α1) · · · (X −αt ) in Fs[X ]. Thus Fs is a normal and separable
extension of F, so is a Galois extension of F (by Theorem 2.7.14 in case E is
a finite extension of F, and by Theorem 5.4.2 below in general).

Suppose that E is a finite extension of F. By Theorem 3.4.6, Gal(E/Fi ) is
isomorphic to a subgroup of Gal(Fs/F). But let σ ∈ Gal(Fs/F). Now E is a
purely inseparable extension of Fs , so it is a normal extension of F (Remark
5.1.15) and hence it is the splitting field of some polynomial f (X) ∈ F[X ]
by Theorem 5.2.1. Hence, by Lemma 2.6.3, σ extends to an automorphism
of E, i.e., to an element of Gal(E/F) = Gal(E/Fi ), so these two groups are
isomorphic. But then also

(E/F) = (E/Fi )(Fi/F) = (E/Fs)(Fs/F)

giving the claimed equalities between the degrees of the extensions. Further-
more, since Fs is a Galois extension of F, we have from Theorem 2.4.5 that

(FsFi/F) = (Fs/F)(Fi/F) = (E/F),

so FsFi = E.

Now for the general case. Let α ∈ E and let E0 ⊆ E be the splitting
field of mα(X). Then E0 is a finite extension of F, so we may apply the above
argument to E0, Fs ∩ E0, and Fi ∩ E0. Then we may apply Zorn’s Lemma
to obtain the conclusion of the theorem for E. (The final point to see is that
we have equalities among the degrees even if they are not all finite, when
we cannot simply use the argument above. But (E/Fs) ≤ (Fi/F) by Lemma
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2.3.4. If we did not have equality, then there would be some nontrivial linear
combination of basis elements of E over Fs that would be zero, and this linear
combination would involve only finitely many basis elements and hence would
have coefficients in some finite extension of F, contradicting equality of the
degrees in the finite case.) ��

5.3 The Algebraic Closure

In this section we show that every field F has an algebraic closure F̄ that is
unique up to isomorphism.

Definition 5.3.1. A field E is algebraically closed if the only algebraic exten-
sion of E is E itself. �
Lemma 5.3.2. The following are equivalent:

(1) E is algebraically closed.
(2) Every nonconstant polynomial f (X) ∈ E[X ] is a product of linear

factors in E[X ].
(3) Every nonconstant polynomial f (X) ∈ E[X ] has a root in E.

Proof. (1) implies (2): Let E be algebraically closed. Let f (X) ∈ E[X ] be
irreducible. Then f (X) has a root α in some algebraic extension E(α) of E.
But E(α) = E by assumption, so X −α divides f (X) in E and hence f (X) =
X − α. Now let g(X) ∈ E[X ] be arbitrary. Then g(X) splits into a product of
irreducible and hence linear factors in E, yielding (2).

(2) implies (1): Let α be an element of some extension of E with α alge-
braic over E. Then mα(X) = E[X ] splits into a product of linear factors in E,
one of which must be X − α. Hence α ∈ E, yielding (1).

(2) implies (3): Let f (X) ∈ E[X ]. Then f (X) = (X − α1) · · · (X − αk)

for some α1, . . . , αk ∈ E, so f (α1) = 0, yielding (3).
(3) implies (2): By induction on k = deg f (X). For k = 1 this is trivial.

Assume it is true for k − 1 and let f (X) have degree k. Then f (X) has a root
α1 so f (X) = (X − α1)g(X) with deg g(X) = k − 1. By the inductive hy-
pothesis g(X) = (X −α2) · · · (X −αk) for some α2, . . . , αk , and then f (X) =
(X − α1)(X − α2) · · · (X − αk), yielding (2). ��
Definition 5.3.3. Let F be a field. An algebraic closure F̄ of F is an algebraic
extension of F that is algebraically closed. �
Theorem 5.3.4. Let F be an arbitrary field. Then F has an algebraic closure
F̄ and F̄ is unique up to isomorphism.
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Proof. Both existence and uniqueness are Zorn’s Lemma arguments.
The idea of the proof is clear. We wish to take the set of all algebraic ex-

tensions of F, order this set by inclusion, use Zorn’s Lemma to conclude this
set has a maximal element, and show this maximal element is an algebraic
closure of F. But, in carefully considering this argument, set-theoretic difficul-
ties appear, as, a priori, it is not clear what inclusion means. (We can say, for
example, that Q(

√
2) ⊂ Q(

√
2,

√
3) as we can regard these both as subfields

of C. But this is because we already know that C exists. In the abstract, what
we mean by this inclusion is the following: Let F1 be the field obtained from
Q by adjoining an element α with α2 = 2 and let F2 be the field obtained from
Q by adjoining elements β1 and β2 with β2

1 = 2 and β2
2 = 3. Then there is

a map σ : F1 → F2 given by σ(α) = β1 and using this map we may identify
F1 with a subfield of F2. But this is not quite the same thing as saying that F1

is a subset of F2.) The way out of this dilemma is to assume that all fields we
need to consider are contained in some universal set. (Note we cannot assume
they are all contained in some universal field as that would be presuming the
existence of the algebraic closure, which is what we are trying to prove.)

Thus we proceed as follows in order to show the existence of F̄.
Given a set U , and a field E, we shall write E ⊆ U if E is a subset of U .

Then the field operations (addition, multiplication, inversion) are defined on
this subset of U . For two such fields E1 and E2, we shall write E1 ⊆ E2 if
E1 ⊆ E2 as subsets of U and the restrictions of the field operations on E2 to
E1 agree with the field operations on E1.

We now set U0 = 2F, the set of subsets of F. If F is infinite we let U = U0.
If F is finite we let U = 2U0 . Regard F ⊂ U by identifying a with {a}, a ∈ F,
if F is infinite, or with {{a}}, if F is finite.

As is well known, for any set A, the cardinality of 2A is greater than the
cardinality of A, so the cardinality of F is less than the cardinality of U . Fur-
thermore, by construction, U is uncountable.

Let

S = {algebraic extensions E of F with E ⊆ U}
and order S by inclusion. Then every chain has a maximal element: If E1 ⊆
E2 ⊆ · · · , then E = ∪Ei is algebraic. (Any α ∈ E is an element of some Ei

and hence is algebraic over F.) Hence, by Zorn’s Lemma, S has a maximal
element F̄.

Claim: F̄ is algebraically closed.

Proof of claim: Let F̄ ⊆ F̃ with F̃ an algebraic extension of F̄. Then, by
Theorem 2.4.12, F̃ is an algebraic extension of F. To complete the existence
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part of the proof we must show that it is possible to embed F̃ in U . Assuming
that, by the maximality of F̄ we must have that this image is just F̄, and then
F̃ = F̄, so we see that F̄ is algebraically closed.

Claim: Let E be an algebraic extension of F. If F is finite, E is finite or
countably infinite. If F is infinite, E has the same cardinality as F.

Assuming this claim, F̄ ⊂ U is a set of smaller cardinality than that of U
and F̄ ⊂ F̃ with F̃ also a set of smaller cardinality than U , so we may choose an
arbitrary embedding of F̃ − F̄ in U as a set and then define the field operations
on this set to agree with those on F.

Proof of claim: We consider the set P of all monic polynomials in F[X ].
Then P = ⋃∞

n=1 Pn , where Pn is the set of all monic polynomials of degree
n. Now there is a bijection between Fn and Pn given by (a0, . . . , an−1) ←→
a0 + a1 X + · · · + an−1 Xn−1 + Xn . If F is finite, so is Fn for each n, and hence
P is countable union of finite sets and so is countable. If F is infinite, then Fn

has the same cardinality as F for each n, and then P is a countable union of
such sets, so also has the same cardinality as F.

Now if E is an algebraic extension of F, we have a map ρ : E → P given
by ρ(α) = mα(X). Then ρ is a finite-one mapping as if ρ(α) = f (X), then
f (α) = 0, and any polynomial only has finitely many roots. But, in general, if
ρ : A → B is a finite-to-one mapping of the set A onto the infinite set B, then
the cardinality of A is equal to the cardinality of B.

This completes the proof of the existence of F̄. Now we must show that F̄
is unique up to isomorphism.

Thus let F̄1 and F̄2 be two algebraic closures of F. Let

S = {(E, σ ) | E ⊆ F̄1, σ : E → F̄2}
where σ is a map of fields.

Order S by (E1, σ1) ≤ (E2, σ2) if E1 ⊆ E2 and σ2 | E1 = σ1. Again by
Zorn’s Lemma every chain has a maximal element so S has a maximal element
(F̃1, σ̃ ).

Claim: F̃1 = F̄1.

Proof of claim: Suppose not, and let α ∈ F̄1, α1 /∈ F̄1. Let σ̃ (F̃1) = F̃2 ⊆
F̄2. Since α1 is algebraic over F, it is algebraic over F̃1, so let m̃α1(X) ∈ F̄1(X)

be its minimum polynomial over F̃1. Since F̄2 is algebraically closed, there
is a root α2 of σ(m̃α1(X)) in F̄2. Then, by Lemma 2.6.1, σ̃ extends to a map
τ̃ : F̃1(α1) → F̃2(α2) ⊆ F̄2 (with τ̃ (α1) = α2), contradicting the maximality
of F̃1. Thus F̃1 = F̄1 and we have a map σ̄ : F̄1 → F̄2.

As σ̄ is a map of fields, it is injective. To complete the proof we must show
it is surjective. Let β2 ∈ F̄2. Then β2 is algebraic over F, so it is algebraic over
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σ(F̄1). But σ(F̄1) is algebraically closed so β2 ∈ σ(F̄1), i.e., β2 = σ(β1) for
some β1 ∈ F̄1, as required. ��

We now wish to examine some concrete algebraically closed fields. But
first we shall prove a lemma that enables us to weaken the hypotheses in
Lemma 5.3.2.

Lemma 5.3.5. Let E be an algebraic extension of F. Then E is algebraically
closed if and only if every polynomial f (X) ∈ F[X ] is a product of linear
factors in E[X ]. If E is a normal extension of F, then E is algebraically closed
if and only if every polynomial f (X) ∈ F[X ] has a root in E.

Proof. First, let E be an algebraic extension of F. Then the “only if” part is
clear. For the “if” part, let α be algebraic over E. Then E(α) is an algebraic
extension of E (Corollary 2.4.9) and E is algebraic over F (by hypothesis),
so E(α) is algebraic over F (Theorem 2.4.12). Hence α is a root of mα(X) ∈
F[X ]. But mα(X) = (X − α1) · · · (X − αn) in E[X ], so α = αi ∈ E for some
i . Now if E is a normal extension of F, then by definition, any polynomial in
F[X ] with a root in E splits into a product of linear factors in E[X ], so we are
back in the previous case. ��
Theorem 5.3.6. The field of rational numbers Q has an algebraic closure Q̄
that is a subfield of the field of complex numbers C.

Proof. Let f (X) ∈ Q[X ] be an arbitrary irreducible polynomial and let E
be a splitting field of f (X). Let G = Gal(E/Q), and let H be the 2-Sylow
subgroup of G. Set B = Fix(H). Then E is a Galois extension of B with
Galois group H . Also, d = [G : H ] = (B/Q) is odd. By Corollary 3.5.3,
there is an element α of B with B = Q(α). Then mα(X) ∈ Q[X ] is a monic
irreducible polynomial of odd degree d.

By elementary calculus, mα(X) has a real root x0. (Proof: limx→−∞ mα(x)

= −∞, so mα(x−) < 0 for some x− ∈ R, and limx→∞ mα(x) = ∞, so
mα(x+) > 0 for some x+ ∈ R. Then, by the Intermediate Value Theorem,
mα(x0) = 0 for some x0 ∈ R.)

Let B′ = B(x0) ⊆ R. Then f (X) has a splitting field E′ ⊇ B′. Let H ′ =
Gal(E′/B′). By Corollary 3.4.6 (the Theorem on Natural Irrationalities), H ′ is
isomorphic to a subgroup of H , so H ′ is also a 2-group. Thus, by Corollary
A.2.3, there is a sequence H ′ = H ′

0 ⊃ H ′
1 ⊃ · · · ⊃ H ′

n = {1} with [Hi−1 :
Hi ] = 2, and, setting E′

i = Fix(H ′
i ), B′ = E′

0 ⊂ E′
1 ⊂ . . . E′

n = E′ with
(E′

i/E′
i−1) = 2. In other words, for each i , E′

i is a quadratic extension of E′
i−1,

i.e., E′
i = E′

i−1(
√

αi ) for some αi ∈ E′
i−1. But if F ⊆ C and D = F(

√
z)

for some z ∈ F, then D is isomorphic to a subfield of C. (If z = reiθ , D =
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F(
√

reiθ/2).) Thus, proceeding inductively, we see that f (X) has a splitting
field that is a subfield of C.

Now let { fi (X)} be the set of all monic irreducible polynomials in Q[X ]
and let Ei ⊆ C be the splitting field of fi (X). Let Q̄ be the composite of {Ei }.
Then Q̄ is algebraic over F and every f (X) ∈ Q[X ] splits in Q̄, so, by Lemma
5.3.5, Q̄ is an algebraic closure of Q. ��

Actually, a similar argument enables us to prove a stronger result.

Theorem 5.3.7 (Fundamental Theorem of Algebra). The field of complex
numbers C is algebraically closed.

Proof. First, observe that it suffices to prove that every polynomial f (X) ∈
R[X ] has a root in C. On the one hand, this follows directly from Lemma 5.3.5,
but on the other hand, we have the following direct argument in this case: Let
g(X) ∈ C[X ] be an arbitrary polynomial, and set f (X) = g(X)ḡ(X). Then
f (X) ∈ R[X ]. If f (X) has a root γ , then g(γ ) = 0, in which case γ is a root
of g(X), or ḡ(γ ) = 0, in which case g(γ̄ ) = 0 and γ̄ is a root of g(X).

Thus let f (X) ∈ R[X ] be an arbitrary irreducible polynomial and let E
be a splitting field of f (X). Let G = Gal(E/R), and let H be the 2-Sylow
subgroup of G. Set B = Fix(H). Then E is a Galois extension of B with Galois
group H . Also, d = [G : H ] = (B/Q) is odd. By Corollary 3.5.3, there is
an element α of B with B = R(α). Then mα(X) ∈ R[X ] is an irreducible
polynomial of odd degree d. But, by the same elementary calculus argument
as in the proof of Theorem 5.3.6, mα(X) has a real root x0. Thus (X − x0)

divides mα(X). Since mα(X) is irreducible, we must have mα(X) = (X − x0),
and so d = 1 and B = R.

Then E is a splitting field of f (X) with (E/R) = 2n for some n, and,
arguing as in the proof of Theorem 5.3.6, we see that E is isomorphic to a
subfield of C, so f (X) has a root in C, and we are done. ��
Remark 5.3.8. (1) Q has an algebraic closure Q̄ ⊆ C but Q̄ �= C as Q̄ is
countable, being an algebraic extension of Q, but C is uncountable.

(2) Theorem 5.3.7 implies Theorem 5.3.6, for, once we know C is alge-
braically closed, it is easy to see that {z ∈ C | z is algebraic over Q} is an
algebraic closure of Q. This field is known as the field of algebraic numbers.

(3) The Fundamental Theorem of Algebra cannot have a purely algebraic
proof, as the definitions of R and C are not purely algebraic. We have given
a proof that uses only a minimum of analysis (the argument from elementary
calculus given in the proof of Theorem 5.3.6). But this important theorem has
many proofs. Here is one well-known proof that uses results from complex
analysis:
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Let f (X) ∈ C[X ] be a nonconstant polynomial, f (X) = ∑n
i=0 ai Xi . Then

for any z ∈ C, | f (z)| ≥ |an||z|n − ∑n−1
i=0 |ai ||z|i from which it easily follows

that there is an A such that |z| ≥ A implies | f (z)| ≥ 1. Now suppose f (X)

does not have a root in C. Consider g(X) = 1/ f (X). Then |g(z)| ≤ 1 for
|z| ≥ A. On the other hand, {z | |z| ≤ A} is a compact set so there is a
C with |g(z)| ≤ C for all Z with |z| ≤ A. Thus g(z) is a bounded analytic
function and hence, by Liouville’s theorem, a constant. But that implies f (z)
is a constant, which is absurd. �

5.4 Infinite Galois Extensions

In this section we will consider infinite algebraic extensions. Our main goals
will be to show that Theorem 2.7.14 and Theorem 2.8.8 (the Fundamental
Theorem of Galois Theory) have appropriate generalizations to this case.

First, we must generalize Lemma 2.6.3.

Lemma 5.4.1. Let E be a normal extension of F and let σ : B → B′ be any
isomorphism with σ | F = id, where B and B′ are any fields intermediate
between F and E. Then σ extends to an automorphism of E, i.e., to an element
of Gal(E/F).

Proof. This is an application of Zorn’s Lemma. Let

S = {(D, τ ) | B ⊆ D, τ : D → D, τ | B = σ }.
Order S by (D1, τ1) ≤ (D2, τ2) if D1 ⊆ D2 and τ2 | D1 = τ1. Then every

chain {(Di , τi )} in S has a maximal element (D, τ ) given by

D =
⋃

Di , τ (d) = τi (d) if d ∈ Di .

Hence by Zorn’s Lemma S has a maximal element (E0, τ0). We claim
E0 = E. Suppose not and let α ∈ E, α /∈ E0. Consider its minimum polyno-
mial mα(X) over F. Since mα(X) ∈ F[X ], τ0(mα(X)) = mα(X).

Now consider mα(X) as an element of E0[X ], and let E1 ⊆ E be the
splitting field of mα(X) over E0. Note E0 ⊂ E1, as α /∈ E0 but α ∈ E1. Then,
by Lemma 2.6.3, there is an automorphism τ1 of E1 extending τ0, contradicting
the maximality of (E0, τ0). ��

Now we generalize Theorem 2.7.14.
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Theorem 5.4.2. Let E be an algebraic extension of F. The following are equiv-
alent:

(1) E is a Galois extension of F.
(2) E is a normal and separable extension of F.
(3) Every field B intermediate between F and E with B a finite extension of

F is contained in a field D intermediate between E and F that is the splitting
field of a separable polynomial in F[X ], or, equivalently, that is a finite Galois
extension of F.

Proof. Although this not the logically most economical proof, we shall first
show that (1) and (2) are equivalent and then that (3) is equivalent to both of
these.

First, we show that (1) implies (2). Let α ∈ E. Then α is algebraic over F,
so has minimum polynomial mα(X). Let {α1, . . . , αk} be the roots of mα(X) in
E, with α1 = α. For any σ ∈ Gal(E/F), mα(σ (α)) = σ(mα(α)) = σ(0) = 0
so σ(α) ∈ {α1, . . . , αk}, and thus the action of Gal(E/F) is to permute
{α1, . . . , αk}. Consider f (X) = ∏k

i=1(X − αi ). This polynomial is invari-
ant under Gal(E/F) so f (X) ∈ F[X ], as E is a Galois extension of F. If
g(X) ∈ F[X ] is any polynomial with g(α) = 0, then by the same logic
g(αi ) = 0 for each i , so f (X) divides g(X) in E[X ] and hence in F[X ].
Thus f (X) is irreducible and so f (X) = mα(X). Hence mα(X) is a separable
polynomial that splits in E.

Next, we show that (2) implies (1). Let α ∈ E, and consider mα(X) ∈
F[X ]. Then mα(X) = ∏k

i=1(X −αi ) in E[X ] for some {α1, . . . , αk} with α1 =
α. Thus if we let B = F(α1, . . . , αk), we have that mα(X) = ∏k

i=1(X − αi )

in B[X ]. Thus we see that B is a finite extension of F and B is the split-
ting field of a separable polynomial, so B is a Galois extension of F. Hence
Fix(Gal(B/F)) = F. Now let α /∈ F. Then α /∈ Fix(Gal(B/F)), and so there
is an automorphism σ of B with σ |F = id and with σ(α) �= α. By Lemma
5.4.1, σ extends to an element τ ∈ Gal(E/F), and τ(α) = σ(α) �= α, so α /∈
Fix(Gal(E/F)). Hence, as α /∈ F is arbitrary, we have that Fix(Gal(E/F)) = F,
i.e., E is a Galois extension of F.

Next, we show that (2) implies (3). Since B is finite, B = F(α1, . . . , αk) for
some finite set {α1, . . . , αk}. Then mαi (X), i = 1, . . . , k, are all separable, and
all split in E. Let D be the splitting field of the polynomial mα1(X) · · · mαk (X).
Then B ⊆ D ⊆ E and D is a finite extension of F that is the splitting field of a
separable polynomial.

Finally, we show that (3) implies (1). Let α ∈ E, α /∈ F. Let B = F(α).
Then B is a finite extension of F, so B ⊆ D where D is the splitting field of a
separable polynomial f (X) ∈ F[X ]. (In fact, we may take f (X) = mα(X).)
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Thus D is a Galois extension of F, so there is an automorphism σ ∈ Gal(D/F)

with σ(α) �= α. By Lemma 5.4.1, σ extends to an element τ ∈ Gal(E/F), and
τ(α) = σ(α) �= α, so α /∈ Fix(Gal(E/F)). Hence, as α /∈ F is arbitrary, we
have that Fix(Gal(E/F)) = F, i.e., E is a Galois extension of F. ��
Corollary 5.4.3. Let E be an algebraic extension of F. The following are
equivalent:

(1) E is a Galois extension of F.

(2) E is the splitting field of a set of separable polynomials in F[X ].
Proof. Suppose that E is a Galois extension of F. Then, by Theorem 5.4.2, E
is normal and separable. Thus for every α ∈ E, mα(X) ∈ F[X ] is a separa-
ble polynomial that splits in E[X ]. Then E is the splitting field of the set of
separable polynomials {mα(X) | α ∈ E}.

On the other hand, let E be the splitting field of { fi (X)}i∈I , a set of sep-
arable polynomials in F[X ]. First, observe that any ε ∈ E is contained in the
splitting field of a finite subset of { fi (X)}i∈I .

Now let B be any field intermediate between F and E that is a finite exten-
sion of F. Then B = F(ε1, . . . , εn) for some finite set of elements {ε1, . . . , εn}
of E, so, by the above observation, B is contained in the splitting field D ⊆ E
of a finite subset { f1(X), . . . , fk(X)} of { fi (X)}i∈I . Then D is the splitting
field of the separable polynomial f (X) = f1(X) · · · fk(X) ∈ F[X ], so, by
Theorem 5.4.2, E is a Galois extension of F. ��
Corollary 5.4.4. Let E be a Galois extension of F and let B be any field inter-
mediate between F and E. Then E is a Galois extension of B.

Proof. This follows from Theorem 5.4.2. We restate condition (3) of this
theorem in order to avoid confusion of notation: Every field A intermediate
between F and E with A a finite extension of F is contained in a field D inter-
mediate between E and F that is the splitting field of a separable polynomial.
We want to show this remains true when F is replaced by B.

Let A be a finite extension of B, so that A = B(α1, . . . , αn). Let A′ =
F(α1, . . . , αn). We claim that A′ is a finite extension of F. (Of course, if B is
a finite extension of F, then A is a finite extension of F and A′ ⊆ A, so this
is clear, but we need to prove this also in case B is not a finite extension of
F.) Since A′ = F(α1) · · · F(αn), in order to prove this it suffices to prove that
F(αi ) is a finite extension of F, for each i . Thus, fix i and consider F(αi ). Let
m̃αi (X) ∈ B[X ] be the minimum polynomial of αi regarded as an element of
B. Let Bi be the field obtained by adjoining the coefficients of m̃αi (X) to F.
Then Bi (α) is a finite extension of Bi and Bi is a finite extension of F, so Bi (αi )
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is a finite extension of F, and F(αi ) ⊆ Bi (αi ), so F(αi ) is a finite extension of
F, as claimed.

Then, arguing as in the proof of Corollary 5.4.3, A′ ⊆ D′ ⊆ E, where
D′ is an extension of F that is the splitting field of a separable polynomial
f (X) ∈ F[X ]. But A = BA′ ⊆ BD′, and BD′ is an extension of B that is the
splitting field of the separable polynomial f (X) ∈ B[X ], as required. ��

In order to generalize Theorem 2.8.8, the FTGT, we must introduce a
topology on the Galois group.

Definition 5.4.5. Let E be an algebraic extension of F, and let G = Gal(E/F).
The Krull topology on E is defined as follows: The identity element of G has
a neighborhood basis {UB = Gal(E/B) | B is a finite extension of F}. An
element σ ∈ G has neighborhood basis {σUB}. �
Remark 5.4.6. We explicitly observe that τ ∈ UB if and only if τ | B = id, and
τ ∈ σUB if and only if τ | B = σ | B. �
Remark 5.4.7. If E is a finite extension of F, then we may let B = E in the
above definition and we see that every element σ of G has a neighborhood
consisting of σ alone. In other words, in this case G has the discrete topology.
All of the results in this section remain true in this case, but the topology on G
yields no additional information. �

Definition 5.4.5 is not complete until we show these sets define a topology
on G. In fact we show a bit more.

Proposition 5.4.8. The sets {σUB} define a topology on G. Under this topol-
ogy, G is a topological group.

Proof. Let Ui = UBi , i = 1, 2, and let U3 = U1 ∩ U2. Let B3 = B1B2. Then
B3 is a finite extension of F, and, by Proposition 2.8.14, B3 = Fix(U1 ∩U2) =
Fix(U3). Furthermore, it is easy to check that if σ /∈ U3, then σ | B3 is not the
identity. Hence U3 = Gal(E/B3), i.e., U3 = UB3 . This shows that {UB} form
a neighborhood basis of the identity, and hence that {σUB} form a basis for a
topology on G.

Note that if σ ∈ G, then σUBσ−1 = Uσ(B) and σ(B) is a finite extension
of F. Then UBσ = σ(σ−1UBσ) = σUσ−1(B) so

{σUB | σ ∈ G, B/F finite} = {UBσ | σ ∈ G, B/F, finite}
so, in defining the topology, we may take left cosets, right cosets, or both left
and right cosets.
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To show G is a topological group we must show multiplication and in-
version are continuous. If m = G × G → G is multiplication, and στU is a
neighborhood of στ , then m−1(στU ) ⊃ (σ (τUτ−1))×(τU ), a neighborhood
of (σ, τ ) in G × G, and if i : G → G is inversion, and σ−1U is a neighbor-
hood of σ−1, then i−1(σ−1U ) = U−1σ−1 = Uσ−1, a neighborhood of σ−1

in G. ��
Lemma 5.4.9. Let E be a Galois extension of F and let B be any field inter-
mediate between F and E. Then the Krull topology in Gal(E/B) is the induced
topology on Gal(E/B) as a subspace of Gal(E/F) with the Krull topology.

Proof. Recall that, by Corollary 5.4.4, E is a Galois extension of B. Let Ũ be
a neighborhood of the identity in Gal(E/B), so Ũ = Gal(E/A) for some finite
extension A of B. Then A = B(α) for some α ∈ E, by Corollary 3.5.3. Let
D = F(α), so A = BD, and let U = Gal(E/D). Then

Ũ = Gal(E/A) = Gal(E/BD) = Gal(E/B) ∩ Gal(E/D) = Gal(E/B) ∩ U,

and, similarly, if U is a neighborhood of the identity in Gal(E/F), then U =
Gal(E/D) with D a finite extension of F, so

Ũ = Gal(E/B) ∩ U = Gal(E/B) ∩ Gal(E/D) = Gal(E/BD)

is a neighborhood of the identity in Gal(E/B), as BD is a finite extension
of B. ��

Now we generalize the Fundamental Theorem of Galois Theory (Theorem
2.8.8) to infinite Galois extensions.

Theorem 5.4.10 (Fundamental Theorem of Infinite Galois Theory). Let E
be a Galois extension of F and let G = Gal(E/F) have the Krull topology.

(1) There is a 1-1 correspondence between intermediate fields E ⊇ B ⊇ F
and closed subgroups {1} ⊆ GB ⊆ G given by

B = Fix(GB).

(2) B is a normal extension of F if and only if GB is a normal subgroup of
G. This is the case if and only if B is a Galois extension of F. In this case there
is an isomorphism of topological groups

Gal(B/F) ∼= G/GB.
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Proof. (1) For each closed subgroup H of G, let

BH = Fix(H).

This gives a map

� : {closed subgroups of G} → {fields intermediate between F and E}.
We show � is a 1–1 correspondence.
In this case it is easiest to work with the inverse correspondence. Thus, for

each field B intermediate between F and E, we let

GB = �(B) = Gal(E/B).

First, we claim that GB is a closed subgroup of G.
Let σ ∈ ḠB, the closure of GB. Let β ∈ B be arbitrary. Then F(β) is a

finite extension of F, so σ has a neighborhood σN where N = Gal(E/F(β)).
Since every neighborhood of σ has a nonempty intersection with GB, we may
choose τ ∈ GB ∩ σ N . Thus τ = σν for some ν ∈ N , and so, in particular,
τ(β) = σν(β). Since τ ∈ GB, τ(β) = β, and, by the definition of N , ν(β) =
β. Then σ(β) = σ(ν(β)) = σν(β) = τ(β) = β. Since β ∈ B is arbitrary,
we see that σ fixes B. Then, since σ ∈ ḠB is arbitrary, we see that ḠB fixes
B. Now by definition GB consists of all automorphisms of E fixing B. Hence
GB = ḠB and so GB is closed.

Thus we have a map

� : {fields B intermediate between F and E} → {closed subgroups of G}
and this map is 1–1 since if GB1 = �(B1) = �(B2) = GB2 , then, by Corol-
lary 5.4.4, E is a Galois extension of B1 and of B2, so B1 = Fix(GB1) =
Fix(GB2) = B2.

It remains to show � is onto. Thus, let H be a closed subgroup of G
and let B = Fix(H). Then K = Gal(E/B) ⊇ H and we need only show
they are equal. Let σ ∈ K be arbitrary and consider an arbitrary basic open
neighborhood σU of σ . We claim σU ∩ H �= ∅. Assuming this claim, we have
that σ is in the closure H̄ of H . Hence, as σ ∈ K is arbitrary, K ⊆ H̄ . But H
is closed, so H̄ = H and hence K = H .

To see the claim, let U = Gal(E/A) with A a finite extension of F. By
Corollary 5.4.4, E is a Galois extension of B, and, by Lemma 2.3.4, AB is
a finite extension of B, so, by Theorem 5.4.2, AB is contained in a field D
that is the splitting field of a separable polynomial f (X) ∈ B[X ]. Thus every
element of Gal(E/B) restricts to an element of Gal(E/D), as it must take any
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root of f (X) to a root of f (X), and conversely any element of Gal(D/B)

extends to an element (not, in general, a unique element, but that is irrelevant)
of Gal(E/B), by Lemma 5.4.1. In other words, restriction to D give a well-
defined epimorphism R : K = Gal(E/B) → Gal(D/B). Let σ0 = R(σ ) ∈
Gal(D/B).

Now B ⊆ AB ⊆ D and D is a finite Galois extension of B. Let H0 =
R(H) ⊆ Gal(D/B). Then Fix(H0) = Fix(H) = B = Fix(Gal(D/B)), so by
the Fundamental Theorem of (finite) Galois Theory, H0 = Gal(D/B). Thus
there is an element τ ∈ H with R(τ ) = σ0 = R(σ ), i.e., with τ | B = σ | B,
and we see, by Remark 5.4.6, that τ ∈ σUB, so σU ∩ H �= ∅, as claimed.

(2) We have proved much of this in proving (1). Just as in the finite case,
for any σ ∈ Gal(E/F), σ(B) = Fix(σ GBσ−1), so if GB is a normal subgroup
of G, then σ(B) = B for every σ ∈ G, while if GB is not a normal subgroup
of G, then σ(B) �= B for some σ ∈ G, and conversely. If B is a normal
extension of F, then for every β ∈ B, mβ(X) ∈ F[X ] splits in B. Now for any
σ ∈ Gal(E/F), β ′ = σ(β) is a root of σ(mβ(X)) = mβ(X), so β ′ ∈ B, and so
σ(B) = B. On the other hand, if B is not a normal extension of F, then there
is some β ∈ B such that mβ(X) has a root β ′ ∈ E, β ′ /∈ B, and then there
is an element σ of Gal(E/F) with σ(β) = β ′, by Lemma 5.4.1, and hence
σ(B) �= B.

Now if B is normal, then, just as before, R : Gal(E/F) → Gal(B/F), given
by R(σ ) = σ | B, is a well-defined epimorphism, whose kernel is clearly
GB = Gal(E/B). It remains only to show that the Krull topology on Gal(B/F)

is the quotient topology on G/GB.
Let U0 be a basic neighborhood of the identity in Gal(B/F). Then U0 =

{σ ∈ Gal(B/F) | σ | A = id} for some finite extension A of F (where of
course A ⊆ B) and U0 is the image under the quotient map R of the basic
neighborhood of the identity UA ⊆ Gal(E/F). On the other hand, if UA is a
basic neighborhood of the identity in Gal(E/F), its image under the quotient
map R is U0 = {σ ∈ Gal(B/F) | σ | B ∩ A = id}, and B ∩ A ⊆ A is a finite
extension of F, so U0 is a basic neighborhood of the identity in Gal(B/F). ��
Proposition 5.4.11. Let E be a Galois extension of F and let B be an interme-
diate field between F and E. Let G = Gal(E/F). Then:

(1) (E/B) is finite if and only if |GB| is finite. In this case, (E/B) = |GB|.
(2) (B/F) is finite if and only if [G : GB] is finite. In this case, (B/F) =

[G : GB].
(3) GB is always a closed subgroup of G. GB is an open subgroup of G if

and only if [G : GB] is finite.

Proof. (1) This follows immediately from Theorem 2.8.5.
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(2)Assume B/F is finite and let B ⊆ D with D/F finite Galois (The-
orem 5.4.2). Then, by the FTGT, (B/F) = [Gal(D/F) : Gal(D/B)]. But
Gal(E/F) → Gal(D/F) is an epimorphism so

[G : GB] = [Gal(E/F) : Gal(E/B)] = [Gal(D/F) : Gal(D/B)] = (B/F).

Assume B/F is infinite and let {βi } be an infinite set of elements of B with
F ⊂ F(β1) ⊂ F(β1, β2) ⊂ · · · ⊂ B. By Lemma 5.4.1, for each i = 1, 2, . . .

there is an element σi ∈ Gal(E/F) with σi (β j ) = β j for j < i but σi (βi ) �= βi ,
so we see that σi �= σ j for i �= j . Since two elements of Gal(E/F) are in the
same left coset of GB if and only if they agree on B, we see that [G : GB] is
infinite.

(3) The fact that GB is closed is part of Theorem 5.4.10 (1).
Suppose [G : GB] is finite and let {σ1, . . . , σk} be a set of left coset

representatives of GB with σ1 = 1. Since GB is closed, the finite union
σ2GB ∪ · · · σk GB is closed and hence its complement σ1GB = GB is open.

Suppose GB is open. Then it contains a basic open set UA = Gal(E/A),
with A a finite extension of F. Then B = Fix(GB) ⊆ Fix(UA) = A, so (B/F)

is finite and hence [G : GB] is finite. ��
We now further investigate the Krull topology on G.

Lemma 5.4.12. Each basic open set σUB in G is also closed.

Proof. Let τ /∈ σUB. Then ∅ = τB ∩ σUB (as UB is a subgroup of G), i.e.,
τUB ⊆ G − σUB. In other words, the complement of σUB contains a neigh-
borhood of each of its points, so is an open set, and hence σUB is a closed
set. ��

We now prove a lemma we will need in describing the topology of
Gal(E/F), but one which is interesting in its own right.

Lemma 5.4.13. Let E be an algebraic extension of F and let σ : E → E be a
map of fields with σ | F = id. Then σ is an automorphism of E (and hence
σ ∈ Gal(E/F)).

Proof. Since σ(1) = 1, σ is an injection, so we need only show σ is a surjec-
tion. Let α ∈ E be arbitrary. Set

S = {roots of mα(X) in E} = {β ∈ E | mα(β) = 0}.
Then for any β ∈ S, mα(σ (β)) = σ((mα(β)) = σ(0) = 0 so σ(β) ∈ S.

Thus σ | S is an injective map from S to itself. Since S is finite (as any
polynomial has only finitely many roots), σ | S is surjective as well, so there
is a β0 ∈ S with σ(β0) = α, as required. ��



168 5 Further Topics in Field Theory

Remark 5.4.14. This lemma is false for arbitrary extensions. For example, let
E = F(X), the field of rational functions over F in the variable X . Then
σ(X) = X2 induces σ : E → E, an injective, but not surjective, map of
fields. �
Theorem 5.4.15. Let E be a Galois extension of F and let G = Gal(E/F) have
the Krull topology. Then G is Hausdorff, totally disconnected, and compact.

Proof. We shall prove this in several steps.
(1) G is Hausdorff: Since G is a topological group, to show G is Hausdorff

it suffices to show that
⋂

UB = {id}
where the intersection is taken over all finite extensions B of F.

Let σ ∈ G, σ �= id. Then for some α ∈ E, σ(α) �= α. Let B = F(α). Then
σ /∈ UB, as required.

(2) G is totally disconnected: Let σ, τ ∈ G, σ �= τ . Then τ /∈ σUB for
some UB, and then G = σUB ∪ (G − σUB) is a union of two relatively open
sets with σ (resp. τ ) in the first (resp. second). (σUB is open by definition
and G − σUB is open as in the proof of Lemma 5.4.12.) Thus σ and τ are in
different components of G, so the only components of G are single points.

(3) G is compact: This will require considerably more work.
For each α ∈ E, let Rα = {β ∈ E | mα(β) = 0}. Let

G =
∏
α∈E

Rα.

By identifying an element
∏

α∈E(βα)α with f : E → E by f (α) = βα for
each α ∈ E, we may regard G as a set of functions from E to itself. (This is
identifying a function with its graph.) Note that Rα = {α} for α ∈ F, so every
f ∈ G satisfies f (α) = α for every α ∈ F. Note also that Rα is finite for
each α. We give E the discrete topology, and each Rα the induced topology as
a subset of E, which is also the discrete topology. Then Rα is a finite discrete
space, so is compact. We give G the product topology. Then, by Tychonoff’s
Theorem, G is the product of compact sets and hence is compact. (Recall that
if X = ∏

Xi is a product of spaces, the product topology has a basis of open
sets

∏
Yi where each Yi is open and Yi = Xi for all but finitely many i . If

each Xi is discrete, then every subset of Xi is open, so this condition reduces
to Yi = Xi for all but finitely many i .)

Since every σ ∈ Gal(E/F) satisfies mα(σ (α)) = 0 for every α ∈ E, we
may regard G as a subset of G.
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Claim: The induced topology on G as a subset of G is the Krull topology
on G.

Proof of claim: Let σUB be a basic open set in G. Let {β1, . . . , βk} be a
basis for B over F. Then for τ ∈ G, τ ∈ σUB if and only if τ(βi ) = σ(βi ),
i = 1, . . . , k. Thus σUB = G ∩ V where V = ∏

α∈E Sα with Sα = Rα for
α �= βi and Sβi = {σ(βi )}, and so V is an open set in G.

Conversely, let V be a basic open set in G. Then V = ∏
α∈E Sα with Sα =

Rα for all but finitely many α. Since each Rα is finite, we see that V is a
finite union of open sets of the form V = ∏

α∈E Sα with Sα = Rα for all but
finitely many α, say for α �= α1, . . . , αk , and Sαi = {α′

i } is a single point for
each i = 1, . . . , k. Let B = F(α1, . . . , αk), a finite extension of F. If σ ∈ G
satisfies σ(αi ) = α′

i , i = 1, . . . , k, then G ∩ V = σUB is open, while if there
is no σ ∈ G satisfying σ(αi ) = α′

i , i = 1, . . . , k, then G ∩ V is the empty set,
which is also open.

Claim: G is a Hausdorff space.

Proof of claim: Let f1, f2 ∈ G with f1 �= f2. Then f1(α0) �= f2(α0) for
some α0 ∈ E (regarding G as a space of functions). Let A1 = ∏

α∈E Sα with
Sα = Rα for α �= α0 and Sα0 = { f1(α0)}, and let A2 = ∏

α∈E Sα with Sα = Rα

for α �= α0 and Sα0 = { f2(α0)}. Then f1 ∈ A1, f2 ∈ A2, and A1 and A2 are
disjoint open sets.

(Since G is a subspace of a Hausdorff space, it is Hausdorff, but for sim-
plicity we chose to prove that directly in step (1). Observe that the proofs that
G and G are Hausdorff are very similar. In the same way, we may adapt the
proof that G is totally disconnected to prove that G is totally disconnected.
However, it is G and not G that we are interested in.)

Claim: G is a closed subset of G.

Proof of claim: Let f ∈ G, f /∈ G. We need to show f has an open
neighborhood V that is disjoint from G. Note every f ∈ G satisfies f | F = id,
so if f /∈ G, f is not an automorphism of E. If f : E → E is an injective map
of fields, then, by Lemma 5.4.13, f is an automorphism of E, contradicting
our assumption. Thus there are two possibilities:

(1) f is not an injection; or
(2) f is an injection but not a map of fields.
In case (1) let α1, α2 ∈ E with f (α1) = f (α2), α1 �= α2. Let V = ∏

α∈E Sα

with Sα1 = { f (α1)}, Sα2 = { f (α2)}, and Sα = Rα for α �= α1, α2. Then
f ∈ V , V is open, and G ∩ V is the empty set (as any g ∈ G is an injection,
so g(α1) �= g(α2)).

In case (2) we must have one of the following: f (α1 + α2) �= f (α1) +
f (α2) for some α1, α2 ∈ E, f (α1α2) �= f (α1) f (α2) for some α1, α2 ∈ E,
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or f (α−1
1 ) �= f (α1)

−1 for some 0 �= α1 ∈ E. For simplicity assume it is
the first of these. Let V = ∏

α∈E Sα with Sα1 = { f (α1)}, Sα2 = { f (α2)},
Sα1+α2 = { f (α1 + α2)}, and Sα = Rα for α �= α1, α2, α1 + α2. Then f ∈ V ,
V is open, and G ∩ V is the empty set (as any g ∈ G is a map of fields, so
g(α1 + α2) = g(α1) + g(α2).

Claim: G is compact in the Krull topology.

Proof of claim: We merely need to assemble our previous work. The Krull
topology on G is the topology G inherits as a subspace of G. We have shown
that G is a compact Hausdorff space and that G is a closed subspace of G. But
it is a basic topological fact that a closed subspace of a compact Hausdorff
space is compact. ��
Remark 5.4.16. While we do not need this for our purposes, it is worthwhile
to put things in a larger context. An important topology on function spaces
is the compact-open topology. If F = { f : X → Y } is the set of continuous
functions from X to Y , the compact-open topology on F has as subbases the
sets Z A,B = { f ∈ F | f (A) ⊆ B} where A ⊆ X is compact and B ⊆ Y is
open. In our case, E is discrete so every f : E → E is continuous, A ⊆ E is
compact if and only if it is finite, and every B ⊆ E is open. Now G ⊆ F and
it is easy to see that the topology we have defined on G is the restriction of the
compact-open topology on F to G, i.e., that this topology is the compact-open
topology on G, and then we further see that the Krull topology on G agrees
with the compact-open topology on G. �

Let {Bi } be a set of fields intermediate between E and F. Generalizing
Definition 3.4.1, we say that {Bi } are disjoint extensions of F if Bi ∩ Di = F
for each i , where Di is the composite of the fields {B j } for j �= i . Then we
have the following generalization of Theorem 3.4.7.

Theorem 5.4.17. Let E be an extension of F and let {Bi ⊆ E} be disjoint
Galois extensions of F with Gi = Gal(Bi/F). Let B be the composite of {Bi }
and let G = Gal(B/F). Then B is a Galois extension of F and G = ∏

i Gi

with the product topology.

Proof. A Zorn’s Lemma argument allows us to generalize Theorem 3.4.7 and
conclude that B is a Galois extension of F and G = ∏

i Gi . We show G has
the product topology.

Let U be a basic open neighborhood of the identity in the product topology.
Then, by the definition of the product topology, U = ∏

i∈I Ui where Ui ⊆ Gi

is a basic open set and Ui = Gi except for finitely many i . Then, for each
i ∈ I , Ui = Gal(B/Ai ) where Ai is a finite extension of F, and Ai = F except
for finitely many i . Let A be the composite of the {Ai }. Then A is a finite
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extension of F, and U = UA is a basic open neighborhood of the identity in
the Krull topology on G.

Conversely, let U be a basic open neighborhood of the identity in the Krull
topology on G. Then, by definition, U = UA for some finite extension A of F.
Let Ai = A ∩ Bi and note that, since {Bi } are disjoint extensions of F, Ai = F
for all but finitely many i . Then, setting Ui = UAi , we have that each Ui is
open, Ui = Gi for all but finitely many i , and U = ∏

i∈I Ui is a basic open
neighborhood of the identity in the product topology. ��
Example 5.4.18. Here are two cases of infinite Galois extensions E of F and
two subgroups H1 �= H2 of G = Gal(E/F) with Fix(H1) = Fix(H2). (Of
course, H̄1 = H̄2.)

(1) Let J = {−1, 2, 3, 5, . . . } consist of −1 and the primes. For each
j ∈ J , let B j = Q(

√
j) ⊂ C, and let B be the composite of the {B j }. Note {B j }

are disjoint extensions of Q. Let G j = Gal(B j/Q). Note G j is isomorphic to
Z/2Z for each j , so, by Theorem 5.4.17, G = Gal(B/Q) = ∏

j∈J (Z/2Z), and
G is uncountable. Hence G has uncountably many subgroups of index 2. But
for any subgroup H of index 2, (Fix(H)/Q) = 2 by Proposition 5.4.11. How-
ever, Q has only countably many extensions of degree 2 (as each is obtained
by adjoining a root of a quadratic equation to Q, and there are only countably
many quadratic equations with rational coefficients). Hence there are two (and
indeed, uncountably many) distinct subgroups H1 and H2 of G of index 2 with
Fix(H1) = Fix(H2).

(2) Fix a prime p and an algebraic closure F̄p of Fp. Then F̄p is the com-
posite of the fields Bn = Fpn contained in F̄p. Let G = Gal(F̄p/Fp) and let

 ∈ G be the Frobenius map, 
(α) = α p. Let H be the subgroup of G gen-
erated by 
. Then Fix(H) = Fp = Fix(G). We claim H �= G. To see this, let
A be the composite of the fields Bn where n is a power of 2, and let D be the
composite of the fields Bn for n odd. Then, by Lemma 3.4.2, A and D are dis-
joint extensions of Fp, and AD = F̄p. Hence G = Gal(A/Fp) × Gal(D/Fp).
Let 
 | A = 
A and 
 | D = 
D. Then neither 
A nor 
D is the identity
map. Now H is a cyclic group, so H = {
k} = {
k

A
k
D}. But G also has the

subgroups {
k
A} and {
k

D} (and uncountably many others), so H �= G. �

5.5 Exercises

Exercise 5.5.1. Let B1 and B2 be finite extensions of F satisfying property
“P”. Show that B1B2 and B1 ∩ B2 also satisfy property “P”. Here “P” is any
one of the following: finite separable, finite purely inseparable, finite normal,
separable, purely inseparable, normal, Galois. (“P” finite Galois is handled in
Corollary 3.4.8 and in Exercise 3.9.13.)
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Exercise 5.5.2. (a) Let A0 be the field obtained by adjoining all the complex
roots of every irreducible polynomial f (X) ∈ Q[X ] of odd degree. For i > 0,
let Ai be the field obtained from Ai−1 by adjoining all complex square roots
of all elements of Ai−1. Show that A0 ⊂ A1 ⊂ A2 ⊂ · · · and that

Q̄ =
∞⋃

i=0

Ai .

(b) Show that the conclusion of part (a) remains true if A0 is the field obtained
by adjoining a single real root of every irreducible polynomial f (X) ∈ Q[X ]
of odd degree.

Exercise 5.5.3. Let Qsolv = {z ∈ C | mz(X) is solvable by radicals}. Let B0 =
Q. For i > 0, let Bi be the field obtained from Bi−1 by adjoining all complex
nth-roots of all elements of Bi−1, for all positive integers n. Show that B0 ⊂
B1 ⊂ B2 ⊂ · · · and that

Qsolv =
∞⋃

i=0

Bi .

Exercise 5.5.4. Recall that Q̄ denotes the field of algebraic numbers. Show
that the only nontrivial element of finite order in Gal(Q̄/Q) is the automor-
phism of Q̄ given by complex conjugation (an element of order 2).

Exercise 5.5.5. Let F = C and let E = C(X). Note that E is not an algebraic
extension of F. Let G = {σ : E → E | σ | F = id}. Show that Fix(G) =
F. (This shows that in Section 5.4, it was necessary to require that E be an
algebraic extension of F. Otherwise we would have nonalgebraic “Galois”
extensions and the theory developed there would not hold.)

Exercise 5.5.6. In the notation of Example 5.4.18 (1), show that the closed
subgroups of G of index 2 are in 1–1 correspondence with the nonempty finite
subsets of J .

Exercise 5.5.7. Explicitly exhibit uncountably many subgroups of the group
G of Example 5.4.18 (2).
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Transcendental Extensions

The preceding chapters have dealt (almost) exclusively with algebraic exten-
sions of fields. In this chapter we present an introduction to the theory of tran-
scendental extensions.

6.1 General Results

Definition 6.1.1. (1) Let E be an extension of F. Then α ∈ E is transcendental
over F if α is not a root of any polynomial f (X) ∈ F[X ].

(2) E is a transcendental extension of F (or E/F is transcendental) if some
α ∈ E is transcendental over F. �

It is convenient to adopt the following nonstandard terminology.

Definition 6.1.2. Let E be an extension of F. Then E is a completely transcen-
dental extension of F (or E/F is completely transcendental) if every α ∈ E,
α �∈ F, is transcendental over F. �
Lemma 6.1.3. Let E be any extension of F. Then there is a unique field B with
F ⊆ B ⊆ E and with B algebraic over F and E completely transcendental
over B.

Proof. B = {α ∈ E | α is algebraic over F}. ��
Definition 6.1.4. Let E be an extension of F. Then E is a purely transcendental
extension of F (or E/F is purely transcendental) if E is isomorphic to the field
of rational functions F(X1, X2, . . . ) in the (finite or infinite) set of variables
{X1, X2, . . . }. �
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Lemma 6.1.5. Let E be a purely transcendental extension of F. Then E is a
completely transcendental extension of F.

Proof. We may assume that E = F(X1, X2, . . . ). Let α ∈ E. Then α =
p(X1, . . . , Xk)/q(X1, . . . , Xk) for some polynomials p(X1, . . . , Xk) and
q(X1, . . . , Xk). (Note that any rational function can only involve finitely many
variables.) Suppose that α is algebraic over F. Then α is a root of some irre-
ducible polynomial

∑n
i=0 ai Xi in F[X ]. Substituting, and clearing denomina-

tors, we have a0q(X1, . . . , Xk)
n+∑n−1

i=1 ai p(X1, . . . , Xk)
i q(X1, . . . , Xk)

n−i+
an p(X1, . . . , Xk)

n = 0. Now F[X1, X2, . . . , Xk] is a unique factorization do-
main, and q(X1, . . . , Xk) divides every term in this expression except possibly
the last one, so q(X1, . . . , Xk) must divide p(X1, . . . , Xk)

n and hence also
p(X1, . . . , Xk); similarly p(X1, . . . , Xk) must divide q(X1, . . . , Xk). Hence
α = p(X1, . . . , Xk)/q(X1, . . . , Xk) ∈ F. ��
Remark 6.1.6. Of course, if F is algebraically closed then every extension of
F is completely transcendental. We will give examples of extensions of C that
are not purely transcendental in Section 6.3. �
Definition 6.1.7. Let E be an extension of F. A subset S = {s1, s2, . . . } of
E is algebraically independent over F if f (s1, s2, . . . ) �= 0 for any nonzero
polynomial f (X1, X2, . . . ) in F[X1, X2, . . . ]. �
Lemma 6.1.8. Let E be an extension of F and let S = {s1, s2, . . . } ⊂ E be
algebraically independent over F. Let B = F(S) = F(s1, s2, . . . ). Then B is
isomorphic to F(X1, X2, . . . ). In particular, B is purely transcendental.

Proof. Let ϕ0 : F[X1, X2, . . . ] → F[s1, s2, . . . ] be defined by ϕ0(Xi ) = si

for each i . ϕ0 is obviously surjective. It is injective as S is algebraically inde-
pendent over F, so it is an isomorphism. But then, again as S is algebraically
independent over F, ϕ0 extends to an isomorphism ϕ : F(X1, X2, . . . ) →
F(s1, s2, . . . ). ��

We adopt the convention that if S is the empty set, then S is algebraically
independent and F(S) = F.

We now develop the theory of transcendence bases. The reader should note
the very strong analogy between the notion, and properties of, a transcendence
basis of a field extension and a basis of a vector space. We begin with a tech-
nical lemma, which is of interest in itself.

Lemma 6.1.9. Let E be an extension of F and let S be a subset of E. Let s1 be
an arbitrary element of S. Then S is algebraically independent if and only if
S′ = S −{s1} is algebraically independent and s is transcendental over F(S′).
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Proof. We prove the contrapositive of the statement of the lemma.
Clearly, if S′ is not algebraically independent or if s1 is algebraic over

F(S′), then S is not algebraically independent, so it remains to prove the re-
verse implication.

Let S′ = {s2, s3, . . . } and let B = F(S′). Suppose that S is not algebraically
independent. Then there is some polynomial f (X1, X2, . . . ) with coefficients
in F with f (s1, s2, . . . ) = 0. If the variable X1 does not appear in this poly-
nomial then f (s1, s2, . . . ) = g(s2, . . . ) and S′ is not algebraically indepen-
dent. If the variable X1 appears in this polynomial then we gather terms in
like powers of X1 together, and substitute si for Xi for i > 1. Then, writing
h(X1) = f (X1, s2, s3, . . . ) = ∑

hk(s2, s3, . . . )Xk
1 ∈ B[X1], we have that

h(s1) = 0, so s1 is algebraic over S′. ��
Definition 6.1.10. Let E be an extension of F and let S = {s1, s2, . . . } be
a subset of E. S is a transcendence basis of E over F if S is algebraically
independent over F and E is an algebraic extension of F(S). �
Remark 6.1.11. At first glance, it may seem more logical to require that E =
F(S) in the definition of a transcendence basis. But if we were to make that
definition, by Lemma 6.1.8 only purely transcendental extensions would have
transcendence bases, and that would greatly restrict the utility of the theory.
So we make the more general definition. �
Theorem 6.1.12. Let E be an extension of F and let R ⊆ T be subsets of
E such that R is algebraically independent over F and E is an algebraic
extension of F(T ). Then there is a transcendence basis S of E over F with
R ⊆ S ⊆ T .

Proof. The proof is a Zorn’s Lemma argument. Let S be the set of subsets of
E defined by

S = {S | R ⊆ S ⊆ T and S is algebraically independent over F}.
S is nonempty as R ∈ S. Partially order S by inclusion. Clearly every

totally ordered subset of S has a maximal element, its union. Thus, by Zorn’s
Lemma, S has a maximal element S. We claim that S is a transcendence basis
for E over F.

By definition, S is algebraically independent over F, so we need only show
that E is algebraic over B = F(S). Suppose not and let α ∈ E be transcendental
over B. Then, by Lemma 6.1.9, S̃ = S ∪ {α} is algebraically independent,
contradicting the maximality of S. ��
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Corollary 6.1.13. Let E be an extension of F.
(1) E has a transcendence basis over F.
(2) If R is any subset of E that is algebraically independent over F, then E

has a transcendence basis over F that contains R.
(3) If T is any subset of E with E an algebraic extension of F(T ), then E

has a transcendence basis over F that is contained in T .

Proof. For (1), let R = ∅ and T = E in Theorem 6.1.12. For (2), let T = E in
Theorem 6.1.12. For (3), let R = ∅ in Theorem 6.1.12. ��

The following “replacement lemma” is the key step in the proof of Theo-
rem 6.1.15.

Lemma 6.1.14. Let E be an extension of F and let S and T be any two tran-
scendence bases of E over F. Let s be any element of S and let S′ = S − {s}.
Then there is an element t of T such that S′′ = S′ ∪ {t} is a transcendence
basis of E over F.

Proof. By Lemma 6.1.9 we see that s is transcendental over F(S′). In partic-
ular, E is transcendental over F(S′). This implies that some element t of T is
transcendental over F(S′), as if not, F(T ) would be algebraic over F(S′). By
assumption, T is a transcendence basis for E over F, so in particular E is al-
gebraic over F(T ). But E algebraic over F(T ) and F(T ) algebraic over F(S′)
implies E algebraic over F(S′), a contradiction.

Since t is transcendental over S′, S′′ is algebraically independent, again
by Lemma 6.1.9. Furthermore, s is algebraic over F(S′′) as otherwise S ∪ {t}
would be algebraically independent, which it is not as E is algebraic over F(S).
Thus F(S) is algebraic over F(S′′). Again, E is algebraic over F(S), and so E
is algebraic over F(S′′). Hence S′′ satisfies both conditions for a transcendence
basis of E over F. ��

In the following theorem, we do not distinguish between the cardinality of
infinite sets.

Theorem 6.1.15. Let E be an extension of F. Then any two transcendence
bases of E over F have the same number of elements.

Proof. To prove the theorem it suffices to show that if E has a transcendence
basis S over F with a finite number k of elements, then any subset T of E
with more than k elements (perhaps with infinitely many elements) cannot be
algebraically independent. We prove this by contradiction.

Let S = {s1, s2, . . . , sk} and suppose that T is a transcendence basis having
more than k elements. Apply Lemma 6.1.14 k times in succession. First we
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obtain a transcendence basis S1 = {t1, s2, s3, . . . , sk} where t1 is some element
of T . Next we obtain a transcendence basis S2 = {t1, t2, s3, . . . , sk} where
t1 and t2 are some elements of T . Finally we obtain a transcendence basis
Sk = {t1, t2, t3, . . . , tk} where each ti is an element of T . But T has more than
k elements, so there is an element tk+1 of T that is not in Sk . But then, by
Lemma 6.1.9, tk+1 is transcendental over F(Sk), contradicting the fact that Sk

is a transcendence basis for E over F. ��
With this theorem in hand, we may make the following important defini-

tion.

Definition 6.1.16. Let E be an extension of F. Then tr-deg(E/F), the transcen-
dence degree of E over F, is equal to the number of elements in any transcen-
dence basis S of E over F, tr-deg(E/F) ∈ {0, 1, 2, . . . } ∪ {∞}. �
Remark 6.1.17. If E = F(X1, X2, . . . ) then {X1, X2, . . . } is a transcendence
basis for E over F and so tr-deg(E/F) is the number of elements of this set.
Thus we see that F(X1, X2, . . . , Xk) is not isomorphic to F(X1, X2, . . . , X�)

if k �= �. �
Theorem 6.1.18. Let B be an extension of F with transcendence basis S and
let E be an extension of B with transcendence basis T . Then E is an extension
of F with transcendence basis S ∪ T . In particular,

tr-deg(E/F) = tr-deg(E/B) + tr-deg(B/F).

Proof. Let B0 = F(S), so B0 ⊆ B. Let E0 = B0(T ) and let E1 = B(T ), so
E0 ⊆ E1 ⊆ E.

Since T is algebraically independent over B, it is certainly algebraically
independent over B0. This implies that S ∪T is algebraically independent over
B. For suppose there were a nonzero polynomial f (X1, . . . , Y1, . . . ) with co-
efficients in B with f (s1, . . . , t1, . . . ) = 0. By the algebraic independence of
T none of the variables Yi can appear, so f (s1, . . . , Y1, . . . ) = g(X1, . . . )

for some nonzero polynomial g(X1, . . . ) with coefficients in B. But then
g(s1, . . . ) = 0, contradicting the algebraic independence of S.

Now F(S ∪ T ) = (F(S))(T ) = B0(T ) = E0. Let α ∈ E1 = B(T ). By
definition, α = p(T1, . . . )/q(T1, . . . ) for some polynomials with coefficients
in B. Let B1 be the extension of B0 obtained by adjoining the finitely many
coefficients of these polynomials, all of which are algebraic over B0 = F(T )

(as B is algebraic over B0, since S is a transcendence basis). Then α ∈ B1(T ),
which is a finite extension of E0 = B0(T ), and so α is algebraic over E0. Since
α ∈ E1 was arbitrary, this shows that E1 is algebraic over E0.
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By the definition of a transcendence basis, E is algebraic over E1, and we
have just shown that E1 is algebraic over E0, so E is algebraic over E0 =
F(S ∪ T ). Hence S ∪ T satisfies both conditions for a transcendence basis of
E over F.

Note that S and T are disjoint as S ⊂ B − F and T ⊂ E − B, so the second
part of the theorem immediately follows. ��
Corollary 6.1.19. Let E be any extension of F. Then there is a field B with
F ⊆ B ⊆ E and with B purely transcendental over F and E algebraic over B.

Proof. Let S be a transcendence basis for E over F and let B = F(S). ��
Remark 6.1.20. Comparing Corollary 6.1.19 with Lemma 6.1.3, we see that in
the situation of Corollary 6.1.19, the field B is not unique. �

Let B and D be two extensions of F, with B algebraic and D purely tran-
scendental. Then Lemma 6.1.5 shows that B and D are disjoint extensions of
F. In fact, more is true.

Theorem 6.1.21. Let B and D be subfields of E containing F. Suppose that B
is an algebraic extension of F and that D is a purely transcendental extension
of F. Then B and D are linearly disjoint extensions of F.

Proof. We first prove this in the case that k = tr-deg(D/F) is finite. In this
case let D = F(X1, . . . , Xk). We prove the theorem by induction on k.

To begin the induction, we let k = 1. Let {Y1, . . . , Y�} be a F-linearly in-
dependent set of elements in F(X1), and suppose

∑�
j=1 β j Y j = 0 with each

β j ∈ F, and not all of them 0. Clearing denominators, we may assume that
each Y j is a polynomial in X1. Performing a nonsingular change of basis (re-
ordering and adding multiples of each of these polynomials to the others), if
necessary, we may obtain a (necessarily F-linearly independent) set of nonzero
polynomials {Y ′

1, . . . , Y ′
�} with deg(Y ′

1) > deg(Y ′
2) > · · · > deg(Y ′

�), and
0 = ∑�

j=1 β j Y j = ∑�
j=1 β ′

j Y
′
j for uniquely determined elements β ′

j ∈ F, not
all of which are 0. But this is a nontrivial polynomial relationship f (X1) = 0
with f a polynomial with coefficients in B, and thus we see that X1 is alge-
braic over B. But B is algebraic over F, so that implies that X1 is algebraic
over F, a contradiction.

Now suppose the theorem is true for k − 1 and consider F(X1, . . . , Xk).
Let {Y1, . . . , Y�} be a F-linearly independent set of elements in F(X1, . . . , Xk),
and suppose

∑�
j=1 β j Y j = 0 with β j ∈ F for each j , not all of which

are 0. By the truth of the k − 1 case, we cannot have {Y1, . . . , Y�} ⊆
F(X1, . . . , Xk−1). Then, proceeding as in the k = 1 case, we obtain f (Xk) = 0
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for some nontrivial polynomial f with coefficients in B(X1, . . . , Xk−1). Then
Xk is algebraic over B(X1, . . . , Xk−1), and B(X1, . . . , Xk−1) is algebraic over
F(X1, . . . , Xk−1), so Xk is algebraic over F(X1, . . . , Xk−1), a contradiction.

Finally, a linear dependence of a set of elements of F(X1, X2, . . . ) must
be a linear dependence among elements of F(X1, . . . , Xk) for some k, so the
finite case implies the general case. ��
Theorem 6.1.22. Let B and D be subfields of E containing F. Suppose that B
and D are linearly disjoint extensions of F, and that D is a purely transcen-
dental extension of F. Then BD is a purely transcendental extension of B and
tr-deg(BD/B) = tr-deg(D/F).

Proof. Let D = F(X1, X2, . . . ). Clearly BD = B(X1, X2, . . . ) so to prove the
theorem we need only show that {X1, X2, . . . } is algebraically independent
over B. Suppose the elements of this set satisfy some polynomial relation-
ship. This can only involve finitely many variables, so we may assume it is
f (X1, . . . , Xk) = 0 for some k, where f is a polynomial with coefficients
in B. Write this polynomial as a sum of terms, each of which is a distinct
monomial in {X1, . . . , Xk} times a coefficient in B. Now the distinct monomi-
als in {X1, . . . , Xk} are linearly independent over F, as {X1, . . . , Xk} is alge-
braically independent over F. By the definition of linear disjointness, each of
the coefficients in f must be 0, and so f (X1, . . . , Xk) is the 0 polynomial, as
required. ��

Here are a pair of examples that illustrate many of the concepts and results
that we have developed in this section.

Example 6.1.23. Let E = C(X). Note that {X}, {X2}, and {X3} are all tran-
scendence bases for E over C. Set U = X2 and V = X3. Let B1 = C(U )

and B2 = C(V ). Note that E is a Galois extension of B1 of degree 2 with
Galois group Gal(E/B1) generated by the automorphism of E determined by
σ1(X) = −X . Also note that E is a Galois extension of B2 of degree 3 with
Galois group Gal(E/B2) generated by the automorphism of E determined by
σ2(X) = ωX . Clearly B1B2 = E as X = V/U ∈ B1B2. Note that σ1 and
σ2 generate a group G of automorphisms of E of order 6. Indeed this is a
cyclic group with generator σ0 = σ1σ

−1
2 where σ0(X) = exp(2π i/6)X . Then

B0 = Fix(G) = B1 ∩ B2 = C(W ) where W = X6. In this case we have

tr-deg(B1/B0) = tr-deg(B2/B0) = 0, tr-deg(E/B1) = tr-deg(E/B2) = 0.

Observe that E = B1(V ) and V has minimal polynomial mV (Z) = Z2 −
U 3 ∈ B1[Z ], and similarly that E = B2(U ) and U has minimal polynomial
mU (Z) = Z3 − V 2 ∈ B2[Z ].
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Finally, observe that in this case B1 and B2 are not disjoint extensions
of C. �
Example 6.1.24. Let E = C(X). Note that {X}, {X2}, and {(X + 1)2} are all
transcendence bases for E over C. Set U = X2 and V = (X + 1)2. Let B1 =
C(U ) and B2 = C(V ). Note that E is a Galois extension of B1 of degree 2 with
Galois group Gal(E/B1) generated by the automorphism of E determined by
σ1(X) = −X . Also note that E is a Galois extension of B2 of degree 2 with
Galois group Gal(E/B2) generated by the automorphism of E determined by
σ2(X) = −X − 2. Clearly B1B2 = E as X = (V − U − 1)/2 ∈ B1B2. The
group G of automorphisms of E generated by σ1 and σ2 contains the element
σ0 = σ2σ1 and σ0(X) = X + 2. Hence B0 = Fix(G) = B1 ∩ B2 = C as for
no nonconstant rational function f (X) do we have f (X) = f (X + 2). In this
case we have

tr-deg(B1/B0) = tr-deg(B2/B0) = 1, tr-deg(E/B1) = tr-deg(E/B2) = 0.

Observe that E = B1(V ) and V has minimal polynomial mV (Z) = Z2 −
2(U + 1)Z + (U − 1)2 ∈ B1[Z ], and similarly that E = B2(U ) and U has
minimal polynomial mU (Z) = Z2 − 2(V + 1)Z + (V − 1)2 ∈ B2[Z ].

Finally, observe that in this case B1 and B2 are disjoint but not linearly
disjoint extensions of C. �

Let us now give an application of the theory we have just developed to
the theory of symmetric functions. Compare the proof of Lemma 3.1.12 and
Remark 3.1.13. We adopt the notation of Section 3.1 here.

Theorem 6.1.25. Let D be an arbitrary field, let E = D(X1, . . . , Xd) be the
field of rational functions in the variables X1, . . . , Xd and let F ⊆ E be the
field of symmetric functions in X1, . . . , Xd. Let s1, . . . , sd be the elementary
symmetric polynomials. Then S = {s1, . . . , sd} is algebraically independent.
Furthermore, F is a purely transcendental extension of D and S is a transcen-
dence basis for F over D.

Proof. By definition, F is the fixed field of the symmetric group Sd acting on
E by permuting the variables, so E is an algebraic extension of F; indeed, E
is a Galois extension of F with Galois group Gal(E/F) = Sd . We showed in
Lemma 3.1.4 that F = D(s1, . . . , sd). Thus it only remains to show that S =
{s1, . . . , sd} is algebraically independent. Suppose not. By Corollary 6.1.13
(3), S contains a proper subset R of cardinality c < d that is a transcendence
basis for F over D. But then

c = 0 + c = tr-deg(E/F) + tr-deg(F/D) = tr-deg(E/D) = d,

a contradiction. ��
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6.2 Simple Transcendental Extensions

Definition 6.2.1. A simple transcendental extension of the field F is a field E
obtained by adjoining a single transcendental element X to F, E = F(X). �

Throughout this section we let E = F(X).
A simple transcendental extension E is easy to describe: it is a purely tran-

scendental extension of transcendence degree 1. But there are interesting ques-
tions we can ask about E.

Lemma 6.2.2. Let Y = p(X)/q(X) ∈ E, with p(X) and q(X) relatively
prime polynomials in F[X ] of degrees d1 and d2 respectively, and let B =
F(Y ). Suppose that d > 0. Let d = max(d1, d2). Then (E/B) = d.

Proof. (1) Since E = F(X), certainly E = B(X). We prove the lemma by
showing that X satisfies an irreducible polynomial of degree d over B.

Evidently X is a root of the polynomial f (Y, Z) = Y q(Z)− p(Z) ∈ B[Z ].
Thus we need only show that this polynomial is irreducible.

It is easy to see that f (Y, Z) is irreducible in (F[Z ])[Y ]: f (Y, Z) is
linear in Y so any factorization would have to be of the form f (Y, Z) =
a(Z)(b(Z)Y + c(Z)). Then q(Z) = a(Z)b(Z) and −p(Z) = a(Z)c(Z),
and hence a(Z) is a common factor of p(Z) and q(Z). But p(Z) and q(Z) are
assumed relatively prime so a(Z) is a unit, i.e., a constant polynomial.

Now (F[Z ])[Y ] = F[Z , Y ] = F[Y, Z ] = (F[Z ])[Y ] so f (Y, Z) is irre-
ducible in (F[Z ])[Y ]. We need to show it is irreducible in B[Y ] = (F(Z))[Y ].
But that is an immediate consequence of Gauss’s Lemma, Lemma 4.1.4. (We
proved Gauss’s Lemma for Z and Q, but the exact same proof works for any
unique factorization domain R and its quotient field.) ��

We now determine the automorphism group of a simple transcendental
extension. Recall that GL2(F) denotes the group of invertible 2 × 2 matrices
with coefficients in the field F. It is easy to see that its center Z = Z(GL2(F))

is the subgroup consisting of all nonzero scalar multiples of the identity matrix
(and so is naturally isomorphic to the multiplicative group F∗). As usual, we
let PGL2(F) be the quotient PGL2(F) = GL2(F)/Z . PGL2(F) is known as
the projective linear group of degree 2 over F.

Theorem 6.2.3. Let AutF(E) be the group of automorphisms of E that fix F.

(1) For a matrix M =
[

a b
c d

]
∈ GL2(F), let ϕM : E → E be defined by

ϕM( f (X)) = f

(
aX + b

cX + d

)
.
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Then ϕM ∈ AutF(E). Furthermore, any ψ ∈ AutF(E) is ψ = ϕM for some
M ∈ GL2(F).

(2) The map 
̃ : GL2(F) → AutF(E) given by 
̃(M) = ϕM−1 induces an
isomorphism


 : PGL2(F) → AutF(E).

Proof. (1) Observe that the polynomials aX + b and cX + d are relatively
prime if and only if det(M) = ad − bc �= 0. Assuming that, let Y = ψ(X) =
(a X + b)/(cX + d). Since E = F[X ], ψ extends to a unique homomorphism
from E to itself, and that homomorphism is ϕM . By Lemma 6.2.2, F(Y ) =
E, so ϕM is surjective, and it is clearly injective, so it is an automorphism.
Furthermore, again by Lemma 6.2.2, if ψ is any automorphism of E, then
Y = ψ(X) must be of the above form, i.e., Y = ϕM(X) for some invertible
matrix M , in which case ψ = ϕM .

(2) By (1), 
̃ is a surjection of sets. We now check that 
̃ is a homo-
morphism, i.e., that 
̃(M1 M2) = 
̃(M1)
̃(M2). This is a direct computation,
using the fact that ψ ∈ AutF(E) is determined by ψ(X):

Let M−1
i =

[
ai bi

ci di

]
for i = 1, 2. First note that

(M1 M2)
−1 = M−1

2 M−1
1 =

[
a2 b2

c2 d2

] [
a1 b1

c1 d1

]
=

[
a2a1 + b2c1 a2b1 + b2d1

c2a1 + d2c1 c1b1 + d2d1

]
.

Then, noting that for any automorphism ψ and any rational function f (X),
the value of ψ on f (X) ∈ E is f (ψ(X)), so that the order of composition is
reversed,

(
̃(M1)
̃(M2))(X) = (ϕM−1
1

ϕM−1
2

)(X) = ϕM−1
2

(ϕM−1
1

(X))

= ϕM−1
2

(
a1 X + b1

c1 X + d1

)

= a2
a1 X+b1
c1 X+d1

+ b2

c2
a1 X+b1
c1 X+d1

+ d2

= a2(a1 X + b1) + b2(c1 X + d1)

c2(a1 X + b1) + d2(c1 X + d1)

= (a2a1 + b2c1)X + (a2b1 + b2d1)

(c2a1 + d2c1)X + (c2b1 + d2d1)

= ϕM−1
2 M−1

1
(X) = ϕ(M1 M2)−1(X) = 
̃(M1 M2)(X)

so 
̃ is an epimorphism of groups, and hence induces an isomorphism of
groups 
 : GL2(F)/ Ker(
) −→ AutF(E). Let M be a matrix with M−1 =
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[

a b
c d

]
. 
̃(M) = ϕM−1 is the identity on E if and only if ϕM−1(X) = X , i.e., if

and only if (a X + b)/(cX + d) = X , which occurs if and only if a = d �= 0
and b = c = 0, i.e., if and only if M−1 is a nonzero scalar matrix, and this is
true if and only if M is a nonzero scalar matrix. ��
Remark 6.2.4. (1) If you are familiar with fractional linear transformations,
you will have recognized them in the statement of Theorem 6.2.3. But you may
have been puzzled by the appearance of the matrix inverse in that statement.
The group PGL2(R) acts on the upper half-plane H = {z ∈ C | Im(z) > 0}
by fractional linear transformations (or Möbius transformations), ρM(z) =
(az +b)/(cz +d), where the matrix M is as in the statement of Theorem 6.2.3.
In that action we have ρM1 M2 = ρM1ρM2 , where on the right-hand side of this
equation multiplication is simply composition of maps from H to itself. But
that action is not the action of PGL2(F) on E; as we remarked in the proof
of Theorem 6.2.3, in this action the order of composition is reversed. (The
automorphism ψ does not act on the rational function f (X) by acting on the
value of the function f on the variable X , but rather by acting on the variable
X which is the argument to the function f , and this accounts for the reversal
of order.)

(2) Evidently ψ defined by ψ(X) = aX + b, a �= 0, defines an automor-
phism of E fixing F, as does ψ(X) = 1/X . Thus AutF(E) must contain the
group generated by compositions of these automorphisms as a subgroup. It is
easy to check that this subgroup is precisely the group of all fractional linear
transformations. Thus, Theorem 6.2.3 says that all automorphisms of E fixing
F are obtained in this way.

Theorem 6.2.5 (Lüroth). Let F ⊂ B ⊆ E. Then B is a simple transcendental
extension of F, i.e., B = F(Y ) for some Y ∈ E.

Proof. Let W ∈ B, W �∈ F. Then W = a(X)/b(X) for some relatively
prime polynomials a(X) and b(X) not both of which are constant, so, by
Lemma 6.2.2, the element X of E is algebraic over F(W ). Since F(W ) ⊆ B,
X is algebraic over B. (This fact is also a consequence of Lemma 6.1.5 and
Theorem 6.1.17, but is just as easy to prove directly.) Let X have minimum
polynomial m X (Z) over B,

m X (Z) = Zn + Yn−1 Zn−1 + · · · + Y0 with each Yi ∈ B.

Then (E/B) = n. Since X is not algebraic over F some coefficient Y = Yi0 of
m X (Z) is not in F. We claim that B = F(Y ).

Let B0 = F(Y ). Since Y ∈ B, B0 ⊆ B. Write Y as a rational function Y =
p(X)/q(X) in lowest terms. Then, by Lemma 6.1.2, we have that (E/B0) = d
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where d is the maximum of the degrees of p(X) and q(X). Then

d = (E/B0) = (E/B)(B/B0) = n(B/B0)

so if we show that n = d, then B = B0 = F(Y ) as required.
Now X is a root of f (Z) = Y q(Z) − p(Z), so m X (Z) divides f (Z) in

B[Z ]. Note that f (Z) is not the 0 polynomial as if it were, we would have
Y = p(Z)/q(Z) in B(Z), which is impossible as Y ∈ B and p(Z)/q(Z) �∈ B.
Let f (Z) = m X (Z)g(Z). We may “clear denominators” in m X (Z) to obtain a
polynomial

m̃(X, Z) = cn(X)Zn + cn−1(X)Zn−1 + · · · + c0(X)

with {cn(X), . . . , c0(X)} a relatively prime set of polynomials in F[X ], so that
m̃(X, Z) is a primitive polynomial of degree n when regarded as a polynomial
in Z . By the definition of Y , we see that p(X) divides ci0(X) and q(X) divides
cn(X), so, if m̃(X, Z) is regarded as a polynomial in X , its degree is at least d.
For clarity we will write degZ (m̃(X, Z)) = n and degX (m̃(X, Z)) ≥ d.

Now f (Z) = m X (Z)g(Z), i.e.,

Y q(Z) − p(Z) = m X (Z)g(Z).

Multiplying by cn(X), we obtain the equation

cn(X)(Y q(Z) − p(Z)) = m̃(X, Z)g(Z),

a polynomial identity in B[X, Z ]. Substituting Y = p(X)/q(X) and multiply-
ing by q(X), we obtain the equation

cn(X)(p(X)q(Z) − q(X)p(Z)) = m̃(X, Z)g(Z)q(X),

a polynomial identity in F[X, Z ]. Now cn(X) and m̃(X, Z) are relatively
prime, so m̃(X, Z) must divide p(X)q(Z) − q(X)p(Z), i.e.,

r(X, Z) = (p(X)q(Z) − q(X)p(Z)) = m̃(X, Z)s(X, Z)

for some polynomial s(X, Z) ∈ F[X, Z ].
Now degX (r(X, Z)) = degZ (r(X, Z)) ≤ d. But we observed above

that degX (m̃(X, Z)) ≥ d, so we must have degX (m̃(X, Z)) = d. Then
degX (s(X, Z)) = 0, so s(X, Z) = t (Z) for some polynomial t (Z) ∈ F[Z ].
As we have observed, m̃(X, Z) is primitive when regarded as a polynomial in
Z , i.e., the coefficients of the different powers of Z are relatively prime poly-
nomials in X . But then the same is true for r(X, Z) = m̃(X, Z)t (Z). But by
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symmetry, r(X, Z) is then also primitive when regarded as a polynomial in X ,
so the coefficients of the different powers of X are relatively prime polynomi-
als in Z , and hence t (Z) is a constant polynomial. Thus r(X, Z) = am̃(X, Z)

for some a ∈ F. We then conclude that

n = degZ (m̃(X, Z)) = degZ (r(X, Z)) = degX (r(X, Z)) = d,

as required. ��

6.3 Plane Curves

Throughout this section, except when explicitly stated otherwise, we let F = C,
the field of complex numbers.

Hitherto we have only considered purely transcendental extensions. In this
section we investigate extensions that are not (necessarily) purely transcen-
dental. Our examples are chosen from elementary algebraic geometry. Clearly,
they are just the tip of an iceberg, but it is beyond our scope here to investigate
this subject more broadly or deeply.

Definition 6.3.1. Let f (X, Y ) ∈ F[X, Y ] be an irreducible polynomial. Let
V ( f ) = {(z1, z2) ∈ F2 | f (z1, z2) = 0}. Then C = V ( f ) is the plane curve
associated to f (X, Y ). The quotient field of F[X, Y ]/〈 f (X, Y )〉 is the function
field of C. �
Remark 6.3.2. (1) Strictly speaking, we should call C as in Definition 6.3.1 an
irreducible affine plane curve, but we adopt the shorter language.

(2) In Definition 6.3.1 we are using some commutative ring theory. In this
definition, 〈 f (X, Y )〉 denotes the ideal in F[X, Y ] generated by the polynomial
f (X, Y ). Since F[X, Y ] is a unique factorization domain, and we are assuming
f (X, Y ) is irreducible, then f (X, Y ) is prime and 〈 f (X, Y )〉 is a prime ideal.
Thus F[X, Y ]/〈 f (X, Y )〉 is an integral domain and we may indeed take its
quotient field.

(3) We are restricting our attention to C[X, Y ], rather than, for example,
Q[X, Y ], for the following reasons: f (X, Y ) = X2 + Y 2 + 1 is an irreducible
polynomial in Q[X, Y ], but V ( f ) = ∅ when we consider it over Q, and we
don’t want to regard that as a curve. Also, if f (X, Y ) and g(X, Y ) are re-
garded as polynomials over C, then V ( f ) = V (g) if and only if f (X, Y )

and g(X, Y ) are constant multiples of each other, but this is not true over
Q, as we see from the examples f (X, Y ) = X2 + Y 4 + 1 and g(X, Y ) =
X4+Y 2+1. However, there are some (very!) interesting questions about V ( f )
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when f (X, Y ) is regarded as a polynomial over Q, or over some field inter-
mediate between Q and C, and we will return to this point in Remark 6.3.13
below.

(4) Much of the discussion here is valid with C replaced by an algebraically
closed field of arbitrary characteristic. We are restricting our attention to char-
acteristic 0 for simplicity. �
Notation 6.3.3. In the situation of Definition 6.3.1, we write C(x, y) for the
quotient field of the curve C, where, in the natural map from C[X, Y ] to this
quotient field, the image of X is x and the image of Y is y. �

Remark 6.3.4. Our notation C(x, y) is perfectly consistent with our previous
notation. C(x, y) is an extension field of C obtained by adjoining the elements
x and y. Also, this field C(x, y) is an extension of C of transcendence de-
gree 1. If we assume that f (X, Y ) involves both X and Y (i.e, that it is not a
polynomial in X alone, or a polynomial in Y alone), then each of x and y is
transcendental over C; moreover, in this case, {x} and {y} are each transcen-
dence bases for C(x, y) over C. Furthermore, in this case, the natural maps
from C(X) to C(x), and from C(Y ) to C(y), are field isomorphisms. �
Definition 6.3.5. In the situation of Definition 6.3.1, the curve V ( f ) is a ra-
tional curve if its function field C(x, y) is rational. �

We now present some interesting examples of plane curves that are or are
not rational.

Theorem 6.3.6. Fix a positive integer n and consider the Fermat curve Cn

given by Xn + Y n = 1.
(1) For n = 2, Cn is rational.
(2) For n ≥ 3, Cn is not rational.

Proof. (1) We begin by recalling the polynomial identity (T 2 −1)2 + (2T )2 =
(T 2 + 1)2 which immediately yields the identity among rational functions

(
T 2 − 1

T 2 + 1

)2

+
(

2T

T 2 + 1

)2

= 1.

Guided by this identity, we construct an embedding ϕ : F(x, y) −→ F(t)
defined by

ϕ(x) = (t2 − 1)/(t2 + 1) and ϕ(y) = 2t/(t2 + 1).
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We thus see that F(x, y) is isomorphic to a subfield of F(t). In fact, this
subfield is F(t) itself. To show this, we need only show that ϕ is an epimor-
phism. To see this, observe that ϕ(x)/ϕ(y) = (t2 − 1)/(2t). Cross-multiply,
regard this as a quadratic equation in t , and solve by the quadratic formula, us-
ing the relation ϕ(x)2 +ϕ(y)2 = 1, to obtain t = (ϕ(x)+1)/ϕ(y). (Of course,
once we know that F(x, y) is isomorphic to a subfield of F(t), Lüroth’s theo-
rem (Theorem 6.2.5) tells us that F(x, y) is purely transcendental, but not only
is the above argument simpler and more direct, it also gives us more informa-
tion.)

(2) The isomorphism in part (1) was due to the polynomial identity among
squares that we began with in that case. As we shall see, the fact that there is
no isomorphism for n ≥ 3 is due to the fact that there is no similar polynomial
identity.

Suppose F(x, y) were purely transcendental. Then we would have an iso-
morphism ϕ : F(x, y) −→ F(t). Then ϕ(x) = f1(t)/ f2(t) where f1(t)
and f2(t) are relatively prime polynomials in F[t], and similarly ϕ(y) =
g1(t)/g2(t) where g1(t) and g2(t) are relatively prime polynomials in F[t],
and furthermore (

f1(t)

f2(t)

)n

+
(

g1(t)

g2(t)

)n

= 1.

In the remainder of this proof we abbreviate f1(t) by f1, etc. Multiplying
through by ( f2g2)

n we obtain the polynomial identity

an + bn = cn

where a = f1g2, b = g1 f2, and c = g1g2 are polynomials in F[t], not all of
which are constant. We show this identity has no solutions.

We prove this by contradiction. Assume there is at least one solution, and
choose a solution where dmax = max(deg a, deg b, deg c) is as small as possi-
ble. In this case a, b, and c are certainly pairwise relatively prime. Rewrite this
identity as

an = cn − bn =
n∏

k=1

(c − λkb),

where λ = exp(2π i/n). Note that at most one of the factors on the right-
hand side of this equation can be a constant polynomial. We now use the fact
that F[t] is a unique factorization domain. These factors are pairwise relatively
prime, as if c − λi b and c − λ j b had a common factor for some i �= j , then,
taking linear combinations, a and b would have that common factor. Hence
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each of these factors is itself an nth power, c − λi b = en
i , i = 1, . . . , n. In

particular, since n ≥ 3, this is true for i = 1, 2, 3. Then simple algebra shows

en
3 = c − λ3b

= −λ(c − λb) + (1 + λ)(c − λ2b)

= −λen
1 + (1 + λ)en

2 .

Note that 1 + λ �= 0 as n �= 2. Then, choosing complex numbers α and β with
αn = −λ and βn = 1 + λ, and setting a′ = αe1, b′ = βe2, and c′ = e3, we
have

(a′)n + (b′)n = (c′)n

with d ′
max = max(deg a′, deg b′, deg c′) ≤ dmax/n, contradicting the minimal-

ity of dmax. ��
Theorem 6.3.7. Fix positive integers n ≥ 3 and m ≥ 3. Let h(X) be any
polynomial of degree m with distinct roots and let C be the curve defined by
Y n = h(X). Then C is not rational.

Proof. The proof of this is an adaptation of the proof of Theorem 6.3.6(2).
Let h(X) have roots λ1, . . . , λm . Then C is given by

Y p = cq(X − λ1) · · · (X − λm)

Replacing Y by Y cm
1/n if necessary, we may assume h(X) is monic, and

we do so henceforth. Assume that C is rational. Then we have a pair f1(t) and
f2(t) of relatively prime polynomials in F[t], and also a pair g1(t) and g2(t)
of relatively prime polynomials in F[t], with

(
g1

g2

)n

=
(

f1

f2
− λ1

)
· · ·

(
f1

f2
− λm

)
.

Multiplying this equation by gn
2 f m

1 we obtain the polynomial identity

gn
1 f m

2 = gn
2 ( f1 − λ1 f2) · · · ( f1 − λm f2).

Now gn
2 must divide f m

2 , as g2 is relatively prime to g1, and f m
2 must divide

gn
2 as f2 is relatively prime to f1, which implies that f2 is relatively prime to

each term ( f1 − λi f2). Hence gn
2 and f m

2 must be equal up to a unit factor,
which we may again assume is 1, by an appropriate linear change of variable
if necessary. Thus we obtain the identity

gn
1 = ( f1 − λ1 f2) · · · ( f1 − λm f2).



6.3 Plane Curves 189

The terms on the right-hand side are pairwise relatively prime so each must
be an nth power. Let ( f1 − λi f2) = en

i for i = 1, 2, 3. The three polynomials
( f1 − λ1 f2), ( f1 − λ2 f2), and ( f1 − λ3 f2) are linearly dependent, and no
two are multiples of each other, so there is a linear dependence between them
with each of the three coefficients nonzero. By an appropriate linear change of
variable we may assume this linear dependence is en

1 + en
2 − en

3 = 0, and we
have seen in the proof of Theorem 6.3.6(2) that this is impossible. ��

In order to handle the remaining cases we first prove a technical lemma.

Lemma 6.3.8. There does not exist a pair of polynomials ( f (X), g(X)) in
F[X ], not both of which are constant, such that ai f (X) + bi g(X) is a square
in F[X ], i = 1, . . . , 4, where (ai , bi ) are pairs of elements in F, not both 0,
satisfying the condition that (a j , b j ) �= (eai , ebi ) for any e in F and any j �= i .

Proof. Assume there exists such a pair ( f (X), g(X)), which we abbreviate as
( f, g). Choose such a pair with max(deg( f ), deg(g)) minimal. Then certainly
f and g are relatively prime. This implies that ai f + bi g and a j f + b j g are
relatively prime for i �= j . Let p = a1 f + b1g and q = a2 f + b2g. Then there
are unique pairs (a′

i , b′
i ), with a′

i p + b′
i q = ai f + bi g, i = 3, 4. Now

4∏
i=1

(ai f + bi g) = pq(a′
3 p + b′

3q)(a′
4 p + b′

4q).

The left-hand side of this equation is a product of squares, hence a square.
Our conditions on (ai , bi ) ensure that the terms on the right-hand side of this
equation are pairwise relatively prime, and hence each of them must be a
square. Let p = r2 and q = s2. Then, with any arbitrary but fixed choice
of square roots,

a′
i p + b′

i q = a′
i r

2 + b′
i s

2 =
(√

a′
i r +

√
−b′

i s
)(√

a′
i r −

√
−b′

i s
)
, i = 3, 4.

Now each of these products is a square, and the factors are again relatively
prime, so they must each be squares. Thus, replacing f by r , g by s, and
(a1, b1), . . . , (a4, b4) with (c1, d1), . . . , (c4, d4) where

(c1, d1) =
(√

a′
3,

√
−b′

3

)
,

(c2, d2) =
(√

a′
3, −

√
−b′

3

)
,

(c3, d3) =
(√

a′
4,

√
−b′

4

)
,

(c4, d4) =
(√

a′
4, −

√
−b′

4

)
,
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we have a pair of polynomials (r, s) satisfying the given conditions with
max(deg(r), deg(s)) < max(deg( f ), deg(g)), a contradiction. ��
Remark 6.3.9. Lemma 6.3.8 is sharp. If f (X) = X4 + 1 and g(X) = X2, then
ai f (X) + bi g(X) is a square for (a1, b1) = (1, 2), (a2, b2) = (1, −2), and
(a3, b3) = (0, 1).

Theorem 6.3.10. Fix a positive integer m ≥ 3. Let h(X) be any polynomial
of degree m with distinct roots and let C be the curve defined by Y 2 = h(X).
Then C is not rational.

Proof. We begin by following the proof of Theorem 6.3.7, whose notation we
adopt. Exactly as in that proof, we obtain an identity

g2
1 = ( f1 − λ1 f2) · · · ( f1 − λm f2),

with the terms on the right-hand side pairwise relatively prime, and hence each
a perfect square. In case m ≥ 4, this is impossible by Lemma 6.3.3. In case
m = 3, we have only 3 perfect squares. But in this case, the equation g2

2 = f 3
2

implies that f2 is a perfect square as well, so we may again apply Lemma 6.3.8.
��

There is one case left open, which we now dispose of.

Theorem 6.3.11. Let h(X) be any polynomial of degree 2 with distinct roots
and let C be the curve defined by Y 3 = h(X). Then C is not rational.

Proof. Let h(X) = a X2 + bX + c. Then Y 3 = aX2 + bX + c = a(X +
b/(2a))2 + (c − b2/(4a)) so (X + b/(2a))2 = Y 3/a − (c/a − b2/(4a2)), and
by making a linear change of variable and interchanging X and Y we are back
in the case of Theorem 6.3.10. ��
Remark 6.3.12. Note that the proof of Theorem 6.3.6(1) holds over Q, from
which we may conclude that the curve X2 + Y 2 = 1 is rational over every
field of characteristic 0. Also note that the proofs of Theorem 6.3.6(2), Theo-
rem 6.3.7, Theorem 6.3.10, and Theorem 6.3.11 hold over every algebraically
closed field of characteristic 0, from which we may conclude that these curves
are not rational over any field of characteristic 0.

Remark 6.3.13. Now let F be a subfield of C. For f (X, Y ) ∈ F[X, Y ], it makes
sense to consider not only VC( f ) = {(z1, z2) ∈ C2 | f (z1, z2) = 0} but also
VF( f ) = VC( f ) ∩ F2 = {(z1, z2) ∈ F2 | f (z1, z2) = 0}. Questions about
VF( f ) are questions of great arithmetic (i.e., number-theoretic) interest. For
example, let F = Q and consider f (X, Y ) = Xn +Y n −1 as in Theorem 6.3.6.
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By clearing denominators, any point (a/c, b/c) ∈ VQ( f ) gives us integers a,
b, and c satisfying the equation an + bn = cn , and conversely.

If n = 2, then a, b, and c form a Pythagorean triple. Setting t = j/k in the
proof of Theorem 6.3.6 and clearing denominators, this gives us a parameter-
ization of Pythagorean triples by a = j2 − k2, b = 2 jk, c = j2 + k2. With
the restrictions j > k > 0 and j and k relatively prime and not both odd, this
yields all primitive Pythagorean triples, without duplication. (A Pythagorean
triple is primitive if a, b, and c are relatively prime.) This can all be found in
Euclid.

On the other hand, if n ≥ 3, Fermat claimed that this equation has no
integer solutions with a, b, and c all nonzero. This is the famous Fermat’s
last theorem. This claim was made by Fermat in the middle of the seventeenth
century and remained open for over 300 years, until being proved by Wiles
at the end of the twentieth century. It is because of this that the curves Cn are
called Fermat curves. �

6.4 Exercises

Exercise 6.4.1. Let x and y be algebraically independent elements of a tran-
scendental extension E of F. Show that F(x) and F(y) are linearly disjoint
extensions of F.

Exercise 6.4.2. Consider the polynomial f (X, Y ) = X2 − 2XY + Y 2 − 2 ∈
Q[X, Y ]. Show that f (X, Y ) is irreducible. Show that {(r1, r2) ∈ Q2 |
f (r1, r2) = 0} = ∅. Let E = Q(x, y) be the function field of the “curve”
f (X, Y ) = 0. Show that E = Q(

√
2)(x). In particular, E is a transcendental

but not completely transcendental extension of Q.

Exercise 6.4.3. Let f (X, Y ) ∈ F[X, Y ] be an irreducible polynomial in which
both X and Y appear. Show that x and y are both transcendence bases for the
function field of the curve f (X, Y ) = 0. (Hence this field has transcendence
degree 1 over F.)

Exercise 6.4.4. (a) Let E be a purely transcendental extension of F and let B
be an algebraic extension of F. Show that BE is an algebraic extension of E
and that (BE/E) = (B/F).

(b) Let E be a purely transcendental extension of F and let B be a Galois
extension of F. Show that BE is a Galois extension of E and that Gal(BE/E) =
Gal(B/F).



192 6 Transcendental Extensions

Exercise 6.4.5. An extension E of F is a finitely generated extension of F if E
is obtained by adjoining finitely many elements (algebraic or transcendental)
to F. Show that E is finitely generated over F if and only if k = tr-deg(E/F)

is finite and for some (and hence for any) transcendence basis X1, . . . , Xk of
E over F, E is a finite extension of F(X1, . . . , Xk).

Exercise 6.4.6. Let F ⊆ B ⊆ E. Show that E is finitely generated over F if
and only if E is finitely generated over B and B is finitely generated over F.

Exercise 6.4.7. Let D2n , the dihedral group of order 2n, be given by D2n =
〈a, b | an = 1, b2 = 1, ba = a−1b〉. Then D2n acts on C(X) where the
action is determined by a(X) = exp(2π i/n)X and b(X) = 1/X . Show that
Fix(D2n) = C(T ) where T = Xn + X−n .

Exercise 6.4.8. (a) Let σ1(X) = 1/X and let σ2(X) = 1−X . Show that σ1 and
σ2 generate a subgroup G of Aut(C(X)/C) that is isomorphic to the dihedral
group D6. (Considering the matrices that give σ1 and σ2, as in Theorem 6.2.3,
will make this computation easier.)
(b) Show that Fix(G) = C(T ) where T = (X2 − X + 1)3/(X2(X − 1)2).

Exercise 6.4.9. (a) Let B1 and B2 be extensions of F. Show that
tr-deg(B1B2/B1) ≤ tr-deg(B2/F) and that tr-deg(B1B2/F) ≤ tr-deg(B1/F) +
tr-deg(B2/F). (Note that Example 6.1.24 gives an example of disjoint exten-
sions B1 and B2 where we have strict inequality.)
(b) Let B1 and B2 be linearly disjoint extensions of F. Show that
tr-deg(B1B2/B1) = tr-deg(B2/F) and that tr-deg(B1B2/F) = tr-deg(B1/F) +
tr-deg(B2/F).

Exercise 6.4.10. (a) Let C be the curve defined by Y 2 = X2 + X3. Show that
C is rational over Q (and hence over any field of characteristic 0).
(b) Let C be the curve defined by Y 2 = X2 − X4. Show that C is rational over
Q (and hence over any field of characteristic 0).

Exercise 6.4.11. Let f (X, Y ) = aX2 + bXY + cY 2 + d X + eY + f be an
arbitrary irreducible polynomial, and let C be the curve defined by f (X, Y ) =
0. Show that C is rational over C.

Exercise 6.4.12. Show that Theorem 6.3.7 and Theorem 6.3.10 hold for any
polynomial h(X) with at least 3 roots of multiplicity prime to n, in the case of
Theorem 6.3.7, or to 2, in the case of Theorem 6.3.10.

Exercise 6.4.13. Determine conditions on p so that each case of Theorem
6.3.6, Theorem 6.3.7, Theorem 6.3.10, Theorem 6.3.11, Exercise 6.4.10, and
Exercise 6.4.11 holds when F is an algebraically closed field of characteris-
tic p.
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Exercise 6.4.14. Let F be a field of characteristic p, let E ⊃ F be a purely
transcendental extension of F, and let E′ ⊇ E be a finite extension of E. Show
that E′ is not a perfect field.
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Some Results from Group Theory

A.1 Solvable Groups

Definition A.1.1. A composition series for a group G is a sequence of sub-
groups G = G0 ⊇ G1 ⊇ . . . Gk = {1} with Gi a normal subgroup of Gi−1 for
each i . A group G is solvable if it has a composition series with each quotient
Gi/Gi−1 abelian. �
Example A.1.2. (1) Every abelian group G is solvable (as we may choose
G0 = G and G1 = {1}).

(2) If G is the group of Lemma 4.6.1, G = 〈σ, τ | σ p = 1, τ p−1 = 1,
τστ−1 = σ r 〉 where r is a primitive root mod p, then G is solvable: G =
G0 ⊃ G1 ⊃ G2 = {1} with G1 the cyclic subgroup generated by σ . Then G1

is a normal subgroup of G with G/G1 cyclic of order p − 1 and G1 cyclic of
order p.

(3) If G is the group of Lemma 4.6.3, G = 〈σ, τ | σ 4 = 1, τ 2 = 1,
τστ−1 = σ 3〉 , then G is solvable: G = G0 ⊃ G1 ⊃ G2 = {1} with G1

the cyclic subgroup generated by σ . Then G1 is a normal subgroup of G with
G/G1 cyclic of order 2 and G1 cyclic of order 4.

(4) If G is a p-group, then G is solvable. This is Lemma A.2.4 below.
(5) If G = Sn , the symmetric group on {1, . . . , n}, then G is solvable

for n ≤ 4. S1 is trivial. S2 is abelian. S3 has the composition series S3 ⊃
A3 ⊃ {1}. S4 has the composition series S4 ⊃ A4 ⊃ V4 ⊃ {1} where V4 =
{1, (12)(34), (13)(24), (14)(23)}. (Here An denotes the alternating group.)

(6) If G = Sn or G = An , then G is not solvable for n ≥ 5. This is
Corollary A.3.6 below. �
Lemma A.1.3. A finite group G is solvable if and only if it has a composition
series satisfying any one of the following conditions:
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(1) Gi−1/Gi is solvable for each i .
(2) Gi−1/Gi is abelian for each i .
(3) Gi−1/Gi is cyclic for each i .
(4) Gi−1/Gi is cyclic of prime order for each i .

Proof. If Gi−1/Gi is solvable then we may “refine” the original sequence to
G ⊇ · · · ⊇ Gi−1 = H0 ⊇ H1 ⊇ · · · ⊇ Hm = Gi ⊇ · · · ⊇ Gk = {1} with Hj

normal in Hj−1 and Hj−1/Hj abelian; similarly we may refine a sequence with
abelian quotients to one with cyclic quotients and one with cyclic quotients to
one with quotients cyclic of prime order. On the other hand, if Gi−1/Gi is
cyclic of prime order it is certainly solvable. ��
Lemma A.1.4. (1) Let G be a solvable group and let H be a subgroup of G.
Then H is a solvable group.

(2) Let G be a solvable group and let N be a normal subgroup of G. Then
G/N is a solvable group.

(3) Let G be a group and let N be a normal subgroup of G. If N and G/N
are solvable, then G is solvable.

Proof. Consider G = G0 ⊇ G1 ⊇ · · · ⊇ Gk ⊆ {1}. Then H = H0 ⊇ H1 ⊇
· · · ⊇ Hk ⊇ {1} where Hi = H ∩ Gi . It is easy to check that Hi is a normal
subgroup of Hi−1, and then by standard theorems of group theory

Hi−1/Hi = (H ∩ Gi−1)/H ∩ Gi = (H ∩ Gi−1)/(H ∩ Gi−1) ∩ Gi

∼= (H ∩ Gi−1)Gi/Gi ⊆ Gi−1/Gi

is isomorphic to a subgroup of an abelian group so it is abelian.
(2) Let π : G → G/N = Q be the quotient map and consider Q = Q0 ⊇

· · · ⊇ Qk = {1} where Qi = π(Gi ). Then Qi = Gi N/N ∼= Gi/Gi ∩ N , so

π(Gi−1)/π(Gi ) = (Gi−1 N/N )/(Gi N/N )

∼= (Gi−1/Gi−1 ∩ N )/(Gi/Gi ∩ N )

is isomorphic to a quotient of the abelian group Gi−1/Gi so it is abelian.
(3) Let π : G → G/N = Q. Let N = N0 ⊇ · · · ⊇ N j = {1} and

Q = Q0 ⊇ · · · ⊇ Qk = {1} be as in Definition A.1.1. Then the sequence of
subgroups

G = π−1(Q0) ⊇ π−1(Q1) ⊇ · · · ⊇ π−1(Qk) = N0 ⊇ N1 ⊇ · · · ⊇ N j = {1}
shows that G is solvable. ��
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So far, we have considered abstract solvable groups. However, when we
consider solvable subgroups of symmetric groups, we can get very precise
descriptions.

Lemma A.1.5. Let G be a subgroup of Sp of order divisible by p, p a prime.
Then any nontrivial normal subgroup K of G has order divisible by p.

Proof. Since G has order divisible by p, it must contain an element of order
p, which must be a p-cycle.

Regard Sp as operating on T = {1, . . . , p}. Write T = T1 ∪ · · · ∪ Tq , a
decomposition onto orbits of K . In other words, i, j, ∈ Tm for some m if and
only if there is some τ ∈ K with τ(i) = j . Now for any i, j ∈ T there is a
σ ∈ G with σ(i) = j . This implies that the action of G permutes {T1, . . . , Tq}
so in particular each Tm has the same cardinality. This cardinality then divides
p, so must be 1 or p, and cannot be 1 as K is nontrivial. Thus we see that K
operates transitively on T , so has order divisible by p (as the subgroup of K
fixing 1, say, has index p). ��
Lemma A.1.6. Let G be a solvable subgroup of Sp of order divisible by p, p
a prime. Then G contains a unique subgroup N of order p.

Proof. Let G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = {1} as in Definition A.1.1. We prove
the lemma by induction on k.

If k = 1, G = G0 ⊃ G1 = {1} and G is solvable, so G is abelian, and
hence has a unique p-Sylow subgroup N , of order p.

Suppose the lemma is true for k − 1. Then G1 is a normal subgroup of G,
so applying Lemma A.1.5 with K = G1 we see that G1 has order divisible by
p, and then by the inductive hypothesis that G1 contains a unique subgroup N
of order p. Now let N ′ be any subgroup of G of order p. Then N ′ and N are
both p-Sylow subgroups, so are conjugate. Let N ′ = σ Nσ−1. As N ⊆ G1,
N ′ = σ Nσ−1 ⊆ σ G1σ

−1 = G1 as G1 is normal in G, so N ′ = N , as
required. ��

Let a group G operate on a set T . This action is effective if the only element
σ or G with σ(t) = t for all t ∈ T is σ = id.

Let a group G1 operate on a set T1, and a group G2 operate on a set T2.
These operations are permutation isomorphic if there is an isomorphism of
groups ψ : G1 → G2 and an isomorphism of sets (i.e., a bijection) � : T1 →
T2 with �(σ(t)) = ψ(σ)(�(t)) for every σ ∈ G1, t ∈ T1.

Proposition A.1.7. Let G be a solvable group operating effectively and tran-
sitively on a set T of cardinality p, p a prime. Then there is a subgroup H of
F∗

p such that this operation is permutation isomorphic to
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G H =
{ [

h n
0 1

]
| h ∈ H, n ∈ Fp

}

operating on

T =
{ [

i
1

]
| i ∈ Fp

}

by left multiplication.

Proof. As we have observed, in this situation G has order divisible by p. (Let
t ∈ T be arbitrary and consider {σ ∈ G | σ(t) = t}. Since G acts transitively
on T , this subgroup of G has index p.)

Since G operates effectively on T , G is isomorphic to a subgroup of the
symmetric group Sp, so, by Lemma A.1.6, G contains a unique subgroup N
of order p, which is generated by a p-cycle. Reordering, if necessary, we have

that N and T are permutation isomorphic to
{ [

1 n
0 1

]
| n ∈ Fp

}
operating on

{ [
i
1

]
| i ∈ Fp

}
by left multiplication, as a suitable generator ν of N takes[

i
1

]
to

[
i + 1

1

]
mod p. For simplicity of notation, we simply identify N with

this group and T with this set.
Since N is the unique subgroup of order p of G, it is certainly a normal

subgroup of G. Let σ ∈ G be arbitrary. Then σνσ−1 = νh for some h �= 0.

Let σ
( [

0
1

] )
=

[
n
1

]
. Then, for any i ,

[
n + ih

1

]
= νih

( [
n
1

] )
= σνiσ−1

( [
n
1

] )
= σνi

( [
0
1

] )
= σ

( [
i
1

] )
,

so

σ
( [

i
1

] )
=

[
h n
0 1

] [
i
1

]

and hence

G ⊆
{ [

h n
0 1

]
| h ∈ F∗

p, n ∈ Fp

}
.

Thus, if H is the subgroup of F∗
p given by
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H =
{

h ∈ F∗
p |

[
h 0
0 1

]
∈ G

}
,

then G = G H as claimed. ��
Corollary A.1.8. Let G be a subgroup of Sp, p a prime, of order divisible by
p. The following are equivalent:

(1) G is solvable.
(2) The order of G divides p(p − 1).
(3) The order of G is at most p(p − 1).

Proof. (1) implies (2): If G is solvable, then, by Proposition A.1.7, G = G H

for some H and then |G| divides p(p − 1).
(2) implies (3): Trivial.
(3) implies (1): G has a p-Sylow subgroup N , and N is unique, as if G

had another p-Sylow subgroup N ′, then G would have order at least p2. Then
the last part of the proof of Proposition A.1.7 shows that G = G H for some
H . But G H ⊃ N ⊃ {1} with N normal in G. N is abelian and G H/N is
isomorphic to H which is abelian, so G is solvable. ��

A.2 p-Groups

Throughout this section, p denotes a prime.

Definition A.2.1. A group G is a p-group if |G| is a power of p. �
The center Z(G) of a group G is defined by Z(G) = {σ ∈ G | στ = τσ

for every τ ∈ G}.
Lemma A.2.2. Let G be a p-group. Then G has a nontrivial center (i.e.,
Z(G) �= {1}).
Proof. Write G = C1 ∪ · · · ∪ Ck , a union of conjugacy classes. If σi ∈ Ci ,
then |Ci | = [G : Hi ] where Hi = {τ ∈ G | τσiτ

−1 = σi }. If σi ∈ Z(G),
then Ci = {σi } and |Ci | = 1 (and Hi = G). If σi /∈ Z(G), then Hi is a proper
subgroup of G, so |Ci | = [Gi : Hi ] is a positive power of p. Of course |G| is a
positive power of p. But one of the conjugacy classes, say C1, consists of {id}
alone, and |C1| = 1 is not divisible by p. Now |G| = |C1| + · · ·+ |Ck |. Hence
there must exist other classes Ci with |Ci | not divisible by p, and hence with
|Ci | = 1, and if Ci = {σi } then σi ∈ Z(G). ��
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Corollary A.2.3. Let G be a p-group, |G| = pn. Then there is a sequence of
subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1} with Gi a normal subgroup of G
of index pi , for each i = 1, . . . , n.

Proof. By induction on n. If n = 1, the result is trivial.
Now suppose the result is true for all groups of order pn−1, and let G

be an arbitrary group of order pn . By Lemma A.2.2, the center Z(G) of G
is nontrivial. Since |Z(G)| divides |G|, |Z(G)| is also a power of p, so, in
particular, Z(G) contains an element of order p. The cyclic subgroup H of G
generated by that element is a subgroup of G of order p, and, since H ⊆ Z(G),
H is a normal subgroup of G. Let Q = G/H be the quotient group, and let
π : G → Q be the canonical projection.

Now Q is a group of order pn−1, so by the inductive hypothesis there is a
sequence of subgroups Q = Q0 ⊃ Q1 ⊃ · · · ⊃ Qn−1 = {1} with Qi a normal
subgroup of Q of index pi for each i = 1, . . . , n − 1. Let Gi = π−1(Qi ) for
i = 1, . . . , n − 1 and Gn = {1}. Then G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1}
form a sequence as claimed. (Clearly Gi has index pi . Also, Gi is a normal
subgroup of G as if g0 ∈ Gi and g ∈ G, then gg0g−1 ∈ Gi as π(gg0g−1) =
π(g)π(g0)(π(g))−1 ∈ Qi as Qi is a normal subgroup of Q.) ��
Lemma A.2.4. Let G be a p-group. Then G is solvable.

Proof. By Corollary A.2.3, there is a sequence of subgroups G = G0 ⊃ G1 ⊃
· · · ⊃ Gn = {1} with Gi a normal subgroup of G, and hence certainly a normal
subgroup of Gi−1, for each i . Furthermore, since [G : Gi ] = pi for each i ,
[Gi−1 : Gi ] = p and hence |Gi−1/Gi | = p, and so Gi−1/Gi is cyclic of order
p and, in particular, is abelian, for each i . Hence, by Definition A.1.1, G is
solvable. ��

A.3 Symmetric and Alternating Groups

In this section we prove several results about symmetric and alternating
groups. We let Sn be the symmetric group on {1, . . . , n} and we let An ⊆ Sn

be the alternating group. We regard the elements of Sn as functions on this
set and recall that functions are composed by applying the rightmost function
first. Thus, for example, (1 2)(1 3) = (1 3 2). We recall that every element
of Sn can be written as a product of disjoint cycles, and that disjoint cycles
commute.

The first two results we prove allow us to conclude that certain subgroups
of Sn are in fact equal to Sn .
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Lemma A.3.1. Let p be a prime and let G be a transitive subgroup of Sp that
contains a transposition. Then G = Sp.

Proof. By renumbering if necessary, we may assume the transposition is τ =
(1 2).

Since G acts transitively on {1, . . . , p}, it has order divisible by p and
hence it has an element σ0 of order p. Since p is a prime, σ0 is a p-cycle.
Thus there is some power σ = σ k

0 of σ0 with σ(1) = 2. By renumbering
if necessary, we may then assume σ = (1 2 · · · p). Now direct calculation
shows that

σ jτσ− j = (1 2 · · · p) j (1 2)(1 2 · · · p)− j = (( j + 1) ( j + 2))

for j = 0, . . . , p − 2. Direct calculation then shows that

(2 3)(1 2)(2 3) = (1 3),

(3 4)(1 3)(3 4) = (1 4),

...

((p − 1) p)(1 (p − 1))((p − 1) p) = (1 p)

and furthermore that

(1 k)(1 j)(1 k) = ( j k) for any j �= k.

Thus G contains every transposition. But Sp is generated by transpositions,
so G = Sp. ��
Lemma A.3.2. Let G be a transitive subgroup of Sn that contains an (n − 1)-
cycle and a transposition. Then G = Sn.

Proof. Let ρ be the n −1-cycle. By renumbering if necessary, we may assume
that ρ = (1 2 · · · (n − 1)). Then the transposition is τ = (i j) for some i and
j . Since G operates transitively on {1, . . . , n}, there is an element γ of G with
γ ( j) = n. Then γ (i) = k for some k. Direct calculation shows that

γ τγ −1 = (k n) = τk and then that ρiτkρ
−i = ((k + i) n) = τk+i ,

where k + i is taken mod n − 1. Finally, direct calculation shows that

τiτ jτ
−1
i = (i j) for any i �= j.

Thus G contains every transposition. But Sn is generated by transpositions,
so G = Sn . ��
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Next we show some results on the structure of An and Sn . We first need the
following technical lemma.

Lemma A.3.3. If G is a normal subgroup of An that contains a 3-cycle, then
G = An.

Proof. We shall first show that if G contains a single 3-cycle, then it contains
every 3-cycle. Note that if G contains a 3-cycle (i j k), it contains (i j k)−1 =
(k j i).

By renumbering if necessary, we may assume that G contains the 3-cycle
(1 2 3). Then for each i > 3 (observing that an element of order 2 is its own
inverse) G also contains the elements

((1 2)(3 i))(3 2 1)((1 2)(3 i)) = (1 2 i),

((1 3)(2 i))(1 2 3)((1 3)(2 i)) = (1 3 i),

((2 3)(1 i))(3 2 1)((2 3)(1 i)) = (2 3 i);
then for each distinct i, j > 3, G also contains the elements

(1 2 j)(2 i 1) = (1 i j),

(2 3 j)(3 i 2) = (2 i j),

(3 1 j)(1 i 3) = (3 i j);
finally, for each distinct i, j, k > 3, G also contains the elements

(k i 1)(1 i j) = (i j k),

so G contains all 3-cycles, as claimed.
But we now claim that any element of An can be written as a product of 3-

cycles. Since any element of An can be written as a product of an even number
of transpositions, to show this it suffices to show that the product of any two
transpositions can be written as a product of 3-cycles, and we see this from

(i j)(i k) = (i k j),

(i j)(k �) = (i k j)(i k �),

completing the proof. ��
Theorem A.3.4. For n ≥ 5, An is a simple group (i.e., it has no normal sub-
groups other than An and {1}).
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Proof. Let n ≥ 5 and let G �= {1} be a normal subgroup of An . We will show
G = An .

By Lemma A.3.3, it suffices to show that G contains a 3-cycle, so that is
what we shall do.

Let σ ∈ G, σ �= 1. Then σ has order m > 1. Let p be a prime dividing m
and let γ = σ m/p. Then γ has order p. Now γ can be written as a product of
disjoint cycles, γ = γ1 · · · γk , and since γ has order p, each of γ1, . . . , γk is a
p-cycle. Now we must consider several cases:

Case I: p ≥ 5: By renumbering if necessary, we may assume that
γ1 = (1 2 3 4 5 6 7 · · · p). Let τ1 = (1 2)(3 4). Then β1 = τ1γ1τ

−1
1 =

(1 4 3 5 6 7 · · · p 2) and γ1β
−1
1 = (1 3 5 4 2). Letting β = τ1γ τ−1

1 and
using the fact that disjoint cycles commute, it easily follows that γβ−1 =
(1 3 5 4 2). Let τ2 = (1 3)(2 4). Then τ2(1 3 5 4 2)τ−1

2 = (1 5 2 4 3) and
(1 3 5 4 2)(1 5 2 4 3) = (1 4 5).

Case II: p = 3: If k = 1, i.e., there is only a single 3-cycle, there is
nothing to do, so assume k ≥ 2. By renumbering if necessary, we may assume
that γ1 = (1 2 3) and γ2 = (4 5 6). Let γ12 = γ1γ2 = (1 2 3)(4 5 6). Let τ1 =
(1 2)(3 4). Then δ12 = τ1γ12τ

−1
1 = (1 4 2)(3 5 6) and γ12δ

−1
12 = (1 3 4 2 5).

Letting δ = τ1γ τ−1
1 , it then follows, as in Case I, that γ δ−1 = (1 3 4 2 5).

Thus G contains a 5-cycle and we are back in Case I.

Case III: p = 2: Since we are in An , k is even, so k ≥ 2. By renumbering
if necessary, we may assume that γ1 = (1 2) and γ2 = (3 4). Let γ12 =
γ1γ2 = (1 2)(3 4). Let ρ = (1 2 3). Then ζ12 = ργ12ρ

−1 = (1 4)(2 3) and
γ12ζ

−1
12 = (1 3)(2 4). Letting ζ = ργρ−1, it then follows, as in Case I, that

γ ζ−1 = θ = (1 3)(2 4). Let τ3 = (1 3)(2 5). (Note here is where we need
n ≥ 5.) Then τ3θτ−1

3 = θ ′ = (1 3)(4 5). But then θθ ′ = (2 4 5). ��
Theorem A.3.5. For n ≥ 5, the only normal subgroups of Sn are Sn, An,
and {1}.
Proof. Let n ≥ 5 and let G �= {1} be a normal subgroup of Sn . We will
show G ⊇ An . Since An is a subgroup of Sn of index 2, this shows that G =
An or Sn .

The proof of this is almost identical to the proof of Theorem A.3.4. We
begin in the same way. Let σ ∈ G, σ �= 1. Then σ has order m > 1. Let p be
a prime dividing m and let γ = σ m/p. Then γ has order p.

If we are in Case I, Case II, or Case III with k ≥ 2 of the proof of Theorem
A.3.4, we conclude in exactly the same way that G ⊇ An . This leaves only the
case where p = 2 and k = 1, i.e., where γ is a single transposition. But all
transpositions in Sn are conjugate, and Sn is generated by transpositions, so in
this case G = Sn . ��
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Corollary A.3.6. For n ≥ 5, neither An nor Sn is solvable.

Proof. Let n ≥ 5. By the definition of a solvable group (Definition A.1.1), if
G = An or Sn were solvable, it would have a composition series with abelian
quotients. But by Theorem A.3.4, the only possible composition series for An

is An ⊃ {1}, and by Theorem A.3.5, the only possible composition series for
Sn are Sn ⊃ {1} and Sn ⊃ An ⊃ {1}, and An is not abelian. ��
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A Lemma on Constructing Fields

In Section 2.2 we showed: If f (X) ∈ F[X ] is an irreducible polynomial, then
F[X ]/〈 f (X)〉 is a field. We did so by using arguments particular to polynomi-
als. In this appendix we shall show that this result follow from more general
results in ring theory. In particular, in this section we show how to construct
fields from integral domains.

Definition B.1.1. Let R be an integral domain.
(1) An ideal I ⊂ R is a maximal ideal if I ⊆ J ⊆ R, J an ideal, implies

J = I or J = R.
(2) An ideal I ⊂ R is a prime ideal if ab ∈ I , with a, b ∈ R, implies a ∈ I

or b ∈ I . �
Lemma B.1.2. (1) Let R be an integral domain. Then every maximal ideal is
prime.

(2) Let R be a PID (principal ideal domain). Then every prime ideal is
maximal.

Proof. (1) Let I be a maximal ideal and let ab = i ∈ I . If a ∈ I , there
is nothing to prove. Otherwise, let J = 〈a, I 〉 (the ideal generated by a and
I ). Then I ⊂ J and I is maximal, so J = R. In particular, 1 ∈ J . Then
xa + i ′ = 1 for some x ∈ R and i ′ ∈ I . Then

b = 1 · b = (xa + i ′)b = X (ab) + i ′b = i X + i ′b ∈ I.

(2) Suppose I is a prime ideal and J is an ideal with I ⊆ J . Then I = 〈p〉
for some p ∈ R and J = 〈q〉 for some q ∈ R. Since I ⊆ J , p ∈ J so p = qr
for some r ∈ R. Since I is prime, we conclude that:

(a) q ∈ I in which case J = 〈q〉 ⊆ I so J = I ; or
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(b) r ∈ I so r = pr ′ for some r ′ ∈ R in which case p = qr = qpr ′ =
p(qr ′) so 1 = qr ′ and hence 1 ∈ J , so J = R. ��
Lemma B.1.3. Let R be an integral domain and I ⊂ R an ideal. Then I is
maximal if and only if R/I is a field.

Proof. Let π : R → R/I be the canonical projection. First suppose I is
maximal. Let ā ∈ R/I , ā �= 0. Then ā = π(a) for some a ∈ R, a /∈ I . Since
I is maximal, R = 〈a, I 〉, so 1 = xa + i for some x ∈ R and some i ∈ I .
Then, if x̄ = π(x),

1 = π(1) = π(xa + i) = x̄ ā + 0 = x̄ ā,

so ā is invertible.
Now suppose I is not maximal, and let I ⊂ J ⊂ R. Let j ∈ J , j /∈ I , and

let j̄ = π( j). We claim j̄ is not invertible. For suppose j̄ k̄ = 1, j̄, k̄ ∈ R/I ,
and let k̄ = π(k). Then jk = 1 + i for some i ∈ I , so 1 = jk − i and hence
1 ∈ J , a contradiction. ��
Corollary B.1.4. Let R be a PID and let I = 〈i〉 be the ideal generated by the
element i of R. Then R/I is a field if and only if i is irreducible.

Proof. In a PID, an element i is irreducible if and only if i is prime, and an
ideal I = 〈i〉 is a prime ideal if and only if the element i is prime, so the
corollary follows directly from Lemma B.1.2 and Lemma B.1.3. ��
Corollary B.1.5. Let f (X) ∈ F[X ] be an irreducible polynomial. Then
F[X ]/〈 f (X)〉 is a field.

Proof. Since F[X ] is a PID, this is a special case of Corollary B.1.4. ��
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A Lemma from Elementary Number Theory

In this appendix, we prove a lemma that is used in the proof of Theorem 4.7.1.

Lemma C.1.1. Let p be a prime and let t be a positive integer. Then there are
infinitely many primes congruent to 1(mod pt ).

Proof. We begin by recalling the following definition and facts: Let q be
a prime and let a be an integer relatively prime to q. Then ordq(a), the
order of a(mod q), is defined to be the smallest positive integer x such that
ax ≡ 1(mod q). Then, for an arbitrary integer y, ay ≡ 1(mod q) if and only if
ordq(a) divides y. Also, since, by Fermat’s Little Theorem, aq−1 ≡ 1(mod q),
we have that ordq(a) divides q − 1.

We now proceed with the proof, which we divide into two cases: p = 2
and p odd.

Case I: p = 2. For a nonnegative integer k, let Fk = 22k + 1. Note that, if
j < k, Fj = 22 j +1 divides 22k −1 = (22 j

)2k− j −1 = Fk −2, so gcd(Fj , Fk) =
gcd(Fj , 2) = 1, i.e., {F1, F2, . . . } are pairwise relatively prime. Thus, if qk is
a prime factor of Fk , then {q1, q2, . . . } are all distinct.

Now let q = qs for s ≥ t − 1. By definition, q divides Fs , i.e., 22s +
1 ≡ 0(mod q), 22s ≡ −1(mod q), and hence 22s+1 ≡ 1(mod q). Thus ordq(2)

divides 2s+1 but does not divide 2s , so ordq(2) = 2s+1. Then, as we have
observed above, 2s+1 divides q − 1, so q ≡ 1(mod 2s+1) and hence q ≡
1(mod 2t ).

Thus we see that {qt−1, qt , . . . } are distinct primes congruent to 1(mod 2t ).

Case II: p odd. In this case we proceed by contradiction. Assume there are
only finitely many primes ≡ 1(mod pt ), and let these be q1, . . . , qr . Let

a = 2q1 · · · qr , c = a pt−1
, N = a pt − 1 = cp − 1,
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and write N = (c − 1)M where M = cp−1 + · · · + 1.

Claim: c − 1 and M are relatively prime.

Proof of claim: M = cp−1 + · · · + 1 = (cp−1 − 1) + (cp−2 − 1) + · · · +
(c − 1) +p, and each term except possibly the last one is divisible by c − 1, so
gcd(c − 1, M) = gcd(c − 1, p) = 1 or p. But a ≡ 2(mod p) so c ≡
2pt−1

(mod p). By Fermat’s Little Theorem, 2p−1 ≡ 1(mod p), and pt−1 ≡
1(mod p − 1), so c ≡ 21 ≡ 2(mod p) and so c − 1 ≡ 1(mod p). Thus p does
not divide c − 1 and so gcd(c − 1, M) = gcd(c − 1, p) = 1.

Now let q be any prime dividing M . Then q divides N = cp − 1,
so cp ≡ 1(mod q), i.e., a pt ≡ 1(mod q). So ordq(a) divides pt , i.e.,
ordq(a) = 1, p, . . . , pt−1 or pt . But if ordq(a) = 1, p, . . . , or pt−1, then
a pt−1 ≡ 1(mod q), i.e., c ≡ 1(mod q), so q divides c − 1, contradicting the
fact that c − 1 and M are relatively prime. Hence ordq(a) = pt . Then, as we
have observed above, pt divides q − 1, i.e., q ≡ 1(mod pt ).

But certainly q does not divides a, while each of q1, . . . , qr does divide a,
so q �= q1, . . . , qr , contradicting the hypothesis that q1, . . . , qr are all the
primes congruent to 1(mod pt ). Hence there must be infinitely many such
primes. ��
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for computing Galois groups 128
algorithm for factoring polynomials 92

Artin 30
Artin–Schreier extension 83

basis
normal, 49

character 29
characteristic 9
closure

algebraic, 155, 158
Galois, 152
normal, 152
separable, 147, 149

conjugate
Galois, 27
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Fermat, 186, 191
plane, 185
rational, 186
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Dirichlet 29, 123
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extension 9
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extension (continued)
completely transcendental, 173
composite, 170
finite, 9
Galois, 27, 28, 32, 35, 60, 61, 63, 161,

162, 170, 171
inseparable, 25, 55
nonsimple, 69
normal, 25, 26, 28, 32, 149, 151, 152,
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purely inseparable, 147–149
purely transcendental, 173
quadratic, 108
radical, 97, 112
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146, 161
simple, 47, 66, 67
symmetric, 122, 123
transcendental, 173

extension by radicals see extension,
radical

extensions
conjugate, 34
disjoint, 60–62, 96, 170
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Fermat prime 105
Fermat’s Little Theorem 10
field 7, 13, 204

algebraically closed, 155, 158
composite, 16
cyclotomic, 93, 108, 112, 114, 123
extension, 14, 15
finite, 55, 56
fixed, 64
function, 185
Kummer, 76, 112
perfect, 26, 55
quadratic, 111, 112
splitting, 22, 24–26, 28, 151, 161,
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Frobenius map 10, 55, 56, 143
FTGT see Fundamental Theorem of

Galois Theory

function
symmetric, 45

Fundamental Theorem of Algebra 159
Fundamental Theorem of Galois Theory

2, 27, 32, 37, 57, 164
Fundamental Theorem of Infinite Galois

Theory 164

Galois 99
Gauss 105, 112
Gauss’s Lemma 90
gcd see greatest common divisor
greatest common divisor 11, 15
group

abelian, 122
alternating, 198, 200
cyclic, 12
Galois, 1, 26, 32, 36, 37, 45, 58, 60,

63, 64, 73–75, 77, 96, 112, 113,
115, 117, 120, 122, 123, 126–128,
168, 171

nonsolvable, 202
p-group, 197, 198
permutation, 35
simple, 200
solvable, 98, 193–195, 197, 198
symmetric, 123, 127, 195, 197–199,

201
topological, 163

Hilbert’s Theorem 90 81

ideal
maximal, 203, 204
prime, 203

inseparability
degree of, 147, 150

invariance of gcd under field extensions
15

Kronecker 14, 92
Kronecker–Weber Theorem 123

Lagrange Interpolation Formula 92
Landau 95
Lindemann 103
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Möbius Inversion Formula 60, 97

n-powerless 74–76, 114
Newton’s Identities 51
norm 79, 80
normal basis 69, 70, 72

polynomial
cyclotomic, 91, 93, 94
elementary symmetric, 46
inseparable, 25, 55
irreducible, 58, 90–92, 94, 116,

204
minimum, 18, 19, 27, 65, 80,

151
primitive, 90
radical, 97, 112
separable, 25, 26, 28, 54, 145,
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symmetric, 45

polynomial ring 11
Pythagorean triple 191

solvable by radicals 97–99
not, 99, 100

splits 22
squaring the circle 103
straightedge and compass 101, 103,

105

Theorem on Natural Irrationalities 62,
158

topology
compact-open, 170
Krull, 163, 167, 168, 170
product, 170

trace 79, 80
transcendence

basis 175
degree 177

transcendental extension
simple, 181

transformation, linear 19
trisecting the angle 103

van der Waerden 123


